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NOTATION AND CONVENTIONS

In this text we will work inside Zermelo-Fraenkel set theory with the axiom of choice, abbreviated ZFC. We will
try to keep our approach and notation as standard as possible. The reader is expected to be familiar with usual
set-theoretical language and methods. This includes the theory of proper forcing.

In some cases however, the notation and terminology used in this text goes beyond standard or is slightly less
formal then expected in rigorous set-theoretical texts.

This chapter will review some basic notions essential for this work and establish the notation, which is less
standard.

General Set Theory
For general set theory [Jec03, Kun80, BŠ01] are considered as standard reference. An excellent survey of set-
theoretical methods is given is series of articles by A. Dow [Dow88a, Dow92, Dow95, Dow02].

The set theory we will work with is generally ZFC. In some cases, we will use statements like ‘take countable
elementary submodelM ’. This will mean that we will resort to some fragment ZFC− of ZFC, which can miss
powersets for some large sets.

For the cardinal hierarchy we will use the ωα notation, the ℵ-notation will not be used. As usual, CH is
abbreviation for the continuum hypothesis, i.e. 2ω = ω1 and GCH, for generalized continuum hypothesis. In most
cases when working with GCH, we will actually need just 2ω = ω1 and 2ω1 = ω2.

Fin stands for the class of all finite sets. In practice, we will always work with Fin in context of powerset P(A)
of same fixed set A. This enables to deal with the ideal (set) P(A) ∩ Fin instead. We will often use this ideal to
work with classes of equivalence it generates.

For a set A, the equivalence class containing A is denoted [A]. It will always be clear from the context to which
equivalence this refers to (usually =∗).

In our notation A ⊂ B allows A = B. Generally relations with superscript ∗ mean modulo finite, e.g. A ⊂∗ B
is |A \B| < ω and A =∗ B is |A∆B| = |(A \B)∪ (B \A)| < ω. If A∩B =∗ ∅ we say that A and B are almost
disjoint. For functions f, g : ω → ω the relation f ≤∗ g is defined as usually |{n ∈ ω : g(n) < f(n)}| < ω.

Functions
We will say that a function f : ω → ω is growing if it is nondecreasing and not eventually constant. A set of all
functions from A to B is denoted AB.

For a function f : A→ B, the associated function P(A)→ P(B) is denoted by f [·], i.e.

f [·] : X 7→ {f(x) : x ∈ X}.

When the argument of this function is an equivalence class [X], we use just f [X] instead of the correct f
[
[X]
]
in

hope of creating less confusion than is being avoided. A notationally complicated situation arises when we are
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confronted with inverse function, e.g. what should be the range and domain of the inverse function. In general, we
assume that the range of f−1 is subset of P(A) and we intentionally avoid establishing other conventions about
inverse functions, since the intended meaning of our expressions will always be obvious from the context.

We use the convention that a function is a set of pairs. This allows us to express that f extends g by g ⊂ f and
if these two functions are compatible, we have a function f ∪ g which is their common extension.

For a sequence s of length α (for some ordinal α) we denote the sequence of length α+ 1 obtained by appending
x to the end of s as sax. The relation of end extension is denoted by @ .We will also say that set of ordinals A end
extends B; B @ A if B ⊂ A and for each α ∈ A \B and β ∈ B is β < α.

Trees
Let A be a set well ordered by l (we are mostly interested in case where (l, A) is isomorphic to (∈, ω)). For set F
(usually F = 2) we define lAF =

⋃
p∈A

↓pF where ↓ p = {q ∈ A : q l p}. This set ordered with ⊂ is a tree.
For a general tree T we call its node t ∈ T splitting, if t has at least two immediate successors in T. For ordinal

α we denote the αth level of T by T [α] = {t ∈ T : ↓ t has order type α}. A level T [α] is splitting if each element
of T [α] is a splitting node. The set of all (nonempty) splitting levels of T is denoted by S(T ). For t ∈ T we denote
T [t] the subtree of T containing all nodes comparable with t, T [t] = {s ∈ T : s ≤ t or t ≤ s}. A branch through T
is a maximal set of pairwise comparable elements of T. For t ∈ T we denote [t]T (or just [t] in case T is clear from
the context) the set of all branches through T containing t.

Cardinal characteristics of the continuum
We will explicitly need only few cardinal invariants. Dominating number d and bounding number b are defined in
terms of cardinalities of sets in ordering (ωω,≤∗).

b = min{|A| : (∀f ∈ ωω)(∃g ∈ A)(g �∗ f)}

d = min{|A| : (∀f ∈ ωω)(∃g ∈ A)(f ≤∗ g)}
The minimal cardinality of a character of a nonprincipal ultrafilter on ω is called ultrafilter number u. It is well
known that ω1 ≤ b ≤ u, d ≤ 2ω. No relation between d and u can be established in ZFC alone. A sequence

S = {fα ∈ ωω : α ∈ κ}

is called scale if fα ≤∗ fβ for α < β < κ and S is a dominating family (in (ωω,≤∗)). It follows that in this case
κ = b = d (in general, a scale exists if and only if b = d and it’s length is equal to this cardinal).

For more information about cardinal invariants we refer to [Bla10].

Filters and ideals
We will frequently deal with filters and ideals, mainly on ω. Unless said otherwise, all these filters and ideals are
assumed to contain the Fréchet filter or ideal respectively. This enables us not to distinguish between these object
as subsets of P(ω) and P(ω)/Fin . Filter F is generated by A if A together with the Fréchet is a subbase of F .
Analogously for ideals.

For filter F the dual ideal will be denoted F∗ and the other way round, for ideal I the dual filter is denoted I∗.
For a set J ⊂ P(ω) the ideal perpendicular to J is denoted J⊥ = {I ⊂ ω : A ∩ I =∗ ∅ for each A ∈ J }.

Various properties of filters and ideals will be considered in this text. We will follow a convention, that whenever
there is some terminology for e.g. filters, the same terminology will be used for dual objects, in this case ideals. So
we will speak e.g. about tall filters and rapid ideals (for concrete definitions see chapter 2).

For filters F ,G ⊂ P(ω) we have a filter on ω2 defined by

F × G =
{
A ⊂ ω2 : {x ∈ ω : Ax ∈ F} ∈ G

}
where Ax = {y : (x, y) ∈ A}.We will use this mainly for G = {ω}.

For filters F ,G on ω we say that F is in Rudin-Keisler below G; F ≤RK G if there is a function f : ω → ω
such that

F = f∗(G) = {A ⊂ ω : f−1[A] ∈ G}.
If this function f is finite-to-one, then we say that F is Rudin-Blass bellow G; F ≤RB G. This relation commonly
known is well studied in literature.
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Forcing
Most of the material contained in this thesis is eventually focused on introducing various forcing notions and
developing techniques for investigating these forcings. Hence a certain level of familiarity with the theory of forcing
and especially proper forcing is expected. A good reference for forcing in general is [Kun80], for proper forcing one
can use [Abr10, Gol93, She98a]. An unavoidable reference for forcings adding reals is [BJ95].

We will review some basic forcing results here. In our notation, stronger condition is smaller, i.e. q is stronger
than p iff q < p. Groundmodel is usually denoted V, names for sets from the generic extension are generally labeled
with dots - e.g. τ̇ , and canonical names for sets from groundmodel are labeled with hats - e.g. ω̂. This convention
sometimes abandoned and these object are not always distinguished by means of this notation. Expressions ‘poset’,
‘forcing’ and ‘forcing notion’ are used as synonyms. As usual, H(θ) denotes the set of all sets of hereditary
cardinality < θ.

Our approach to iteration of forcing notions is standard. When working with iterations of infinite length, we
will use either finite support iteration or countable support iteration. While doing so, we will identify initial stages
of the iteration with subposets of the resulting forcing via the canonical embeddings.

Definition. Let P be a poset. P is κ-cc if there is no antichain in P of size κ. An ω1-cc poset is also called ccc.
P is proper if for each countable elementary submodelM ≺ H(θ) (for some θ large enough) such that P ∈M

and for each p ∈ P ∩M there exist a (P,M) generic condition q < p, q ∈ P, i.e. a condition q, such that if τ̇ ∈M
is a P name for ordinal, then q  τ̇ ∈M.

The formulation ‘θ large enough’ in this definition can equivalently mean for all θ > 2|P | or for some θ > 2|P |.

Definition. Martin’s Axiom MAκ(P) is the statement that for each poset P from the class P and each family
D = {Dα : α ∈ κ} of dense subsets of P there exists a D generic filter on P, i.e. a filter meeting each set D ∈ D.
MA stands for MAκ(cc-posets) for each κ < 2ω. PFA stands for MAω1(proper posets).

From many consequences of these axioms let us mention just few of them.

Fact. MA⇒ b = d = u = 2ω = 2κ for each κ < 2ω.

Fact. PFA⇒ MA + OCA + 2ω = ω2.

Here OCA stands for Todorcevic’s version of the Open Coloring Axiom. This axiom is in some literature also
called Todorcevic’s Axiom TA.

Definition. Open Coloring Axiom abbreviated OCA is the following statement.
LetX be an uncountable set of real numbers (with subspace topology) and letX2 = K0∪K1 be a partition with

K0 open in the product topology. There either exists an uncountable Y ⊂ X such that Y 2 ⊂ K0 or X =
⋃
n∈ωXn

and X2
n ⊂ K1 for each n ∈ ω.

For more details about PFA and related topics see [Tod89].
We will frequently work with some other properties of forcings and generic extensions.

Definition. Let P be a forcing notion. We say that P is ωω bounding if for each V generic filter G on P and each
f ∈ ωω ∩ V [G] there exists a sequence of finite sets

{Hn ∈ [ω]<ω : n ∈ ω} ∈ V

such that f ∈
∏
n∈ωHn.

Definition. Let P be a forcing notion. We say that P has Sacks property if there is a function b ∈ ωω ∩ V such that
for each V generic filter G on P and each f ∈ ωω ∩ V [G] there exists a sequence of finite sets

{Hn ∈ [ω]b(n) : n ∈ ω} ∈ V

such that f ∈
∏
n∈ωHn.
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In the definition of Sacks property, we can equivalently require that the same holds true for any growing function
b ∈ ωω ∩ V.We see that Sacks property is stronger than ωω boundedness (the converse is not true).

The following theorems are well known and are used here only as a black box. The way they are stated here
accord to the purpose of serving more as an outline or reminder than properly stated theorems. For detailed and
cautiously correct formulations the reader is advised to see cited sources.

Theorem. Finite support iteration of κ-cc forcing notions is κ-cc.

Theorem. Countable support iteration of proper and ωω bounding forcing notions is proper and ωω bounding.

Theorem. Countable support iteration of proper forcing notions with Sacks property is proper and has Sacks
property.

Theorem. Countable support iteration of length ω2 of proper forcing notions, each of size at most ω1, is ω2-cc.

Theorem (Blass-Shelah [BS87]). Countable support iteration of proper forcing notions preserving p-pointR also
preservesR (as a base of an ultrafilter).

Wewill also need a generalization of these theorems using the notion ω2-p.i.c. Relevant definitions and theorems
are stated in chapter 5.

Specific models of ZFC in this thesis are obtained in a way characteristic for forcing constructions. Let’s say
that our goal is a model without p-points. The main difficulty and also our main focus is to define a forcing, which
destroys single given p-point and is nice enough - (here proper ωω bounding of size ω1) preserves all we need to
proceed in work (GCH) to the generic extension and not to introduce too many new p-points.

Once this is achieved, one can argue in this way; start in a model of GCH (and optionally e.g. ♦ω2 ) and choose
a suitable ‘bookkeeping device’. Then iterate forcings which solve the issue one by one for each instance of the
required statement (here kill given p-points). Continue in this iteration guided by the bookkeeping device (i.e. it
tells us in each step with which instance to deal with at this stage - which p-point to kill) long enough (usually ω2

steps) to encounter all instances from all intermediate models at some stage of the iteration (the bookkeeping device
has to be chosen to ensure this - use e.g ♦).

In the end argue that each instance of our statement (here each p-point) from the final generic extension already
appeared at earlier stage in some intermediate model (here, as a trace of that p-point on the intermediate model) and
hence was dealt with.

This method is standard widely used (for more details see cited literature, a detailed proof is e.g. in [Woh08]).
Hence when employing this method, we will usually articulate only key elements specific to the concrete construction,
and we won’t examine details of e.g. how to choose the bookkeeping device, . . .
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CHAPTER 1

INTRODUCTION

The main object of our attention in the thesis is the Boolean algebra P(ω)/Fin, the quotient of powerset of
natural numbers modulo the ideal of it’s finite elements, [ω]<ω. Due to the Stone duality theorem, studying this
algebra is equivalent to investigating properties of the topological space obtained as the remainder of Čech-Stone
compactification ω∗ = βω \ ω, i.e. the space of all nonprincipal ultrafilters on ω. This is of course true only if we
assume the axiom of choice, in set theory without it there may for example be no ultrafilters at all while Boolean
algebra P(ω)/Fin still exists, but we will not venture to follow this way of though (set theory without axiom of
choice).

The structure in which we formulate question and prove theorems is usually the Boolean algebra P(ω)/Fin,
but there everything can be of course translated into the topological language of ω∗. See e.g. [BS89].

This algebra (or equivalently topological space) is of course a traditional object of interest in the history of set
theory and topology. For an introduction into the problematic [vM84] is a good reference, a list of open problems is
in a chapter by K. P. Hart and J. van Mill in Open problems in topology [HvM90].

There are several aspects of the behavior ofP(ω)/Fin . If we assume CH, then there is a very good understanding
what this algebra actually is, inductive constructions of length ω1 are a universal tool for solving most problems. In
this case e.g. P(ω)/Fin is the unique universal algebra of size ω1 [Par63]. Then there is some amount of results,
which are provable in ZFC, and a whole heap of properties of P(ω)/Fin, which are independent of ZFC. Because
of this phenomenon P(ω)/Fin is called ‘a monster having three heads’ in [vM84]. With the later development of
techniques like PFA and OCA, a ‘fourth head’ started to emerge [Far07].

It will turn out, that most results of this thesis belong to the ‘second head’ of independence results.
The first chapter (this one) introduces the main question we are interested in, the Katowice problem and reviews

some related results. Unfortunately, this question still remains unsolved. Second chapter provides an introduction
into the area of filter games. This chapter also contains a definition of a new game for towers and a characterization
theorem for this game. This result is an essential tool for proving properness of forcings defined in chapter four. The
author wouldn’t be able to prove this result without what he learned from prof. Alan Dow.

The third chapter presents a nowadays classical method for building models with limited amount of p-ultrafilters
due to S. Shelah. Forcings for no p-points, single selective ultrafilter and single p-point are presented. The reason
for inclusion of this chapter is the simplified presentation of Shelah’s original proof and also some common features,
which this method shares with tools used in chapter four. Author of this text hopes, that this will make chapter four
easier to understand.

Chapter four starts with a review of results of J. Steprans on strong-Q-sequences. The main result of this chapter
is a new method for proving consistency of existence of strong-Q-sequence, which enables us to show this even
together with d = ω1. This method is inspired by a forcing used in [JS91] and it was Michael Hrušák who observed
the relevance of this work in scope of Katowice problem.

The last Chapter partially shifts the attention away from Katowice problem and studies automorphism of
P(ω)/Fin, namely their triviality and non-triviality. The main direction is to develop new approach to destroying
non-trivial automorphism, which could be combined with forcings form previous chapters and which allows building
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ωω bounding extensions of the groundmodel. These results are product of authors collaboration with Alan Dow, who
is the author of most ideas involved. A section clarifying the relation between Katowice problem and existence of
non-trivial automorphism of P(ω)/Fin is also included. The author of the proof in this section is Klaas Pieter Hart.

1.1 Katowice problem
There is a simple reason, why Boolean algebras P(ω1) and P(ω) cannot be isomorphic, the different number of
atoms (i.e. singletons) they contain. As it turns, the presence of atoms is the only obvious reason preventing existence
of isomorphism between these algebras. If we remove them, the question whether P(ω)/Fin ∼= P(ω1)/Fin
suddenly becomes much more complicated.

There are many simple (and some not so simple) answers, why this consistently cannot be true. The simplest
of them relies on comparing cardinalities; if 2ω 6= 2ω1 then there is even no bijection between these algebras. We
will recall some more consistent answers in this chapter. But the general answer, if there some ZFC reason for
non-isomorphism, is still missing.

Question 1 (Katowice problem). Is it consistent with ZFC that P(ω)/Fin ∼= P(ω1)/Fin?

We will call positive solution the (consistent) existence of such isomorphism.
The name for this problem comes from the name of Polish city Katowice. It was originally discovered and

discussed at the topological seminar of University of Silesia in Katowice in the 70s. The original equivalent
formulation of this problem is the question if Boolean algebra P(ω1)/Fin is homogeneous, i.e. whether it is
isomorphic to all it’s factor algebras.

Despite the simple statement, this problem is surprisingly hard to resolve. For a survey of historical development
and obtained results (which are not numerous) see [Nyi07]. We will see that the core of this problem is the
‘incompleteness’ of these Boolean algebras.

Our approach to this problem in this work is to derive consequences of possible existence of isomorphism
between P(ω)/Fin ∼= P(ω1)/Fin and then test consistency of these consequences. The aim is to either prove some
‘wild’ consequences are not consistent with ZFC and hence refuting positive answer to Katowice problem or by
building models of ZFC for those consequence discover a model witnessing the positive answer. Unfortunately, this
goal is not fully achieved, we will ‘only’ establish consistency of existence of certain objects in P(ω)/Fin .

Another twist to the Katowice problem would be not asking for general consistency, but asking ‘Is it always
possible to build a forcing extension of the groundmodel, where P(ω)/Fin ∼= P(ω1)/Fin? Do we need some
additional axioms going beyond ZFC (e.g. large cardinals, . . . )?’ instead.

It is also worthwhile mentioning, that adding an additional assumption, that Luzin hypothesis 2ω = ω2 holds,
does not affect the problem. On the other hand, we do not know if positive solution implies Luzin hypothesis to hold.

Lemma 1.1.1. If P(ω)/Fin ∼= P(ω1)/Fin is consistent, then so is P(ω)/Fin ∼= P(ω1)/Fin + 2ω = ω2.

Proof. Suppose we have a model of ZFC where P(ω)/Fin ∼= P(ω1)/Fin and 2ω = κ > ω2. The forcing for
collapsing κ to ω2 with conditions of size ω1 is < ω2 closed (all descending chains of length < ω2 have lower
bounds) and hence does not add any elements into P(ω)/Fin or P(ω1)/Fin . This means that the isomorphism
from the model we started with still witnesses P(ω)/Fin ∼= P(ω1)/Fin . And since no new reals were added, we
have 2ω = ω2.

1.2 Algebras P(κ)/Fin
The natural generalization of Katowice problem would be asking the same question for different cardinal then ω and
ω1. However as was shown by Balcar and Frankiewicz [BF78], for different cardinals the question is much easier to
resolve.

We will show this through a series of lemmas.

Lemma 1.2.1. Let κ < λ be cardinal numbers. If

P(κ)/Fin ∼= P(λ)/Fin

11



then
P(κ)/Fin ∼= P(µ)/Fin ∼= P(λ)/Fin

for each κ < µ < λ.

Proof. Suppose that κ < µ < λ is in the lexicographical ordering the smallest triple witnessing failure of the lemma
and fix an isomorphism

f : P(λ)/Fin→ P(κ)/Fin .

If
∣∣f [µ]

∣∣ = κ then f is a witness for

P(µ)/Fin ∼= P(f [µ])/Fin ∼= P(κ)/Fin,

so
∣∣f [µ]

∣∣ = κ0 < κ. Hence for κ0 < κ < µ we have P(κ0)/Fin � P(κ)/Fin � P(µ)/Fin and this contradicts
the smallest choice of such triple.

Lemma 1.2.2. Let κ < λ be cardinal numbers such that

P(λ)/Fin ∼= P(λ+)/Fin .

Then
P(κ)/Fin ∼= P(κ+)/Fin .

Proof. If P(κ)/Fin ∼= P(λ)/Fin use lemma 1.2.1.
We can suppose that for µ < λ is P(µ)/Fin � P(λ)/Fin (by taking minimal λ). Fix isomorphism

f : P(λ)/Fin→ P(λ+)/Fin

and put A = λ \
⋃
α<λ f [α]. Each f [α] has cardinality less then λ hence |A| = λ+. For each α < λ is

f−1[A] ∩ α =∗ ∅

hence |f−1[A]| = ω and P(ω)/Fin ∼= P(λ+)/Fin and thus P(κ)/Fin ∼= P(κ+)/Fin .

Lemma 1.2.3. Suppose that P(ω)/Fin ∼= P(κ)/Fin for some regular uncountable cardinal κ. Then b = d = κ.

Proof. Fix an isomorphism f : P(κ)/Fin→ P(ω)/Fin and a partition of κ into disjoint sets

κ =
⋃
{Bn ∈ [κ]κ : n ∈ ω}.

Fix {An : n ∈ ω} such that ω =
⋃
{An : n ∈ ω}, [An] = f [Bn] and An ∩Am = ∅ for n 6= m ∈ ω.

Let b : ω → ω2 be a bijection such that b[An] = {n} × ω. For α < κ fixDα ⊂ ω such that [Dα] = f([κ \ α]).
Put

fα(n) = min{i ∈ ω : (n, i) ∈ b[Dα]}.

We will show that {fα : α ∈ κ} is a κ-scale. For α < β we have that Dβ ⊂∗ Dα and fα ≤∗ fβ follows.
Take arbitrary f ∈ ωω and put F = {(n, i) ∈ ω2 : i < f(n)}.We have b−1[F ] ∩ An =∗ ∅ for each n ∈ ω hence
f−1

(
b−1[F ]

)
∩ Bn =∗ ∅ for each n ∈ ω and f−1

(
b−1[F ]

)
⊂ α for some α ∈ κ. Hence F ∩ b[Dα] =∗ ∅ and

f ≤∗ fα.

And finally we can conclude.

Theorem 1.2.4 (Balcar [BF78], see also [Com77]). Let κ < λ be infinite cardinals such that

P(κ)/Fin ∼= P(λ)/Fin .

Then κ = ω and λ = ω1 = b = d.
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Proof. Lemma 1.2.1 implies that P(κ)/Fin ∼= P(κ+)/Fin . If ω < κ then

P(ω)/Fin ∼= P(ω1)/Fin ∼= P(ω2)/Fin

(lemma 1.2.2). But then lemma 1.2.3 would imply ω1 = b = ω2 hence κ = ω. So ω1 = b = d = λ.

The situation for algebras of form P(κ)/[κ]<λ for other cardinals λ is somewhat different (and so is for other
ideals then the Fréchet ideal). We will mention here just one basic result from this direction, for other results see e.g.
[vD91, DH94].

Theorem 1.2.5. If P(κ)/[κ]<κ ∼= P(λ)/[λ]<λ then cf(κ) = cf(λ).

Proof. Suppose cf(κ) < cf(λ) and decompose λ into disjoint sets of full size λ,

λ =
⋃

α∈cf(κ)

Aα.

For each x ∈ [λ]λ there is α ∈ cf(κ) such that x ∩ Aα ∈ [λ]λ. On the other hand for each set S of size cf(κ) of
disjoint elements of P(κ)/[κ]<κ we can find x ∈ [κ]κ such x ∩ A < κ for each A ∈ S. So there is no set which
could be the image of {Aα : α ∈ cf(κ)} with a Boolean isomorphism.

Completions of P(κ)/Fin
It is an important feature of the Katowice problem that it’s essence is a question about the degree of incompleteness
of involved Boolean algebras.

It is easy to see that from the forcing point of view all algebras P(κ)/Fin are equivalent (the set of classes with
countable representatives is dense in each such algebra).

For a nonzero element a of Boolean algebra B will B�a denote the Boolean algebra with elements {b ∈
B : 0B ≤ b ≤ a} and operations inherited from B. The completion Boolean algebra B is denoted c (B) .

Fact 1.2.6. Let A = {ai : i ∈ λ} be a maximal antichain in a complete Boolean B. Then f : B →
∏
i∈λB�ai,

f : b 7→ 〈b ∧ ai : i ∈ λ〉 is an isomorphism of (complete) Boolean algebras.

Corollary 1.2.7. If κω = 2ω then c (P(ω)/Fin) ∼= c (P(κ)/Fin) .

This corollary can alternatively be seen through existence of base trees in these Boolean algebras [BPS80,
Dow89, BDH].

Proof. There are maximal antichains A = {ai : i ∈ 2ω}, B = {bi : i ∈ 2ω} in algebras P(ω)/Fin, P(κ)/Fin
consisting of countable sets. And

c (P(ω)/Fin) ∼=
∏
i∈2ω

c (P(ω)/Fin)�ai ∼=
∏
i∈2ω

c (P(κ)/Fin)�bi ∼= c (P(κ)/Fin) .

