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DIAGONALS OF OPERATORS AND BLASCHKE’S
ENIGMA

VLADIMIR MÜLLER AND YURI TOMILOV

Abstract. We introduce new techniques allowing one to construct di-
agonals of bounded Hilbert space operators and operator tuples under
“Blaschke-type” assumptions. This provides a new framework for a
number of results in the literature and identifies, often large, subsets in
the set of diagonals of arbitrary bounded operators (and their tuples).
Moreover, our approach leads to substantial generalizations of the re-
sults due to Bourin, Herrero and Stout having assumptions of a similar
nature.

1. Introduction

Let T be a bounded linear operator on a separable Hilbert space H. If
(ek)N

k=1 is an orthonormal basis in H, 1 ≤ N ≤ ∞, then T admits a matrix
representation MT = (〈Tei, ej〉)N

i,j=1. If N < ∞ then MT is a finite matrix,
and it is an essential part of the matrix theory to relate the properties of T
and MT . In particular, it is of substantial interest to express the structure
of T in terms of the elements of MT . Even in this toy setting a number of
natural questions, e.g. on the interplay between the spectrum of T and the
diagonal of MT appeared to be rather complicated, see e.g. [7] and [48] for
a pertinent discussion.

For an infinite-dimensional space H the relations between T and MT

become even more involved and depend on very advanced methods and
techniques stemming from various domains of analysis. A nice illustration
of the interplay between T and MT is provided by the famous Kadison-
Singer problem, its “matrix” reformulation and its solution by techniques
originating from matrix theory. We refer e.g. to [41] for a nice account.

It is well-known that for good enough (usually Schatten class) T the
diagonal of MT carries a spectral information about T, and for trace-class T
its trace is just the sum of eigenvalues by Lidskii’s theorem. Note that in this
case the trace-class property of T and the value of its trace do not change
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under a change of basis. However, the situation becomes more complicated
when T is far from being compact. One way to circumvent the problem is to
vary the orthonormal basis (ek)∞k=1 and to consider the whole set D(T ) :=
{〈Tek, ek〉∞k=1} ⊂ `∞(N) of diagonals of T.

A lot of research has been done to understand the structure of D(T ) for
general T . However, it still remains mysterious, even for very particular
classes of operators. The aim of this paper is to introduce and study a
Blaschke-type condition leading to a description of “large” subsets of D(T )
in a priori terms. This is done in a very general set-up of bounded linear
operators T and their tuples.

To put our consideration into a proper framework, let us first review
major achievements made so far in the study of diagonals of operators on
infinite-dimensional spaces. First, note that (as mentioned in [37]) the study
of diagonals can be understood in at least two senses:

(a) as the study of D(T ) for a class of operators T,
and
(b) as the study of D(T ) for a fixed operator T.
Most of the relevant research has been concentrated on the first, easier

problem, but there have been several papers addressing the second problem
as well. Clearly the entries constituting diagonals of T belong to the numeri-
cal range W (T ) of T , and thus the numerical range and its subsets appear to
be very natural candidates for a characterization of at least a part of D(T ).
However, the importance of numerical ranges for the study of diagonals was
underlined only in [24], and to some extent in [47] and [18].

Motivated by a notorious problem from the theory of commutators, P.
Fan studied in [18] a problem of existence of zero diagonals in D(T ). Using
the properties of the essential numerical range We(T ) of T, he proved that
a bounded linear operator T on H admits a zero-diagonal, that is (0) ∈
D(T ), if and only if there exists an orthonormal basis (ek)∞k=1 such that
sn :=

∑n
k=1〈Tek, ek〉, n ∈ N, possess a subsequence (snm)∞m=1 satisfying

snm → 0,m → ∞. A number of related results in [18] suggested that “the
diagonal of an operator carries more information about the operator than
its relatively small size (compare to the ”fat” matrix representation of the
operator) may suggest.” This line of research was continued e.g. in [20]
and [19]. By different methods, it has been shown recently in [37] that an
infinite-rank idempotent admits a zero-diagonal if and only if it is not a
Hilbert-Schmidt perturbation of a (self-adjoint) projection.

An systematic study of the set D(T ) has been attempted by Herrero in
[24]. Addressing the challenging problem (a) above, Herrero showed that
if {dn}∞n=1 belongs to the interior Int We(T ) of We(T ) and {dn}∞n=1 has
a limit point again in IntWe(T ), then {dn}∞n=1 ∈ D(T ). Otherwise, as
shown in [24], there exists a compact operator K such that {dn}∞n=1 ∈
D(T + K). Finally, if dist{dn,We(T )} → 0 as n → ∞ then there exists
{d′n}∞n=1 such that {d′n}∞n=1 ∈ D(T ) and |dn − d′n| → 0 as n → ∞. The
results by Herrero motivated the research in this paper to a large extent.
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In particular, the importance of Blaschke-type conditions was suggested by
analysis of diagonals for the unilateral shift in [24]. See Section 4 for more
on that. As remarked in [24], the numerical range results allow one to
deduce easily Fong’s theorem from [22] saying that every bounded sequence
(dn)∞n=1 admits a nilpotent operator (of index 2) whose diagonal is (dn)∞n=1.
Moreover, in the same way, one can derive a similar result from [37] replacing
nilpotents by idempotents. See Remark 4.4 for more on that.

The papers by Fan and Herrero were preceded by a deep article by Stout
[47], where the diagonals of T appeared in a natural way in the study of Schur
algebras and where D(T ) was also related to We(T ). Recall that 0 ∈ We(T )
if (and only if) there exists (dn)∞n=1 ∈ D(T ) such that (dn)∞n=1 ∈ c0(N).
At the beginning of 1970s, Anderson proved that 0 ∈ We(T ) is in fact
equivalent to the existence of a p-summable sequence in D(T ) for every
p > 1. Extending Anderson’s result, Stout discovered that 0 ∈ We(T ) yields
a stronger property: for any (αn)∞n=1 6∈ `1 there is (dn)∞n=1 ∈ D(T ) such that
|dn| ≤ αn for all n. These results were crucial in the study of matrix and
Schur norms for Hilbert space operators in [23]. In particular, by relating
the size of entries of MT to We(T ), the infima of maximum entry norm and
Schur norms of MT over all choices of bases in H were proved in [23] to be
precisely dist {0, σess(T )}, where σess(T ) stands for the essential spectrum of
T.

Comparatively recently, a relevant study of D(T ) in a very general con-
text of operator-valued diagonals has been realized in [11] by J.-C. Bourin.
He proved that if We(T ) contains the open unit disc D, then for every se-
quence {Cn}n≥1 of operators acting possibly on different Hilbert spaces and
satisfying sup

n≥1
‖Cn‖ < 1, there exists a total sequence of nonzero mutually

orthogonal projections {Pn}n≥1 on H such that the compression PnT |Ran Pn

of T is unitarily equivalent to Cn for all n ≥ 1. The operators
⊕

n≥1 PnTPn,

called “pinchings” of T in [11], can be considered as operator counterparts of
elements from D(T ), and they essentially coincide with those elements when
Cn act on one-dimensional spaces. Note that pinching results appeared to
be useful in the study of C∗-algebras, see e.g. [12] for more on that.

A rather general but unfortunately only approximate result on diagonals
has been obtained by Neumann in [46] where, in particular, the `∞-closure
of D(T ) for (bounded) selfadjoint T was identified with a certain convex
set. More precisely, let T be a bounded selfadjoint operator on H, and let
t− = inf σess(T ) and t+ = supσess(T ). Then T = T− + T0 + T+, where T+

and T− are compact selfadjoint operators with positive and negative spectra
respectively. Denoting t+ (t−) the diagonal of T+ (T−) with respect to some
orthonormal basis, it was shown in [46] that the closure of D(T ) in `∞(N)
can be described as

conv St− + [t−, t+]N + conv St+,
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where S is a group of permutations (bijections) of N. As shown in [46], this
result yields, in particular, a description of closed convex invariant subsets
for selfadjoint operators. The results of a similar and more general nature
have appeared recently in [32].

A different perspective has been opened since Kadison’s striking results
on diagonals of selfadjoint projections, addressing the problem (a). Gen-
eralizing the classical Schur-Horn theorem for matrices, Kadison proved in
[27, 28] that a sequence (dn)∞n=1 is a diagonal of some self-adjoint projection
if and only if it takes values in [0, 1] and if the sums a :=

∑
dj<1/2 dj and

b :=
∑

dj≥1/2(1−dj) satisfy either a+b = ∞ or a+b < ∞ and a−b ∈ Z. Illus-
trating the sharpness of Kadison’s result and drawbacks of Neumann’s ap-
proximate description, we note that the Neumann’s theorem would produce
all positive sequences with elements between 0 and 1. The Kadison integer
condition was recognized as the Fredholm index obstruction in a subsequent
paper by Arveson [6], where Kadison’s dichotomy was studied for normal op-
erators with finite spectrum. (Note also [30], where the integer was identified
with so-called essential codimension of a pair of projections.) More precisely,
Arveson considered a more general task of describing the diagonals for nor-
mal operators N(X) with the essential spectrum σe(T ) = σ(T ) = X and
with X being the set of vertices of a convex polygon P ⊂ C. He defined the
set Lim1(X) of “critical” sequences d = (dn)n ∈ l∞(N) whose limit points
belong to X and moreover such that the elements of d converge rapidly to
these limits in the sense that

∑∞
n=1 dist(dn, X) < ∞, that is (dn)∞n=1 satisfies

the analogue of the classical Blaschke condition. He showed that there is a
discrete group ΓX depending only on the arithmetic properties of X, and a
surjective mapping d 7→ s(d) ∈ ΓX of the set of all such sequences d such
that if s(d) 6= 0, then d is not the diagonal of any operator in N(X). More-
over, it appeared that this is the only obstruction in the case of two-point
sets, but also that there are other obstructions in the case of three-point
sets. The case of three and more points set was settled very recently in [38]
and we refer to this paper for very interesting details. We also refer to [5]
containing an illuminating discussion of Kadison’s theorem.