So Katowice problem can be vaguely stated as: Can P(ω)/Fin be incomplete in the precisely same way as
P(ω1)/Fin is? It is usually not problem to find a copy of any situation appearing in P(ω)/Fin into P(ω1)/Fin .
The ‘problem’ may arise, when we want to copy ‘incompleteness structures’ the other way. The vague notion of
incompleteness structure here stands for an infinite subset of Boolean algebra for which there either exists or does
not exist an element of the Boolean algebra, with prescribed relation to this set. Examples of these are gaps (in the
usual meaning) or so called strong-Q-sequences. It should be mentioned, that the structure of gaps in P(ω1)/Fin is
generally not extensively studied nor understood yet.

1.3 Some consequences of P(ω1)/Fin ∼= P(ω)/Fin
We will review consequences of positive answer for Katowice problem. All these consequences were previously
known, though some of them were stated in a slightly different way.
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Strong-Q-sequences in Boolean algebras
The concept of strong-Q-sequence were introduced by J. Steprans in [Ste85]. He defined them for general Boolean
algebras as well as for the algebra P(ω)/Fin .

Definition 1.3.1 (strong-Q-sequence). Let A be a set of nonzero elements of a Boolean algebraA. A is a strong-Q-
sequence inA if the following holds true. For every F : A → A such that F (a) ≤ a there exists c ∈ A such that
c ∧ a = F (a) for each a ∈ A. The element c is called uniformization of F.

Proposition 1.3.2. Every strong-Q-sequence A inA is an antichain and ifA is κ-complete than the converse is
also true for antichains of size less than κ.

Proof. If a ∧ b 6= 0A then any F such that F : a 7→ 0A and F : b 7→ b has no uniformization.
IfA is κ complete,A is an antichain inA of size less than κ and F : A → A is a function as in definition 1.3.1,

then
∨
{F (a) : a ∈ A} is a uniformization of F.

The notion is stable with respect to subsets and restrictions.

Proposition 1.3.3. Let A be a strong-Q-sequence in A.

1. Every B ⊂ A is a strong-Q-sequence inA.

2. For every b ∈ A the set {a ∧ b : a ∈ A, a ∧ b 6= 0A} is a strong-Q-sequence in A.

Proof. Easy.

In agreement with established notation, for a subset A of Boolean algebraA we put

A⊥ = {x ∈ A : x ∧ a = 0A for each a ∈ A}.

It is easy to see that A⊥ is an ideal inA. The following theorem is due to J. Steprans.

Theorem 1.3.4 (Steprans). Let A and B be Boolean algebras. Suppose that A ⊂ A and B ⊂ B are strong-Q-
sequences. Suppose furthermore that there is a bijection Ψ : A → B such that A � a is isomorphic to B � Ψ(a) for
each a ∈ A. ThenA/A⊥ is isomorphic to B/B⊥.

Proof. For each a ∈ A fix an isomorphism ψa : A � a→ B � Ψ(a). For x ∈ B and a ∈ A put Gx(a) = ψ−1
a (x∧

Ψ(a)). Define θ : B/B⊥ → A/A⊥ by the rule θ(x) ∧ [a] = [Gx(a)] for each a ∈ A. This obviously defines an
isomorphism.

We will be interested for strong-Q-sequences mainly in the algebra P(ω)/Fin . Chapter 4 of this thesis is
devoted to this topic.

Ideal of countable sets in P(ω1)/Fin

A distinguished object in the algebra P(ω1)/Fin is the ideal of countable sets. This ideal will be denoted C . It is
not clear at all why there should be a subset of P(ω)/Fin mimicking properties of this ideal (in fact, this will be
one of main results of this thesis).

Proposition 1.3.5. Every p-ultrafilter on ω1 intersects C .

For a definition of p-ultrafilter see 2.1.9.

Proof. Let F be a p-ultrafilter on ω1. The principal case is clear so suppose opposite. The filter F can not be ω1

complete (ω1 is not a measurable cardinal); there is D ∈ [F ]ω such that
⋂
D = ∅. There exists p ∈ F such that

p ⊆∗ d for each d ∈ D. This implies that |p| = ω.

The following fact was known to B. Balcar and P. Simon and was also independently observed by A. Dow.
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Lemma 1.3.6. Let f : P(ω)/Fin → P(ω1)/Fin be a Boolean isomorphism and let I = f−1[C ]. Then I is a
non-meager ideal.

Proof. Suppose I were meager and let {In : n ∈ ω} be a sequence of disjoint finite subsets of ω such that for each
X ∈ [ω]ω is aX =

⋃
n∈X In /∈ I (i.e. f [aX ] is uncountable).

Fix a copy {Xs : s ∈ <ω2} of the binary tree (<ω2,⊂) in the ordering ([ω]ω,⊃). Denote As = f [aXs ]. There
is some α ∈ ω1 such that for all s, t ∈ <ω2 is At \As ⊂ α if s ⊂ t and As ∩At ⊂ α for s, t incompatible.

For each β ≥ α there is at most one branch x through <ω2 such that β ∈ As for all s ∈ x.Now use that ω1 < 2ω

to pick a branch y such that for each β > α there is s ∈ y such that β /∈ As. Take X an infinite pseudointersection
of {Xs : s ∈ y}, i.e. aX ⊂∗ aXs for all s ∈ y. Hence f [aX ] is uncountable and f [aX ] ⊂∗ As for s ∈ y so

⋂
s∈y As

is also uncountable. This is a contradiction with the choice of y which ensured that
⋂
s∈y As ⊂ α.

We will call the ideal mimicking the behavior if C countable like.

Definition 1.3.7 (Countable like ideal). We say that the ideal I in P(ω) is countable like iff the following holds.

1. I is non-meager.

2. I ∩ F 6= ∅ for each p-ultrafilter F in P(ω)/Fin .

3. I is generated by an increasing tower T = {Tα : α ∈ ω1} in P(ω)/Fin .

4. The set {Tα+1 \ Tα : α ∈ ω1} is a strong-Q-sequence in P(ω)/Fin .

Theorem 1.3.8. Let f : P(ω1)/Fin → P(ω)/Fin be a Boolean isomorphism and let I = f [C ]. Then d = ω1

and I is countable like ideal.

Proof. The fact that d = ω1 is theorem 1.2.4. Requirements 2. and 1. from the definition of countable like ideal
are proved in lemma 1.3.6 and proposition 1.3.5 (p-ultrafilters correspond to p-ultrafilters in the isomorphism).
To see that the other requirements are also fulfilled just notice that C is generated by {tα = [α · ω] : α ∈ ω1} in
P(ω1)/Fin and {tα+1 \ tα : α ∈ ω1} is a strong-Q-sequence in P(ω1)/Fin .

It will be shown in chapter 4 that there is model of ZFC where consequences of theorem 1.3.8 hold true. Thus
this theorem alone is not strong enough to refute P(ω1)/Fin ∼= P(ω)/Fin .

For more combinatorial results (mainly under PFA) about P(ω1)/Fin see [Dow88b] and for more results about
C in P(ω1) see [Dow96].
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CHAPTER 2

FILTER GAMES AND RELATIVES

In this chapter we review the technology of (ultra)filter games. This technology is nowadays classical, as its starting
point is usually cited work of Galvin and Mackenzie [Gal80]. A good reference with systematic treatment is
[Laf96, LL02]. Games for two filters appeared originally in [She82] and a systematically studied in [Eis01]. The
concept of tower games in this thesis is original. All filters in this chapter are filters on ω.

The reason for our interest in these games is that they provide an essential tool for establishing properties of
forcing notions, we will use. Namely, we will often encounter a forcing with an filter F as an parameter, conditions
will approximate a characteristic function for generic real number with ‘F large amount of uncertainty’ (for explicit
definitions see chapters 3 and 4). For proving e.g. properness of such forcings we will need to be able to build a
kind of fusion sequence of descending conditions and games are used to steer this fusion constructions.

2.1 About filters
We start by defining basic properties of filters (and ideals) we are interested in. All these notions and results are
classical and well known.

Definition 2.1.1 (tall filter). A filter F is a tall filter iff for each A ∈ [ω]ω there is some B ∈ [A]ω such that
ω \B ∈ F .

Since a filter can be viewed as a subset of the Cantor space identified with P(ω) via characteristic functions, we
can talk about properties of filters defined in topological language.

Lemma 2.1.2 (Talagrand [Tal80]). For a filter F in P(ω) the following are equivalent:

1. F is non-meager subset of P(ω).

2. F is unbounded, i.e. enumerating functions of sets in F are unbounded subset of (ωω,<).

3. For each decomposition of ω =
⋃
In into intervals there is a set F ∈ F such that F ∩ In = ∅ for infinitely

many intervals.

4. For each sequence of disjoint finite sets {an : an ∈ [ω]<ω, n ∈ ω} there is a set F ∈ F such that F ∩an = ∅
for infinitely many n.

Fact 2.1.3. Every non-meager filter is tall.

The concept of rapid filter was introduced in [Cho68]. Some authors also use terminology ‘semi-Q(-point)’
instead. This other terminology is usually in context of ultrafilters.

Definition 2.1.4 (rapid filter). AfilterF inP(ω) is called rapid if enumerating functions of its subsets are dominating
family in (ωω,<).
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It follows from the definition that every rapid filter is non-meager.

Lemma 2.1.5 (Miller [Mil80]). For a filter F on ω the following are equivalent:

1. F is rapid.

2. There exist an increasing sequence {ai : i ∈ ω} ⊂ ω and a function f ∈ ωω such that for each subsequence
{bi : i ∈ ω} of {ai : i ∈ ω} there exists some F ∈ F such that |F ∩ bi+1 \ bi| < f(i) for each i ∈ ω.

3. For each increasing sequence {ai : i ∈ ω} ⊂ ω and an for each growing function f ∈ ωω there exists some
F ∈ F such that |F ∩ ai+1 \ ai| < f(i) for each i ∈ ω.

4. There exist a function f ∈ ωω such that for every sequence {ti : ti ∈ [ω]<ω, i ∈ ω} there exists some F ∈ F
such that |F ∩ ti| < f(i) for each i ∈ ω.

5. For each growing function f ∈ ωω and each sequence {ti : ti ∈ [ω]<ω, i ∈ ω} there exists some F ∈ F
such that |F ∩ ti| < f(i) for each i ∈ ω.

Note that the conditions 4 and 5 have no reference to the ordering of ω. This enables us to speak about rapid
filters on a general countable set without declaring the respective ordering.

Proof. It is easy to see that 5⇒ 4⇒ 2 and 5⇒ 3⇒ 2.
To prove that 2⇒ 1 take an infinite setA ∈ [ω]ω andwe have to findF ∈ F such that the enumerating function eA

is dominated by eF . Fix {bi : i ∈ ω} such that f(i+1) < |A∩bi+1\bi| for i ∈ ω. According to 2 there existsF ′ ∈ F
such that |F ′∩bi+1\bi| < f(i). NowF = F ′\b1 is the desired set since |F∩bi+2\bi+1| < f(i+1) < |A∩bi+1\bi|
for i ∈ ω.

Suppose that 1 holds and pick a growing function f ∈ ωω and some sequence {ti : i ∈ ω} of finite subsets of ω
to prove 5. Define a function g such that for each i ∈ ω is max(ti) < g(f(i)). This is possible since f is growing.
Because F is rapid there is some F ∈ F such that eF dominates g. Now

|F ∩ ti| ≤ |F ∩ (max(ti) + 1)| = |e−1
F [max(ti) + 1]| < |g−1[max(ti) + 1]| < f(i).

The notion of rare filter was again introduces in [Cho68]. Among ultrafilters, object with this property are
called q-points or q-ultrafilters almost exclusively. Since we will mainly deal with filters in general, we keep the
original terminology.

Definition 2.1.6 (rare filter). A filter F in P(ω) is rare if for each sequence of disjoint finite sets

{tn : tn ∈ [ω]<ω, n ∈ ω}

there is a set F ∈ F such that |F ∩ tn| ≤ 1 for each n ∈ ω.
If F is a rare ultrafilter, it is called q-ultrafilter or q-point.

Fact 2.1.7. Every rare filter is rapid.

Lemma 2.1.8. For a filter F on ω the following are equivalent.

1. F is rare.

2. There exist an increasing sequence {ai : i ∈ ω} ⊂ ω such that for each subsequence {bi : i ∈ ω} of
{ai : i ∈ ω} there is F ∈ F such that |F ∩ [bi, bi+1)| ≤ 1 for each i ∈ ω.

Proof. We need to show 2 ⇒ 1. Let {tn : tn ∈ [ω]<ω, n ∈ ω} consisting of disjoint sets be given. Choose
{bi : i ∈ ω} subsequence of {ai : i ∈ ω} such that each tn intersect only one or at most two (consecutive) intervals
[bi, bi+1).

For i ∈ 2 find Fi ∈ F such that |Fi ∩ [b2n+i, b2·(n+1)+i)| ≤ 1 for each n ∈ ω. For

F = (F0 ∩ F1) \ b1 ∈ F

is |F ∩ tn| ≤ 1 for each n ∈ ω.
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We will make one exemption from the convention we established for this chapter, the definition of p-filter will
be used for filters on other sets (also uncountable) than ω as well. Although we won’t encounter any instance of this
until chapter 5.

Definition 2.1.9 (p-filter). Let F be a filter on some set. We say that F is a p-filter if for eachD ∈ [F ]ω there exists
p ∈ F such that p ⊆∗ d for each d ∈ D. The set p is called a pseudointersection of D. If F is both p-filter and an
ultrafilter then F is a p-ultrafilter or p-point.

A rare p-ultrafilter is called selective ultrafilter or Ramsey ultrafilter.

2.2 Non-meager game and near coherence game
We will start with few simple games, which can be used for characterizing meagerness and similar properties of
filters.

Definition 2.2.1 (non-meager game). LetF be a filter inP(ω). The following game is called non-meager gameMF .
In n-th move player I plays a finite set An ∈ [ω]<ω and player II responds with a finite set Bn ∈ [ω]<ω disjoint from
An. After ω many moves player II wins if

⋃
{Bn : n ∈ ω} ∈ F and player I wins otherwise.

The following observation will work in the same way for all games in this chapter.

Fact 2.2.2. Player II has no winning strategy in the gameMF for any filter F .

Proof. The crucial observation is that if two games are played simultaneously (alternating moves between them),
player I can force player II to pick sets B0

n in the first game and B1
n in the second game so that

⋃
{B0

n : n ∈ ω} and⋃
{B1

n : n ∈ ω} are disjoint and so can not be both elements of F . That means that that player II loses at least one
of these two games and this wouldn’t be possible if he had a winning strategy forMF .

As we will see, the situation may be very different if two games played simultaneously as in the previous proof
are played with different filter each.

Existence of wining strategy for player I is not automatic. With Borel determinacy in hand we can argue that
that if F is a Borel subset of P(ω), then player I must have winning strategy since the game is determined. This is
nice good agreement with the actual characterization.

Lemma 2.2.3. Player I has winning strategy in the non-meager gameMF if and only if F is a meager filter.

Proof. If F is a meager filter there is an interval partition {In : n ∈ ω} of ω witnessing this. Winning strategy
for player I is in the n-th move to pick a ni ∈ ω such that

⋃
{Bj : j ≤ n} ∩ Ini = ∅ and to play An such that⋃

{Inj : i ≤ n} ⊂ An.
SupposeF is a non-meager filter. Wewill show that player I has no winning strategy in the followingmodification

of the non-meager game. The additional rule is that player II is in the n-th move allowed to play a non-empty set Bn
only if

⋃
{Bi : i < n} ⊂ n. We will call this modifiedM ′F . It is obvious that a winning strategy for player I in the

gameMF is also winning in the modified gameM ′F .
Suppose S is a strategy for player I for the gameM ′F . For each n there are only finitely many sequences of

moves of player II such that he is allowed to play a non-empty set in the n-th move. Denote this finite setMn.
Let us choose inductively a sequence of integers {ji : i ∈ ω}. Start with j0 = 0 and if ji is defined pick ji+1 > ji
such that S(m) ⊂ ji+1 for eachm ∈ Mji . Now use the non-meagerness of F to find an infinite set I ⊂ ω such
that ω \

⋃
{[ji, ji+1) : i ∈ I} ∈ F . Player II beats strategy S if he plays Bjn = [jn+1, jmin(I\(n+1))) if n ∈ I and

Bn = ∅ otherwise.

The game for characterizing rapidity has similar flavour as the non-meager game. It has one extra parameter, a
function in ωω, but as will turn out, the concrete choice of function has little impact on the game.

Definition 2.2.4 (rapid game). Let F be a filter in P(ω) and f be an function in ωω. The following game is called
rapid game RF,f . In n-th move player I plays a finite set An ∈ [ω]<ω and player II responds with a finite set
Bn ∈ [ω]f(n) disjoint from An. After ω many moves player II wins if

⋃
{Bn : n ∈ ω} ∈ F and player I wins

otherwise.
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It is possible to use the same argument as for non-meager game to see that player II never has a winning strategy
for the rapid game RF,f for any F and f.

As suggested by name, existence of winning strategy for player I characterizes rapid filters.

Lemma 2.2.5. The following conditions are equivalent for each filter F in P(ω).

1. F is a rapid filter.

2. For each growing function f ∈ ωω player I has no winning strategy for the rapid game RF,f .

3. There is a function f ∈ ωω such that player I has no winning strategy for the rapid game RF,f .

Proof. 1⇒ 2: Pick a function f and again modify the game by allowing player II to play nonempty set Bn only if⋃
{Bi : i < n} ⊂ n, denote this modified game R′F,f . Again, if player I had winning strategy for RF,f , then he

would also have winning strategy for R′F,f .
Suppose S is a strategy for player I for the game R′F,f . For each n there are only finitely many sequences of

moves of length n− 1 of player II such that he is allowed to play a non-empty set in the n-th move. Denote this
finite setMn. Let us choose inductively a sequence of integers {ji : i ∈ ω}. Start with j0 = 0 and if ji is defined
pick ji+1 > ji such that S(m) ⊂ ji+1 for eachm ∈Mji . Now use the non-meagerness of F to find an infinite set
I ⊂ ω such that

ω \
⋃
{[ji, ji+1) : i ∈ I} ∈ F .

Then use 5 of Lemma 2.1.5 for F and f to find F ∈ F such that |Bjn | < f(n) where

Bjn = [jn+1, jmin(I\(n+1))) ∩ F

for each n ∈ I.
Player II beats strategy S if he plays Bjn if n ∈ I and ∅ otherwise.
2⇒ 3 is clear. 3⇒ 1: Suppose 3 holds for function f . We will show that clause 4 of Lemma 2.1.5 holds true

for g(i) =
∑
j≤i f(j). Let {ti : ti ∈ [ω]<ω, i ∈ ω} be given and S be strategy for player I such that in the n-th move

he always plays An =
⋃
{ti : i < n}. This is not a winning strategy thus there is a sequence of moves {Bn : n ∈ ω}

of player II which beats this strategy. So F =
⋃
{Bn : n ∈ ω} ∈ F and |F ∩ ti| < g(i).

Definition 2.2.6 (rare game). The special case of rapid game RF,1, where 1 ∈ ωω is constantly equal 1 is called
rare game.

The next lemma is proved in exactly the same way as lemma 2.2.5, so the proof is omitted.

Lemma 2.2.7. Player I has no winning strategy in the rare game RF,1 if and only if F is a rare filter.

We will now turn our attention back towards the proof of non-existence of winning strategy for player II. We
observed that if we play two games simultaneously (alternating moves) and we require the second player to win both
of them, player I has a winning. For this observation it was essential, that result of both games was evaluated with
the same filter. The natural question one would ask is, how much similarity between filters in those two games is
actually needed for this argument?

A notion relevant for this situation near coherence of filters introduced by A. Blass. It has close relation with
the Rudin-Blass ordering.

Definition 2.2.8 (Blass [Bla86]). Let F0 and F1 be filters. We say that F0 and F1 are near coherent if there is a
finite-to-one function f : ω → ω such that f(F0) ∪ f(F1) has the finite intersection property.

For ultrafilters being non-coherent is the same as not having a common lower bound in the Rudin-Blass ordering
≤RB . For p-points this is equivalent to not having a common lower bound in the Rudin-Keisler ordering ≤RK .

Near coherence can be characterized in terms of partitions of ω into finite finite pieces. Especially the slightly
technical item 3 will be very useful later.

Lemma 2.2.9 (Eisworth [Eis01]). Let F0 and F1 be two filters in P(ω). The following are equivalent:

1. F0 and F1 are not nearly coherent.
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2. For each partition {In : n ∈ ω} of ω into finite sets there exist two disjoint sets A0, A1 ⊂ ω such that⋃
{In : n ∈ Ai} ∈ Fi for both i ∈ 2.

3. For each partition {In : n ∈ ω} of ω into finite sets there exist two disjoint sets A0, A1 ⊂ ω such that⋃
{In : n ∈ Ai} ∈ Fi for both i ∈ 2. Moreover if n ∈ Ai ⇒ n+ 1 /∈ A1−i for i ∈ 2.

Proof. To see that 1⇔ 2 note that the function taking i ∈ In to n is not witnessing near coherence of F0 and F1

and for each finite-to-one function it is possible to define partition of ω into finite Ins with the same same property.
3⇒ 2 is obvious. 2⇒ 3: Let {In : n ∈ ω} be a given partition. Because of 2 we can assume that⋃

{I2n+i : n ∈ ω} ∈ Fi for i ∈ 2.

(Take a coarser partition if necessary.) Use 2 to get A,B ⊂ ω such that⋃
{I2n ∪ I2n+1 : n ∈ A} ∈ F0,⋃
{I2n ∪ I2n+1 : n /∈ A} ∈ F1,⋃
{I2n−1 ∪ I2n : n ∈ B} ∈ F0,⋃
{I2n−1 ∪ I2n : n /∈ B} ∈ F1.

Put A0 = {2n : n ∈ A ∩B} and A1 = {2n+ 1: n /∈ A,n+ 1 /∈ B}.

Corollary 2.2.10. If F0 and F1 are not nearly coherent then both these filters are non-meager.

A game consisting of two different ultrafilter games played simultaneously appeared already in [She82]. A simple
game characterizing near coherence was formulated by T. Eisworth.

Definition 2.2.11 (near coherence game [Eis01]). Let F0,F1 be filters in P(ω). The following game is called near
coherence game CF0,F1 . In n-th move player I plays a finite set An ∈ [ω]<ω and player II responds with a finite set
Bn ∈ [ω]<ω disjoint from An. After ω many moves player II wins if

⋃
{B2n+i : n ∈ ω} ∈ Fi for both i ∈ 2 and

player I wins otherwise.

The same argument as with previous games works here again (now with playing four games simultaneously).

Fact 2.2.12. Player II has no winning strategy in the game CF0,F1 for any couple of filters F0,F1.

Lemma 2.2.13. Player I has winning strategy in the near coherence game CF0,F1 if and only if filters Fi, i ∈ 2 are
near coherent.

Proof. If filtersFi, i ∈ 2 are near-coherent, there is a partition {In : n ∈ ω} of ω for which there are noA0, A1 ⊂ ω
which would fulfill condition 2 from Lemma 2.2.9. A winning strategy for player I is to play

An =
⋃
{Ij : Ij ∩Bi 6= ∅ for some i < n}.

Suppose Fi, i ∈ 2 are not near coherent filters. We will again show that player I has no winning strategy in the
modified game C ′F0,F1

(Again, player II is allowed to play in n-th move only if he played subsets of n so far.)
Take S a strategy for player I for the game C ′F0,F1

. For each n there are only finitely many sequences of moves
of player II such that he is allowed to play move n. Denote this finite setMn. Let us choose inductively a sequence
of integers {ji : i ∈ ω}. Start with j0 = 0 and if ji is defined pick ji+1 > ji such that S(m) ⊂ ji+1 for each
m ∈ M2ji ∪M2ji+1. Now use 3 from lemma 2.2.9 to find A0, A1 ⊂ ω such that

⋃
{[jk, jk+1) : k ∈ Ai} ∈ Fi.

For i ∈ 2 denote
A′i = {a ∈ Ai : max ((A0 ∪A1) ∩ a ∈ A1−i)}

and for a ∈ A′i define a+ to be max({b ∈ Ai : [a, b) ∩A1−i = ∅}).
Player II beats strategy S by playingB2jn+i = [jn+1, j

+
n+1) if n = a+ for some a ∈ A′1−i and ∅ otherwise.

Remark. We can change the definition of near coherence game by allowing player II to play only sets with size
bounded by some function f . This combination of near coherence game and rapid game provides the expected
characterization: player I has no winning strategy iff involved filters are not near coherent and rapid.
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2.3 P-filter game and variations
The game for characterizing p-filters was invented by Galvin and Mackenzie in [Gal80] (originally for p-points).

Definition 2.3.1 (p-filter game). Let F be a filter in P(ω). The following game is called p-filter game PF . In n-th
move player I plays a filter set Fn ∈ F and player II responds with its finite subset Bn ∈ [Fn]<ω. After ω many
moves player II wins if

⋃
{Bn : n ∈ ω} ∈ F and player I wins otherwise.

For winning strategy of player II we have again the same argument with two simultaneous games.

Fact 2.3.2. The second player never has a winning strategy in the p-filter game.

The p-filter game yields characterization of non-meager p-filters.

Lemma 2.3.3. Filter F is non-meager p-filter in P(ω) if and only if player I has no winning strategy in the p-filter
game PF .