The research started by Kadison and Arveson gave rise to an intensive
activity around diagonals of operators. In particular, the set D(T ) was char-
acterized for several classes of T (bearing certain resemblance to the self-
adjoint situation) and moreover several results (e.g. Neumann’s l∞-closure
result discussed above) were extended to the setting of von Neumann al-
gebras and tuples of elements, sometimes obtaining new statements in the
case of operators as well, see e.g. [4], [32], [40], and [31] and the references
therein. Without mentioning all the substantial contributions, we give only
a few samples related to the above discussion. Pairs of null real sequences
realized as sequences of eigenvalues and diagonals of positive compact op-
erators were characterized in [29]. A description of diagonals for selfadjoint
operators T with finite spectrum was recently given in [16] (see also [10]).
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Note that in this case the description of D(T ) though explicit becomes rather
technical and has an involved formulation. Very recently, D(T ) for a class
of unitary operators T was described in [26]. In particular, it was shown in
[26] that a complex-valued sequence (dn)∞n=1 is a diagonal of some unitary
operator on H if and only if supn≥1 |dn| ≤ 1 and

(1.1) 2(1− inf
n≥1

|dn|) ≤
∞∑

n=1

(1− |dn|).

One should also mention the applications to frame theory where the diago-
nals arise e.g. a sequence of frame norms. For this direction of research one
may consult e.g. [3], [13] and [15]. For several other related results, we refer
to a recent survey [50].

In this paper we study the diagonals of bounded operators from the per-
spective of numerical ranges and spectrum. Being inspired by Herrero’s
work [24] and by Arveson’s considerations in [6], we assume that the di-
agonal belongs to the interior of We(T ) and we introduce a Blaschke-type
condition

∞∑
n=1

dist {dn, ∂We(T )} = ∞

on the size of diagonal (dn)∞n=1 near the boundary of We(T ). (The terminol-
ogy originates from an opposite condition from complex analysis concerning
zeros of bounded analytic functions in the unit disc. Rather then writing
“non-Blaschke” here and in the sequel we have decided to name the condition
above “Blaschke-type”.) Note that one can easily recognize “Blaschke’s”
component in (1.1), however the condition is more subtle.

Given T ∈ B(H), this set-up helps us to suggest a general and new
method for constructing a big part of diagonals that works in a variety of
different settings, including operator tuples and operator-valued diagonals.
Moreover, for commuting tuples it allowed us to use spectral properties of T
for constructing diagonals for power tuples. Thus, apart from substantially
generalizing the results by Herrero and Bourin, we propose an approach
that unifies and extends existing results and does not depend on specific
properties of T (e.g. as being self-adjoint or unitary). We would like to stress
that, addressing problem (a) above, we work with fixed operators rather than
operator classes thus dealing with a more demanding and involved task. On
the other hand, the drawback of our framework is that working with a fixed
operator we are still far from giving a full description of D(T ) for a fixed
T , and results similar to Kadison’s ones are out of reach. Although we
suspect a characterization of D(T ) is hardly possible in such a generality,
see also Section 4 for a discussion of necessary conditions for diagonals and
some classes of T when Blaschke-type assumptions help to obtain exhaustive
characterizations.

Our first two main results given below provide Blaschke-type conditions
for a sequence from the essential numerical range of a tuple T to be a
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diagonal of T . To treat degenerate cases, we deal with the notion of relative
interior first and the result for an interior in Cn arises as a corollary.

Theorem 1.1. Let S = (S1, . . . , Ss) ∈ B(H)s be an s-tuple of selfadjoint
operators, and let (λk)∞k=1 ⊂ Int RsWe(S) satisfy

(1.2)
∞∑

k=1

dist {λk, Rs \We(S)} = ∞.

Then (λk)∞k=1 ∈ D(S).

Theorem 1.1 has a counterpart, Corollary 4.2, for T = (T1, . . . , Tn) ∈
B(H)n. In this case, assuming that M ⊂ Cn is the smallest real hyperplane
containing W (T ), we conclude that any (λk)∞k=1 ⊂ Int MWe(T ) satisfying

∞∑
k=1

dist {λk,M \We(T )} = ∞,

belongs to D(T ).
Using Theorem 1.1 in the context of power tuples (T, . . . , Tn) for T ∈

B(H), and thus being able to invoke the notion of spectrum, we show that
for every (λk)∞k=1 ⊂ Int σ̂(T ) satisfying

∑∞
k=1 dist n{λk, ∂σ̂(T )} = ∞ the se-

quence (λk, λ
2
k, . . . , λ

n
k) belongs to D(T, . . . , Tn). We are not aware of similar

statements in the literature, although some related statements can be found
in [43].

Theorem 1.2. Let T = (T1, . . . , Tn) ∈ B(H)n. For every (λk)∞k=1 ⊂ We(T )
and every (αk)∞k=1 /∈ `1 there exists an orthonormal basis (uk)∞k=1 in H such
that

(1.3)
∥∥〈T uk, uk〉 − λk

∥∥ ≤ |αk|

for all k ∈ N.

Theorem 1.2 yields the existence of diagonals for compact perturbations
of tuples that satisfy weakened Blaschke-type conditions. In particular, if
p > 1 and (λk)∞k=1 ⊂ Cn satisfy

∑∞
k=1 dist p{λk,We(T )} < ∞, then there

exists an n-tuple of operators K = (K1, . . . ,Kn) with Kj , 1 ≤ j ≤ n, from
the Schatten class Sp such that (λk)∞k=1 ∈ D(T + K). Our results on com-
pact perturbations lead to several characterizations of the subset Dconst(T )
of D(T ) consisting of constant diagonals. The problem of understanding
the structure of Dconst(T ) has been raised in [11], although there are other
related results in the literature. The most interesting question on convexity
of Dconst(T ) remains still unanswered.

It is curious that the same type of technique yields the results in the con-
text of operator diagonals thus extending Bourin’s results from [11] men-
tioned above to the setting of tuples and replacing his uniform contractivity
condition on operator diagonal by a more general assumption of Blaschke’s
type. In particular, the following statement holds.
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Theorem 1.3. Let T ∈ B(H) with We(T ) ⊃ D. Let Lk, k ∈ N, be sep-
arable Hilbert spaces (finite or infinite-dimensional) and let Ck ∈ B(Lk)
be contractions satisfying

∑∞
k=1(1 − ‖Ck‖) = ∞. Then there exist projec-

tions PKk
, k ∈ N, onto mutually orthogonal subspaces Kk ⊂ H such that⊕∞

k=1 Kk = H and PKk
TPKk

is unitarily equivalent to Ck for all k ∈ N.

(Note that since We(T ) is compact, in the formulation above, one may
replace the closure of D by D itself , and the choice of D is just a matter of
taste.)

The methods used in the proof of Theorem 1.3 appeared to be quite fruit-
ful in the study of power tuples. Under natural spectral assumptions, they
allowed us also to construct operator diagonals of power tuples (T, . . . , Tn)
consisting for power tuples of contractions (Ck, . . . , C

n
k ) where (Ck)∞k=1 sat-

isfy an analogue for tuples of Blaschke’s condition in Theorem 1.3. More
precisely, assuming that σ̂(T ) ⊃ D, n ∈ N, and Lk, k ∈ N, are separable
Hilbert spaces, we prove that for any contractions Ck ∈ B(Lk), k ∈ N, sat-
isfying

∑∞
k=1(1− ‖Ck‖)n = ∞ one can find mutually orthogonal subspaces

Kk ⊂ H such that H =
⊕∞

k=1 Kk and PKk
(T, . . . , Tn)PKk

is unitarily equiv-
alent to (Ck, . . . , C

n
k ) for all k ∈ N.

The result has a flavor of (finite) power dilations. Note however that
its proof relies on a classical unitary power dilation for a Hilbert space
contraction.

2. Notation

It will be convenient to fix some notations in a separate section. In par-
ticular, we let H be an infinite-dimensional complex separable Hilbert space
with the inner product 〈·, ·〉, and B(H) the space of all bounded linear opera-
tors on H. For a bounded linear operator T we denote by σ(T ) its spectrum,
by W (T ) its numerical range, and by N(T ) its kernel.

In the following we consider an n-tuple T = (T1, . . . , Tn) ∈ B(H)n. Note
that we do not in general assume that the operators Tj commute. For
x, y ∈ H we write shortly

〈T x, y〉 = (〈T1x, y〉, . . . , 〈Tnx, y〉) ∈ Cn and T x = (T1x, . . . , Tnx) ∈ Hn.

Similarly for λ = (λ1, . . . , λn) ∈ Cn we write T − λ = (T1 − λ1, . . . , T − λn)
and

‖λ‖ = max{|λ1|, . . . , |λn|}.
If T = (T1, . . . , Tn) ∈ B(H)n and R,S ∈ B(H) then we define

(2.1) RT S := (RT1S, . . . , RTnS).

For a a subspace M of a Hilbert space H we denote by PM the orthogonal
projection onto M and by JM the natural embedding JM : M → H, defined
by Jx = x, x ∈ M . For an operator T ∈ B(H), we denote by TM : M → M
the compression of T to M . Note that TM = J∗MTJM .
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If T = (T1, . . . , Tn) ∈ B(H)n and S = (S1, . . . , Sn) ∈ B(H ′)n are n-tuples
of operators, then we say that T and S are unitarily equivalent and write
T u∼ S if there exists a unitary operator U : H → H ′ such that Tj = USjU

−1

for every j = 1, . . . , n.
For T = (T1, . . . , Tn) ∈ B(H)n we denote by D(T ) ⊂ `∞(N, Cn) its set of

diagonals. In other words,

D(T ) = {(〈T1en, en〉, . . . , 〈Ten, en〉)∞n=1}

when (en)∞n=1 varies through the set of all orthonormal bases of H. It will be
important to distinguish a subset ofD(T ) consisting of ”constant” diagonals.
Define

Dconst(T ) = {λ ∈ Cn : (λ, λ, . . . ) ∈ D(T )}.

For a closed set K ⊂ Cn we denote by ∂K the topological boundary of K,
by conv K the convex hull of K, and by K̂ the polynomial hull of K. Recall
that if K ⊂ C then K̂ is the union of K with all bounded components of
the complement C \K. For K ⊂ Cn denote by IntK the interior of K. If
K ⊂ M ⊂ Cn then denote by IntM K the relative interior with respect to
M ⊂ Cn with the induced topology.

Finally, we let T stand for the unit circle {λ ∈ C : |λ| = 1}, D for the
unit disc {λ ∈ C : |λ| < 1} and R+ = [0,∞). Finally, for ρ > 0, write
Tρ = {z ∈ C : |z| = ρ}.

3. Preliminaries

We start with recalling certain basic notions and facts from the spectral
theory of operator tuples on Hilbert spaces. They can be found e.g. in [45,
Chapters 2-3].

Let T = (T1, . . . , Tn) ∈ B(H)n be an n-tuple of commuting operators.
Recall that its joint (Harte) spectrum σ(T ) can be defined as the comple-
ment of the set of those λ = (λ1, . . . , λn) ∈ Cn for which

n∑
j=1

Lj(Tj − λj) =
n∑

j=1

(Tj − λj)Rj = I

for some Lj , Rj , 1 ≤ j ≤ n, from the algebra B(H). It is well-known that
σ(T ) is a non-empty compact subset of Cn. One can define the joint essential
spectrum σe(T ) as the (Harte) spectrum of the n-tuple (T1+K(H), . . . , Tn+
K(H)) in the Calkin algebra B(H)/K(H), where K(H) denotes the ideal of
all compact operators on H. This definition of σe(T ) is rather implicit. Thus
it is helpful to consider the the joint essential approximate point spectrum
σπe(T ) ⊂ σe(T ) defined as the set of all λ = (λ1, . . . , λn) ∈ Cn such that

inf
x∈M,‖x‖=1

n∑
j=1

‖(Tj − λj)x‖ = 0
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for every subspace M ⊂ H of finite codimension. The set σπe(T ) is quite a
big part of σe(T ) so that the polynomial convex hulls σ̂e(T ) and σ̂πe(T ) coin-
cide. Note that if n = 1 then σe(T1) = {λ1 ∈ C : T1 − λ1 is not Fredholm},
and for T ∈ B(H) and T = (T, T 2, . . . , Tn) ∈ B(H)n, one has σ(T ) =
{(λ, . . . , λn) : λ ∈ σ(T )} and σe(T ) = {(λ, . . . , λn) : λ ∈ σe(T )}, and the
same property holds for σπe(T ). Denote by σp(T ) the point spectrum of T ,
i.e., the set of all n-tuples λ = (λ1, . . . , λn) ∈ Cn such that

⋂n
j=1 N(Tj−λj) 6=

{0}. If x ∈
⋂n

j=1 N(Tj − λj) then we will write T x = λx.

It is often useful to relate σ(T ) to a larger and more easily accessible set
W (T ) ⊂ Cn called the joint numerical range of T and defined as

W (T ) =
{
(〈T1x, x〉, ..., 〈Tnx, x〉) : x ∈ H, ‖x‖ = 1

}
.

The set W (T ) can be identified with a subset of R2n if one identifies the
n-tuple T with the (2n)-tuple (Re T1, Im T1, ...,Re Tn, Im Tn) of self-adjoint
operators. Unfortunately, if n > 1, then W (T ) is not in general convex, see
e.g. [33].

As in the spectral theory, there is also a notion of the joint essential
numerical range We(T ) associated to T . For T = (T1, . . . , Tn) ∈ B(H)n we
define We(T ) as the set of all n-tuples λ = (λ1, . . . , λn) ∈ Cn such that there
exists an orthonormal sequence (xk)∞k=1 ⊂ H with

lim
k→∞

〈Tjxk, xk〉 = λj , j = 1, . . . , n.

It is instructive to note that in the definition above one may choose (xk)∞k=1 ⊂
H to be an orthonormal basis of H. For n = 1 the proof of the latter fact
can be found in [11] and [47], for the general case see [33, Theorem 2.1]. It is
easy to see that λ ∈ We(T ) if and only if for every δ > 0 and every subspace
M ⊂ H of finite codimension there exists a unit vector x ∈ M such that
‖〈T x, x〉 − λ‖ < δ, see e.g. [44, Proposition 5.7] for the proof. The latter
property was a basis of many of many inductive constructions in [43] and
[44], and it will also be crucial in this paper.

Alternatively, We(T ) can be described as

We(T ) :=
⋂

W (T1 + K1, . . . , Tn + Kn)

where the intersection is taken over all n-tuples K1, . . . ,Kn of compact op-
erators on H. Moreover, by [42, Corollary 14], we can always find a tuple
(K0

1 , . . . ,K0
n) ∈ K(H)n such that

(3.1) We(T ) = W (T1 + K0
1 , . . . , Tn + K0

n).

Recall that We(T ) is a nonempty, compact and, in contrast to W (T ), convex
subset of W (T ), see [8] or [33].

As a straightforward consequence of the definitions above, if the n-tuple
T ∈ B(H)n is commuting then σπe(T ) ⊂ We(T ). Since the polynomial
hulls of σπe(T ) and σe(T ) coincide [45, Corollary 19.16], their convex hulls
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coincide as well, and the convexity of We(T ) yields

(3.2) conv σe(T ) ⊂ We(T ).

For a comprehensive account of essential numerical ranges one may consult
[33]. See also [44] for a discussion of other numerical ranges closely related
to the notion of essential numerical range.

There are several other numerical ranges useful in applications. In par-
ticular, the so-called infinite numerical range W∞(T ) will be relevant in the
sequel. Recall that if T = (T1, . . . , Tn) ∈ B(H)n then W∞(T ) can be defined
by

W∞(T ) :=
{
(λ1, . . . , λn) ∈ Cn : PTjP = λjP, j = 1, . . . , n

}
for some infinite rank projection P. By [44], the essential numerical range
We(T ) of T can be described in terms of W∞(T ) as

We(T ) =
⋃

K∈K(H)n

W∞(T +K).

The infinite numerical range of a tuple is closely related to its essential
numerical range as the following statement shows, see [43, Corollary 4.2]
and [44, Corolary 4.3].

Theorem 3.1. For any T ∈ B(H)n,

(3.3) Int (We(T )) ⊂ W∞(T ).

Moreover, if the tuple T is commuting then

(3.4) Int conv σ(T ) ⊂ W (T ).

Thus W∞(T ) is large if We(T ) is large. Note in passing that in general,
by [44],

(3.5) Int conv
(
We(T ) ∪ σp(T )

)
⊂ W (T ).

The importance of W∞(T ) can be illustrated by the next result crucial
for our subsequent arguments, For S ⊂ Cn denote by M(S) the set of
all n-tuples of operators A = (A1, . . . , An) ∈ B(H)n such that there exist
an orthonormal basis (xk)∞k=1 in H and a sequence (λk)∞k=1 ⊂ S satisfying
Axk = λkxk for each k. The theorem below identifies compressions of a
tuple T with a tuple of diagonal operators A whose diagonals belong to the
infinite numerical range of T , its proof can be found in [44].

Proposition 3.2. Let T = (T1, . . . , Tn) ∈ B(H)n. Let A ∈ convM(W∞(T )).
Then there exists a subspace L ⊂ H such that the compression TL is unitarily
equivalent to A.

Tuples Tn = (T, T 2, . . . , Tn) consisting of powers of a single operator
T ∈ B(H) are of special interest since they allow one to reveal the structure
of an operator T by looking at its powers, thus sometimes uncovering new
effects (see e.g. [43]). The following statement from [43] describes big subsets
of W (T, T 2, . . . , Tn) in terms of the spectrum of T . In this paper, it will be
vital for constructing (operator) diagonals for tuples of operator powers.
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Theorem 3.3. Let T ∈ B(H) and let λ belong to the interior of the poly-
nomial hull σ̂(T ) of σ(T ). Then

(λ, λ2, . . . , λn) ∈ IntWe(T, T 2, . . . , Tn) ⊂ W∞(T, T 2, . . . , Tn).

for all n ∈ N.

Thus, in particular, Int σ̂(T ) ⊂ IntWe(T ), and D ⊂ Int σ̂(T ) implies that
D ⊂ IntWe(T ). So the spectral assumption in Theorem 6.3 are stronger than
the numerical range assumption in Theorem 1.3.

4. Diagonals: Blaschke-type condition

Let T ∈ B(H). Recall from the introduction that according to [24], any
sequence (λk)∞k=1 ⊂ IntWe(T ) with an accumulation point inside Int We(T )
can be realized as a diagonal of T , i.e., there exists an orthonormal basis
(uk)∞k=1 in H such that 〈Tuk, uk〉 = λk for all k.

Below we prove a similar result under a much weaker, Blaschke-type as-
sumption:

∞∑
k=1

dist {λk, ∂We(T )} = ∞.

Note that if We(T ) = D then this assumption reduces to the condition∑∞
k=1(1 − |λk|) = ∞, opposite to the classical Blaschke’s one. Moreover,

our technique allows us to obtain the result in a more demanding setting of
operator tuples, i.e., we construct given common diagonals for n-tuples of
operators T with respect to a common orthonormal basis.

As mentioned in the previous section, the (essential) numerical range of
an n-tuple (T1, . . . , Tn) ∈ B(H)n can be identified with the (essential) nu-
merical range of the (2n)-tuple (Re T1, Im T1, . . . ,Re Tn, Im Tn) of selfadjoint
operators, considered as a subset of R2n. It will be convenient to formulate
the next results for tuples of self-adjoint operators.