Proof. Assume that there is no winning strategy for player I in the game PF . To prove that F is p-filter take any
{Fi : i ∈ ω} ⊂ F and let the first player play

⋂
{Fi : i ≤ n} in the n-th move of the game PF . There is a sequence

{Bi : i ∈ ω} of moves of player II which beats this strategy,
⋃
{Bi : i ∈ ω} ∈ F and

⋃
{Bi : i ∈ ω} ⊆∗ Fj for each

j ∈ ω.
If F is meager, player I can use his winning strategy for the non-meager gameMF .
For the other implication assume thatF is a non-meager p-filter. We will again show that player I has no winning

strategy in the modified game P ′F (Again, player II is allowed to play in n-th move only if he played subsets of n
so far.)

Let {
As : s ∈ <ω[

[ω]<ω
]}
⊂ F

be a strategy for player I in the game P ′F (As is the response to a sequence s of moves of player II. We have to
introduce a sequence of moves for player II which beats this strategy. For n ∈ ω put

An =
⋂
{As : s is a sequence of legal moves of player II of length < n} ∈ F

and denote A ∈ F the pseudointersection of An’s. Fix an increasing function f ∈ ωω such that A ⊂ An ∪ f(n) for
each n ∈ ω. Denote in = f (n)(0) for n ∈ ω. Player II will try to hit as much elements of A as possible. Note that if
he is to play in move in, he can legally play any finite subset of A \ in+1.

The filter F is non-meager hence there is a set F ∈ F and an infinite increasing sequence {kn : n ∈ ω} ⊂ ω
such that F ∩ [ikn , ikn+1) = ∅ for each n ∈ ω.

Let Bi = A ∩ F ∩ [ikn+1, ikn+1) for i = ikn and Bi = ∅ if i /∈ {ikn : n ∈ ω}. The sequence {Bi : i ∈ ω} is a
sequence of legal moves for player II and

⋃
{Bi : i ∈ ω} = (A ∩ F ) \ ik0 ∈ F .

We can combine rules of previously defined games to get characterizations of various kinds of filters.

Definition 2.3.4 (rapid p-filter game). Let F be a filter on P(ω) and f be an function in ωω. The following game is
called rapid p-filter game RPF,f . In n-th move player I plays a filter set Fn ∈ F and player II responds with its
finite subset Bn ∈ [Fn]f(n). After ω many moves player II wins if

⋃
{Bn : n ∈ ω} ∈ F and player I wins otherwise.

Definition 2.3.5 (near coherence p-filter game). Let F0,F1 be filters in P(ω). The following game is called near
coherence p-filter gameCPF0,F1

. In move 2n+i (for n ∈ ω, i ∈ 2) player I plays a filter set F2n+i ∈ Fi and player II
responds with its finite subset B2n+i ∈ [F2n+i]

<ω. After ω many moves player II wins if
⋃
{B2n+i : n ∈ ω} ∈ Fi

for both i ∈ 2 and player I wins otherwise.

Following lemmas are proved just by combining techniques used in previous proofs.

Lemma 2.3.6. The following conditions are equivalent for each filter F in P(ω).

1. F is a rapid p-filter.

2. For each growing function f ∈ ωω player I has no winning strategy for the rapid game RPF,f .
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3. There is a function f ∈ ωω such that player I has no winning strategy for the rapid game RPF,f .

Lemma 2.3.7. Player I has no winning strategy in the rare p-filter game RPF,1 if and only if F is a rare p-filter.

Lemma 2.3.8. Player I has no winning strategy in the near coherence p-filter game CPF0,F1
if and only if filters

Fi, i ∈ 2 are non near coherent p-filters.

Remark 2.3.9. Generally if alternate moves in two filter games (for rapid game, p-filter game, . . . ) and player II
has to win both games, player I has no winning strategy (in the composed game) iff he has no winning strategy in
both separate games and the two involved filters are not near coherent.

The situation is significantly different if the alternating is done in a different way; player I plays his moves in
both games and only then player II chooses his responses in both games.

The following game is an example of such situation. This game is due to Shelah and is needed in proof of
theorem 3.4.2.

Definition 2.3.10 (refining game for p-filter and rare p-filter). Let {In ∈ [ω]<ω : n ∈ ω} be sequence of disjoint
intervals. LetR,F be filters in P(ω) such that

⋃
n∈R In ∈ F iff R ∈ R. (i.e. R ≤RB F).

In n-th move player I plays a filter set Fn ∈ F and player II responds with an integer bn and a finite set
Bn ⊂ Ibn ∩ Fn. After ω many moves player II wins if

⋃
{Bn : n ∈ ω} ∈ F and player I wins otherwise.

Note that if player II won, then {bn : n ∈ ω} ∈ R. Also the sequence {bn : n ∈ ω}of moves of player II is not
relevant. This integers are introduced just for easier notation and can be reconstructed from Bns.

The following lemma is what will be needed in proof of 3.4.2.

Lemma 2.3.11. Let R,F be filters as in Definition 2.3.10. If R is rare and F is a p-filter then player I has no
winning strategy in the refining game from 2.3.10.

Proof. Pretend that player II plays only Bns and follow the proof of lemma 2.3.3 with minor modifications.
Function f can be defined such that all it’s values are end points of intervals In, n ∈ ω.
Then use thatR is rare to find a set R ∈ R such that for each n ∈ ω is

{j ∈ R : Ij ∩ [ikn+1, ikn+1
) 6= ∅} ⊂ {jn}

for some jn ∈ ω.
Hence bi = ji, Bi = A ∩ F ∩ [ikn+1, ikn+1

) ∩ Iji for i = ikn and bi = 0, Bi = ∅ if i /∈ {ikn : n ∈ ω} is a
sequence of legal moves of player II which beats this strategy.

2.4 Tower games
We will investigate the situation for filters generated by decreasing towers in P(ω). Let us recall that tower is a
sequence {Tα ⊂ ω : α ∈ θ} such that Tα ⊂∗ Tβ for β < α < θ. Filter generated by T is denoted 〈T 〉.

Our motivation for this kind of games will become apparent in chapter 4. We will need to construct fusion
sequences in some forcings, where the ‘steering’ provided by plain filter games is not good enough.

Let us start with a technical lemma which demonstrates, how the technique of countable elementary submodels
can be used when dealing with towers.

Lemma 2.4.1. Let Ti = {T iα : α ∈ κi} be a decreasing tower in P(ω) generating filter Fi for i ∈ 2. Let

{tn : tn ∈ [ω]<ω, i ∈ ω}

be a sequence of disjoint sets and let f be a growing function in ωω. Let θ be cardinal large enough and letM be a
countable elementary submodel of H(θ) such that {tn : n ∈ ω}, f, T ∈ M ≺ H(θ). Denote supM ∩ κi = εiM .
Then

1. F0 is a non-meager filter⇒ there is an infinite A ⊂ ω such that tn ∩ T 0
ε0M

= ∅ for each n ∈ A.
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2. F0 is rapid filter⇒ there exists n0 ∈ ω such that |tn ∩ T 0
ε0M
| < f(n) for each n > n0.

3. F0,F1 are not near coherent and ω =
⋃
{tn : n ∈ ω} ⇒ there are A0, A1 ⊂ ω such that

T iεiM
⊂∗
⋃
{tn : n ∈ Ai}

for i ∈ 2 and if n ∈ Ai ⇒ n, n+ 1 /∈ A1−i.

Proof. We will show only 1, the rest is analogous. The assumption implies that there is some α ∈ M such that
Tα ∈M misses infinitely many tis. Hence TεM has the same property since TεM ⊂∗ Tα.

Some p-filters are generated by decreasing towers in P(ω).Moreover if we assume CH then each p-filter is of
this kind, so investigating only such p-filters may not be a restriction at all. Also while doing forcing constructions,
we can usually assume CH in the groundmodel.

Suppose that a tower T generates a (p-)filter F .We can equivalently redefine the p-filter game PF .

Definition (p-filter game for towers). Let T = {Tα : α ∈ κ} be a tower in P(ω). In n-th move player I plays an
ordinal αn ∈ κ and a finite set An ∈ [ω]<ω and player II responds with a finite set Bn ⊂ Tαn \An. After ω many
moves player II wins if there exists γ ∈ κ such that Tγ ⊂∗

⋃
{Bn : n ∈ ω} and player I wins otherwise.

From the previous section we know following lemma.

Lemma. The tower T generates a non-meager (p-)filter in P(ω) if and only if player I has no winning strategy in
the p-filter game for towers.

Further modification (this time not equivalent) of the p-filter game produces what will be called the tower game.
This is a stronger notion (harder game for player II) than just plain p-filter game. Its significant applications will be
seen in further chapters.

Definition 2.4.2 (tower game). Let T = {Tα : α ∈ κ} be a decreasing tower in P(ω). The following game
is called tower game TGT . In n-th move player I plays an ordinal αn ∈ κ and a finite set An ∈ [ω]<ω and
player II responds with an ordinal βn ∈ κ and a finite set Bn ⊂ Tαn \ An. After ω many moves player II wins if
γ = sup(βn : n ∈ ω) ∈ κ and Tγ ⊂∗

⋃
{Bn : n ∈ ω} and player I wins otherwise.

So the tower game requires that player II has not only to collect a set in the filter generated by T , he is also
supposed to correctly guess the level of T which witnesses this.

Fact 2.4.3. Player II never has a winning strategy in the tower game.

We show, that although the tower game seems to be significantly harder for the second player than the p-filter
game, this is not the case. If there was no winning strategy for player I in the p-filter game, then he does not have
winning strategy in the filter game.

Theorem 2.4.4. The decreasing tower T = {Tα : α ∈ κ} generates a non-meager filter in P(ω) if and only if
player I has no winning strategy in the tower game TGT .

Note that if cofinality of κ is countable then T generates a meager filter.

Proof. If the filter generated by T is meager, then player I can use his winning strategy for the p-filter game P〈T 〉 to
play so that he forces

⋃
{Bn : n ∈ ω} /∈ 〈T 〉.

Suppose that T generates a non-meager filter. We will again show that player I has no winning strategy in the
modified game TG′T where player II is allowed to play in the n-th move a nonempty set Bn only if in previous
moves i < n he only played subsets of n i.e. Bi ⊂ n.

Let S = {(αs, As) : α ∈ κ,A ∈ [ω]<ω} be a strategy for player I in the game TG′T . Here (αs, As) is the
response to a sequence s of legal moves of player II. We have to introduce a sequence of moves for player II which
beats this strategy.
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Pick a large enough cardinal θ and an increasing sequence of countable elementary submodels {Mk : k ∈ ω}
such that T ,S ∈Mk ≺Mk+1 ≺ H(θ), Mk ∈Mk+1 for each k ∈ ω and putM =

⋃
{Mk : k ∈ ω} ≺ H(θ). For

each elementary submodel N denote εN = sup(N ∩ κ) and fix a sequence of ordinals

{β′k : k ∈ ω, β′k ∈Mk, sup{β′k : k ∈ ω} = εM}.

We will inductively build a sequence of sequences of integers Jk = {jki : k, i ∈ ω} such that for each k is Jk
an increasing sequence and Jk ∈Mk+1. Also for each k is Jk+1 a subsequence of Jk.

Start defining J0 by choosing j0
0 such that TεM \ j0

0 ⊂ TεM0
. Suppose j0

i is defined. The setM0
i of possible

sequences of length j0
i of legal moves of player II, such that he played always the ordinal β′0 and he is allowed to play

a nonempty setBj0i in the move j0
i , is only finite. Choose a j0

i+1 ∈ ω, j0
i < j0

i+1 such that
⋃
{As : s ∈M0

i } ⊂ j0
i+1

and TεM0
⊂ Tαs ∪ j0

i+1 for each s ∈M0
i . Note that if player II is to play in move j0

i and he has only played ordinal
β′0 and subsets of j0

i so far, he can legally play any finite subset of TεM \ j0
i+1.

Now assume that Jk−1 is already defined and construct Jk in the following way: Choose jk0 ∈ Jk−1 such that
TεM ⊂ TεMk ∪ j

k
0 . Suppose jki is defined. The setMk

i of possible sequences of length jki of legal moves of player II,
such that he played only ordinals βn ∈ {β′l : l ≤ k} and he is allowed to play a nonempty set Bjki in the move jki , is
only finite. Choose jki+1 ∈ Jk−1, jki < jki+1 such that

⋃
{As : s ∈ Mk

i } ⊂ jki+1 and TεMk ⊂ Tαs ∪ j
k
i+1 for each

s ∈Mk
i . Again, if player II is to play in move jki and he has only played ordinals β′l, l ≤ k and subsets of jki so far,

he can legally play any finite subset of TεM \ jki+1.
Use the non-meagerness of filter generated by T together with Jk ∈M for each k ∈ ω to see that for each k

the set of integers jki such that [jki , j
k
i+1) ∩ TεM = ∅ is infinite.

Finally choose a sequence dk ∈ Jk, k ∈ ω in the following way. Start with some d0 = j0
i0
∈ J0 such that

[j0
i , j

0
i+1) ∩ TεM = ∅. If dk ∈ Jk is defined, choose dk+1 to be some jk+1

ik+1
such that dk < dk+1 and

[jk+1
ik+1

, jk+1
ik+1+1) ∩ TεM = ∅.

For notational reasons define d−1 = 0.
Player II beats strategy S by the following sequence of moves: in move n he plays

• (β′k, ∅) if n ∈ (dk−1, dk) for k ∈ ω

•
(
β′k, TεM ∩ [jkik+1, d

k+1)
)
if n = dk for k ∈ ω.

This is a legal sequence of moves since

TεM ∩ [jkik+1, d
k+1) ⊂ TεMk ,⋃

{As : s ∈Mk
ik
} ⊂ jkik+1

and
TεMk \ j

k
ik+1 ⊂ Tαs for s ∈Mk

ik
.

Note that εM = sup{β′k : k ∈ ω} and TεM ∩ [dk, dk+1) = TεM ∩ [jkik+1, d
k+1) for each k ∈ ω.

In the same way we modified definition of p-filter game for towers, we can also modify other games. The
resulting game again won’t be more difficult for player II than the unmodified version.

Definition 2.4.5 (rapid tower game). Let T = {Tα : α ∈ κ} be a decreasing tower in P(ω) and f be an function in
ωω. The following game is called rapid tower game RTT ,f . In n-th move player I plays an ordinal αn ∈ κ and a
finite set An ∈ [ω]<ω and player II responds with an ordinal βn ∈ κ and a finite set Bn ⊂ Tαn \An, |Bn| ≤ f(n).
After ω many moves player II wins if γ = sup(βn : n ∈ ω) ∈ κ and Tγ ⊂∗

⋃
{Bn : n ∈ ω} and player I wins

otherwise.

Theorem 2.4.6. The following conditions are equivalent for each decreasing tower T = {Tα : α ∈ κ} in P(ω).

1. T generates rapid filter.

2. For each growing function f ∈ ωω player I has no winning strategy for the rapid tower game RTT ,f .
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3. There is a function f ∈ ωω such that player I has no winning strategy for the rapid tower game RTT ,f .

Proof. Implication 2⇒ 3 is obvious and 3⇒ 1 follows from lemma 2.2.5.
To prove 1⇒ 2 it is sufficient to combine ideas from proofs of theorem 2.4.4 and lemma 2.2.5.
Let S = {(αs, As) : α ∈ κ,A ∈ [ω]<ω} be a strategy for player I in the modified game RT ′T ,f . Again, pick a

large enough cardinal θ and an increasing sequence of countable elementary submodels {Mk : k ∈ ω} such that
T ,S, f ∈ Mk ≺ Mk+1 ≺ H(θ), Mk ∈ Mk+1 for each k ∈ ω and putM =

⋃
{Mk : k ∈ ω} ≺ H(θ). For each

elementary submodel N denote εN = sup(N ∩ κ) and fix an increasing sequence of ordinals

{β′k : k ∈ ω, β′k ∈Mk, sup{β′k : k ∈ ω} = εM}.

We will inductively build a sequence of sequences of integers Jk = {jki : k, i ∈ ω} such that for each k is
Jk ∈Mk+1 an increasing sequence and Jk+1 is a subsequence of Jk.

Start defining J0 by picking some j0
0 such that TεM \ j0

0 ⊂ TεM1
\ j0

0 ⊂ TεM0
. Suppose j0

i is defined. The
setM0

i of possible sequences of length j0
i of legal moves of player II, such that he played always the ordinal β′0

and he is still allowed to play a nonempty set Bj0i in the move j0
i , is only finite. Choose j0

i+1 > j0
i such that⋃

{As : s ∈M0
i } ⊂ j0

i+1 and TεM0
\ j0

i+1 ⊂ Tαs for each s ∈M0
i (this is possible since αs ∈M0).

Note that if player II is to play in move j0
i and he has only played ordinal β′0 and subsets of j0

i so far, he can
legally play any subset of TεM1

\ j0
i+1 of size less than f(j0

i ).

Now assume that Jk−1 is already defined and construct Jk in the following way.
1) Case k is odd: Choose any increasing sequence

Jk = {jki = jk−1
lki
∈ Jk−1 : i ∈ ω}

such that
[jki , j

k−1
lki +1

) ∩ TεMk = ∅.

This is possible since T generates a non-meager filter and Jk−1 ∈Mk.
2) Case k even: Choose jk0 ∈ Jk−1 such that

TεM \ jk0 ⊂ TεMk+1
\ jk0 ⊂ TεMk .

Suppose jki is defined. The setMk
i of possible sequences of length jki of legal moves of player II, such that he played

only ordinals βn ∈ {β′m : m ≤ k} and he is still allowed to play a nonempty set Bjki in the move jki is again finite.
Choose jki+1 ∈ Jk−1, jki+1 > jki such that

⋃
{As : s ∈ Mk

i } ⊂ jki+1 and TεMk \ j
k
i+1 ⊂ Tαs for each s ∈ Mk

i .

Again, if player II is to play in move jki and he has only played ordinals β′m, m ≤ k and subsets of jki so far, he can
legally play any subset of TεMk+1

\ jki+1 of size less than f(jki ).

Finally choose an increasing sequence of integers dk ∈ J2k+1, k ∈ ω in the following way. Start with some
d0 = j1

i0
∈ J1 such that for each i ≥ i0 is

∣∣[j1
i , j

1
i+1) ∩ TεM

∣∣ < f(j1
i ). To see that this is possible note that both J1

and f are elements ofM , remember that T generates a rapid filter and use 5 from lemma 2.1.5.
If dk−1 ∈ J2k−1 is defined, choose dk to be some j2k+1

ik
such that dk−1 < dk and for each i ≥ ik is∣∣[j2k+1

i , j2k+1
i+1 ) ∩ TεM

∣∣ < f(j2k+1
i ).

Player II beats strategy S by the following sequence of moves: in move n he plays

• (β′0, ∅) if n < d0

• (β′k, ∅) if n ∈ [dk, dk+1) and n /∈ J2k+1 for some k ∈ ω

•
(
β′k, TεM ∩ [j2k+1

i , j2k+1
i+1 )

)
if n ∈ [dk, dk+1) and n = j2k+1

i ∈ J2k+1 for some i, k ∈ ω.

This is a legal sequence of moves since

TεM ∩ [j2k+1
i , j2k+1

i+1 ) ⊂ TεM2k+1
,⋃

{As : s ∈M2k+1
i } ⊂ jkik+1,
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TεM2k+1
\ j2k+1

i+1 ⊂ Tαs for s ∈M2k+1
i

and ∣∣TεM ∩ [j2k+1
i , j2k+1

i+1 )
∣∣ < f(j2k+1

i ).

Note that εM = sup{β′k : k ∈ ω} and

TεM ∩ [dk, dk+1) =
⋃{

TεM ∩ [j2k+1
i , j2k+1

i+1 ) : j2k+1
i ∈ [dk, dk+1)

}
for each k ∈ ω.

The same proof also yields a lemma for rare filters generated by towers.

Theorem 2.4.7. The decreasing tower T = {Tα : α ∈ κ} generates a rare filter in P(ω) if and only if player I has
no winning strategy in the game RGT ,f .

And we can redefine the near coherence game for p-filters as well.

Definition 2.4.8 (near coherence tower game). Let T0 = {T 0
α : α ∈ κ0}, T1 = {T 1

α : α ∈ κ1} be decreasing towers
in P(ω). The following game is called near coherence tower game CTT0,T1 . In move 2n + i (for n ∈ ω, i ∈ 2)
player I plays an ordinal α2n+i ∈ κi and a finite set A2n+i ∈ [ω]<ω, player II responds with an ordinal β2n+i ∈ κi
and a finite setB2n+i ⊂ T iα2n+i

\A2n+i.After ω many moves player II wins if γi = sup(β2n+i : n ∈ ω, i ∈ 2) ∈ κi
and T iγi ⊂

∗ ⋃{B2n+i : n ∈ ω} for both i ∈ 2 and player I wins otherwise.

The resulting game has again the same conditions for existence of winning strategy as the original one.

Theorem 2.4.9. Player I has winning strategy in the near coherence tower game CTT0,T1 if and only if T0, T1 do
not generate near coherent filters.

Proof. If 〈T0〉 and 〈T1〉 are near coherent, lemma 2.2.13 implies that player I has winning strategy.
Suppose that 〈T0〉, 〈T1〉 are not near coherent and let us prove that no strategy

S = {(αs, As) : α ∈ κi, A ∈ [ω]<ω}

is winning for player II in the modified game CT ′T0,T1 .
We will follow the proof of theorem 2.4.4 with some modifications. We chooseM0 such that both T0, T1 ∈M0

and βin
′ ∈ Mn such that sup{βin

′
: n ∈ ω} = κi for i ∈ 2. For some countable elementary submodel N we will

denote supN ∩ κi = εiN .
Whenever we were defining some j ∈ Jk satisfying some condition for the single tower T , choose this j to

fulfill analogous condition for both towers Ti and εi instead. Also the setMk of possible moves of player II will
contain all moves containing βil

′ for i ∈ 2 instead of just βl′.
After Jk is defined for each k ∈ ω, choose sets Aki ⊂ ω such that

T iεiM
⊂∗
⋃
{[jkn+1, j

k
n+2) : n ∈ Aki }

and n ∈ Ai ⇒ n, n+ 1 /∈ A1−i. (Use lemma 2.4.1.)
Then define increasing sequence {dk : k ∈ ω}, dk ∈ Jk. Start with d0 = j0

n0
∈ J0, n0 ∈ A0

0 and

T iεiM
\ d0 ⊂

⋃
{[j0

n+1, j
0
n+2) : n ∈ A0

i }

for both i ∈ 2.
If dk−1is defined for some k ∈ ω pick dk = jknk ∈ J

k, dk−1 < dk, nk ∈ Ak0 and

T iεiM
\ dk ⊂

⋃
{[jkn+1, j

k
n+2) : n ∈ Aki }

for both i ∈ 2.
Player II beats strategy S by the following sequence of moves: in move n he plays

• (βi0
′
, ∅) if n < d0, and n = i mod 2
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• (βik
′
, ∅) if n ∈ [dk, dk+1) for some k ∈ ω, n = i mod 2 and n 6= jkl for each l ∈ Aki

•
(
βik
′
, T iεM ∩ [jkl+1, j

k
l+2)

)
if n ∈ [dk, dk+1) for some k ∈ ω, n = i mod 2 and n = jkl for some l ∈ Aki

It is possible to play simultaneously one modified tower game and one unmodified filter game.

Definition 2.4.10 (Mixed near coherence game). Let T = {Tα : α ∈ κ} be a decreasing tower and F a filter
in P(ω). The following game is called mixed near coherence game CMT ,F . In move 2n (for n ∈ ω) player I
plays an ordinal α2n ∈ κ and a finite set A2n ∈ [ω]<ω, player II responds with an ordinal β2n ∈ κ and a finite
set B2n ⊂ Tα2n \ A2n. In move 2n + 1 player I plays a set F2n+1 ∈ F , player II responds with a finite set
B2n+1 ⊂ F2n. After ω many moves player II wins if γ = sup(β2n : n ∈ ω) ∈ κ, Tγ ⊂∗

⋃
{B2n : n ∈ ω} and⋃

{B2n+1 : n ∈ ω} ∈ F . and player I wins otherwise.

The result is again the expected one.

Theorem 2.4.11. Player I has no winning strategy in the mixed near coherence game CMT ,F if and only if F is a
p-filter and T does not generate filter near coherent with F .

Proof. Essentially the same proof as for theorem 2.4.9 works. The only necessary modification is that after choosing
the sequence of elementary submodels {Mn : n ∈ ω} andM , we need to choose FN ∈ F such that FN ⊂∗ F for
each F ∈ F ∩N for each chosen elementary submodel N. Then the proof continues in the same way, we only need
to use FN in place of TεN .

Remark 2.4.12. It is possible to combine tower and mixed near coherent game with the game for rapidity or game
of rareness. Combining arguments used in previous proofs it is not difficult to prove the expected result; player I has
no winning strategy iff both (generated) filters are rapid and not near coherent.
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CHAPTER 3

DESTROYING AND PRESERVING
P-POINTS

We will present here well known results of S. Shelah from [She82, She98a] concerning building models with limited
amount of p-points (or no p-points at all). We will mostly follow the Shelah’s original proofs, for a slightly different
approach (but using same ideas) see [Wim82]. A nice presentation of the no p-points consistency is also in [Woh08].