Our arguments rely essentially on the following result describing big sub-
sets of the numerical range of a tuple in terms of its essential numerical
range.

Proposition 4.1. Let S = (S1, . . . , Ss) ∈ B(H)s be an s-tuple of selfadjoint
operators. Then

Int RsWe(S) ⊂ W∞(S).

Proof. The proof of the proposition is exactly the same as the proof of [44,
Corolary 4.3], where it was proved that IntWe(T ) ⊂ W∞(T ) for any n-tuple
T = (T1, . . . , Tn) ∈ B(H)n, the interior being considered in Cn. Thus, we
omit the arguments. �

The proof of Theorem 1.1, the main result of this section, introduces a
technique which will crucial for the whole of paper.
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Proof of Theorem 1.1 Let (ym)∞m=1 be a sequence of unit vectors in H
such that

∨
m ym = H. Using (1.2), we can find mutually disjoint sets

Am,m ∈ N, such that
⋃∞

m=1 Am = N and∑
k∈Am

dist {λk, Rs \We(S)} = ∞

for all m ∈ N.
It is sufficient to construct an orthonormal sequence (uk)∞k=1 in H such

that 〈Suk, uk〉 = λk for all k ∈ N and

ln dist 2
{

ym,
∨

k≤N

uk

}
≤ −

∑
k≤N,k∈Am

dist {λk, Rs \We(S)}
4 max{‖S1‖, . . . , ‖Ss‖}

for all N,m ∈ N. Indeed, since∑
k∈Am

dist {λk, Rs \We(S)} = ∞

for all m ∈ N, we will then have

lim
N→∞

dist
{

ym,
∨

k≤N

uk

}
= 0,

so ym ∈
∨

k∈N uk for all m, and so (uk)∞k=1 will be an orthonormal basis
satisfying 〈Suk, uk〉 = λk for all k ∈ N.

The sequence (uk)∞k=1 will be constructed inductively. Let N ≥ 1 and
suppose that u1, . . . , uN−1 is an orthonormal set satisfying 〈Suk, uk〉 = λk

for all k ≤ N − 1 and

ln dist 2
{

ym,
∨

k≤N−1

uk

}
≤ −

∑
k≤N−1,k∈Am

dist {λk, Rs \We(S)}
4 max{‖S1‖, . . . , ‖Ss‖}

for all m ∈ N.
Write MN−1 =

∨
k≤N−1 uk, and let m ∈ N be such that N ∈ Am. We are

looking for a unit vector uN ∈ M⊥
N−1 such that 〈SuN , uN 〉 = λN and

ln dist 2
{

ym,
∨

k≤N

uk

}
≤ −

∑
k≤N,k∈Am

dist {λk, Rs \We(S)}
4 max{‖S1‖, . . . , ‖Ss‖}

.

Recall that by Proposition 4.1, one has λN ∈ IntWe(S) ⊂ W∞(S), hence if
ym ∈ MN−1 then it suffices to take any unit vector uN ∈ M⊥

N−1 satisfying
〈SuN , uN 〉 = λN .

Suppose that ym /∈ MN−1. Then

(4.1) ym = a + tb

with

(4.2) a ∈ MN−1, b ⊥ MN−1, ‖b‖ = 1 and t = dist {ym,MN−1} > 0,
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and so

ln t2 ≤ −
∑

k≤N−1,k∈Am
dist {λk, Rs \We(S)}

4 max{‖S1‖, . . . , ‖Ss‖}
.

If 〈Sb, b〉 = λN then set uN := b. If 〈Sb, b〉 6= λN , then let

ρ =
∥∥〈Sb, b〉 − λN

∥∥ and δ =
1
2
dist {λN , Rs \We(S)}.

There exists µ ∈ IntWe(S) ⊂ W∞(S) such that ‖µ− λN‖ = δ and

〈Sb, b〉 − λN

ρ
=

λN − µ

δ
.

Choose x ∈ H, ‖x‖ = 1 such that

x ⊥ MN−1, b, S1b, S
∗
1b, . . . , Ssb, S

∗
s b and 〈Sx, x〉 = µ,

and set

uN :=
√

ρ

ρ + δ
x +

√
δ

ρ + δ
b.

We have ‖uN‖ = 1 and uN ⊥ MN−1, and moreover

〈SuN , uN 〉 =
ρ

ρ + δ
µ +

δ

ρ + δ
〈Sb, b〉

=
ρ

ρ + δ
(µ− λN ) +

δ

ρ + δ
(〈Sb, b〉 − λN ) + λN

=λN .

It remains to estimate the distance dist {ym,MN}. In view of (4.1) and

(4.2), taking into account that 〈b, uN 〉 =
√

δ
ρ+δ , we have

dist 2{ym,MN} = dist 2{tb, MN} = t2 · dist 2
{

b,
N∨

k=1

uk

}
= t2

(
1− δ

ρ + δ

)
and

ln
dist 2{ym,MN}

dist 2{ym,MN−1}
= ln

(
1− δ

ρ + δ

)
≤ − δ

ρ + δ

≤− dist {λN , Rs \We(S)}
4 max{‖S1‖, . . . , ‖Ss‖}

.

Hence

ln dist 2{ym,MN} ≤ ln dist 2{ym,MN−1} −
dist {λN , Rs \We(S)}
4 max{‖S1‖, . . . , ‖Ss‖}

≤ −
∑

k≤N,k∈Am

dist {λk, Rs \We(S)}
4 max{‖S1‖, . . . , ‖Ss‖}

.

This finishes the proof. �
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Corollary 4.2. Let T = (T1, . . . , Tn) ∈ B(H)n. Let M ⊂ Cn be the smallest
(real) hyperplane containing W (T ). Let (λk)∞k=1 ⊂ Int MWe(T ) satisfy

∞∑
k=1

dist {λk,M \We(T )} = ∞.

Then (λk)∞k=1 ∈ D(T ).

Proof. Again it is sufficient to consider tuples of selfadjoint operators. So
assume that S = (S1, . . . , Ss) ∈ B(H)s is an s-tuple of selfadjoint operators.
Let M be the hyperplane generated by W (S) and let (λk)∞k=1 ⊂ Int MWe(S)
satisfy

∑∞
k=1 dist {λk,M \We(S)} = ∞.

We prove the statement by induction on s. If s = 1, then either M = R
and the statement follows from the previous theorem, or M is a single point,
M = {t}, so that S1 = tI and the statement is clear.

Suppose that the statement is true for s ≥ 1. Let S = (S1, . . . , Ss+1) be an
(s+1)-tuple of selfadjoint operators. Let M be the hyperplane generated by
W (S). If M = Rs+1 then the statement follows from the previous theorem.

Suppose that M 6= Rs+1. Then there exist α0, α1, . . . , αs+1 ∈ R such that
(α1, . . . , αs+1) 6= (0, . . . , 0) and for all m = (m1, . . . ,ms+1) ∈ M ,

α0 +
s+1∑
j=1

αjmj = 0.

Without loss of generality we may assume that αs+1 6= 0. Then

W
( α0

αs+1
I +

s+1∑
j=1

αj

αs+1
Sj

)
= {0},

and so

(4.3) Ss+1 = − α0

αs+1
I −

s∑
j=1

αj

αs+1
Sj .

Let S ′ = (S1, . . . , Ss) and let P : Rs+1 → Rs be the natural projection onto
the first s coordinates. For k ∈ N let λk = (λk,1, . . . , λk,s+1). By (4.3), we
have

λk,s+1 = − α0

αs+1
−

s∑
j=1

αj

αs+1
λk,j

for all k ∈ N. So it is sufficient to show that (Pλk)∞k=1 ∈ D(S ′).
The smallest hyperplane containing W (S ′) is P (M) and it is easy to see

that
∑∞

k=1 dist {Pλk, P (M) \We(S ′)} = ∞. By the induction assumption
this implies that (Pλk)∞k=1 ∈ D(S ′). �
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Corollary 4.3. Let T = (T1, . . . , Tn) ∈ B(H)n. Let (λk)∞k=1 ⊂ IntWe(T )
satisfy

(4.4)
∞∑

k=1

dist {λk, C \We(T )} = ∞.

Then (λk)∞k=1 ∈ D(T ).

Remark 4.4. The corollary above, and even weaker Herrero’s result men-
tioned in the introduction, allows one to deduce directly Fong’s theorem
from [23] saying that any bounded sequence in C can be realized as a di-
agonal of square zero nilpotent N . As noted in [24, p. 864], it is enough
to observe that We(N) can contain an arbitrary disc (with center at zero)
for an appropriate N. Similarly, using [34, Corollary 2.6] (and Theorem 1.1
quoted there and proved in [49]), one can prove that any bounded sequence
from C can be realized as a diagonal of idempotent thus recovering [37, The-
orem 3.7]. In fact, using [34, Corollary 2.6], similar results can be proved
for more general quadratic operators, but we refrain ourselves from giving
straightforward details.

A natural question is how fast a sequence should approach the boundary
of the essential numerical range to be realizable as a diagonal, and whether
the assumption (1.2) is optimal. It appears that (1.2) cannot in general
be improved as a simple Herrero’s example from [24, p. 862-863] shows.
Namely, it was proved in [24] that if T is the unilateral shift, then We(T ) =
D, and a sequence (λk)∞k=1 ⊂ D is a diagonal of T if and only if

∑∞
k=1(1 −

|λk|) = ∞.
The same proof works in a more general setting, see also [26, Lemma 4.1]

for a similar argument.

Proposition 4.5. Let T ∈ B(H) be such that ‖T‖ ≤ 1 and We(T ) = D.
Suppose that T is not a Fredholm operator of index 0. Let (λk)∞k=1 ⊂ D.
Then

(λk)∞k=1 ∈ D(T ) ⇐⇒
∞∑

k=1

(1− |λk|) = ∞.

Unfortunately, Blaschke-type conditions (1.2) and (4.4) are only sufficient
for a sequence (λk)∞k=1 to be in D(T ) for an n-tuple T ∈ B(H)n. On the
other hand, we can also formulate a necessary condition as well. Let us start
with a single selfadjoint operator.

Proposition 4.6. Let T ∈ B(H), T ≥ 0. Let (λk)∞k=1 ⊂ Int RWe(T ) and
(λk)∞k=1 ∈ D(T ). Then

∑∞
k=1 λk = ∞.

Proof. Suppose that (λk)∞k=1 ∈ Int RWe(T ), (λk)∞k=1 ∈ D(T ) and
∑∞

k=1 λk <
∞. Then there exists an orthonormal basis (uk)∞k=1 in H such that 〈Tuk, uk〉 =
λk for all k ∈ N. We have

∞∑
k=1

‖T 1/2uk‖2 =
∞∑

k=1

λk < ∞.
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So T 1/2 is a Hilbert-Schmidt operator. Thus T is compact, We(T ) = {0}
and Int We(T ) = ∅, a contradiction. �

Corollary 4.7. Let S = (S1, . . . , Ss) ∈ B(H)s be an s-tuple of selfadjoint
operators, let (λk)∞k=1 ⊂ IntRs We(S), (λk) ∈ D(S), and λk = (λk,1, . . . , λk,s)
for all k ∈ N. Let α0, . . . , αs be real numbers, (α1, . . . , αs) 6= (0, . . . , 0),
V = α0I +

∑s
j=1 αjSj and a = inf{t : t ∈ w(V )}. Then

∞∑
k=1

(
α0 − a +

s∑
k=1

αjλk,j

)
= ∞.

Proof. We have(
α0 − a +

s∑
j=1

αjλk,j

)
∈ D

(
(α0 − a)I +

s∑
j=1

αjSj

)
,

(
α0 − a +

s∑
j=1

αjλk,j

)
∈ Int RWe(V − a)

for all k ∈ N, and (α0−a)I +
∑s

j=1 αjSj ≥ 0. So the statement follows from
the previous proposition. �

In general, despite the Blaschke-type conditions identify a subset of D(T )
they are far from being characterizations of the whole set D(T ) even if
IntWe(T ) is large. Examples of selfadjoint projections (Kadison’s theorem)
and of normal operators with finite spectrum (Arveson’s obstruction theo-
rem) can serve as simple illustrations of this fact.

While numerical ranges are useful for dealing with operator diagonals (as
the theorem above confirms), it is also of interest to relate the spectral struc-
ture of an operator to its set of diagonals, thus showing an unexpected link
between both. This task appears to be more demanding: while diagonals
“live” in the numerical range, their relation to spectrum is far from being
obvious. On this way, we prove a result describing a part of diagonals for
powers of operator by means of the polynomial hull of its spectrum.

We start with several auxiliary statements.

Lemma 4.8. Let ρ > 0 and n ∈ N. Then there exists bn > 0 with the follow-
ing property: If ε = (ε1, . . . , εn) ∈ Cn then there are s ∈ N, µ1, . . . , µs ∈ Tρ

and α1, . . . , αs ≥ 0 such that
s∑

j=1

αj ≤ bn‖ε‖ and
s∑

j=1

αjµ
k
j = εk, 1 ≤ k ≤ n.

More precisely, one can choose

bn =

{
(2n − 1)ρ−n, ρ ≤ 1,

2n − 1, ρ ≥ 1.
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Proof. We prove the lemma by induction on n. For n = 1 set b1 = ρ−1.
If ε1 ∈ C, ε1 = |ε1| · e2πiϕ for some ϕ ∈ [0, 1), then take λ1 = ρe2πiϕ and
α1 = |ε1|

ρ . We have

α1λ1 = |ε1| · e2πiϕ = ε1 and α1 = b1|ε1|,
hence the lemma clearly holds for n = 1 and b1 = ρ−1.

Suppose that the lemma is true for some integer n− 1 ≥ 1, and prove it
for n. Set

bn = 2bn−1 + ρ−n.

By the induction assumption, there exist l ∈ N, z1, . . . , zl ∈ Tρ and α1, . . . , αl ≥
0 such that

l∑
j=1

αj ≤ bn−1‖ε‖

and
l∑

j=1

αjz
k
j = εk, k = 1, . . . , n− 1.

Let

ε̃n = εn −
l∑

j=1

αjz
n
j .

Then

|ε̃n| ≤ |εn|+ ρn
l∑

j=1

αj ≤ ‖ε‖+ ρnbn−1‖ε‖.

Write ε̃n = |ε̃n| · e2πiϕ for some ϕ ∈ [0, 1) and set

ξj = ρe2πi(ϕ+ j
n

) and βj =
|ε̃n|
nρn

, 1 ≤ j ≤ n.

If 1 ≤ k ≤ n− 1 then
n∑

j=1

βjξ
k
j =

|ε̃n|
nρn

ρke2πikϕ
n∑

j=1

e2πijk/n = 0.

Similarly,
n∑

j=1

βjξ
n
j =

|ε̃n|
nρn

ρne2πiϕ · n = ε̃n.

Thus for every k, 1 ≤ k ≤ n− 1, we have
l∑

j=1

αjz
k
j +

n∑
j=1

βjξ
k
j = εk

and
l∑

j=1

αjz
n
j +

n∑
j=1

βjξ
n
j = εn − ε̃n + ε̃n = εn.
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Finally,
l∑

j=1

αj +
n∑

j=1

βj ≤ bn−1‖ε‖+
|ε̃n|
ρn

≤ ‖ε‖
(
2bn−1 + ρ−n

)
= bn‖ε‖.

For ρ ≤ 1 one can prove easily by induction that bn ≤ (2n − 1)ρ−n.
Similarly, for ρ ≥ 1 one has bn ≤ 2n − 1.

�

The next result is of independent interest. Given T ∈ B(H), it provides a
lower bound for the distance from (λ, . . . , λn), λ ∈ Int σ̂(T ), to the boundary
of We(T, . . . , Tn), and thus relates the spectrum to Blaschke-type conditions.

Proposition 4.9. Let T ∈ B(H), n ∈ N and let Tn = (T, T 2, . . . , Tn). If
λ ∈ Int σ̂(T ) and dist {λ, ∂σ̂(T )} ≤ 1, then

dist
{
(λ, λ2, . . . , λn), ∂We(Tn)

}
≥ 2−ndist

{
λ, ∂σ̂(T )

}n
.

Proof. Without loss of generality we may assume that λ = 0. Indeed, con-
sider the operator T̃ = T−λ and the n-tuple T̃ =

(
(T−λ), (T−λ)2, . . . , (T−

λ)n
)
. Then

dist {λ, ∂σ̂(T )} = dist {0, ∂σ̂(T̃ )}
and

dist
{
(λ, λ2, . . . , λn), ∂We(Tn)

}
= dist

{
(0, . . . , 0), ∂We(T̃n)

}
.

So suppose that λ = 0 ∈ Int σ̂(T ) and d := dist {0, ∂σ̂(T )} ≤ 1. Fix ρ ∈
(0, d), and let ε = (ε1, . . . , εn) ∈ Cn be such that ‖ε‖ ≤ 2−n ·dist {0, ∂σ̂(T )}.

By Lemma 4.8, there exist s ∈ N, µ1, . . . , µs ∈ Tρ and α1, . . . , αs ≥ 0 such
that

s∑
j=1

αj ≤ 2nρ−n‖ε‖

and
s∑

j=1

αjµ
k
j = εk, 1 ≤ k ≤ n.

By Theorem 3.3, (µj , µ
2
j , . . . , µ

n
j ) ∈ We(Tn) for each j ≤ s. So( s∑

j=1

αj

)−1
(ε1, . . . , εn) ∈ conv

{
(µj , µ

2
j , . . . , µ

n
j ) : 1 ≤ j ≤ s

}
⊂ We(Tn).

Moreover, (0, . . . , 0) ∈ We(Tn). So (ε1, . . . , εn) ∈ We(Tn) for each ε ∈ Cn

with ‖ε‖ ≤ ρn

2n . Since ρ < d was arbitrary,

dist {(0, . . . , 0), ∂We(Tn)} ≥ dn

2n
.

�

Now we are ready to link spectral properties of operator tuples to their
sets of diagonals.
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Corollary 4.10. Let T ∈ B(H), n ∈ N, (λk)∞k=1 ⊂ Int σ̂(T ). Suppose that∑∞
k=1 dist n{λk, ∂σ̂(T )} = ∞. Then there exists an orthonormal basis (uk)

in H such that

〈T juk, uk〉 = λj
k, k ∈ N, 1 ≤ j ≤ n.

Proof. Let Tn = (T, T 2, . . . , Tn). By Proposition 4.9,
∞∑

k=1

dist
{
(λk, λ

2
k, . . . , λ

n
k), ∂We(Tn)

}
= ∞

and the statement follows from Corollary 4.3. �

5. Diagonals: compact perturbations

Let T ∈ B(H) and 0 ∈ We(T ). In [47, Theorem 2.3], Q. Stout showed that
for each sequence (αk)∞k=1 /∈ `1 there exists an orthonormal basis (uk)∞k=1 in
H such that the corresponding diagonal 〈Tuk, uk〉∞k=1 of T satisfies

|〈Tuk, uk〉| ≤ |αk|

for all k ∈ N. In particular, for each p > 1 it is possible to construct a
diagonal of T satisfying

∑∞
k=1 |〈Tuk, uk〉|p < ∞. This is an older result due

to Anderson [1], see also [23, Theorem 4.1].
By the techniques of this paper, we improve Stout’s result in Theorem

1.2 in two directions. First, we show that any sequence (λk)∞k=1 ⊂ We(T )
can be approximated by a diagonal in a sense of (1.3) (Stout’s statement
treats just zero sequences) and, second, we are able to obtain the result for
n-tuples of operators, rather than for a single operator. Note that Theorem
1.2 generalizes also the corresponding Herrero’s result from [24].