There are multiple reasons for inclusion of this chapter. Mainly, existence of p-points has influence on the
Katowice problem. As we saw in theorem 1.3.8, if there were an isomorphism between P(ω1)/Fin and P(ω)/Fin,
all p-points on ω would need to intersect the image of the ideal of countable subsets of ω1. In next chapter our goal
will be to construct a countable like ideal, and for that some p-point killing is necessary.

Other reasons is the similarity of forcings (and arguments applied) for killing p-points to forcing notions we
introduce in order to achieve different goal, namely forcing a strong-Q-sequence.

And the author of this text believes, that the slightly different presentation of these proofs, which is provided here,
has the advantage of being simpler and more canonical than the original one. This applies mainly for section 3.4,
where we use simpler than the one the original proof of Shelah.

3.1 Forcing with filters, Grigorieff and Sacks
Our tools for killing p-points will be two similar forcing notions. One of them is traditionally called Grigorieff’s
forcing and the other one we will call Sacks forcing. It should be mentioned that we use the name Sacks forcing for
a different forcing notion, than the one usually called Sacks in the literature (i.e. forcing with perfect trees).

The main features (besides killing p-points) of these forcing notions are properness and being ωω bounding
(and some ultrafilter preservation for Sacks). It is possible to further refine these forcing methods to get even
stronger preservation properties, for Grigorieff see [GS90] and for Sacks see [She92]. Using refined versions,
it is even possible to get model with no nowhere dense ultrafilter. For more information about this topic see
[Bau95, She98b, Bre99].

Definition 3.1.1 (Grigorieff’s forcing [Gri71]). Let F be a filter on ω. Put

G(F) = ({g : I → 2; I ∈ F∗},⊃) .

The forcing notion G(F) is called Grigorieff’s forcing.

Grigorieff’s forcing has size at most 2ω (but can be countable if F is Fréchet filter). Depending on the choice
F , it is either iteration of σ-closed and a ccc forcing or it collapses ω1. For proof see [Rep88].
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Definition 3.1.2 (Sacks forcing with a filter). Let F be a filter on ω. A condition p in the forcing S(F) is a subtree
of the binary tree <ω2 such that the set S(p) of splitting levels of p is in the filter F ;

S(p) = {n ∈ ω : ∀s ∈ p (|s| = n)⇒
(
sa0, sa1 ∈ p

)
} ∈ F .

The ordering is inclusion, i.e. q < p iff q ⊂ p. The forcing notion S(F) is called Sacks forcing with a filter.

Sacks forcing has again size at most 2ω . Note that if we add an additional requirement for conditions p ∈ S(F)
that for each s, t ∈ p such that |s| = |t| is sa0⇔ ta0 and sa1⇔ ta1, the resulting forcing is isomorphic toG(F).
For such p the set of all branches through p is precisely a set of all functions extending a condition in the Grigorieff’s
forcing G(F). So the Grigorieff forcing can be regarded as an uniform version of the Sacks forcing. In some cases
we will be rather dealing with subtrees of lA2 for a general countable set A. In these cases there will be always
declared some ordering l on A in which A will be order isomorphic with (ω,∈).

Generic objects for both these forcing notions are characteristic functions of a subset of ω (union of conditions
in the generic filter in case of Grigorieff forcing, intersection of all condition in the Sacks case).

If we replace the filter F with a base for this filter (in P(ω)) then we get a dense subset of the original forcing
(and hence an equivalent forcing notion).

Lemma 3.1.3. Let F be a non-meager p-filter on ω. Both G(F) and S(F) are proper ωω bounding forcing notions.
If F is moreover rapid then both this forcings have Sacks property.

We will at first prove a helpful ‘one step’ lemma.

Lemma 3.1.4.

1. Pick any p ∈ G(F). Suppose p  ẋ ∈ X̂ and fix a finite set a ∈ [ω \Dom(p)]n. Then there exists a condition
q ∈ G(F), q < p and a finite set Y ∈ [X]≤2n such that q  ẋ ∈ Ŷ and Dom(q) ∩ a = ∅.

2. Pick any p ∈ S(F). Suppose p  ẋ ∈ X̂ and fix a finite set a ∈ [S(p)]n. Then there exists a condition
q ∈ S(F), q < p and a finite set Y ∈ [X]≤2n such that q  ẋ ∈ Ŷ and a ⊂ S(q).

Proof. Start with Grigorieff. Let {ti : i ∈ 2n} be an enumeration of
a

2 and denote q0 = p. Now for i ∈ 2n repeat
inductively the following procedure:

Dom(qi) ∩ a = ∅ hence qi ∪ ti ∈ G(F). Find q′i ∈ G(F), q′i < qi ∪ ti and xi ∈ X such that q′i  ẋ = x̂i. Put
qi+1 = q′i � (ω \ a).

Finally put q = q2n and Y =
⋃
{xi : i ∈ 2n}.

The Sacks case is even easier. Fix k ∈ ω such that a ⊂ k and a condition p′ < p such that S(p′) ∩ k = a. For
each l ∈ p′[k] fix ql ∈ S(F), xl ∈ X such that ql < p′[l] and ql  ẋ = x̂i. Put q =

⋃
{ql : l ∈ p′[k]} ∈ S(F). Note

that |p′[k]| = 2n and S(q) = a ∪
⋂
{S(ql) : l ∈ p′[k]} ∈ F .

The lemma still holds true when X is not a set but a proper class. In this case we can find some set X ′ ⊂ X
such that p  ẋ ∈ X̂ ′ and then use the lemma for X ′. We will abuse this fact later.

Proof of 3.1.3. The same proof works for both Grigorieff and Sacks forcing. The Sacks case will be presented here.
At first we will prove that S(F) is ωω bounding. Fix any g ∈ S(F) and ḟ such that g  ḟ ∈ ωω.
Two players will play the p-filter game PF and player I will follow this strategy: At first he denotes g as h0

and puts a0 = ∅. In the n-th move he has some condition hn ≤ g and a set an ∈ [ω]<ω such that an ⊂ S(hn).

Now he uses lemma 3.1.4 for hn  ˙f(n) ∈ ω and the finite set an to get a condition hn+1 < hn and a finite set
Yn ∈ [ω]<ω such that hn+1  ˙f(n) ∈ Yn, an ⊂ S(hn+1). The n-th move (for n ∈ ω) of player I is S(hn+1) ∈ F .
To this player II responds in n-th move with some set bn ∈ [S(hn+1)]<ω. Player I denotes an+1 = an ∪ bn (so
an+1 ⊂ S(hn+1)) and continues with move n+ 1.

When the game is over, player I collected a sequence of conditions {hn : n ∈ ω} ⊂ S(F), hn+1 < hn ≤ g

and a sequence of finite sets {Yn : n ∈ ω} such that hn+1  ˙f(n) ∈ Yn. According to lemma 2.3.3 the described
strategy is not winning for player I so we can assume that the actual course of this game was won by player II.
Hence h =

⋂
{hn : n ∈ ω} ∈ S(F) because S(h) ⊃

⋃
{an : n ∈ ω} ∈ F . Now h < hn for each n ∈ ω thus

h  ḟ ∈
∏
{Yn : n ∈ ω} and we proved that S(F) is ωω bounding.

The proof of properness of S(F) is similar to the proof of boundedness, we just have to be little more cautious
in some details. Take any countable elementary submodelM of H(θ) (for sufficiently large θ) containing S(F)
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and a condition g ∈ S(F) ∩M. Enumerate {τ̇n : n ∈ ω} all S(F)-names for ordinal numbers belonging toM.We
need to find a condition in S(F) which is stronger than g and forces τ̇n ∈M for each n ∈ ω.

Players again play the game PF in H(θ) but the actual moves will take place in M (this is automatic for
player II). Player I will follow this strategy: At first he denotes g as h0 and puts a0 = ∅. In the n-th move he has
some condition hn ≤ g, hn ∈M and a set an ∈ [ω]<ω such that an ⊂ S(hn). Now he uses lemma 3.1.4 inM for
hn  τ̇n ∈ On and the finite set an to get a condition hn+1 < hn, hn+1 ∈M and a finite set Yn ∈ [On]<ω such
that hn+1  τ̇n ∈ Yn (inM ), an ⊂ S(hn+1). Note that Yn ⊂M . The n-th move of player I is S(hn+1) ∈ F . To
this player II responds with some set bn ∈ [S(hn+1)]<ω. Player I denotes an+1 = an∪ bn (hence an+1 ⊂ S(hn+1))
and continues with move n+ 1.

When the game is over, player I collected a sequence of conditions {hn : n ∈ ω} ⊂ S(F)∩M, hn+1 < hn ≤ g
and a sequence {Yn : n ∈ ω} of finite subsets of On∩M such that hn+1  τ̇n ∈ Yn. According to lemma 2.3.3 the
described strategy is not winning for player I (in H(θ)) so we can assume that the actual course of this game was
won by player II.

Hence h =
⋂
{hn : n ∈ ω} ∈ S(F) because S(h) ⊃

⋃
{an : n ∈ ω} ∈ F . Now h < hn for each n ∈ ω and

h  τ̇n ∈ Yn thus h  τ̇n ∈M (since Yn is finite).
Now assume moreover that F is rapid and we prove that S(F) has Sacks property. (The proof for G(F) is

again analogous.)
Start by choosing a growing function e ∈ ωω. Then continue in the same way as if proving the ωω bounding

property only instead of playing p-filer game, the rapid p-filter game RPF,e is played. This ensures that bn < e(n)
thus an < n · e(n) and lemma 3.1.4 produces sets Yn such that |Yn| < 2n·e(n) for each n ∈ ω.

In the end again h  ḟ ∈
∏
{Yn : n ∈ ω} and the Sacks property is proved.

3.2 Killing p-points
We have already proved basic preservation properties of Grigorieff and Sacks forcing sufficient for to establish the
basic result (about p-points). Now let us turn our attention the other aspect; what these forcings destroy.

In this section we will be working with forcingsG(F) and S(F), where the filter F is not on ω but rather on ω2

or on
5 = {(i, j) ∈ ω2 : i < j}.

On the later set we will use the inversed lexicographic ordering (x, y)l (x′, y′) iff y < y′ or y = y′ and x < x′.
With this ordering5 is order isomorphic with ω so we can talk about forcing consisting of subtrees of l52.

To simplify notation we will denote5y = {(x, y) ∈ 5 : x ∈ ω}. Let h be a subtree of l52. Then for n ∈ ω
we write

[n]h =
{
η ∈ h : Dom(η) =

⋃
{5y : y ∈ n}

}
.

Definition 3.2.1 (filter F × ω). Let F be a filter on ω. Denote

F × ω =
{
A ⊂ 5 : {y : (x, y) ∈ A} ∈ F for each x ∈ ω

}
.

In words, F × ω consists of subsets of5 with each vertical section in the filter F . It is easy to see that F × ω
is a filter.

If F is a p-filter, the situation is a bit easier to deal with.

Claim. Let F be a p-filter. The filter F × ω has base consisting of sets5(F, b) for F ∈ F and b ∈ ωω, b(x) > x
where

5(F, b) = {(x, y) ∈ ω × F : b(x) < y} .

In case of p-filter, it is easy to show that the product filter F × ω inherits some properties of filter F .

Lemma 3.2.2. Let F be a non-meager p-filter on ω. Then F × ω is a non-meager p-filter on5.
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Proof. Let’s start with proving that F × ω is a p-filter. Take any sequence {5(Fn, bn) : n ∈ ω} of sets from base
of F × ω. Since F is a p-filter, there exists F ∈ F , F ⊆∗ Fn for each n ∈ ω and fix increasing b ∈ ωω which
eventually dominates bn for each n ∈ ω.We get that5(F, b) ⊆∗ 5(Fn, bn) for each n ∈ ω.

According to lemma 2.1.2, for the proof of non-meagerness it is enough to show the following: Pick any
increasing function g ∈ ωω, g(0) = 0 and denote In = [g(n), g(n+ 1)) , Jn =

⋃
{5j : j ∈ In}. Then there exists

A ∈ F × ω which has empty intersection with infinitely many Jn’s.
The assumption that F is non-meager gives us F ∈ F which misses infinitely many In’s and5(F, id) is the

desired set in F × ω (whenever F ∩ In = ∅ then5(F, id) ∩ Jn = ∅).

Lemma 3.2.3. Let F be a rapid p-filter on ω. Then F × ω is a rapid p-filter on5.

Proof. Suppose that condition (2) in lemma 2.1.5 holds for F and a function f ′. We will check condition (2) for
ai = 5i and f(i) = (i+ 1) · f ′.

We need to show the following: For any increasing function g ∈ ωω, g(0) = 0 denote In = [g(n), g(n+ 1)) ,
Jn =

⋃
{5j : j ∈ In}. There exists A ∈ F × ω such that |Jn ∩A| < (n+ 1) · f ′(n) = f(n) for each n ∈ ω.

Our assumption give us F ∈ F such that |In ∩ F | < f ′(n) for each n ∈ ω. Now A = 5(F, g) is the desired
set in F × ω (since |Jn ∩A| < (n+ 1) · |In ∩ F | < (n+ 1) · f ′(n)).

The following theorem is the crucial point of this method. It shows that forcing with F × ω prevents F from
being a subset of a p-filter in the extension.

Theorem 3.2.4. Suppose that F is a non-meager p-filter on ω and G is a P (F × ω) generic filter over V , where P
is either Grigorieff or Sacks forcing with a filter. Let N = V [G][G1] be an ωω bounding generic extension of V [G].
Then

N |= there is no p-ultrafilter extending F .

Proof. Assume towards a contradiction that there is a p-ultrafilter F̃ in N extending F . Denote {xi : i ∈ ω} the
sequence of reals introduced by G corresponding to the restriction of G to columns {i} × (i, ω).

For i ∈ ω put c(i) = 0 iff {n ∈ ω : xi(n) = 0} ∈ F̃ and c(i) = 1 otherwise. Suppose that c is not eventually
constant and fix a function f ′ ∈ ωω ∩ N such that for each k ∈ ω there exists some j ∈

(
k, f ′(k)

)
for which

c(k) = c(j). SinceN is a ωω bounding extension of V we can fix an increasing function f ∈ ωω∩V dominating f ′.
For n ∈ ω denote i(n) = f (n)(0), In =

[
i(n), i(n+ 1)

)
and Jn = In \

{
i(n)

}
.

For each n ∈ ω there exists j ∈ Jn such that c
(
i(n)

)
= c(j). If c is constant on ω \ k we can achieve the same

effect by putting f(n) = n+ k + 2.
Note that

An = {m ∈ ω : ∃j ∈ Jn, xi(n)(m) = xj(m)} ∈ F̃ ∩ V [G].

F̃ is a p-filter so there exists some set A ∈ F̃ ∩N and a function g′ ∈ ωω ∩N such that A ⊂ An ∪ g′(n) for each
n ∈ ω. Using ωω boundedness deduce that there is an increasing function g ∈ ωω ∩ V such that A ⊆ An ∪ g(n).

Put h ∈ ωω ∩ V a function defined by h(m) = g(n) iffm ∈ In and h(m) = 0 bellow i(0).
There is a condition q ? q̇1 ∈ G ? Ġ1 which forces that everything we constructed so far is done correctly. We

can suppose (taking stronger condition if necessary) that D(q) = 5 \5(F, b) (Grigorieff case) or S(q) = 5(F, b)
(Sacks case) for some F ∈ F and b a nondecreasing function which dominates h and is constant on each In for all
n ∈ ω. Denote o(n) the value of b on In.

Extend condition q into q′ by defining
Grigorieff case:

• q′(y, z) = 1 iff (y, z) ∈
{
i(n)

}
×
(
F ∩

(
o(n), o(n+ 1)

])
for some n ∈ ω

• q′(y, z) = 0 iff (y, z) ∈ Jn ×
(
F ∩

(
o(n), o(n+ 1)

])
for some n ∈ ω

• q′(y, z) = q(y, z) iff (y, z) ∈ Dom(q).

Sacks case: We require that q′ contains precisely those s ∈ q for which

• s(y, z) = 1 if (y, z) ∈ Dom(s) and (y, z) ∈
{
i(n)

}
×
(
F ∩

(
o(n), o(n+ 1)

])
for some n ∈ ω
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• s(y, z) = 0 if (y, z) ∈ Dom(s) and (y, z) ∈ Jn ×
(
F ∩

(
o(n), o(n+ 1)

])
for some n ∈ ω.

Hence q′ ∈ P (F × ω), q′ ? q̇1 < q ? q̇1 and for each z ∈ F \ (o(0) + 1) we have q′ ? q̇1 ` z /∈ A. Thus q′ ? q̇1

forces |F ∩ Ȧ| < ω and this is contradiction with the choice of q ? q̇1 which knew that F ∩ Ȧ ∈ F̃ .

Now we have all ingredients to build a model with no p-points.

Theorem 3.2.5 (Shelah). It is consistent with ZFC that there are no p-points.

Proof. This is a typical example of countable support iteration of length ω2 of proper forcings of size 2ω = ω1. Start
in a model where GCH holds. Then do countable support iteration of forcings G(Fα × ω) and use a bookkeeping
device to make sure that each p-point from each intermediate model appeared as some (subset of) Fα at some
stage. We are using that in each intermediate model 2ω = ω1, 2ω1 = ω2 and so there are always only ω2 many
p-points. Also note, that for each p-point U from the resulting model there is some intermediate model Vα such that
U ∩ Vα ∈ Vα and U ∩ Vα is a p-point.

The reference for this result is [She98a], for a detailed proof see [Woh08]. A slightly different approach is
developed in [Wim82].

3.3 Preserving selective ultrafilter I
So far, there wasn’t any significant difference between destroying p-points with Sacks and Grigorieff forcing. We
will see that the additional complexity of Sacks forcing is rewarded by achieving some control over which ultrafilters
on ω are not destroyed.

Let us at first review some general preservation results.

Lemma 3.3.1. Let P be a proper forcing notion and let S be a p-filter. Then S is a base of a p-filter in the generic
extension by P.

Proof. We need to prove that each set S ∈ [S ]ω in the extension has some pseudointersection in S . Since P
is proper, there is some set S′ ∈ [S ]ω ∩ V such that S ⊂ S′. And any pseudointersection of S′ can serve as
pseudointersection of S.

Now we will see that ωω bounding extensions preserve many properties of filters. The following fact is a simple
consequence of characterization of non-meager and definition of rapid filter from section 2.1.

Fact 3.3.2.

1. Let N be an ωω bounding extension of V and let S be a non-meager filter in V. Then S is a base of
non-meager filter in N.

2. Let N be an ωω bounding extension of V and let S be a rapid filter in V. Then S is a base of rapid filter
in N.

Rare filters are also preserved with in ωω bounding extensions. The key observation for proving that is this
lemma.

Lemma 3.3.3. Let N be an ωω bounding extension of V . For each interval partition {In : n ∈ ω} ∈ N of ω there
exist an interval partition {Jn : n ∈ ω} ∈ V such that for each n ∈ ω there are at most twom0,m1 ∈ ω such that
In ∩ Jmi 6= ∅ for i ∈ 2.

Proof. Suppose that all Ins are nonempty. There is an increasing function f ∈ V such that |In| < f(n). Put

Jn =
[
f (n)(0), f (n+1)(0)

)
for n ∈ ω. If In ∩ Jm 6= ∅ and In ∩ Jm+1 6= ∅ then

|Jm+1| = f(min(In ∩ Jm+1)) ≥ f(n) > |In|

and In ∩ Jm+2 = ∅.
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And using argument somewhat similar to proof of lemma 2.2.9, we can prove preservation lemma for rare filters.

Lemma 3.3.4. Let N be an ωω bounding extension of V and let S be a rare filter in V. Then S is a base of rare
filter in N.

Proof. Let {In : n ∈ ω} ∈ N be an interval partition of ω. Use lemma 3.3.3 to find {Jn : n ∈ ω} ∈ V such that
each In intersects at most two Jm. For i ∈ 2 find Si ∈ S such that

|Si ∩ (J2n+i ∪ J2n+1+i)| ≤ 1

for each n ∈ ω. For
S = (S0 ∩ S1) \min J1 ∈ S

is |S ∩ In| ≤ 1 for each n ∈ ω.

And for a pair of filters, being not near coherent is preserved as well.

Lemma 3.3.5. Let N be an ωω bounding extension of V and let S0,S1 be not near coherent filters in V. Then
S0,S1 generate not near coherent filters in N.

Proof. Let {In : n ∈ ω} ∈ N be any interval partition of ω. Use lemma 3.3.3 to find {Jn : n ∈ ω} ∈ V such that
each In intersect at most two Jm. Now use 3. of lemma 2.2.9 to find A0, A1 ⊂ ω such that

⋃
{Jn : n ∈ Ai} ∈ Si

for i ∈ 2 and n ∈ Ai ⇒ n+ 1 /∈ A1−i. Put

Bi = {n ∈ ω : ∃k ∈ Ai, In ∩ Jk 6= ∅}

for i ∈ 2.We have that B0 and B1 are disjoint and⋃
{In : n ∈ Bi} ⊃

⋃
{Jk : k ∈ Ai} ∈ Si

for both i ∈ 2.

And here comes the promised preservation theorem for ultrafilters. It shows that if we force with Sacks forcing,
then while some ultrafilters are destroyed, other survive.

Theorem 3.3.6. Let R be a selective ultrafilter and F be p-filter not near coherent with R (and hence non-meager).
The Sacks forcing S(F × ω) preserves R as a base of a selective ultrafilter.

Proof. It is sufficient to prove that for a given S(F × ω) name Ȧ for a subset of ω there is a dense set of conditions
deciding that there is some R ∈ R such that R ⊂ Ȧ or R ∩ Ȧ = ∅.

Fix a condition p ∈ S(F × ω).We can suppose that there is no q < p such q  Ȧ /∈ 〈R〉 i.e. for each q < p is

Rq = {s ∈ ω : ∃q′ < q : q′  n ∈ Ȧ} ∈ R.

Two players will play the near coherence game for p-filter in even moves and rare p-filter in odd moves. Player I
will follow this strategy: At first he denotes p as h0 and puts a0 = ∅.We can suppose that S(h0) = 5(F0, f0) for
some F0 ∈ F and f0 ∈ ωω.

Let n be even. In the n-th move player I has some condition hn ≤ p ∈ S(F × ω), S(hn) = 5(Fn, fn) for
Fn ∈ F and fn ∈ ωω, and a set an ∈ [Fn]<ω. Now fix kn ∈ ω such that an ⊂ kn and kn > fn(n). The n-th
move of player I is Fn \ kn ∈ F . To this player II responds with some set bn ∈ [Fn \ kn]<ω. Player I denotes
an+1 = an ∪ bn (so an+1 ⊂ Fn and for l ∈ bn is fn(n) < l), hn+1 = hn and continues with the odd move n+ 1.

Now n is odd. Player I has condition hn, S(hn) = 5(Fn, fn) for Fn = Fn−1 ∈ F and fn = fn−1 ∈ ωω, and
a set an ∈ [Fn]<ω.

Fix kn ∈ ω such that an ⊂ kn. Put

R(n) =
⋂
{Rq : q = hn[η], η ∈ [kn]hn} ∈ R.

The n-th move of player I is R(n).
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To this player II responds with an integer rn ∈ R(n). For each condition q = hn[η], η ∈ knhn is rn ∈ Rq so
there is a stronger condition q′ < q such that q′  rn ∈ Ȧ. Put

h′n+1 =
⋃
{q′ : q = hn[η], η ∈ knhn}.

We can take stronger condition hn+1 ∈ S(F × ω) such that S(hn+1) = 5(Fn+1, fn+1) such that an ⊂ Fn+1

and fn � n = fn+1 � n. Note that hn+1  rn ∈ Ȧ. Put an+1 = an and continue with the next (even) move n+ 1.
When the game is over, player I collected a sequence of conditions {hn : n ∈ ω} ⊂ S(F ×ω), hn+1 < hn ≤ p

and a sequence {rn : n ∈ ω} such that hn+1  rn ∈ Ȧ. According to remark 2.3.9 the described strategy
is not winning for player I so we can assume that the actual course of this game was won by player II. Hence
h =

⋂
{hn : n ∈ ω} ∈ S(F) because S(h) ⊃ 5(F, f) Where F =

⋃
{an : n ∈ ω} ∈ F and f(n) = fn+1(n).

Now h < hn for each n ∈ ω thus h  R = {rn : n ∈ ω} ⊂ Ȧ and R ∈ R.We proved that h  Ȧ ∈ 〈R〉.

Now it is possible modify proof of theorem 3.2.5 to build a model with e.g. only single (up to isomorphism)
selective ultrafilter on ω. It is achieved by picking a selective ultrafilter R in the groundmodel and iterating Sacks
forcings for destroying all p-points not near coherent with R (this includes all selective ultrafilters non-isomorphic
with R), while omitting forcings for destroying the coherent ones. Theorem 3.3.6 ensures, that R is preserved at
isolated steps of the iteration while theorem of Blass and Shelah (cited in the preliminary chapter, page 9) provides
preservation in limit stages of iteration.