Proof of Theorem 1.2 We argue as in the proof of Theorem 1.1, though
the technical details deviate at several points.

Let (ym)∞m=1 be a sequence of unit vectors in H such that
∨

m ym = H.
We can find mutually disjoint sets Am,m ∈ N, such that

⋃∞
m=1 Am = N and∑

k∈Am

|αk| = ∞

for all m ∈ N.
Again it is sufficient to construct an orthonormal sequence (uk)∞k=1 in H

such that ‖〈T uk, uk〉 − λk‖ ≤ |αk| for all k ∈ N and

ln dist 2
{

ym,
∨

k≤N

uk

}
≤ −

∑
k≤N,k∈Am

|αk|
4 max{‖T1‖, . . . , ‖Tn‖}

for all N,m ∈ N.
The sequence (uk)∞k=1 will be constructed inductively. Let N ≥ 1 and sup-

pose that u1, . . . , uN−1 is an orthonormal sequence satisfying ‖〈T uk, uk〉 −
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λk‖ ≤ |αk| for all k ≤ N − 1 and

ln dist 2
{

ym,
∨

k≤N−1

uk

}
≤ −

∑
k≤N−1,k∈Am

|αk|
4 max{‖T1‖, . . . , ‖Tn‖}

for all m ∈ N. Write MN−1 =
∨

k≤N−1 uk and let N ∈ Am for some m ∈ N.

Decompose ym as ym = a + tb, where a ∈ MN−1, b ⊥ MN−1, ‖b‖ = 1 and
t = dist {ym,MN−1}.

Choose a unit vector v ∈ M⊥
N−1 such that v ⊥ b, T1, b, T

∗
1 b, . . . , Tnb, T ∗nb,∥∥〈T v, v〉 − λN

∥∥ ≤ |αN |
2

and set
uN = cb +

√
1− c2 v,

where

c = min
{

1,
( |αN |

4 max{‖T1‖, . . . , ‖Tn‖

)1/2}
.

Clearly ‖uN‖ = 1 and uN ⊥ u1, . . . , uN−1.
We have∥∥〈T uN , uN 〉 − λN

∥∥ ≤∥∥〈T uN , uN 〉 − 〈T v, v〉
∥∥ +

∥∥〈T v, v〉 − λN

∥∥
≤c2‖〈T b, b〉‖+ c2‖〈T v, v〉‖+

|αN |
2

≤2c2 max
{
‖T1‖, . . . , ‖Tn‖

}
+
|αN |

2
≤|αN |.

Furthermore,

dist 2
{

ym,
∨

k≤N

uk

}
≤ t2dist 2

{
b,

∨
uN

}
= t2(1− c2).

Thus

ln dist 2
{

ym,
∨

k≤N

uk

}
≤ ln t2 + ln(1− c2) ≤ ln t2 − c2

≤ ln t2 − |αN |
4 max{‖T1‖, . . . , ‖Tn}

≤ −
∑

k≤N,k∈Am
|αk|

4 max{‖T1‖, . . . , ‖Tn‖}
.

�
Now, by means of the approximation Theorem 1.2, we can describe the

set of diagonals D(T ) up to p-Schatten class perturbations of T . In this
more general setting, we are able to construct the diagonals satisfying a
generalized Blaschke-type condition resembling in a sense the definition of
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Sp-classes. Moreover, the diagonals of perturbations may not necessarily be-
long to We(T ) but should only approximate We(T ) good enough, where the
rate of approximation is determined by the Schatten class of perturbations.

Corollary 5.1. Let T = (T1, . . . , Tn) ∈ B(H)n. Let p > 1. Let (λk)∞k=1 ⊂
Cn satisfy

(5.1)
∞∑

k=1

dist p{λk,We(T )} < ∞.

Then there exists an n-tuple of operators K = (K1, . . . ,Kn) with Kj from
the Schatten class Sp, 1 ≤ j ≤ n, such that (λk)∞k=1 ∈ D(T +K).

Proof. Let p > 1 be fixed and let (λk)∞k=1 ⊂ Cn satisfy (5.1).
Find a sequence (λ′k)

∞
k=1 ⊂ We(T ) such that

∑∞
k=1 ‖λ′k − λk‖p < ∞. By

Theorem 1.2, there exists an orthonormal basis (uk)∞k=1 in H such that

‖〈T uk, uk〉 − λ′k‖ ≤ k−1

for all k. Define K = (K1, . . . ,Kn) ∈ B(H)n as

Kuk = (λk − 〈T uk, uk〉)uk

for all k. Then
〈(T +K)uk, uk〉 = λk, k ∈ N,

and
∞∑

k=1

‖λk − 〈T uk, uk〉‖p ≤
∞∑

k=1

(
‖λk − λ′k‖+ ‖λ′k − 〈T uk, uk〉‖

)p
< ∞.

So the operators K1, . . . ,Kn belong to Sp. �

We finish this section with a discussion of a subset Dconst(T ) = {λ ∈
Cn : (λ, λ, . . . ) ∈ D(T )} of diagonals of T ∈ B(H) that seems to be crucial.
Recall that operators possessing a zero diagonal appeared relevant in several
areas of operator theory (e.g. the study of commutators) and attracted a
substantial attention much before the foundational works of Kadison and
Arveson on the set of (all) diagonals. Thus it is natural to try understand
the whole set of constant diagonals for a fixed T and to relate its structure to
the structure of σ(T ) and W (T ). While this task seems to be more accessible
than a characterization of T , we are far from a complete answer even for
very simple operators T.

Observe that by Theorem 1.1,

(5.2) IntWe(T ) ⊂ Dconst(T ) ⊂ We(T ) ∩W (T ).

Since the interior of a convex set is convex, both We(T ) and Int We(T )
are convex sets. However, the question whether Dconst(T ) is convex is still
open, even if n = 1. This problem has been posed explicitly in [11, p. 213].
It is instructive to note that, even if n = 1, the diagonal set Dconst(T ) is
not a subset of W∞(T ), and even the inclusion Dconst(T ) ⊂ W2(T ) may not
hold, where W2(T ) stands for the set of all λ ∈ C such that there exists
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a two-dimensional subspace L ⊂ H satisfying PLTPL = λPL. The next
example makes this precise.

Example 5.2. Let T = diag
(
−1, 1

2 , 1
4 , 1

8 , . . .
)
. By Fan’s result [18, Theorem

1] mentioned in the introduction (see also [39, Appendix] for corrections),
0 ∈ Dconst(T ). However, 0 /∈ W2(T ). Indeed, suppose on the contrary
that 0 ∈ W2(T ). So there exists a two-dimensional subspace M such that
PMTPM = 0. In particular there exists x = (0, x1, x2, . . . ) ∈ H such that
‖x‖ = 1 and 〈Tx, x〉 = 0. However, 〈Tx, x〉 =

∑∞
j=1 2−j |xj |2 > 0, a contra-

diction.

While, we are not able to answer this question about the convexity of
Dconst(T ) either, we give several statements clarifying the structure of the
set of constant diagonals operators. First, we describe the orbit of Dconst(T )
under compact perturbations.

Proposition 5.3. Let T = (T1, . . . , Tn) ∈ B(H)n. Then⋃
K∈K(H)n

Dconst(T +K) = We(T ).

Proof. For each K ∈ K(H)n we have

Dconst(T +K) ⊂ We(T +K) = We(T ).

On the other hand, if λ ∈ We(T ) then, by Corollary 5.1, there exists K (even
an n-tuple of Schatten class operators) such that λ ∈ Dconst(T +K). �

Similarly, we are able to locate a subset of Dconst(T ) invariant under
compact perturbations.

Proposition 5.4. Let T = (T1, . . . , Tn) ∈ B(H)n. Then⋂
K∈K(H)n

W (T +K) =
⋂

K∈K(H)n

Dconst(T +K) = Int We(T ).

Proof. Taking into account (5.2), for each K ∈ K(H)n,

IntWe(T ) = Int We(T +K) ⊂ Dconst(T +K) ⊂ W (T +K).

Conversely, let λ ∈ We(T ) \ IntWe(T ). Without loss of generality, by us-
ing (3.1) and considering a suitable compact perturbation, we may assume
that We(T ) = W (T ). We may also assume, by a suitable translation,
that λ = 0. Now let T = (T1, . . . , Tn) ∈ B(H)n, 0 ∈ We(T ) = W (T ),
0 /∈ IntWe(T ). The numerical range of the n-tuple T can be identified
with the numerical range of the (2n)-tuple (Re T1, Im T1, . . . ,Re Tn, Im Tn)
of selfadjoint operators. By a suitable rotation in R2n ∼ Cn we may as-
sume that 〈(Re T1)x, x〉 ≥ 0 for all x ∈ H and 0 ∈ W (T ). Let K1 =
diag (1, 2−1, 2−2, . . . ) (in any orthonormal basis). Clearly K1 is a compact
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operator on H and 〈(Re T1+K1)x, x〉 > 0 for all x 6= 0. So 0 /∈ W (Re T1+K1)
and then 0 /∈ Dconst(T +K) for the tuple K = (K1, 0, . . . , 0). Thus,⋂

K∈K(H)n

Dconst(T +K) ⊂
⋂

K∈K(H)n

W (T +K) ⊂ IntWe(T ).

�

Note that in several specific cases Dconst(T ) allows an explicit descrip-
tion. For instance, by [11], if T ∈ B(H) then W (T ) is relatively open (i.e.,
it is a single point, an open segment or an open set in C) if and only if
W (T ) = Dconst(T ). The class of operators with open W (T ) is substantial.
For instance, it includes weighted periodic shifts and a number of Toeplitz
operators.