3.4 Preserving selective ultrafilter II
We will prove a counterpart of theorem 3.3.6 for selective ultrafilters, which are in Rudin-Blass ordering strictly
bellow F .

We will need a Ramsey like lemma for finite trees. Let {Al : l < n} be a finite sequence of finite sets. Suppose
branches of the tree T =

⋃
k≤n{

∏
l<k Al} are divided into two sets, [∅]T = X0 ∪X1. For i ∈ 2 we say that u ⊂ n

is i-good if there exists some S, a nonempty initial subtree of T, such that [∅]S ⊂ Xi and for each l ∈ u and s ∈ S[l]

is saa ∈ S for each a ∈ Al (i.e. nodes of S in levels from u have full splitting). If a u is i-good for some i ∈ 2, we
say that it is good.

Lemma 3.4.1. Let {Al : l < n}, T =
⋃
k≤n{

∏
l<k Al}, [∅]T = X0 ∪X1 be as above. At least one of the following

holds true.

1. n = u0 ∪ u1 ∪ u2 and all uj are good for j ∈ 3.

2. n = u3 ∪ {x} and u3 is good.

Proof. Note that ∅ is good and any subset of a good subset is also good. We show that if u is not good, then n \ u
is good.

Claim. If u is not i-good, then n \ u is (1−i)-good.

Consider a game of length n for two players I and II. In move l, player I plays some a ∈ Al iff l /∈ u (while
player II waits) and player II plays a ∈ Al iff l ∈ u (and player I waits). After n moves player I wins iff the sequence
of moves played belongs to Xi and player II wins otherwise. This game is finite and thus determined. A winning
strategy for player I is a subtree of T witnessing that u is i-good and winning strategy for player II demonstrates that
n \ u is (1−i)-good.

Case 1; good sets are not an ideal on n. Thus there are u0, u1; two disjoint good sets such that u0 ∪ u1 is not
good. We put u2 = n \ (u0 ∪ u1) and we are done.

Case 2; good sets form an ideal. If n is good, then put u3 = n− 1. Otherwise good sets are a proper maximal
ideal. This ideal has to be generated by a good set u3 of size n− 1.

Now we can proceed to proving the preservation theorem. Note, that the assumption that R is strictly bellow
the p-point F is used only to prevent existence of the most obvious counterexample.

Theorem 3.4.2. LetR be a selective ultrafilter andF a p-ultrafilter such thatR �RK F (i.e. R is strictly belowF ).
The forcing S(F × ω) preserves R as a base of a selective ultrafilter.
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Proof. Fix an increasing sequence of integers {i(n) : n ∈ ω}, In =
[
i(n), i(n+ 1)

)
such that for each R ∈ R is⋃

{In : n ∈ R} ∈ F . Observe that if F ⊂ ω and |F ∩ In| ≤ 1 for each n ∈ ω then F /∈ F (otherwise F ≤RK R).
Given a condition p ∈ S(F × ω) and name Ȧ for a subset of ω we need to find a stronger condition deciding if

Ȧ ∈ 〈R〉.
A condition q ∈ S(F × ω), S(q) = 5(F, f) is called positive if there are sets Rq ∈ R and Fq ∈ F , Fq ⊂ F

such that for each n ∈ Rq there exist ηnq ∈ [i(n)]q and a condition snq < q[ηnq ] such that snq  n ∈ Ȧ and
S(snq ) ⊃ 5j ∩ S(q) for each j ∈ Fq ∩ In.

Condition is negative if the same is true, only snq  n /∈ Ȧ.

Claim. Each condition in S(F × ω) is positive or negative (or both).

Take any condition q ∈ S(F × ω), S(q) = 5(F, f).We may suppose that for each ν ∈ q if Dom(ν) /∈ S(q)
then |{νa0, νa1} ∩ q| = 1 i.e. ν is not a splitting node of q. For each n ∈ ω fix an ηn ∈ [i(n)]q. For each e for
which ηn ∪ e ⊂ νe for some νe ∈ [i(n+1)]q fix a condition qe < q[νe], which decides n ∈ Ȧ. Put

X+ =

e ∈ ∏
j∈In∩F

5j∩S(q)2: qe  n ∈ Ȧ


and

X− =

e ∈ ∏
j∈In∩F

5j∩S(q)2: qe  n /∈ Ȧ

 .

The set X+ ∪X− can be viewed as set of all branches through a finite tree T from lemma 3.4.1, hence we can
define either sets �(0)un0 ,

�(1)un1 ,
�(2)un2 such that

�(0)un0 ∪ �(1)un1 ∪ �(2)un2 = In ∩ F

or �(3)un3 ⊂ In ∩ F, |�(3)un3 | = |In ∩ F | − 1 (where �(k) stands for + or − and depends on n) and such that for
k ∈ 4, for which �(k)unk is defined, there exists S subtree of T such that [∅]S ⊂ X�(k) and5j ∩ S(q) ⊂ S(S) for
each j ∈ �(k)unk .

Now we use that F is an ultrafilter which is not ≤RK below R to see that there is k ∈ 4,� ∈ {+,−} and
Rq ∈ R, such that �unk is defined for each n ∈ Rq and

Fq =
⋃{

�unk : n ∈ Rq
}
∈ F .

If � is + then q is positive, if � is − then negative. To see that Rq, Fq and ηn for n ∈ Rq work, put

snq =
⋃qe : e ∈

∏
j∈�unk

5j∩S(q)2


Now it is enough to show that if the set of positive conditions is dense below some p′ < p, we can find a stronger

condition h < p′ and set R ∈ R such that h  R ⊂ Ȧ. If there is a dense set of negative conditions, the same proof
produces h and R ∈ R such that h  R ∩ Ȧ = ∅. So from now on we will work only with positive conditions.

The refining game for a p-filter F and a selective ultrafilter R will be played. Player I denotes h0 = p′ and
n0 = 0.We may suppose that S(h0) = 5(F0, f0) for some F0 ∈ F , f0 ∈ ωω.

In movem player I has a condition hm, S(hm) = 5(Fm, fm) and an integer nm ∈ ω. All conditions hm[ν]

for ν ∈ [inm+1]hm are positive (substitute with stronger condition if necessary), so there are sets Rhm[ν], Fhm[ν]

witnessing this. Player I chooses integer n′m > nm such that i(n′m) > fm(m) and plays

F ′m =
⋂{

Fhm[ν] : ν ∈ [inm+1]hm

}
\ i(n′m) ∈ F .

Note that F ′m ⊂ Fm. Player II answers with some nm+1 ∈ ω and bm ∈ [F ′m ∩ Inm+1
]<ω. For each ν ∈ [i(nm+1)]hm

there is some ηnm+1

hm[ν] and s
nm+1

hm[ν] < hm[η
nm+1

hm[ν]] such that snm+1

hm[ν]  nm+1 ∈ Ȧ.
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Hence
h′m+1 =

⋃{
s
nm+1

hm[ν] : ν ∈
[i(nm+1)]hm

}
 nm+1 ∈ Ȧ.

Also note thatS(h′m+1)∩5j = S(hm)∩5j for each j < i(nm+1) since the union is taken over all ν ∈ [i(nm+1)]hm
and for all j ∈ bm since this was true for all snm+1

hm[ν].

Now fix hm+1 to be some condition stronger then h′m+1 such that S(hm+1) = 5(Fm+1, fm+1) for some
Fm+1 ∈ F and fm+1 ∈ ωω such that

Fm+1 ∩ i(nm+1 + 1) = Fn ∩ i(nm + 1) ∪ bm

and
fm � (m+ 1) = fm+1 � (m+ 1)

and player I can proceed to next move.
This cannot be a winning strategy for player I (see lemma 2.3.11) so we can suppose that the game was won by

player II. HenceR = {nm+1 : m ∈ ω} ∈ R and h =
⋂
{hm : m ∈ ω} ∈ S(F ×ω) since S(h) = 5(

⋃
m∈ω bm, f)

where f(m) = fm(m).
And h  n ∈ Ȧ for each n ∈ R so h  R ⊂ Ȧ. The negative case works in precisely the same way.

Now we have all tools to prove the following.

Theorem 3.4.3 (Shelah). Suppose GCH and let S be a set containing only selective ultrafilters. There exist a forcing
extension V [G] such that each p-point in V [G] is a permutation of a selective ultrafilter generated by some R ∈ S
and each R ∈ S is a base of selective ultrafilter in V [G].

Proof. This is proved in exactly the same way as theorem 3.2.5. We only need to utilizing the forcing S(Fα × ω)
instead of the Grigorieff variant (so that we preserve all selective ultrafilters not isomorphic to Fα) and we avoid
forcing with any S(Fα × ω) when Fα is isomorphic to some R ∈ S. See [She98a].
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CHAPTER 4

STRONG-Q-SEQUENCES

We will turn our attention toward a topic directly connected with Katowice problem, namely existence of strong-Q-
sequences (as defined in 1.3.1) in the Boolean algebra P(ω)/Fin .We will present a result of J. Steprans establishing
a consistency of existence of a strong-Q-sequence in P(ω)/Fin and a we introduce a new method of creating
strong-Q-sequences. This method which enables us to build models with a countable like ideal and d = ω1.

4.1 Strong-Q-sequences in P(ω)/Fin
The following definition is a reformulation of the notion strong-Q-sequence mentioned in chapter 1 for the Boolean
algebra P(ω)/Fin . From now on, the term strong-Q-sequence will refer to this definition unless stated otherwise.

Other authors use also in some context the term uniformizable AD system. The name strong-Q-sequence is
used because in P(ω)/Fin it is a strengthening of the notion Q-set (See fact 4.1.2).

Definition 4.1.1. Let
A = {Aα : Aα ∈ [ω]ω, α ∈ κ}.

A is a strong-Q-sequence (of size κ) iff for each F = {fα : Aα → 2} there exists fF : ω → 2, such that
fF � Aα =∗ fα. The family of all such F for A will be denoted FA and the function fF is called uniformiza-
tion of F.

A subsetA of the Cantor space 2ω is a Q-set, if all its subsets are Fσ (or equivalentlyGδ) inA with the subspace
topology. Since there are only 2ω Fσ subsets, existence of a Q-set A implies 2|A| = 2ω. The name of strong-Q-set
has origin in the following fact.

Fact 4.1.2. Every strong-Q-sequence is a Q-set in the Cantor space (identified with P(ω)).

Proof. Let X be a subset of a strong-Q-sequence A = {Aα : α ∈ κ}. Let fα be constantly 1 if Aα ∈ X and
constantly 0 otherwise. Find a uniformization fF and put E = f−1

F {1}. Now {A : A ⊆∗ E} is a Fσ set containing
X and disjoint with A \X .

Note that for proving the previous fact we only needed existence of uniformizations for systems F ∈ FA
containing constant functions.

Corollary 4.1.3. If there is a strong-Q-sequence of size κ, then 2ω = 2κ.

We already know that every strong-Q-sequence forms an AD system. In the context of P(ω)/Fin it cannot be a
MAD system.

Proposition 4.1.4. If A = {Aα : α ∈ κ} is a strong-Q-sequence then A is not a maximal AD system.
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Proof. Define F ∈ FA to consist of fα : Aα → 2 constantly 1 if α < ω and constantly 0 otherwise. Take f some
uniformization of F. Construct inductively an infinite set

D = {ni ∈ Ai \
⋃
j<i

Aj : i ∈ ω, f(ni) = 1}.

Note that D ∩Aα =∗ ∅ for all α ∈ κ.

We recall here definition of Luzin gap and few well known facts about this objects.

Definition 4.1.5 (Luzin gap). An AD system L = {Lα : α ∈ ω1} ⊂ [ω]ω is a Luzin gap if for each α ∈ ω1 and
each n ∈ ω is |{β < α : Lα ∩ Lβ ⊂ n}| < ω.

Theorem 4.1.6. A Luzin gap exists in each model of ZFC.

Fact 4.1.7. Let L = {Lα : α ∈ ω1} be a Luzin gap and A,B ∈ [ω1]ω1 be disjoint. There is no X ⊂ ω such that
Lα ⊂∗ X if α ∈ A and Lα ∩X =∗ ∅ if α ∈ B.

Example 4.1.8. There are AD systems in P(ω) of size ω1 which are not strong-Q-sequences.
One such AD system is the Luzin gap L, with no uniformization even for some F ∈ FL consisting of constant

functions.
Other example of such AD system is built from nodes of the complete binary tree (<ω2,⊂). Pick Bα, α ∈ ω1

distinct maximal branches through <ω2. Now A = {Bα : α ∈ ω1} forms an AD system which is not a strong-Q-
sequence.

Proof. To show this put fα(s) = i iff sai ∈ Bα for α ∈ ω1, s ∈ Bα and i ∈ 2. For contradiction, assume that
there is a uniformization fF : <ω2→ 2. For each α ∈ ω1 there is some sα ∈ Bα such that fα(s) = fF (s) for each
s ∈ Bα, sα ⊆ s. For some α 6= β we have sα = sβ and this implies Bα = Bβ , contradiction.

Note that on the other handMAω1(σ-centered) implies that this AD system is a Q-set.

Proof. Take any F = {fα : α ∈ ω1} ∈ FA containing only constant functions. Consider partial order P consisting
of finite approximations of the desired uniformization; p = (gp,Ap) ∈ P iff there is np ∈ ω such that gp : ≤n2→ 2,
Ap ∈ [ω1]<ω and for each α ∈ Ap and s ∈ Bα ∩ n2 is gp(s) = fα(s); (gp,Ap) < (gq,Aq) iff gq ⊂ gp and for
each α ∈ Aq and s ∈ Bα ∩Dom(p) \Dom(q) is gp(s) = fα(s).

This poset P is σ-centered, set of conditions sharing the same gp is centered. It is also easy to see that
Dα = {p ∈ P : α ∈ Ap} and Hn = {p ∈ P : np ≥ n} are dense sets in P for all α ∈ ω1 and n ∈ ω. If MA holds,
there is a filter on P intersecting all these sets and union of first parts of elements of this filter is a uniformization
of F.

Note that both these examples are absolute in the sense, that they can never become strong-Q-sequence in any
larger model of ZFC unless ω1 from the groundmodel is collapsed (i.e. the AD system becomes countable). This
means that if we want to force an AD system A to be a strong-Q-sequence in some extension, we have to be careful
with the choice of A. Two possible ways how to choose A will be presented in this chapter.

Every countable AD system is obviously a strong-Q-sequence. The consistency of existence of an uncountable
strong-Q-sequences was proved by J. Steprans in [Ste85] and by S. Shelah [She82]. Their proofs are very similar.
The approach is to start with adding an AD system generic on finite conditions (originally due to S. Hechler [Hec72])
and than iterate ccc forcing notions adding uniformizations, which yield a ccc forcing extension where this AD
system is a strong-Q-sequence. This proof will be presented in next section of this chapter.

In [Ste85] Steprans also showed, that it follows from MA that there are no uncountable strong-Q-sequences.
This will follow from two lemmas, which in combination show, that under MA every AD system locally looks like
the AD system from example 4.1.8.

At first we reduce any AD system to an AD system of branches on finitely branching tree.

Lemma 4.1.9 (Steprans). AssumeMAω1(σ-centered). LetA = {Aα : α ∈ ω1} be an AD family on ω. There exists
T ⊂ ω and ≤T such that (T,≤T ) is a finitely branching tree of height ω with no leaves and there are uncountably
many A ∈ A such that A ∩ T is a branch through T .
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Proof. Consider a partial order P consisting of finite approximations of T. A triple p = (Tp,≤p,Ap) is an element
P iff (Tp,≤p) is a finite tree, Ap ∈ [A]<ω, Tp ⊂

⋃
Ap and for each A ∈ Ap is A ∩ Tp a branch through (Tp,≤p).

For p, q ∈ P is p ≤ q iff Tq ⊂ Tp, ≤p end-extends ≤q and Aq ⊂ Ap. Define

B(p) = {A ∈ A : A ∩ Tp is a branch through (Tp,≤p)}.

Put
A′ = A \

⋃
{B(p) : p ∈ P,B(p) < ω1}

(so |A′| = ω1) and
P ′ = {p ∈ P : ∅ 6= Ap ⊂ A′}.

The poset P ′ is σ-centered (conditions sharing the same (Tp,≤p) are centered). Denote

Dβ = {p ∈ P ′ : ∃α > β,Aα ∈ Ap}

and Hn = {p ∈ P ′ : all branches of (Tp,≤p) are longer than n}. Note that all these sets are dense in P ′ and use
MA to find a filter G intersecting all of them. Now(⋃

{Tp : p ∈ G},
⋃
{≤p : p ∈ G}

)
is the desired tree.

And then we reduce such AD system to branches of binary tree.

Lemma 4.1.10 (Steprans). AssumeMAω1
(σ-linked). Let (T,≤T ) be a finitely branching tree of height ω with no

leaves and A = {Aα : α ∈ ω1} be a set of branches through T. There exists S, a binary initial subtree of T with no
leaves and |{A ∈ A : |A ∩ S| = ω}| = ω1.

Proof. For each t ∈ T put A[t] = {A ∈ A : t ∈ A}, T ′ = {t ∈ T : |A[t]| = ω1} and

A′ = {A ∈ A : |A ∩ T ′| = ω}.

It is easy to see that T ′ is a nonempty initial subtree of T with no leaves and |A′| = ω1.
Define p to be an element of poset P iff p = (Tp,Ap) where Tp is a finite binary initial subtree of T ′,

Ap ∈ [A′]<ω and for each A ∈ Ap is A ∩ Tp a branch through Tp and A ∩ Tp 6= B ∩ Tp for A 6= B. For p, q ∈ P
is p ≤ q iff Tq is an initial subtree of Tp and Aq ⊂ Ap. The poset P is σ-linked (conditions sharing the same Tp are
linked).

Denote
Dβ = {p ∈ P : ∃α > β,Aα ∈ Ap}

and
Hn = {p ∈ P : all branches of Tp are longer than n}.

Note that all these sets are dense inP and useMA to find a filterG intersecting all of them. Now S =
⋃
{Tp : p ∈ G}

is the desired tree.

Putting 4.1.9 and 4.1.10 together provides the result.

Theorem 4.1.11 (Steprans). MAω1
(σ-linked) implies that there is no strong-Q-sequence of size ω1.

Proof. Suppose A were a strong-Q-sequence. There is B ∈ [A]ω1 and T ∈ [ω]ω such that B � T is isomorphic
to a subset of branches of a binary tree. This system should remain a strong-Q-sequence (proposition 1.3.3) but
according to example 4.1.8 this is not possible.
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4.2 Adding strong-Q-sequence with ccc forcing
We will present a proof from [Ste85] establishing the consistency of existence of an uncountable strong-Q-sequence.
We already know that if we plan to force an AD system to become a strong-Q-set (by adding uniformizations), we
should choose the AD carefully.

Hence the forcing construction starts with adding generically an AD system.

Definition 4.2.1 (forcing adding AD set [Hec72, Hec74]). Let κ be an infinite cardinal. A function p is a condition
in the forcing Aκ if there is some Γp ∈ [κ]<ω and np ∈ ω such that p : Γp × np → 2.

A condition q is stronger then p iff p ⊂ q and for each k ∈ nq \ np is |{α ∈ Γp : q(α, k)} = 1| ≤ 1.

To see the following fact just note that {p ∈ A : (∃k > n)p(α, k) = 1} and {p ∈ A : α, β ∈ Γp} are dense sets
for all n ∈ ω and α, β ∈ κ.

Fact 4.2.2. Let G be a generic filter on Aκ. Put Aα = {k : (∃p ∈ G) p(α, k) = 1}. The set A = {Aα : α ∈ κ} is
an AD system of infinite sets in V [G].

After fixing the AD system, we will add all uniformizations necessary for this AD system to be a strong-Q-
sequence.

Definition 4.2.3. Let A = {Aα : α ∈ κ} be an AD system on ω and F ∈ FA. The forcing K(A, F ) consists of
partial functions g : Dom(g)→ ω, Dom(g) ∈ [κ]<ω such that if α, β ∈ Dom(g) and

n ∈
(
Aα \ g(α)

)
∩
(
Aβ \ g(β)

)
then fα(n) = fβ(n).

Condition g is stronger then h iff h ⊂ g.

Indeed, this forcing adds uniformizations.

Fact 4.2.4. Let G be a generic filter onK(A, f). Then

f =
⋃
{fα � (Aα \ g(α)) : g ∈ G,α ∈ Dom(g)}

is a uniformization of F.

Proof. It is clear that f is a partial function from ω to 2.We only need to show that for each α ∈ κ the set

Dα = {g ∈ K(A, F ) : α ∈ Dom(g)}

is dense. Take any p ∈ K(A, F ), α /∈ Dom(p). There exists n ∈ ω such that (Aα \ n) ∩ Aβ = ∅ for each
β ∈ Dom(p). Now g = p ∪ {(α, n)} is a condition inK(A, F ) ∩Dα bellow p.

Let us introduce the whole iteration. We will work with iterated forcing Aκ ? (Pγ , Qγ)γ∈λ which is a finite
support iteration of length λ, Aκ ? Pγ  Qγ isK(Â, Ḟγ) where A is the name for the AD set generically added by
Aκ and Pγ forces that Ḟγ ∈ FÂ.

A condition (p, q̇) ∈ Aκ ? (Pγ , Qγ)γ∈λ is simple if p  Dom(q̇) = D̂q for someDq ∈ [λ]<ω ∩ V and for each
γ ∈ Dq there is some hq(γ) ∈ V such that (p, q̇ � γ)  ˙q(γ) = ˆhq(γ).

Claim. The set of simple conditions is dense in Aκ ? (Pγ , Qγ)γ∈λ.

Proof. The first part is easy. Suppose for contradiction, that the opposite is true. For a condition (p, q), which
is not simple, define γ(p,q) to be the the maximal β ∈ Dq preventing simplicity of (p, q). There is (p, q) with no
simple condition below with minimal γ(p,q). Find condition (r, s) ∈ Aκ ? (Pγ , Qγ)λ, (r, s) < (p, q) such that
(r, s � γ(p,q) forces q(γ(p,q)) = ˆhq(γ(p,q)). and q(α) = s(α) for α ≥ γ(p,q). Now γ(r,s) < γ(p,q) contradicting
minimality of γ(p,q).

A simple condition (p, q̇) is nice if for each γ ∈ Dq is (p, q̇ � γ)  Dom( ˙q(γ)) = Γ̂p.
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Claim. The set of nice simple conditions is dense in Aκ ? (Pγ , Qγ)γ∈λ.

The crucial argument is, that this iterated forcing is ccc and hence the AD system added in the first step remains
uncountable in the final generic extension.

Lemma 4.2.5. The forcing Aκ ? (Pγ , Qγ)γ∈λ is ccc.

Proof. Let {(pα, qα) : α ∈ ω1} be a set of nice simple conditions. Using the ∆-system lemma and the pigeon hole
principle we can thin out this set so that we can assume

1. npα = n for all α ∈ ω1.

2. {Γpα : α ∈ ω1} is a ∆-system with core Γ. Denote αϕβ the unique order preserving isomorphism mapping
Γpα onto Γpβ .

3. For each α, β ∈ ω1 is pβ ◦ αϕβ = pα.

4. {Dqα : α ∈ ω1} is a ∆-system with core D = {di : i ∈ |D|, di < dj for i < j}.
5. For each α, β ∈ ω1 and γ ∈ Dqα is hqβ (γ) ◦ αϕβ = hqα(γ).

For i ∈ ω put b(i) = 21+i·n·|Γ|.We will show that among conditions {(pα, qα) : α ∈ b(|D|)} at least two are
compatible. Fix (the unique) increasing enumeration⋃

{Dqα : α ∈ b(|D|)} = {βk : k ∈ K}

for someK ∈ ω.
We will define a sequence of conditions

{(rk, sk) ∈ Aκ ? (Pγ , Qγ)γ∈βk+1 : k ∈ K}

such that
(rk+1, sk+1 � βk + 1) ≤ (rk, sk)

and a sequence of sets
{Ωi ⊂ b(|D|) : i ∈ |D|+ 1, |Ωi| = b(|D| − i)}.

Start with Ω0 = b(|D|) and let r−1 be the empty condition. If βk ∈ Dqα \D for some α ∈ d|D| choose (rk, sk)
such that

(rk, sk � βk)  sk(βk) ≤ qα(βk).

If βk = di then choose (rk, s
′
k) ∈ Aκ ? (Pγ , Qγ)γ∈βk such that there is some function gk ∈ V such that for

each j ∈ n and σ ∈ Γqα for each α ∈ Ωk−1 is

(rk, s
′
k)  ḟσ(j) = ĝk(σ, j)

for ḟσ ∈ Ḟβk .
There exists

Ωi+1 ∈ [Ωi]
b(|D|−(i+1))

such that for each α, β ∈ Ωi+1 and σ ∈ Dqα is

gk(αϕβ(σ), j) = gk(σ, j)

for each j ∈ n (pigeon hole principle). Hence (rk, s
′
k) forces that

sk(βk) =
⋃
{hqα(βk) : α ∈ Ωi+1} ∈ Qβk

and we define sk = s′k
as(βk).