6. Operator-valued diagonals: Blaschke-type condition

Let T ∈ B(H) satisfy We(T ) ⊃ D. Let (Ck)∞k=1 be a sequence of contrac-
tions on Hilbert spaces Hk (possibly different from H) such that supk ‖Ck‖ <
1. By [11, Theorem 2.1], the operator T has a ”pinching”

⊕∞
k=1 Ck, i.e.,

there exist mutually orthogonal subspaces Kk ⊂ H such that H =
⊕∞

k=1 Kk

and PKk
TPKk

u∼ Ck for all k.
In Theorem 1.3, which can be considered as an operator-valued version of

Theorem 1.1, we show that the assumption supk≥1 ‖Ck‖ < 1 can be replaced
by a much weaker Blaschke-type condition

∑∞
k=1(1−‖Ck‖) = ∞ resembling

a similar condition (1.2) above. Clearly, the operator-valued version of The-
orem 1.1 is more involved and its proof requires new arguments. However,
the scheme of the proof is similar to the one used in Section 4.

First, we will need an auxiliary lemma.

Lemma 6.1. Let T ∈ B(H) with We(T ) ⊃ D. Then there exist mutually
orthogonal subspaces Hk ⊂ H, k ∈ N, such that

We(PHk
TPHk

) ⊃ D, k ∈ N.

Proof. Let f : N → N3 be a bijection, and write f(k) = (k1, k2, k3). Let
(ws)∞s=1 ⊂ T be a sequence dense in T.

Inductively we construct a sequence of mutually orthogonal unit vectors
(xk)∞k=1 ∈ H such that ∣∣〈Txk, xk〉 − wk1

∣∣ <
1
k2

.

Now suppose that (xk)∞k=1 ⊂ H is constructed in this way. For m ∈ N define

Hm =
∨
{xk : k3 = m},

and note that the subspaces Hm,m ∈ N are mutually orthogonal. Let
s,m ∈ N be fixed. Then {uj = xf−1(s,j,m) : j ≥ 1} form an orthonormal
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sequence in Hm such that ∣∣〈Tuj , uj〉 − ws

∣∣ <
1
j

for all j ∈ N. Thus ws ∈ We(PHmTPHm) and, since this holds for all
s,m ∈ N, we have We(PHmTPHm) ⊃ D for all m ∈ N. �

So everything is prepared for the proof of Theorem 1.3 and we give it
below.

Proof of Theorem 1.3 Let Hm,m ∈ N, be the subspaces given by Lemma
6.1, and let (ym)∞m=1 be a sequence of unit vectors in H such that

∨
m ym =

H. Using the assumption, we can find mutually disjoint sets Am,m ∈ N,
such that

⋃∞
m=1 Am = N and∑

k∈Am

(1− ‖Ck‖) = ∞

for all m ∈ N. Next we construct mutually orthogonal subspaces Kk, k ∈ N,
such that dim Kk/(Hk ∩Kk) ≤ 1, PKk

TPKk

u∼ Ck and

(6.1) ln dist 2
{

ym,
∨

k≤N

Kk

}
≤ −

∑
k≤N,k∈Am

1− ‖Ck‖
16‖T‖

for all m,N ∈ N. Note that as a consequence
⊕∞

k=1 Kk = H. Indeed, for
each m ∈ N we have

lim
N→∞

ln dist 2
{

ym,
∨

k≤N

Kk

}
≤ − lim

N→∞

∑
k≤N,k∈Am

1− ‖Ck‖
16‖T‖

= −∞.

So dist
{

ym,
∨

k∈N Kk

}
= 0 and ym ∈

∨
k∈N Kk. Hence H =

⊕∞
k=1 Kk.

As above, the sequence of mutually orthogonal subspaces (Kk)∞k=1 satis-
fying (6.1) will be constructed inductively.

Let N ∈ N and suppose that the subspaces Kk, k ≤ N − 1, have already
been constructed. Then N ∈ Am for some m ∈ N. Write ym = a + tb where

a ∈
∨

k≤N−1

Kk, b ⊥
∨

k≤N−1

Kk, ‖b‖ = 1

and t = dist
{

ym,
∨

k≤N−1 Kk

}
≤ 1.

Setting H ′
N = HN∩{b, T b, T ∗b}⊥∩

⋂N−1
k=1 K⊥

k , observe that We(PH′
N

TPH′
N

) ⊃
D.

Now fix any unit vector x ∈ LN , and let P ∈ B(LN ) be the orthogonal
projection onto the one-dimensional subspace generated by x. If

ρ =:

√
1− ‖CN‖

16‖T‖
.
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then ρ ≤ 1
4 and

√
1− ρ2 ≥ 1

2 . Consider

C ′
N =(I − P )CN (I − P ) +

1√
1− ρ2

(I − P )CNP

+
1√

1− ρ2
PCN (I − P ) +

PCNP − ρ2〈Tb, b〉P
1− ρ2

=CN +
( 1√

1− ρ2
− 1

)
(I − P )CNP +

( 1√
1− ρ2

− 1
)
PCN (I − P )

+
( 1

1− ρ2
− 1

)
PCNP − ρ2

1− ρ2
〈Tb, b〉P,

where I denotes the identity operator on LN . We have

‖C ′
N‖ ≤‖CN‖+ 2

( 1√
1− ρ2

− 1
)

+
( 1

1− ρ2
− 1

)
+

ρ2

1− ρ2
‖T‖

≤‖CN‖+ 2
1−

√
1− ρ2√

1− ρ2
+

ρ2

1− ρ2
+

ρ2

1− ρ2
‖T‖

≤‖CN‖+ 4
(
1−

√
1− ρ2

)
+

2‖T‖ρ2

1− ρ2

≤‖CN‖+ 4ρ2 + 4ρ2‖T‖
≤‖CN‖+ 8ρ2‖T‖

≤‖CN‖+
1− ‖CN‖

2
< 1.

So, by for example [11, Theorem 2.1], there exists a subspace K ′
N ⊂ H ′

N such
that PK′

N
TPK′

N

u∼ C ′
N . Thus there exists a unitary operator U : LN → K ′

N

such that

U−1PK′
N

TPK′
N

U = C ′
N .

Set

v =
√

1− ρ2Ux + ρb.

Since Ux ∈ K ′
N ⊂ H ′

N ⊥ b, we have ‖v‖ = 1 and v ⊥ U(I − P )LN . Let

KN = U(I − P )LN ∨ {v}

and let V : LN → KN be defined by

V �(I−P )LN
:= U �(I−P )LN

and V x := v.

We have K ′
N ⊂ H ′

N ⊂ HN , and so dim KN/(KN ∩ HN ) ≤ 1. Clearly
V is a unitary operator, and KN ⊥

∨
k≤N−1 Kk. For z = u + sx, where
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u ∈ (I − P )LN and s ∈ C, we have〈
V −1PKN

TPKN
V z, z

〉
=〈V −1TV z, z〉 =

〈
T (Uu + sv), Uu + sv

〉
=

〈
T (Uu + s

√
1− ρ2Ux + sρb), Uu + s

√
1− ρ2Ux + sρb

〉
=

〈
T (Uu + s

√
1− ρ2Ux), Uu + s

√
1− ρ2Ux

〉
+ s2ρ2〈Tb, b〉

=
〈
C ′

N (u + s
√

1− ρ2x), u + s
√

1− ρ2x
〉

+ s2ρ2〈Tb, b〉

=
〈
(I − P )C ′

N (I − P )z, z
〉

+
√

1− ρ2
〈
(I − P )C ′

NPz, z
〉

+
√

1− ρ2
〈
PC ′

N (I − P )z, z
〉

+ (1− ρ2)〈PC ′
NPz, z〉+ ρ2〈Tb, b〉〈Pz, z〉

=〈CNz, z〉.
Hence PKN

TPKN

u∼ CN .
Moreover, since 〈b, v〉 = ρ and

dist 2
{

b,
∨

v
}

= 1− ρ2 = 1− 1− ‖CN‖
16‖T‖

,

we infer that

ln
dist 2

{
ym,

∨
k≤N Kk

}
dist 2

{
ym,

∨
k≤N−1 Kk

} = ln
(
1− 1− ‖CN‖

16w(T )

)
≤ −1− ‖CN‖

16‖T‖

and

ln dist 2
{

ym,
∨

k≤N

Kk

}
≤ −

∑
k≤N,k∈Am

1− ‖Ck‖
16‖T‖

.

This finishes the proof. �

Replacing the numerical range condition We(T ) ⊃ D in Theorem 1.3 by
the stronger spectral assumption σ̂(T ) ⊃ D, we can put Theorem 1.3 in a
more general and demanding context of tuples of powers of T. To this aim
we will need the next lemma.

Lemma 6.2. Let T ∈ B(H) satisfy σ̂(T ) ⊃ D. Let n ∈ N, let L be a
separable Hilbert space, and let C,A1, . . . , An ∈ B(L) be such that ‖C‖ < 1
and ‖Aj‖ ≤ (1−‖C‖)n

n22n+4 , j = 1, . . . , n. Then there exists a subspace K ⊂ H
such that

Pk(T, T 2, . . . , Tn)Pk
u∼ (C + A1, C

2 + A2, . . . , C
n + An).

Proof. Set

c := ‖C‖, d :=
(1− c)n

n22n+4
, c′ := c +

c(1− c)n

2n+1
, and d′ :=

1
2n+1

.

We prove first that

(6.2)
c

c′
+ 2n

d

d′
< 1.
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Since 1
1+a < 1− a

2 for all a ∈ [0, 1), we have

1

1 + (1−c)n

2n+1

+
(1− c)n

2n+2
< 1,

which is equivalent to (6.2).
Choose

ε′ :=
1
4n

(
1− c

c′
− 2n

d

d′

)
,

and ε < ε′

n2n .
Let M ⊃ L and let U ∈ B(M) be the minimal unitary dilation of the

contraction C
c . Extend the operators A1, . . . , An to Ã1, . . . , Ãn ∈ B(M) by

defining Ãj �L= Aj �L and Ãj �M	L= 0.
By the Weyl-von Neumann’s theorem, cU can be written as cU = D + K

where D ∈ B(M) is a diagonal operator with entries of moduli c and K ∈
B(M) is a compact operator, ‖K‖ ≤ ε. For j = 1, . . . , n let Kj = (cU)j−Dj .
We have K1 = K and

Kj =
j−1∑
s=0

(cU)s(cU −D)Dj−s−1.

So Kj is a compact operator for each j = 1, . . . , n and ‖Kj‖ ≤ nε.
Similarly, operators Re Ãj and Im Ãj can be written as Re Ã = D′

j + K ′
j

and Im Ãj = D′′
j +K ′′

j , where D′
j and D′′

j are diagonal operators with entries
of moduli not exceeding d, and K ′

j and K ′′
j are compact selfadjoint operators

with ‖K ′
j‖ ≤ ε and ‖K ′′

j ‖ ≤ ε. We have(
cU + Ã1, . . . ,(cU)n + Ãn

)
=

c

c′

(c′

c

(
D, . . . , Dn

))
+

n∑
j=1

d

d′

(d′

d

(
0, . . . , 0︸ ︷︷ ︸

j−1

, D′
j + iD′′

j , 0, . . . , 0
))

+
n∑

j=1

ε′
( 1

ε′
(
0, . . . , 0︸ ︷︷ ︸

j−1

,Re Kj + iIm Kj + K ′
j + iK ′′

j , 0, . . . , 0
))

.

Write for short T = (T, . . . , Tn). If z ∈ C, |z| = c, then∥∥∥c′

c
(z, z2, . . . , cn)− (z, z2, . . . , cn)

∥∥∥ =
(c′

c
− 1

)
· c = c′ − c =

(1− c)nc

2n+1
,

hence c′

c

(
D, . . . , Dn

)
is a jointly diagonal n-tuple with all entries in Int We(T ) ⊂

W∞(T ). So, by Proposition 4.9, c′

c (D, . . . ,Dn
)
∈M(W∞(T )).

Similarly,
d′

d

(
0, . . . , 0︸ ︷︷ ︸

j−1

, D′
j , 0, . . . , 0

)
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is a diagonal tuple such that the operator norm of each of its entry does not
exceed d′ = 1

2n+1 . Moreover, by Proposition 4.9,

d′

d

(
0, . . . , 0︸ ︷︷ ︸

j−1

, D′
j , 0, . . . , 0

)
∈M(W∞(T )).

In the same way

d′

d

(
0, . . . , 0︸ ︷︷ ︸

j−1

, D′′
j , 0, . . . , 0

)
∈M(W∞(T )).

Finally, Re Kj , Im Kj ,K
′
j ,K

′′
j , 1 ≤ j ≤ n, are compact selfadjoint operators

with entries of moduli ≤ nε. Thus the tuples
1
ε′

(
0, . . . , 0︸ ︷︷ ︸

j−1

,Re Kk, 0, . . . , 0
)
,

1
ε′

(
0, . . . , 0︸ ︷︷ ︸

j−1

, iIm Kj + K ′
j , 0, . . . , 0

)
,

1
ε′

(
0, . . . , 0︸ ︷︷ ︸

j−1

,K ′
j , 0, . . . , 0

)
and

1
ε′

(
0, . . . , 0︸ ︷︷ ︸

j−1

, iK ′′
j , 0, . . . , 0

)
are diagonal, and operator norms of their entries are not larger than nε

ε′ < 1
2n .

Hence the tuples belong to M(W∞(T )).
Finally, by construction,

(
cU + Ã1, . . . , (cU)n + Ãn

)
is a convex combina-

tion of n-tuples belonging to M(W∞(T )). So, Proposition 3.2 implies that
there exists a subspace K ′ ⊂ H such that(

cU + Ã1, . . . , (cU)n + Ãn

) u∼ PK′(T, . . . , Tn)PK′ .

Since

PL

(
cU + Ã1, . . . , (cU)n + Ãn

)
PL = (C + A1, . . . , C

n + An),

this implies the statement of the theorem. �

For a sequence of Hilbert space contractions (Ck)∞k=1 with norms not
approaching 1 too fast, the following statement yields pinchings (Ck, . . . , C

n
k )

for a tuple (T, . . . , Tn), T ∈ B(H), if the spectrum of T is sufficiently large.
Its assumptions are close to be optimal even if n = 1, see [11].

Theorem 6.3. Let T ∈ B(H), σ̂(T ) ⊃ D, n ∈ N. Let Lk, k ∈ N, be separable
Hilbert spaces, and let Ck ∈ B(Lk), k ∈ N, be such that

∑∞
k=1(1− ‖Ck‖)n =

∞. Then there are mutually orthogonal subspaces Kk, k ∈ N, of H such that

H =
∞⊕

k=1

Kk and PKk
(T, . . . , Tn)PKk

u∼ (Ck, . . . , C
n
k )

for all k ∈ N.

Proof. The proof is analogous to that of Theorem 1.3, so we present it only
briefly.
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As in the proof of Theorem 1.3, one can find mutually orthogonal sub-
spaces Hm ⊂ H,m ∈ N, such that

We

(
PHm(T, . . . , Tn)PHm

)
= We(T, . . . , Tn).

Let (ym)∞m=1 be a sequence of unit vectors in H such that
∨

m ym = H. We
can find a sequence of mutually disjoint sets (Am)m∈N such that

⋃∞
m=1 Am =

N and ∑
k∈Am

(1− ‖Ck‖)n = ∞

for all m ∈ N. We construct mutually orthogonal subspaces Kk ⊂ H, k ∈ N,
satisfying PKk

(T, . . . , Tn)PKk

u∼ (Ck, . . . , C
n
k ), dim Kk/(Hk ∩Kk) ≤ 1 and

ln dist 2
{

ym,
∨

k≤N

Kk

}
≤ −

∑
k≤N,k∈Am

(1− ‖Ck‖)n

n22n+7‖T‖n

for all m,n ∈ N.
Let N ∈ N and suppose that the subspaces Kk, k ≤ N − 1, have already

been constructed. Let N ∈ Am. Let ym = a + tb where

a ∈
∨

k≤N−1

Kk, b ⊥
∨

k≤N−1

Kk, ‖b‖ = 1

and t = dist
{

ym,
∨

k≤N−1 Kk

}
≤ 1.

Define

H ′
N = HN ∩ {b, T jb, T ∗jb : j = 1, . . . , n}⊥ ∩

N−1⋂
k=1

K⊥
k ,

and note that We(PH′
N

TPH′
N

) ⊃ D.
Fix any unit vector x ∈ LN and let P ∈ B(LN ) be the orthogonal pro-

jection onto the one-dimensional subspace generated by x. If

ρ =

√
(1− ‖Ck‖)n

n22n+7‖T‖n

then ρ ≤ 1
4 and

√
1− ρ2 ≥ 1

2 . For each j = 1, . . . , n consider

C ′
N,j =(I − P )Cj

N (I − P ) +
1√

1− ρ2
(I − P )Cj

NP

+
1√

1− ρ2
PCj

N (I − P ) +
PCj

NP − ρ2〈T jb, b〉P
1− ρ2

,

where I denotes the identity operator on LN . We have

‖C ′
N,j − Cj

N‖ ≤2
( 1√

1− ρ2
− 1

)
+

( 1
1− ρ2

− 1
)

+
ρ2

1− ρ2
‖T‖j

≤8ρ2‖T‖j .
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By Lemma 6.2, there exists a subspace K ′
N ⊂ H ′

N such that

PK′
N

(T, . . . , Tn)PK′
N

u∼ (C ′
N,1, . . . , C

′
N,n),

i.e., there exists a unitary operator U : LN → K ′
N such that

U−1PK′
N

(T, . . . , Tn)PK′
N

U = (C ′
N,1, . . . , C

′
N,n).

Set
v =

√
1− ρ2Ux + ρb.

Since Ux ∈ K ′
N ⊂ H ′

N and H ′
N ⊥ b, we have ‖v‖ = 1 and v ⊥ U(I − P )LN .

Let KN = U(I − P )LN ∨ {v} and note that KN ⊥
∨

k≤N−1 Kk. Define a
unitary operator V : LN → KN by

V �(I−P )LN
:= U �(I−P )LN

and V x := v.

For z = u + sx, u ∈ (I − P )LN , s ∈ C and 1 ≤ j ≤ n we have〈
V −1PKN

T jPKN
V z, z

〉
=

〈
T j(Uu + sv), Uu + sv

〉
=

〈
T j(Uu + s

√
1− ρ2Ux), Uu + s

√
1− ρ2Ux

〉
+ s2ρ2〈T jb, b〉

=
〈
(I − P )C ′

N,j(I − P )z, z
〉

+
√

1− ρ2
〈
(I − P )C ′

N,jPz, z
〉

+
√

1− ρ2
〈
PC ′

N,j(I − P )z, z
〉

+(1− ρ2)〈PC ′
N,jPz, z〉+ ρ2〈T jb, b〉〈Pz, z〉

=〈Cj
Nz, z〉.

Hence
PKN

(T, . . . , Tn)PKN

u∼ (CN , . . . , Cn
N ).

Moreover, we have 〈b, v〉 = ρ and

dist 2
{

b,
∨

v
}

= 1− ρ2 = 1− (1− ‖CN‖)n

n22n+7‖T‖n
.

Thus

ln
dist 2

{
ym,

∨
k≤N Kk

}
dist 2

{
ym,

∨
k≤N−1 Kk

} = ln
(
1− (1− ‖CN‖)n

n22n+7‖T‖n

)
≤ −(1− ‖CN‖)n

n22n+7‖T‖n
.

As in Theorem 1.3, this finishes the proof.
�
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