Once (rK−1, sK−1) and Ω|D| = {α, β} are defined, we have that (rK−1, sK−1) is below both (pα, qα) and
(pβ , qβ).

Theorem 4.2.6 (Steprans). For each cardinal κ it is consistent with ZFC that there exist a strong-Q-sequence of
cardinality κ.

Proof. Use the forcing we were considering in this section. At first add an AD system of required size κ and then
use a bookkeeping device to add all uniformization with iteration of length 2κ. The fact that the forcing is ccc
ensures, that once the iteration is done, the AD system has still size κ.
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4.3 Guided Grigorieff and guided Sacks forcing
Forcing constructed in previous chapter was defined to add uniformizations while being ccc. One disadvantage
of the construction is that it provides no control over d in the resulting model. Keeping in mind that we want to
approximate a model where P(ω)/Fin ∼= P(ω1)/Fin, we should beside creating a strong-Q-sequence also aim
for d = ω1. Forcing notions defined in this section are designed to add uniformizations while being proper and ωω
bounding and hence d is not increased.

Similar forcing appeared implicitly in [JS91]. It was M. Hrušák who observed that method used there is relevant
in the context of strong-Q-sequences.

The following forcing notions are somewhat similar to the Grigorieff and Sacks forcings. In fact, they are
subposets of these forcings as defined in chapter 3.

Definition 4.3.1 (Guided Grigorieff forcing). Let T = {Tα : Tα ∈ [ω]ω, α ∈ ω1} be a strictly increasing tower, i.e.
A = {Aα = Tα+1 \ Tα, α ∈ ω1} is an AD system consisting of infinite sets.

For F = {fα : Aα → 2} ∈ FA conditions in the forcing G(T , F ) are partial functions g : Dom(g)→ 2 for
which there is d(g) ∈ ω1 such that Dom(g) =∗ Td(g).Moreover we require that for each α < d(g) is g � Aα =∗ fα.
The ordering is reversed inclusion; g ≤ h iff h ⊂ g.

This forcing notion G(T , F ) we call guided Grigorieff forcing.

This forcing has size at most 2ω . We will show that for right choice of T this forcing is proper and ωω bounding
(and it can also have Sacks property).

Proposition 4.3.2. The set Sα = {g ∈ G(T , F ) : α ≤ d(g)} is dense in G(T , F ) for each α ∈ ω1.

Proof. Take p ∈ G(T , F ) such that d(p) < α. The interval [d(p), α) is countable so there are pairwise disjoint sets
A′β for β ∈ [d(p), α), A′β ∩ Dom(p) = ∅ and A′β =∗ Aβ for each β ∈ [d(p), α). Now any function g extending
p ∪

⋃
{fβ � A′β : β ∈ [d(p), α)} with Dom(g) =∗ Tα is a condition below p and belongs Sα.

Note that this proposition would be not possible to prove if we replaced ω1 with some larger cardinal κ.
This shows that the forcing G(T , F ) adds a generic function fF =

⋃
{g : g ∈ G} (where G is the generic filter)

and Aβ ⊂∗ Dom(fF ) for each β ∈ ω1. The function fF is obviously an uniformization of F.
Next we introduce guided Sacks forcing. The relation between guided Grigorieff and guided Sacks is similar to

relation between Grigorieff and Sacks forcing form chapter 3.

Definition 4.3.3 (Guided Sacks forcing). Let T = {Tα : Tα ∈ [ω]ω, α ∈ ω1} be a strictly increasing tower, i.e.
A = {Aα = Tα+1 \ Tα, α ∈ ω1} is an AD system consisting of infinite sets and take F = {fα : Aα → 2} ∈ FA.

A condition p in the forcing S(T , F ) is a subtree of the binary tree <ω2 such that the set of splitting levels of p
is S(p) =∗ ω \ Td(p) for some d(p) ∈ ω1.Moreover for each α < d(p) there exists npα ∈ ω such that for each s ∈ p
and k > npα, if k ∈ Dom(s) ∩Aα then s(k) = fα(k).

The ordering is inclusion, g ≤ p iff g ⊂ p.
This forcing notion S(T , F ) we call guided Sacks forcing.

Sacks forcing has again size at most 2ω and is a subposet of Sacks forcing with filter as defined in chapter 3.
And again, guided Grigorieff can be regarded as a subposet consisting of uniform trees in the guided Sacks forcing.

Proposition 4.3.4. The set Sα = {p ∈ S(T , F ) : α ≤ d(p)} is dense in S(T , F ) for each α ∈ ω1.

Proof. Analogous to proof of proposition 4.3.2.

Hence this forcing again adds a uniformization of F, namely the intersection of all conditions in generic filter.
Next lemma shows that the guided Sacks forcing poses the ‘gluing’ property characteristic for Sacks forcing.

Lemma 4.3.5. Let {pi : i < k} be a finite set of conditions in S(T , F ). There is a set of conditions {p′i : i < k}
such that p′i < pi for each i < k and

⋃
i<k p

′
i ∈ S(T , F ).

Proof. Use proposition 4.3.4 to find α ∈ ω1 and p′i < pi such that d(p′i) = α for all i < k. To see that q =⋃
i<k p

′
i ∈ S(T , F ) note that for nqα one can take max{np

′
i
α : i < k}.
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Next we will show that guided versions of Grigorieff and Sacks forcings retain some ‘nice’ properties of their
original unguided versions. A key element in fusion like arguments for these forcings is a lemma analogous to
lemma 3.1.4.

Lemma 4.3.6.

1. Pick any p ∈ G(T , F ). Suppose p  ẋ ∈ X̂ and fix a finite set a ∈ [ω \ Dom(p)]n. Then there exists a
condition q ∈ G(T , F ), q < p and a finite set Y ∈ [X]≤2n such that q  ẋ ∈ Ŷ and Dom(q) ∩ a = ∅.

2. Pick any p ∈ S(T , F ). Suppose p  ẋ ∈ X̂ and fix a finite set a ∈ [S(p)]n. Then there exists a condition
q ∈ S(T , F ), q < p and a finite set Y ∈ [X]≤2n such that q  ẋ ∈ Ŷ and a ⊂ S(q).

Proof. The proof of lemma 3.1.4 works with almost no modifications. (Just for guided Sacks use for ‘gluing’
lemma 4.3.5.)

And the following lemma shows that our new forcings are nice indeed. Proof of this lemma needs the tower
game defined if chapter 2. In fact, this proof is the main reason why the author of this text defined games with towers.

Lemma 4.3.7. Let T = {Tα : α ∈ ω1} be an increasing tower generating non-meager (p-)ideal 〈T 〉 on ω and take
any F ∈ FA (where A = {Tα+1 \ Tα : α ∈ ω1}). Both G(T , F ) and S(T , F ) are proper ωω bounding forcing
notions. If 〈T 〉 is moreover rapid then both this forcings have Sacks property.

Proof. This proof is similar to proof of lemma 3.1.3. The difficulty given by increased complexity of involved
forcing notions is solved by using the tower game TGT ∗ (see 2.4.2) instead of p-filter game. Here T ∗ is decreasing
tower dual to T ; T ∗ = {T ∗α = ω \ Tα : α ∈ ω1}.

Only the proof of guided Sacks being proper is presented here. All the other proofs are essentially the same (for
proving Sacks property use the rapid tower game RTT ∗,f for some f ∈ ωω). For more details see proof of 3.1.3.

Take any countable elementary submodel M of H(θ) (for sufficiently large θ) containing S(T , F ) and a
condition g ∈ S(T , F ) ∩M. Enumerate {τ̇n : n ∈ ω} all S(T , F )-names for ordinal numbers belonging toM.We
need to find a condition in S(T , F ) which is stronger than g and forces τ̇n ∈M for each n ∈ ω.

Two players play the game TGT ∗ in H(θ) but the actual moves will take place inM. Player I will follow this
strategy: At first he denotes g as h0 and puts a0 = ∅ and α0 = 0. In the n-th move he has some condition hn ≤ g,
hn ∈M, a set an ∈ [S(hn)]<ω and an ordinal αn ∈ ω1 ∩M such that an ⊂ S(hn) and α0 ≤ d(hn). Now he uses
lemma 4.3.6 inM for hn  τ̇n ∈ On and the finite set an to get a condition h′n+1 < hn, h

′
n+1 ∈M and a finite set

Yn ∈ [On]<ω such that h′n+1  τ̇n ∈ Yn (inM ), an ⊂ S(h′n+1). Note that Yn ⊂M .
Player I fixes a finite set An ∈ [ω]<ω such that

S(h′n+1) ⊃ T ∗d(h′n+1) \An

and his n-th move is
(
d(h′n+1), An

)
. To this player II responds with

(αn+1, bn) ∈ (ω1 ∩M)× [S(h′n+1)]<ω.

Player I denotes an+1 = an ∪ bn (hence an+1 ⊂ S(h′n+1)) and chooses some hn+1 < h′n+1, hn+1 ∈ M,
αn+1 ≤ d(hn+1) and an+1 ⊂ S(hn+1). Now he can continue to move n+ 1.

When the game is over, player I collected a sequence of conditions {hn : n ∈ ω} ⊂ S(T , F ) ∩M, hn+1 <
hn ≤ g and a sequence {Yn : n ∈ ω} of finite subsets of On ∩M such that hn+1  τ̇n ∈ Yn. According to
theorem 2.4.4 the described strategy is not winning for player I (inH(θ)) so we can assume that the actual course of
this game was won by player II.

We will check that there exists q ⊂ h =
⋂
{hn : n ∈ ω}, such that q ∈ S(T , F ). Put γ = sup{αn : n ∈ ω}.

We know that S(h) ⊃
⋃
{an : n ∈ ω} ⊃∗ T ∗γ . Let q be any subtree of h such that S(q) =∗ ω \ Tγ .

To show that q ∈ S(T , F ) we only need to check that for each α < γ there exists nqα ∈ ω such that for each
s ∈ q and k > npα, if k ∈ Dom(s) ∩Aα then s(k) = fα(k). (See definition 4.3.3.) But there is some n ∈ ω such
that αn > α and hence d(hn) > α. This shows that we can put nqα = nhnα (since q ⊂ h ⊂ hn).

Now q < hn for each n ∈ ω and q  τ̇n ∈ Yn thus q  τ̇n ∈ M (since Yn is finite) and properness is
proved.
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4.4 Preserving selective ultrafilter III
In section 3.3 we showed that Sacks forcing preserves selective ultrafilters not near coherent with the filter used as
parameter. The same is true for the guided Sacks forcing as well.

The second preservation theorem (for selective ultrafilters strictly ≤RK bellow) is not of much interest in this
context. The reason is, that it required the assumption, that the filter F used as parameter is also an ultrafilter. This
would translate to T generates an maximal ideal. However, T would stop generating maximal ideal after the forcing
with S(T , F ) and since we would like to continue adding uniformizations, the preservation theorem would be of no
use then.

Theorem 4.4.1. Let T = {Tα : α ∈ ω1} be an increasing tower generating non-meager (p-)ideal 〈T 〉 on ω and
take any F ∈ FA (where A = {Tα+1 \ Tα : α ∈ ω1}). Let R be a selective ultrafilter which is not near coherent
with the filter dual to ideal generated by T .

The forcing S(T , F ) preserves R as a base of a selective ultrafilter.

Proof. This is only reformulation of proof of 3.3.6 in a similar fashion as in proof of 4.3.7. The mixed game from
definition 2.4.10 for the tower T ∗ dual to T and a rare p-filter R is used.

It is sufficient to prove that for a given S(T , F ) name Ȧ for a subset of ω there is a dense set of conditions
deciding that there is some R ∈ R such that R ⊂ Ȧ or R ∩ Ȧ = ∅.

Fix a condition p ∈ S(T , F ).We can suppose that there is no q < p such q  Ȧ /∈ 〈R〉 i.e. for each q < p is
Rq = {s ∈ ω : ∃q′ < q : q′  n ∈ Ȧ} ∈ R.

Two players will play the mixed game for tower T ∗ = {T ∗α = ω \ Tα : α ∈ ω1} in even moves and p-filter R
with the Q property in odd moves. Player I will follow this strategy: At first he denotes p as h0 and puts a0 = ∅ and
α0 = 0.

Let n be even. In the n-th move player I has some condition hn ≤ p ∈ S(T , F ), αn ≥ d(hn) and a set
an ∈ [S(hn)]<ω. Player I chooses a finite set An ∈ [ω]<ω such that S(hn) ⊃ T ∗d(hn) \ An and his n-th move is
(d(hn), An) . To this player II responds with (αn+1, bn) ∈ ω1 × [S(hn)]<ω. Player I denotes an+1 = an ∪ bn (so
an+1 ⊂ S(hn) ) and chooses some hn+1 ∈ S(T , F ), hn+1 < hn, an+1 ⊂ S(hn+1) and d(hn+1) > αn+1 and
continues with the odd move n+ 1.

Now n is odd. Player I has condition hn, an ⊂ [S(hn)]<ω and αn ∈ ω1.
Fix kn ∈ ω such that an ⊂ kn. Put

R(n) =
⋂
{Rq : q = hn[η], η ∈ [kn]hn} ∈ R.

The n-th move of player I is R(n).
To this player II responds with an integer rn ∈ R(n). For each condition q = hn[η], η ∈ knhn is rn ∈ Rq so

there is a stronger condition q′ < q such that q′  rn ∈ Ȧ. Put hn+1 to be a condition created by gluing conditions
q′ (lemma 4.3.5 and note that hn+1 < hn, an ⊂ S(hn+1) and hn+1  rn ∈ Ȧ. Put an+1 = an, αn+1 = αn and
continue with the next (even) move n+ 1.

When the game is over, player I collected a sequence of conditions {hn : n ∈ ω} ⊂ S(T , F ), hn+1 < hn ≤ p
and a sequence {rn : n ∈ ω} such that hn+1  rn ∈ Ȧ. According to remark 2.4.12 the described strategy
is not winning for player I so we can assume that the actual course of this game was won by player II. Denote
γ = sup{αn : n ∈ ω}.We can use the same arguments as in proof of 4.3.7 that there is a condition q ∈ S(T , F ),
q ≤ hn for each n ∈ ω with d(q) = γ. Thus q  R = {rn : n ∈ ω} ⊂ Ȧ and R ∈ R. We proved that
q  Ȧ ∈ 〈R〉.

4.5 A Countable like ideal and small d
Now we have all tools for iterating forcings adding uniformizations and hence creating a strong-Q-sequence. In fact
are ready to prove our main result, the consistency of existence of a countable like ideal. (See definition 1.3.7.)

Theorem 4.5.1. It is consistent with ZFC that d = ω1 and there is countable like ideal I on ω.
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Proof. This is again a construction of forcing with countable support iteration similar to the one used in 3.2.5. Start
in a model of GCH and pick T = {Tα : α ∈ ω1} some increasing tower in P(ω) which generates non-meager ideal
and denote A the AD system {Tα+1 \ Tα : α ∈ ω1}.

Now use countable support iteration of forcings G(T , Fα) adding uniformization of Fα and G(Fα × ω) and
use some bookkeeping device to control that each p-filter in each intermediate model appears as some Fα at some
stage and that Fα ranges over FA in all intermediate models. We are using (besides arguments mentioned in proof
of 3.2.5) that FA has always size ω2 and that all involved forcings are ωω bounding so T generates non-meager
ideals in all intermediate models.

The whole iteration is proper and ωω bounding so in the resulting model d = ω1, T generates a non-meager
p-ideal and A is a strong-Q-sequence. In this model there are no p-points hence 〈T 〉 is a countable like ideal.

In the previous proof we could have also used guided Sacks forcing instead of the guided Grigorieff for adding
uniformizations and forcings S(F × ω) for killing p-points. This, together with theorem 4.4.1 and lemma 3.3.5,
enables us pick in the groundmodel any set of selective ultrafilters, such that all their isomorphic copies intersect
〈T 〉, and construct the iteration so that all these ultrafilters are preserved in the generic extension.

45



CHAPTER 5

AUTOMORPHISMS OF P(ω)/Fin

5.1 Trivial and non-trivial automorphisms
The topic of the last chapter of this thesis is investigation of automorphisms of the Boolean algebra P(ω)/Fin . Our
attention will be limited to variants of property of such automorphisms called triviality.

We will leave out questions concerning the general structure of the automorphism group, for more information
about this structure we refer to [vD90, Fuc92, Far00, Ste03]

Definition 5.1.1. Let A be a set. A partial 1-1 function f : A→ A is an almost permutation (of A) iff

Dom(f) =∗ A =∗ Rng(f).

Each almost permutation p : A→ B induces in the natural way a Boolean isomorphism

ϕ : P(A)/Fin→ P(B)/Fin,

namely ϕ[A] = [f [A]] for A ∈ P(A). So given any almost permutation f of ω we have an automorphism ϕ of the
Boolean algebra P(ω)/Fin . Automorphisms obtain in such way are called trivial.

Definition 5.1.2. Let ϕ : P(ω)/Fin → P(ω)/Fin be a Boolean automorphism of P(ω)/Fin . We will denote
the ideal of sets on which ϕ is trivial as Triv(ϕ). This set contains precisely those subsets A of ω such that
ϕ�
(
P(A)/Fin

)
is induced by some one-to-one function f : A′ → ω (and A′ =∗ A).

Let S be a subset of P(ω). The automorphism ϕ is trivial on S if S ∩ Triv(ϕ) 6= ∅.We call ϕ trivial if it is
trivial on {ω} and somewhere trivial if it is trivial on [ω]ω.An automorphism is nowhere trivial if it is not somewhere
trivial.

It is not immediately clear whether there need to exists non-trivial automorphisms at all. It was shown by
[Rud56] that under CH this is the case indeed. In fact, he showed that under CH there are 22ω many automorphisms
of P(ω)/Fin hence most of them must be non-trivial. Later Steprans proved that the cardinality of the group of
automorphisms of P(ω)/Fin can be any regular cardinal between 2ω and 22ω , see [Ste03].

The following result is well known and was proved independently by van Douwen and Baumgartner.

Proposition 5.1.3. If there is a p-point of character ω1 then there is a non-trivial automorphism of P(ω)/Fin .

Proof. Fix an ⊂∗ increasing sequence of sets {Aα : α ∈ ω1} which generates a maximal non-principle ideal I
in P(ω). Then define inductively functions fα, fα is a permutation of Aα with no fixed points and fα ⊂∗ fβ for
α < β.
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Define mapping F : P(ω)/Fin→ P(ω)/Fin by

F [A] =

{[
fα[A]

]
for A ∈ I and A ⊂∗ Aα for some α ∈ ω1,[

ω \ fα[ω \A]
]

for A /∈ I and ω \A ⊂∗ Aα for some α ∈ ω1.

It is easy to see that F is an automorphism of P(ω)/Fin . Assume there were an almost permutation f of ω
inducing F.We can find three disjoint infinite sets Xi, i ∈ 3 such that X0 ∪X1 ∪X2 =∗ ω and f [Xi] ∩Xi = ∅
(since f can have only finitely many fixed points). Pick i ∈ 3 such that Xi /∈ I and since I is maximal, Xi is in the
dual filter and also f [Xi] is in dual filter. This is a contradiction with f [Xi] ∩Xi = ∅.

On the other hand, an important result in this field is that it is consistent with ZFC that all automorphisms
of P(ω)/Fin are trivial. This was first demonstrated by Shelah in [She82] using forcing method called oracle-cc
forcing (see also [Jus92]). Afterwards it was shown in [SS88] that PFA implies that all automorphisms are trivial
and this method was further refined by Velickovic in [Vel86, Vel93], where he proved that OCA + MA is strong
enough for proving that all isomorphisms are trivial. He also showed that starting from a model of PFA, it is possible
to construct a model with a non-trivial automorphism and where MA holds.

An important notion is lifting of an morphism of P(ω)/Fin .

Definition 5.1.4. Let ϕ : P(ω)/Fin→ P(ω)/Fin be a mapping. A function Φ: P(ω)→ P(ω) is called lifting of
ϕ if [Φ(A)] = ϕ[A] for each A ∈ P(ω).

One of main tools proved and used in [Vel93] is the following theorem. We will reprove this result in a slightly
more general form as proposition 5.3.6.

Theorem 5.1.5 (Velickovic). Let Φ be a lifting of an automorphism ϕ. If there exist Borel functions Fn : P(ω)→
P(ω) for n ∈ ω such that for each A ∈ P(ω) there is n ∈ ω for which Φ(A) =∗ Fn(A), then ϕ is trivial.

On the other hand, it was shown in [SS89] that in the model obtained by adding ω2 Cohen reals to a model of
CH, there is a non-trivial automorphism and its non-triviality is in certain sense absolute. This example shows,
that if we need to force all automorphisms to be trivial, the only reasonable way is to prevent the non-trivial ones
to be extendible in the generic extension, i.e. non-triviality generally can not be ‘cured’ by adding missing almost
permutations.

It was also shown in [SS94] that it is consistent with MA that all automorphism are somewhere trivial while
there can exist a non-trivial automorphism in the same model. And later in [SS02] was shown that MA is consistent
with the existence of nowhere trivial automorphisms and that in model obtained from CH by iterating Silver forcing
every automorphism is somewhere trivial (and d = ω1). For a short review of results and open question concerning
the group of automorphisms see chapter of J. Steprans in [HvM90].

It is also worth mentioning that investigation of existence of non-trivial automorphisms has significant impact
on the related topic of inner and outer automorphisms of Calkin algebras [Far11].

This chapter is written with several goals in mind. First of them is better understanding relation between
Katowice problem and non-trivial automorphisms of P(ω)/Fin . This is partially achieved by inclusion of a recent
result of K. P. Hart in section 5.4. Another point of interest is how can be forcing methods of previous chapters
integrated with methods for controlling non-trivial automorphisms. This can be formulated as a search for proper
ωω bounding forcing notions destroying non-trivial automorphisms. And one more question is ‘Is is it possible to
build a model of ZFC where all automorphism are trivial and d = ω1?’

We will show that forcing with Grigorieff forcing G(F) prevents any automorphism ϕ with Triv(ϕ) ∩ F = ∅
to be extended to an automorphism in the forcing extension. To gain ‘absolute’ non-extendability, we will need to
use method called gap freezing.

Using this technique, we are able e.g. to extend already mentioned result of Shelah and Steprans to:

Theorem 5.1.6. It is consistent with ZFC that d = ω1 and every automorphism of P(ω)/Fin is trivial on each
non-meager p-filter.

This chapter arose from a collaboration of the author of this text with Alan Dow. Many ideas behind proofs
presented here are due to Alan Dow.
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5.2 Abraham-Todorcevic gap freezing
The purpose of this section is to provide a minimalistic exposition of certain version of a gap freezing forcing. This
forcing is needed as tool in the next section, where a forcing iteration using this forcing for freezing ω1, ω1 gaps is
constructed.

This section presents some known facts and results about gaps and gap freezing methods. It contains mainly
results from [AT97]. The treatment of this topic here is rather minimal and the only purpose it serves is an attempt
to make this text more self contained. For systematic treatment of the problematic of gaps in P(ω)/Fin see e.g.
[Sch93, Far96, Yor03].

At certain place a forcing property called properness isomorphism condition will be mentioned. It’s purpose is
again to enable some iterated forcing constructions to work. These properties and related theorems are in this text
used as black box. For exposition into these topics the reader can use [She98a, Abr10, Bur98].

Through this whole section GCH is assumed to hold.

Definition 5.2.1. A sequence {(aα, bα) : α ∈ ω1} is a pregap if aα, bα ⊂ ω and for each α ≤ β < ω1 is
aα ⊂∗ aβ ⊂ bβ ⊂∗ bβ .

This pregap is a gap if there is no x ⊂ ω such that aα ⊂∗ x ⊂∗ bα for all α ∈ ω1.

Definition 5.2.2. A pregap {(aα, bα) : α ∈ ω1} is Hausdorff gap if

|{β < α : aβ \ bα ⊂ n}| < ω

for each α ∈ ω1 and n ∈ ω.

Fact 5.2.3. Each pregap containing a Hausdorff gap (as a subsequence) is gap. Moreover this remains true in any
larger model of ZFC in which ω1 = ω1

V.

For proof of the following theorem see e.g. [Yor03].

Theorem 5.2.4 (Kunen). For each gap A there exists a ccc forcing notionKA such that in the generic extension A
contains a Hausdorff gap.

The main theorem we need for making non-trivial automorphisms absolutely inextendible is the following.

Theorem 5.2.5 (Abraham-Todorcevic). (GCH) Let A = {(aα, bα) : α ∈ ω1} be a gap. There is a proper ω2-p.i.c.
forcing notion of size ω2 not adding new reals , such that in the generic extension A contains a Hausdorff gap.

For ω2-p.i.c. see definition 5.2.12.
To prove this theorem, the ideal introduced in next lemma is used.

Lemma 5.2.6. Let A = {(aα, bα) : α ∈ ω1} be a gap. Define IA ⊂ [ω1]ω by A ∈ IA iff

|{β ∈ A ∩ α : aβ \ bα ⊂ n}| < ω for all α ∈ ω1 and n ∈ ω. (*)

IA is a p-ideal and for each B ∈ [ω1]ω1 there exists some A ∈ [B]ω ∩ IA.

Note that (*) can be equivalently replaced by requiring the condition to hold just for α ≤ supA.
The notion of p-ideal is in this context defined by requirement that for each C ∈ [I]ω there exists some C ∈ I

such that A ⊂∗ C for each A ∈ A. This is actually the same definition we had for ideals on ω.

Proof. Take B ∈ [ω1]ω1 and since B = {(aα, bα) : α ∈ B} is a gap, there is a ccc forcing KB. Take a countable
elementary submodelM, KB ∈ M and aM generic filter G on KB ∩M (in the groundmodel). There is a set
J ∈M [G], J cofinal subset of B ∩M such that {(aα, bα) : α ∈ J} is Hausdorff gap inM [G]. Notice that for an
in finite J ′ ⊂ J bounded in J is J ′ ∈ [B]ω ∩ IA. To prove that IA is p-ideal, take C = {Ai ∈ IA : i ∈ ω} and
enumerate {

β ≤ sup
⋃
i∈ω

Ai

}
= {βi : i ∈ ω}.

For each i, j, n ∈ ω fix finite set

F ij (n) = {γ ∈ Aj ∩ βi : aγ \ bβi ⊂ n}.

Put A′j = Aj \
⋃
i≤j F

i
j (j) and A =

⋃
j∈ω A

′
j .We have that Ai ⊂∗ A for all i ∈ ω and A ∈ IA (check that (*)

holds for each βi).
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It is obvious that if there is I ∈ [ω1]ω1 such that [I]ω ⊂ IA, then {(aα, bα) : α ∈ I} is a Hausdorff gap. So to
prove theorem 5.2.5 it is enough to find forcing adding such I for given p-ideal IA. Since we are assuming GCH,
such p-ideal ideal is generated some ⊂∗ increasing sequence {Aα : α ∈ ω1} of countable subsets of ω1.We will
without loss of generality assume that Aα ⊂ α for each α ∈ ω1.

Definition 5.2.7. Let I be an ideal in [ω1]≤ω generated by an ⊂∗ increasing tower {Aα ⊂ α : α ∈ ω1}. Poset P
contains pairs (xp,Xp) = p where xp ∈ [ω1]≤ω and

Xp = {Xn ∈ [ω1]ω1 : n ∈ ω}.

For F ⊂ ω1 and p ∈ P we denote

Ep(F ) =
{
Xp
n(F ) = {α ∈ Xn : F ⊂ Aα} : n ∈ ω,Xn ∈ Xp

}
.

We define q ≤ p iff xp @ xq (xq end extends xp) and Xp ∪ Ep(xq \ xp) ⊂ Xq (so all sets in Ep(xq \ xp) have
to be uncountable).

Define P = {p ∈ P : p ≤ (∅, {ω1})}, a subposet of P.

To prove theorem 5.2.5 is is enough to show the following.

Lemma 5.2.8. Let I ⊂ [ω1]≤ω be an ideal generated by ⊂∗ increasing tower {Aα ⊂ α : α ∈ ω1}. Suppose
moreover that whenever ω1 =

⋃
n∈ω Bn then there exist n ∈ ω such that [Bn]ω ∩ I 6= ∅.

Poset P associated with I (see definition 5.2.7) is proper, does not add new countable subsets of groundmodel
and has ω2-p.i.c.

Let us start the proof with a simple density lemma.

Lemma 5.2.9. For every p ∈ P and γ ∈ ω1 there exists some q < p in P such that xq \ γ 6= ∅.

Proof. Suppose that for each β > γ, supxp there is some nβ such that Xp
n({β}) ∈ Ep({β}) is at most countable.

Put Bn = {β > γ, supxp : nβ = n}. There is some n ∈ ω and α ∈ ω1 such that |Bn| > ω and Aα ∩Bn is infinite.
Hence there is an uncountable B ⊂ Xn and infinite A =∗ Aα ∩Bn such that A ⊂ Aβ for each β ∈ B. For each
β ∈ A is B ⊂ Xp

n({β}) a contradiction.

The following extension lemma will be used in the proof of properness.

Lemma 5.2.10. Let M ≺ H(θ) be a countable elementary submodel (for some θ large enough), I,P ∈ M,
p ∈ P ∩M. Denote ε = ω1 ∩M and let D ∈ M be an open dense subset of P. For any A =∗ Aε there exists
q ∈ D ∩M, q < p such that xq \ xp ⊂ A.

Proof. Suppose that there is no such q. Hence for each α < ε there is a finite set Fα ∈ [α]<ω, such that there is
no q, for which xq \ xp ⊂ Aα ∩A = Aα \ Fα. Note that set

{α ∈ ω1 : ∃Fα ∈ [α]<ω, there is no q < p such that q ∈ D, xq \ xp ⊂ Aα \ Fα}

is defined inM and thus is equal to ω1. There is a stationary set S ∈ [ω1]ω1 ∩M such that Fα = F for all α ∈ S. Put
p1 = (xp,Xp ∪ {S}) < p. Now use lemma 5.2.9 inM to find p2 < p1 such that there is some β; maxF < β < ε,
xp2 = xp1 ∪ {β}. Finally find q < p2, q ∈ D ∩M and notice that S1 = {γ ∈ S : xq \ xp ⊂ Aγ} ∈ Xq is
uncountable. We also have min(xq \xp) = β > maxF and thus xq \xp ⊂ Aγ \F for γ ∈ S1, a contradiction.

And finally the main part of the proof, the construction of generic conditions.

Lemma 5.2.11. P is proper and adds no new countable subsets of groundmodel.
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Proof. Fix M ≺ H(θ) some countable elementary submodel such that P ∈ M, and p0 ∈ P ∩M. Enumerate
{Dn : D ∈ ω} all dense open subsets of P in M and denote ε = ω1 ∩ M. Fix also a bookkeeping bijection
b : ω → ω2 such that if b(i) = (k, l) then k ≤ i.

We will define a descending sequence of conditions {pi ∈ P ∩M : i ∈ ω} such that pi+1 ∈ Di and there is
some q < pi for all i ∈ ω and an increasing sequence of finite sets {Fi ∈ [ε]<ω : i ∈ ω} (Start with F0 = ∅).

Suppose pi and Fi are defined and define pi+1 and Fi+1 in the following way. We have b(i) = (k, n). The set

Xpk
n (xpi \ xpk) ∈ Epk(xpi \ xpk) ⊂ Xpi

is uncountable hence there is finite set F ′i+1 ∈ [ε]<ω and an uncountable set

X(k, n) ⊂ Xpk
n (xpi \ xpk) ⊂ Xn ∈ Xpk

such that Aε \F ′i+1 ⊂ Aα for all α ∈ X(k, n). Put Fi+1 = Fi ∪F ′i+1 and use lemma 5.2.10 to find pi+1 ∈ Di ∩M
such that xpi+1 \ xpi ⊂ Aε \ Fi+1.

Once the sequence is defined put

q =

(
xq =

⋃
i∈ω

xpi ,Xq =
⋃
i∈ω
Xpi ∪

⋃
i∈ω

Epi(xq \ xpi)

)
.

To see that q is a condition we only need to check that for each k ∈ ω each set in

Xpk
n (xq \ xpk) ∈ Epk(xq \ xpk)

is uncountable. Find i such that b(i) = (k, n). Hence xq \ xpi ⊂ Aγ for each γ ∈ X(k, n) and

X(k, n) ⊂ Xpk
n (xq \ xpk).

The statement about not adding countable subsets of grounmodel follows from the fact, that q forces a value for
each name fromM for a countable subset of grounmodel.

One problem we may encounter while dealing with iterations of forcing P is their influence on cardinals of size
bigger than ω1 and on the behavior of the continuum function. The source of possible problems is that the size of
P is ω2 (or generally 22ω ). This is however solved by proving that P satisfies so called properness isomorphism
condition – p.i.c. introduced in [She82]. As a reference for results and fact about this condition cited here we refer
to [Abr10, Bur98].

We will only mention some basic facts about this condition.

Definition 5.2.12. Poset P has ω2-p.i.c. (properness isomorphism condition) if the following holds.
Suppose we are given sufficiently large θ and two isomorphic countable elementary submodelsM0,M1 ≺ H(θ),

P ∈ M0 ∩M1 and an isomorphism h : M0 → M1, h is identity inM0 ∩M1 and for each α ∈ M0 ∩M1 ∩ ω2,
β ∈ (M0 \M1) ∩ ω2 and γ ∈ (M1 \M0) ∩ ω2 is α < β < γ.

Then for each p0 ∈ P ∩M0 there exists condition q < p0 which is bothM0 andM1 generic and for each q′ < q
and r ∈ P ∩M0 is q′ < r iff q′ < h(r).

Fact 5.2.13. Each proper forcing of size at most ω1 has ω2-p.i.c.

Fact 5.2.14. Each forcing with ω2-p.i.c. is ω2-cc.

Fact 5.2.15. Countable support iteration of length < ω2 of forcing notions with ω2-p.i.c. has ω2-p.i.c.

Fact 5.2.16. (CH) Countable support iteration of length ω2 of forcing notions with ω2-p.i.c. is ω2-cc.

Fact 5.2.17. (CH) Each forcing with ω2-p.i.c. preserves CH.

And here we proof that the forcing P has ω2-p.i.c. indeed.

Lemma 5.2.18. P has ω2-p.i.c.
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Proof. Suppose that the situation is set up as in definition 5.2.12 and we need to find generic q. Note that for
p ∈ P ∩M0 is h(p) = (xp, {h(Xn) : Xn ∈ Xp, n ∈ ω}).

We will try to repeat the proof of 5.2.11 not caring about M1 at first. Once a construction of M0 generic
condition q is done, it would be enough to extend q to q′ such that q′ < h(pi) for each i ∈ ω. So we only need to
check that it is possible to add all sets in

{h(Xn) : Xn ∈ Xpi , n, i ∈ ω} ∪ {Xh(pi)
n ∈ Eh(pi)(xq \ xpi) : n, i ∈ ω}

to Xq′ . Hence we only need to be sure that every Xh(pi)
n ∈ Eh(pi)(xq \ xpi) is uncountable.

To ensure this modify the construction of {pi, Fi : i ∈ ω} in the following way. When defining F ′i add an
additional requirement, that there is not only uncountable X(k, n) ⊂ Xpk

n (xpi \ xpk), but also some uncountable

X ′(k, n) ⊂ h (Xpk
n (xpi \ xpk))

such that Aε \ F ′i ⊂ Aα for all α ∈ X(k, n) ∪X ′(k, n). Thus in the end X ′(k, n) ⊂ Xh(pk)
n and we are done.

The poset P has in fact other nice properties not mentioned here. It is even possible to build countable support
iteration of such posets without adding any new subsets of ω. For details see [AT97]. However, this results is not
essential from our point of view. Our intention is to employ this poset in ωω bounding ω2-cc proper forcing iteration
with countable support.

5.3 Destroying non-trivial automorphisms
In this section we deal with the problem of controlling (i.e. reducing) the set of non-trivial automorphisms on
P(ω)/Fin . The aim is to introduce a method to destroy nontrivial automorphisms while doing as little as possible
which in our context means doing so with a proper ωω bounding forcing. An ultimate result in this direction would
be construction of such forcing killing all non-trivial automorphisms of P(ω)/Fin . Unfortunately we can only
achieve partial result, forcing killing all automorphisms which are non-trivial on each member of some non-meager
p-ideal.

From now on, we will work with an fixed non-trivial automorphism φ of P(ω)/Fin .

Definition 5.3.1. A map F : P(ω)→ P(ω) will be called purely additive if for all x, y ⊂ ω, each of the equations
F (x) ∪ F (y) = F (x ∪ y) and F (x) ∩ F (y) = F (x ∩ y) hold.

The base of topology on P(ω) consists of (clopen) sets [s] for s ∈ <ω2.We will also denote this sets as sets
[t;n] where t ⊂ n and n ∈ ω where t;n correspond to characteristic function of t as subset of n. If we write just [t],
then the value n = 1 + max t is implicit.

Cohen forcing adding a single Cohen real will be in this section denoted C. As it is defined, conditions of this
forcing are elements of <ω2. The reader should be aware of the natural correspondence between this forcing and the
poset of basic clopen subsets P(ω). Following this correspondence, an open dense subset O of P(ω) can (and will)
be treated as open dense subset of the forcing C (i.e. the set of all basic open subsets of O) and the other way round.

Proposition 5.3.2. If F is a purely additive and continuous self-map on P(ω), P(ω)/Fin, then it is completely
additive (see [Far00]) in the sense that F (x) =

⋃
{F ({i}) : i ∈ x} ∪ F{∅} for all x ⊂ ω. In particular, if F is a

lifting (see 5.1.4) of an automorphism Φ on P(ω)/Fin, then Φ is trivial.

Proof. Inclusion ⊃ follows immediately from pure additivity.
For the other inclusion notice, that for j ∈ F (ω) \ F (∅) the open set {x ⊂ ω : j ∈ F (x)} is an ultrafilter, so it

is generated by a singleton {i}. Thus j ∈ F (x) iff i ∈ x.

It should be mentioned, that e.g. by Gδ set we in fact mean a set with certain Borel code, so the actual set be
can different in various models of set theory. Also if a function is continuous on some Borel set, we will in fact deal
with its Borel code (i.e. how it acts on open sets). This will be mainly used for self maps on P(ω) continuous on a
dense Gδ set Z. Then this function will be defined and continuous in all points of dense set Z (strictly speaking the
Gδ set with the same code as Z) in the Cohen extension (e.g. in any real which is Cohen generic).

Next proposition is mostly trivial and not really essential, its purpose is to serve as a showcase of techniques
which will be used (often implicitly) in the other places.
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Proposition 5.3.3. Let g be the name for C generic real, Z dense Gδ subset of P(ω) and E,F,G self maps on
P(ω), all continuous on Z. If

C E(g) ∈ Z and F (g) 6=∗ G(g),

then there exists X dense Gδ subset of P(ω) such that E(x) ∈ Z and F (x) 6=∗ G(x) for each x ∈ X.

Proof. Fix a descending family {Un : n ∈ ω} of open dense sets such that its intersection is Z. Put

An =
⋃
{[p] : p ∈ C, E [[p] ∩ Z] ⊂ Un} .

An is open and C E(g) ∈ Un together with continuity of E on Z gives that it is dense.
Let Bn be a dense subset of C given by p ∈ Bn iff there exists kp > n such that

p  kp ∈ F (g)∆G(g).

Now use continuity of F andG to define T (p) ∈ C for each p ∈ Bn to be a condition extending p, such that for each

v0, v1 ∈ [T (p)] ∩ Z

is
kp ∈ F (v0) ⇐⇒ kp ∈ F (v1) and kp ∈ G(v0) ⇐⇒ kp ∈ G(v1).

Put Cn =
⋃
{[T (p)] : p ∈ Bn} and it again follows that Cn is dense open subset of P(ω).

Hence
X = Z ∩

⋂
n∈ω

An ∩
⋂
n∈ω

Cn

is the desired set.

Notation. From now onΦ: P(ω)→ P(ω)will be a fixed lifting ofφ andwewill moreover assume thatΦ(x) = Φ(y)
for x =∗ y.

Proposition 5.3.4. If F is a self-map on P(ω) which is continuous on a dense Gδ set Z, then there are x ⊂ a ⊂ ω,
such that ω \ a /∈ Triv(Φ) and

C v = x ∪ (g \ a) ∈ Z and F (v) ∩ Φ(a) 6=∗ Φ(x)

(where g is C generic).
Moreover if {In : n ∈ ω} ⊂ P(ω) are pairwise disjoint sets such that In /∈ Triv(Φ) for each n, then x ⊂ a

can be chosen such that I0 ⊂ a, In \ a /∈ Triv(Φ) for each n > 0 and

C F (v) ∩ Φ(I0) 6=∗ Φ(x ∩ I0).

Proof. To simplify notation and avoid switching back and forth between characteristic functions and subsets of
ω, we will represent the Cohen poset as C = [ω]<ω with the ordering s < t to mean that s ∩ (1 + max(t)) = t.
Therefore we seek sets x ⊂ a ⊂ ω with ω \ a /∈ Triv(Φ) and a C-generic filter g such that x ∪ (g \ a) ∈ Z and
F (x ∪ (g \ a)) ∩ Φ(a) 6=∗ Φ(x). Technically this statement will be forced by some condition p = g�`, but we can
simply redefine a and x so that ` ⊂ a and x = g ∩ `, and we will then have that C forces the statement that was to
be proven.

Fix any descending sequence {Ui : i ∈ ω} of dense open sets such that the intersection is contained in Z.
Case 1: There are conditions s0, s1 such that for no n0 > max s0 ∪ s1 and t ⊂ [n0, n1)

 F (s0 ∪ t ∪ (g \ n1)) \ n1 = F (s1 ∪ t ∪ (g \ n1)) \ n1.

We will inductively construct an increasing sequence of natural numbers {ki : i ∈ ω} and {ti : ti ⊂ [ki, ki+1)}.
Start with k0 = n0 and when ki is defined, pick ki+1 and ti such that for each r ⊂ [n0, ki)

1. [s0 ∪ r ∪ ti] ∪ [s1 ∪ r ∪ ti] ⊂ Ui
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2. ∃ji ∈ [ki, ki+1) such that for each

v0 ∈ [s0 ∪ r ∪ ti] ∩ Z, v1 ∈ [s1 ∪ r ∪ ti] ∩ Z is ji ∈ F (v0)∆F (v1).

For A ∈ [ω]<ω denote

a =
⋃
i∈A

[ki, ki+1) ∪ Φ−1

[⋃
i∈A

[ki, ki+1)

]
∪ n0

and fix an infinite A such that ω \ a /∈ Triv(Φ). (This is possible because Triv(Φ) is a proper ideal.)
For h ∈ 2 put xh = sh ∪

⋃
i∈A ti and vh = xh ∪ (g \ a). Condition 1. ensures vh ∈ Z. We have that

Φ(x0) =∗ Φ(x1) but
 ji ∈ (F (v0)∆F (v1)) ∩ [ki, ki+1) 6= ∅

for all i ∈ A so for at least one h ∈ 2 and infinitely many i ∈ A is

 (F (vh)∆Φ(xh)) ∩ [ki, ki+1) 6= ∅.

Put x = xh for this h ∈ 2, and we have  F (vh)∩Φ(a) 6=∗ Φ(x) (since [ki, ki+1) ⊂ Φ(a) for all but finitely many
i ∈ A).

Let g0, g1 be C×C generic. Let � be one of the usual set-theoretic operations {∪,∩}. Notice that g0 � g1 is
also C generic.

Case 2: Assume there is a condition (s′0, s
′
1) such that no condition (s0, s1) < (s′0, s

′
1) forces F (g0)� F (g1)

is almost equal to F (g0 � g1).
Since we can assume case 1 is not true, we take (s′′0 , s

′′
1) < (s′0, s

′
1), s′′0 , s

′′
1 ⊂ n such that

 F (s′′0 ∪ (g \ n)) \ n = F (s′′1 ∪ (g \ n)) \ n = F (s′′0 � s
′′
1 ∪ (g \ n)) \ n.

We may without loss of generality take s′0 = s′1 = ∅.
Again, construct inductively an increasing sequence {ki : i ∈ ω} of integers and sequence {t0i , t1i ⊂ [ki, ki+1)}.

Start with any k0 ∈ ω and when ki is defined, pick ki+1 and t0i , t1i such that for each s0, s1 ⊂ ki
1.

[s0 ∪ t0i ] ∪ [s0 ∪ t1i ] ∪ [s0 ∪ (t0i � t
1
i )] ⊂ Ui

2. ∃ji ∈ [ki, ki+1) such that for each

v0 ∈ [s0 ∪ t0i ] ∩ Z, v1 ∈ [s1 ∪ t1i ] ∩ Z is ji ∈ (F (v0)� F (v1))∆F (v0 � v1).

Again, denote

a =
⋃
i∈A

[ki, ki+1) ∪ Φ−1

[⋃
i∈A

[ki, ki+1)

]
and fix an infiniteA ⊂ ω such thatω\a /∈ Triv(Φ). For h ∈ 2 put xh =

⋃
i∈A t

h
i , x2 = x0�x1 and vh = xh∪(g\a).

Condition 1 ensures vh ∈ Z for h ∈ 3.
We have that Φ(x0)� Φ(x1) =∗ Φ(x0 � x1) but

 ji ∈
(
(F (v0)� F (v1))∆F (v0 � v1)

)
∩ [ki, ki+1) 6= ∅

for all i ∈ A. Hence for at least one h ∈ 3 and infinitely many i ∈ A is

 (F (vh)∆Φ(xh)) ∩ [ki, ki+1) 6= ∅.

Put x = xh for this h and we have  F (vh) ∩ Φ(a) 6=∗ Φ(x) (since [ki, ki+1) ⊂ Φ(a) for all but finitely many
i ∈ A).

Thus, as the last case we assume that we have condition (s0, s1) ∈ C×C, s0, s1 ⊂ n0 which forces that(
F (g0)� F (g1)

)
∆F (g0 � g1) ⊂ n0
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for � being both ∪ and ∩. Because of case 1 we can also assume

 F
(
s0 ∪ (g \ n0)

)
\ n0 = F

(
s1 ∪ (g \ n0)

)
\ n0.

Hence

(
F
(
s0 ∪ (g0 \ n0)

)
� F

(
s0 ∪ (g1 \ n0)

))
\ n0 = F

(
s0 ∪ (g0 � g1 \ n0)

)
\ n0.

In the generic extension define G : P(ω)→ P(ω) by

G(x) = lim
`∈ω

(
F
(
s0 ∪ (x ∩ (` \ n0)) ∪ (g \ `)

)
\ n0

)
.

Continuity of F on Z implies that G is continuous and G(x) = F (x) \ n0 for each x ∈ [s0] ∩ Z. Thus G is in
fact in ground model and does not depend on the particular choice of g (it is the same mapping for any choice of
Cohen generic g). We claim that G is purely additive:

G(x)�G(y) =

= lim
`∈ω

(
F
(
s0 ∪

(
x ∩ (` \ n0)

)
∪ (g0 \ `)

)
� F

(
s0 ∪

(
y ∩ (` \ n0)

)
∪ (g1 \ `)

))
\ n0 =

= lim
`∈ω

(
F
(
s0 ∪

(
(x� y) ∩ (` \ n0)

)
∪
(
(g0 � g1) \ `

)))
\ n0 = G(x� y).

By Proposition 5.3.2, G is completely additive and we may choose y ∈ [s0] such that G(y) 6=∗ Φ(y).
Fix an increasing sequence of natural numbers {ki : i ∈ ω} and {ti : ti ⊂ [ki, ki+1)} such that for any v ∈ P(ω),

if v ∩ [ki, ki+1) = ti for infinitely many i ∈ ω then v ∈ Z.
We finish by considering two subcases; Φ(y) \G(y) infinite and G(y) \ Φ(y) infinite.
If Φ(y) \G(y) is infinite, then choose any infinite x ∈ [s0], x ⊂∗ y so that ω \x /∈ Triv(Φ), x∩ [ki, ki+1) = ∅

for infinitely many i ∈ ω, and Φ(x) ∩G(y) =∗ ∅.
Put a1 = {i : G({i}) ∩ Φ(x) 6= ∅} and a = a1 ∪ x ∪ n0 if a1 is finite, and a = x ∪ n0 otherwise.
Then

G
(
(g \ a) ∪ x

)
∩ Φ(x) ⊂

((
G(g) \G(a)

)
∩ Φ(x)

)
∪
(
G(x) ∩ Φ(x)

)
⊂∗ G(g) \G(a) 6⊃∗ Φ(x).

The last inclusion follows from a1 ⊂ a if a1 is finite and from the fact, that g misses infinitely many elements
of a1, if a1 is infinite. Hence  v = x ∪ (g \ a) ∈ Z (from genericity of g and a misses infinitely many intervals
[ki, ki+1)) and  G(v) =∗ F (v). Thus

 F (v) ∩ Φ(x) =∗ G(v) ∩ Φ(x) 6⊃∗ Φ(x)

and  F (v) ∩ Φ(a) 6=∗ Φ(x).
Now suppose that G(y) \ Φ(y) is infinite. Find an infinite a1 ⊂ ω such that

Φ(a1) ⊂∗ G(y) \ Φ(y)

and put
x = {i ∈ y : G({i}) ∩ Φ(a1) 6= ∅} ∪ s0

and a = a1 ∪ x ∪ n0.We may assume ω \ a /∈ Triv(Φ) and a ∩ [ki, ki+1) = ∅ for infinitely many i ∈ ω (shrink a1

and x if necessary).
We have Φ(x) ∩ Φ(a1) =∗ ∅ but

G
(
x ∪ (g \ a)

)
∩ Φ(a) ∩ Φ(a1) ⊃∗ G(x) ∩ Φ(a1) =∗ Φ(a1).

Hence
 v = x ∪ (g \ a) ∈ Z, F (v) =∗ G(v) and F (v) ∩ Φ(a) 6=∗ Φ(x).

To prove the moreover part consider mapping F ∩Φ(I0) instead of F and proceed similarly. In cases 1 and 2 do
the same construction up to the point where A and a are being defined. Instead choose inductively a ⊂-decreasing
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sequence {Aj ∈ [ω]ω : j ∈ ω} such that Ij+1 \ aj /∈ Triv(Φ) where aj =
⋃
i∈Aj [ki, ki+1). Then fix infinite

A ⊂∗ Aj for all j ∈ ω, put a =
⋃
i∈A[ki, ki+1)∪ I0 ∪n0 and the proof continues in the same way as in the previous

part.
In case 3 choose y ∈ [s0], y ⊂∗ I0, G(y) 6=∗ Φ(y). In the first subcase we only miss the condition I0 ⊂ a (we

have a ⊂∗ I0). If a1 is finite define x′ = x∪
(
(I0 \ a)∩

⋃
i∈ω ti

)
and a′ = a∪ I0. If a1 is infinite fix an infinite set

A ⊂ ω such that a1 \
⋃
i∈A[ki, ki + 1) is still infinite. Define

x′ = x ∪
(
(I0 \ a) ∩

⋃
i∈A

ti
)

and a′ = a ∪ I0. We still have

 v′ = x′ ∪ (g \ a′) ∈ Z and F (v′) ∩ Φ(I0) 6= Φ(I0 ∩ x′)

(since traces on Φ(x) still disagree).
For the second subcase choose a1 ⊂ I0 and when a and x is found, we again only miss I0 ⊂ a. Define

x′ = x ∪
(
(I0 \ a) ∩

⋃
i∈ω

ti
)

and a′ = a ∪ I0.We have

 v′ = x′ ∪ (g \ a) ∈ Z, Φ(x′) ∩ Φ(a1) =∗ ∅ and F (v′) ⊃∗ Φ(a1).

Remark 5.3.5. If proposition 5.3.4 holds true for some x ⊂ a and c ⊂ d are finite sets disjoint with a, then it still
holds for x ∪ c and a ∪ d.

Next proposition provides an alternative proof of the crucial theorem from [Vel93]. Condition 3 continues the
moreover part of proposition 5.3.4.

Proposition 5.3.6. If {Fn : n ∈ ω} are Borel self-maps on P(ω) and Z ⊂ P(ω) is a dense Gδ, then there is an
x ⊂ ω such that

1. x∗ ∈ Z for each x∗ almost equal to x,

2. Fn(x) 6=∗ Φ(x) for all n,

3. and if, in addition, {In : n ∈ ω} ⊂ P(ω) are pairwise disjoint sets such that In /∈ Triv(Φ) for each n, then
x can be chosen so that Fn(x) ∩ Φ(In) 6=∗ Φ(x ∩ In) for each n.

Proof. Since each Fn is Borel, we may assume that each Fn is continuous on Z and also that x∗ ∈ Z for each x∗
which is almost equal to some x ∈ Z (shrink Z if necessary). Fix a countable ⊂ descending family {Un : n ∈ ω} of
dense open subsets of P(ω) such that the intersection is Z.

We will use Proposition 5.3.4 repeatedly to construct increasing chains a0 ⊂ a1 ⊂ . . . and x0 ⊂ x1 ⊂ . . .
so that xi ∩ aj = xj for i < j. The intention is to arrange that v =

⋃
i xi ∈ Z (which allows us to have some

connection between the behavior of Fi(
⋃
j≤i xj) and Fi(v)), and that Fi(v) ∩ Φ(ai) 6=∗ Φ(xi). If we succeed then

it will follow that Φ(v) is not in the set {Fi(v) : i ∈ ω}. In the case of statement 3. of the proposition, we just
remark that we may choose an so that In ⊂ an using the moreover part of Proposition 5.3.4.

We will again use the Cohen forcingC as in proposition 5.3.4. Select x0 = x̃0 ⊂ a0 = ã0 with ω\a0 /∈ Triv(Φ)
such that

 v = x0 ∪ (g \ a0) ∈ Z and F0(v) ∩ Φ(ã0) 6=∗ Φ(x̃0).

Fix any p0 ⊂ `0 ∈ ω so that p0 ∩ a0 = `0 ∩ x0, [p0] ⊂ U0 and note that there exists k0 < `0 such that

k0 ∈
(
(F0(y) ∩ Φ(ã0))∆Φ(x̃0)

)
for each y ∈ [p0] ∩ Z.We may assume that `0 ⊂ a0 and p0 = x0 ∩ `0.
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Since v∩(ω\a0) is Cohen generic subset ofω\a0, using Proposition 5.3.3 we have a denseGδ setZ0 ⊂ P(ω\a0)
such that for each y ∈ Z0

x̃0 ∪ y ∈ Z and F0(x0 ∪ y) ∩ Φ(ã0) 6=∗ Φ(x̃0).

Now proceed with inductive construction. Our inductive assumptions are

ai =
⋃
j≤i

{ãj} ⊃ `i ∈ ω,

Zi is dense Gδ subset of P(ω \ ai), and for each y ∈ Zi we have that

∀(j ≤ i)Fj(y ∪ xi) ∩ Φ(ãj) 6=∗ Φ(x̃j) and y ∪ xi ∈ Z.

In the inductive step use Proposition 5.3.4 for Φ restricted to ω \ ai and mapping

F ′i+1(y) = Fi+1(y ∪ xi) ∩ Φ(ω \ ai)

which is continuous on Zi.We get x̃i+1 ⊂ ãi+1 ⊂ ω \ ai, xi+1 = xi ∪ x̃i+1 and ai+1 = ai ∪ ãi+1 such that

 x̃i+1 ∪ (g \ ãi+1) ∈ Zi and Fi+1(xi+1 ∪ (g \ ai+1)) ∩ Φ(ãi+1) 6=∗ Φ(x̃i+1)

where g is Cohen generic subset of ω \ ai.
Fix any pi+1 ⊂ `i+1 ∈ ω so that pi+1 ∩ ai+1 = `i+1 ∩ xi+1, [pi+1] ⊂ Ui+1 and for each j ≤ i+ 1 there exists

ki+1 ∈ [`i, `i+1) such that
ki+1 ∈

(
(Fj(y) ∩ Φ(ãj))∆Φ(x̃j)

)
for each y ∈ [pi+1]∩Z (for j ≤ i use inductive hypothesis). Wemay assume that `i+1 ⊂ ai+1 and pi+1 = xi+1∩`i+1

(enlarging x̃i+1 and ãi+1 if necessary).
Use Proposition 5.3.3 to get Zi+1 dense Gδ subset of P(ω \ ai+1) such that for each y ∈ Zi+1

x̃i ∪ y ∈ Zi and Fi+1(xi+1 ∪ y) ∩ Φ(ãi+1) 6=∗ Φ(x̃i+1).

Finally after the inductive construction is done put x =
⋃
i∈ω xi.

The main use of the next lemma is for cases where the ideal I is non-meager so there is no harm in reading the
lemma as ‘for every non-meager p-ideal and non-trivial Φ without any reference to Triv Φ or F .

Lemma 5.3.7. Let F be function continuous on a dense Gδ set Z, J a p-ideal such that J⊥ is countably generated
and Triv(Φ) ∩F = ∅ where F is the dual filter to J⊥. There are x ⊂ a ∈ J such that for allm ∈ ω and s ⊂ m,

C v = s∆(x ∪ (g \ a)) ∈ Z and F (v) ∩ Φ(a) 6=∗ Φ(x)

(i.e. mod finite changes to the generic keep the equation true).

Proof. Let {Un : n ∈ ω} be a decreasing sequence of dense open subsets of P(ω) with intersection Z.
At first assume that J is tall. Use Proposition 5.3.6 for the countable set of functions

FH(x) = F (x∆H) : H ∈ [ω]<ω

to get y ⊂ ω such that y∗ ∈ Z and F (y∗) 6=∗ Φ(y) for each y∗ =∗ y. Using that J is tall find for each H ∈ [ω]<ω

an infinite set aH ∈ J such that Φ(aH) ⊂∗ FH(y)∆Φ(y). Since J is an p-ideal, there is a ∈ J , aH ⊂∗ a for each
H.We have Φ(a) ∩

(
F (y∗)∆Φ(y)

)
is infinite for each y∗ =∗ y and put x = a ∩ y.

To prove that  v ∈ Z for each s ⊂ m ∈ ω take any condition t ⊂ m ∈ ω and n ∈ ω. Since

y∗ = s∆
((
y \ (m \ a)

)
∪ (t \ a)

)
∈ Un,

there is some k ∈ ω such that [y∗ ∩ k] ⊂ Un. Hence t ∪
(
y ∩ [m, k)

)
 v ∈ Un.

To prove the other part take again s ⊂ m ∈ ω and a condition t ⊂ m ∈ ω.We may suppose that

(Φ(a) ∩ Φ(y))∆Φ(x) ⊂ m.
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There exist j ∈ Φ(a) \m, j ∈
(
F (y∗)∆Φ(y)

)
(and hence j ∈

(
F (y∗)∆Φ(x)

)
) for

y∗ = s∆
(
(y \ (m \ a)) ∪ (t \ a)

)
.

Again there is k ∈ ω such that for each u ∈ [y∗ ∩ k] ∩ Z is j ∈ (F (u)∆Φ(x)). The condition t ∪
(
y ∩ [m, k)

)
forces that

(
F (v) ∩ Φ(a)

)
∆Φ(x) 6⊂ m and we are done.

If J⊥ is generated by a single set I ⊂ ω, then we have that ω \ I /∈ Triv(Φ) and we may work on Φ(ω \ I)
with functions F (x) ∩Φ(ω \ I) and Φ(x) ∩Φ(ω \ I) to get x ⊂ a ⊂ ω \ I in the same way as in the previous case.

Let {In : n ∈ ω} ⊂ J⊥ enumerate a pairwise disjoint family whose finite unions generate J⊥. Assume at
first that In ∈ Triv Φ for each n ∈ ω and let hn be a function from In to Φ(In) which induces Φ�P(In). Use
Proposition 5.3.6 for set of functions {FH,n(x), H ∈ [ω]<ω, n ∈ ω}, where

FH,n(x) =
(
F (x∆H) \

⋃
k<n

Φ(Ik)
)
∪
⋃
k<n

hk[x ∩ Ik],

to get y ⊂ ω such that y∆H ∈ Z and FH,n(y) 6=∗ Φ(y) for each H ∈ [ω]<ω and n ∈ ω.We have that(
F (y∗)∆Φ(y)

)
\
⋃
k<n

Φ(Ik)

is infinite for all y∗ =∗ y and n ∈ ω. Hence for each H ∈ [ω]<ω there is an infinite set aH ∈ J such that
Φ(aH) ⊂∗ FH(y)∆Φ(y) and we may proceed in the same way as in the first case.

If In /∈ Triv Φ for only finitely many n ∈ ω, then we may suppose that only I0 /∈ Triv Φ and In ∈ Triv Φ for
n > 0.We have that ω \ I0 /∈ Triv Φ and we may again work on Φ(ω \ I0) and proceed as in the previous case.

The last case is In /∈ Triv Φ for only infinitely many n ∈ ω and we may suppose that In /∈ Triv Φ for each
n ∈ ω. Use part 3 of Proposition 5.3.6 for system of functions

FH,n(x) = F (x∆H). where H ∈ [ω]<ω, n ∈ ω

(each function is listed cofinally often) and {In : n ∈ ω} to get y ⊂ ω such that for each y∗ =∗ y is y∗ ∈ Z and there
exist infinitely many n ∈ ω such that F (y∗) ∩ Φ(In) 6=∗ Φ(y ∩ In). Hence for each H the set FH(y)∆Φ(y) is not
⊂∗ contained in

⋃
k<n Φ(Ik) for each n and there exists an infinite set aH ∈ J such that Φ(aH) ⊂∗ FH(y)∆Φ(y).

The proof now continues again in the same way as in previous cases.

Corollary 5.3.8. If Ẏ is C name of a subset of ω and J is a non-meager p-ideal, then there are x ⊂ a ∈ J and
infinite BẎ ,x,a ⊂ a where if m ∈ BẎ ,x,a then for all s ⊂ m there is j ∈ Φ(a) \m and an interval [m, m̄) ⊂ a,

such that for t = s ∪
(
x ∩ [m, m̄)

)
we have t  j ∈ Ẏ∆Φ(x) and t decides if j ∈ Ẏ .

Proof. There is a self-map F on P(ω) which is continuous on a dense Gδ set Z and such that C F (g) = Ẏ [g].
(Obtained by letting [t] ⊂ Un if t ∈ [ω]<ω forces a value on Ẏ ∩ n. Then for v ∈

⋂
n Un, F (v) =

⋃
n yn where yn

is the unique subset of n such that, for some ` ∈ ω, [v ∩ `] ⊂ Un and v ∩ ` forces the value yn on Ẏ ∩ n.)
Now we use lemma 5.3.7 for F and J to get x ⊂ a ∈ J .
We will inductively construct an increasing sequence of natural numbers {ki : i ∈ ω} and {ti : ti ⊂ [ki, ki+1)}.

Start with any k0 ∈ ω and when ki is defined, pick ki+1 and ti such that for each s ⊂ ki there exists js ∈ Φ(a) \ ki
such that

1. ti ∩ a = x ∩ [ki, ki+1)

2. for all v ∈ Z ∩ [s ∪ ti], js ∈ F (v)∆Φ(x)

3. [s ∪ ti] ⊂ Ujs+1.

To see that such js and ti exist just note, that x and a were chosen to satisfy conclusion of lemma 5.3.7.
Since J is non-meager, it is possible to choose an infinite A ⊂ ω such that

⋃
i∈A[ki, ki+1) ∈ J . Let x̄ = x ∪⋃

i∈A ti and ā = a ∪
⋃
i∈A[ki, ki+1).

Then choose anym0 ∈ ω such that(
Φ(x̄) ∩ Φ(a)

)
\ Φ(x) ⊂ m0,Φ(a) \ Φ(ā) ⊂ m0
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and put BẎ ,x̄,ā = {ki : i ∈ A \m0}.
To prove that these sets satisfy the required conclusion, pick anym = ki ∈ BẎ ,x̄,ā, s ⊂ m and put m̄ = ki+1,

t = s∪ ti = s∪ (x̄∩ [m, m̄)).We have chosen ki+1, ti and js(> m0) in such way that js ∈ Φ(a) \ ki ⊂ Φ(ā) \m,
t decides if js ∈ Ẏ and t  js ∈ Ẏ∆Φ(x) and thus t  js ∈ Ẏ∆Φ(x̄).

Next theorem is the main result of this chapter. It shows that Grigorieff forcing destroys non-trivial automor-
phisms. It introduces pregap filled with the generic real, image of which is an (unfilled) gap.
Theorem 5.3.9. If F is a non-meager p-filter such that Triv(Φ) ∩F is empty, then if G is G(F ) generic, then the
family {

Φ
(
p−1(1)

)
, ω \ Φ

(
p−1(0)

)
: p ∈ G

}
contains an unfilled (ω1, ω

∗
1)-gap (in V [G]).

Proof. Let Ẏ0 be a G(F ) name of a subset of ω and p0 ∈ G(F ).We will find q < p0 such that

q  Ẏ0 ∩ Φ
(

Dom(q)
)
6=∗ Φ

(
g−1(1)

)
.

Fix countable elementary submodel M ≺ H(θ) such that p0, Ẏ0 ∈ M. Let g < p0 be (M,G(F )) generic
condition (hence Dom(p) ⊂∗ Dom(g) for all p ∈M ∩G(F )). Let A = ω \Dom(g) and define a CA name

Ẏ = {(n, s) : (∃p ∈ G(F ) ∩M,p ‖ g)(p  n ∈ Ẏ0) and p \ g ⊂ s ∈ CA}.

Here CA denotes the poset for adding Cohen generic subset of A.
Since A /∈ Triv(Φ), we can choose x ⊂ a ⊂ A with ω \ a ∈ F as in corollary 5.3.8. Define q ⊃ g so

that Dom(q) = Dom(g) ∪ a and q−1(1) ∩ a = x. Since q isM -generic, q forces that each value of Ẏ0 ∩ n gets
actually decided by some p ∈ M ∩ G(F ) (as a value of Ẏ ∩ n). Hence q  Ẏ0 ∩ Φ(a) 6=∗ Φ(x) and also
q  Ẏ0 ∩ Φ

(
Dom(q)

)
6=∗ Φ

(
g−1(1)

)
.

We used lemma 5.3.7 only for tall ideals I. The reason for general formulation is hope, that further investigation
can lead to some more general version of theorem 5.3.9, a similar result for some other forcing notion, which would
provide a way of destroying automorphisms which can not be grasped by G(F ).

However theorem 5.3.9 is strong enough to give a strengthening of previously mentioned result from [SS02].
Combining theorems 5.3.9 and 5.2.5 provides the following tool.
Proposition 5.3.10. (GCH) Let F be a non-meager p-filter. For each non-trivial automorphism ϕ of P(ω)/Fin
such that Triv(ϕ) ∩F = ∅, there exist a proper ωω bounding forcing D(F , ϕ) with ω2-p.i.c. of size ω2, such that
for each generic filter G onD(F , ϕ), no automorphism of P(ω)/Fin in V [G] extends ϕ.Moreover, this remains
true in all models of ZFC extending V [G] which preserve ωV [G]

1 .

Proof. The forcingD(F , ϕ) is two step iteration Grigorieff forcing G(F ) followed by Abraham-Todorcevic gap
freezing forcing which freezes the gap demonstrating non-extendability of ϕ introduced by G(F ).

Theorem 5.3.11. It is consistent with ZFC that d = ω1 and Triv Φ∩F 6= ∅ for each automorphism Φ of P(ω)/Fin
and each non-meager p-filter F .
Proof. This is again achieved by starting in a model of GCH and iterating forcings D(Fα, ϕα) of length ω2 while
following some bookkeeping device to ensure, that each automorphism and each non-meager p-filter is encountered
at some stage. In the end argue that each automorphism non-trivial on each element of some non-meager p-filter
was already destroyed at some stage of the iteration.

The key elements which keep this construction going are that all forcings are proper and ωω bounding (hence
d = ω1 in the extension) and that at each immediate stage we have CH because of ω2-p.i.c and 2ω = ω2 because all
forcings are of size ω2.

The initial motivation for proposition 5.3.10 was the aim to employ this forcing in iteration used to introduce
strong-Q-sequences from chapter 4 and thus possibly building models mimicking the model for P(ω)/Fin ∼=
P(ω1)/Fin . This is of course possible, this gives results along these lines:
Theorem 5.3.12. It is consistent with ZFC that d = ω1, there exists a countable like ideal on ω and for each
automorphism Φ of P(ω)/Fin and each non-meager p-filter F is Triv Φ ∩ F 6= ∅.

However, as will be demonstrated in the last section of this chapter, the influence of positive solution of
Katowice problem P(ω)/Fin ∼= P(ω1)/Fin, does not seem to imply significant restrictions for automorphisms of
P(ω)/Fin .
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5.4 Non-trivial automorphism underP(ω1)/Fin ∼= P(ω)/Fin
The only ambition of this section is to present a recent (and as of now unpublished) result of K. P. Hart. It clarifies
the relation between Katowice problem and existence of non-trivial automorphisms of P(ω)/Fin .

Theorem 5.4.1 (K.P. Hart). IfP(ω1)/Fin ∼= P(ω)/Fin then there exist a non-trivial automorphism ofP(ω)/Fin .

Proof. Assume that P(ω1)/Fin ∼= P(ω)/Fin . If this is true, then there is also an isomorphism

f : P(ω1 × Z)/Fin→ P(ω)/Fin .

Denote σ to be the permutation of ω1 × Z mapping (α, n) 7→ (α, n + 1) for each n ∈ Z and α ∈ ω1. The
automorphism of P(ω1)/Fin which % naturally generates will be denoted %∗.

Using the isomorphism f we can transfer this automorphism to P(ω)/Fin

σ∗[A] = f ◦ %∗ ◦ f−1[A].

Denote hn = ω1 × {n}, vα = {α} × Z for n ∈ Z and α ∈ ω1.

Lemma 5.4.2. For all α ∈ ω1 and n ∈ Z let Vα and Hn be some subsets of ω such that [Vα] = f [vα] and
[Hn] = f [hn]. Then

1. {[Vα] : α ∈ ω1} is a system of σ∗ fixed sets.

2. Hn+1 =∗ σ∗[Hn] for each n ∈ Z and {Hn : n ∈ Z} is an AD system.

3. For each E ⊂ ω such that Hn ⊂∗ E for each n ∈ Z there is α ∈ ω1 such that Vβ ⊂∗ E for each β > α.

4. For each F ⊂ ω such that for uncountably many α ∈ ω1 is Vα ⊂∗ F there is S ∈ [H0]ω and n ∈ ω such
that σ∗(n)[S] ⊂∗ F.

Proof. All these statements can be expressed as statements about Vα, Hn, σ
∗, . . . as elements of the Boolean algebra

P(ω)/Fin so it is enough to prove them for objects in the Boolean algebra P(ω1 × Z)/Fin corresponding to these
elements via the isomorphism f.

Items 1. and 2. are obvious.
To prove 3. suppose hn ⊂∗ E for each n ∈ Z. The desired α is

sup{max{β ∈ ω1 : (β, n) /∈ hn} : n ∈ Z}+ 1.

To prove 4. suppose vα ⊂∗ F for uncountably many α ∈ ω1. Use the pigeon hole principle to see that there is
n ∈ ω and an uncountable s ⊂ ω1 such that (α, n) ∈ E for each α ∈ s. Now %(n)[s× {0}] ⊂ F and s× {0} is an
infinite subset of h0.

Towards contradiction suppose that σ∗ is generated by an almost permutation σ : ω → ω. (If it is not possible to
have Dom(σ) = ω replace % and all derived mappings with their inverses.)

The orbits of σ are classes of the usual equivalence relation on ω; x, y belong to the same orbit iff there is n ∈ ω
such that σ(n)(x) = y or σ(n)(x) = y. There can possibly exist three types of orbits, 1st kind are infinite orbits with
no initial point, 2nd kind are infinite orbits with initial point and the 3th kind are finite (cyclic) orbits. Sets of these
orbit will be denoted O1,O2 and O3 in the respective order. We have |O1|, |O3| ≤ ω and |O2| < ω (initial points
are precisely elements of ω \ Rng(σ) ). Denote O = O1 ∪ O2 ∪ O3, G =

⋃
(O1 ∪ O2) and F =

⋃
O3.

Claim. For α ∈ ω1 let Vα be subsets of ω such that [Vα] = f [vα]. Then |{O ∈ O : ∅ 6= O ∩ Vα 6= O}| < ω.
Moreover for O ∈ O1 and i = ±1, or O ∈ O2 and i = 1, if

|{n ∈ ω : σ(i·n)(x) ∈ O}| = ω

for some x ∈ O then there is n0 ∈ ω such that {σ(i·n)(x) : n > n0} ⊂ O.

Proof. Call x ∈ ω entry point of Vα if x /∈ Vα and σ(x) ∈ Vα and exit point if x ∈ Vα and σ(x) /∈ Vα. The claim
is consequence of fact, that for each α ∈ ω1 the set E of entry points and exit points of Vα is finite. To see this note
that E ⊂ Vα4σ[Vα] and remember that [Vα] is σ∗ fixed.
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From now on, fix sets Vα and Hn for α ∈ ω1 and n ∈ Z as in previous lemmas. Because of the claim we may
suppose that for each α ∈ ω1 if Vα ∩O 6= ∅ then |Vα ∩O| = |O| for all O ∈ O.We also know that there are at most
countably many α ∈ ω1 such that Vα ∩O 6= ∅ for some O ∈ O1 ∪ O2 (Each orbit of 1st kind can intersect at most
two Vα and orbits of 2nd kind intersect at most one Vα). Hence there is α ∈ ω1 such that Vβ ⊂ F for each β > α.

Claim. The set S = F ∩H0 is infinite.

Proof. Use 4. of lemma 5.4.2 to get infinite S′ ⊂ H0 and n ∈ ω such that σ(n)[S′] ⊂ F. Note that F is σ invariant
hence S′ ⊂ H0 ∩ F and S is infinite.

For each x ∈ S define l(x) = min{n ∈ ω : σ(n+1)(x) ∈ S}.

Claim. For each n ∈ ω is {x ∈ S : l(x) = n} finite.

Proof. We have {σ(n+1)(x) : x ∈ S, l(x) = n} ⊂ S ∩ σ(n+1)[S] ⊂∗ H0 ∩Hn+1 =∗ ∅.

Put E = {σ(n)(x) : x ∈ S, n ∈ ω, n < l(x)} (so for each x ∈ S is σ(l(x)) /∈ E) and the claim gives us
σ(n)[S] ⊂∗ E for each n ∈ Z.

For n ∈ Z is Hn ∩ F =∗ σ(n)[H0] ∩ F = σ(n)[H0 ∩ F ] = σ(n)[S] ⊂∗ E, hence Hn ⊂∗ G ∪ E. Now use 3.
of lemma 5.4.2 to get α ∈ ω1 such that Vβ ⊂∗ G ∪ E for each α < β.

This implies that there is some β ∈ ω1 such that Vβ ⊂ F and Vβ ⊂∗ E. So Vβ has to contain infinitely many
finite orbits but no subset of E can contain a whole (finite) orbit, a contradiction.
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