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Abstract This note deals with integral functionals of the form

I(a)l,...,a)m):gj;f(a)l,...,a)m)dx

where @ ,..., w,, are closed differential forms of different degrees on a bounded open set
Q < R”. The convexity properties for the integrand f* are introduced, called the mult. ext.
quasiconvexity, mult. ext. one convexity and mult. ext. polyconvexity,** treated as particular
cases of the .&7-quasiconvexity theory corresponding to the constraints

dow,=...=dw, =0 (d=the exterior derivative). (%)

It is shown that any mult. ext. quasiaffine function is a linear combination of expressions of the
form a)'i1 A== A @), where the powers are understood in the sense of the exterior multiplication
and where r(, ..., r,, range all nonnegative integers for which a)'i1 A -+ A @y does not vanish.
As a consequence, a function / = (w1, ..., ,,) is mult. ext. polyconvex if and only if it can be
written as

flo,...,0,) = (I)(...,a)'i1 A A L)

where r |, ..., r, range the above-mentioned set of integers and ® is a convex function. Under
this notion of mult. ext. polyconvexity, an existence theorem for the minimum energy state is
proved. The polyconvexity in the classical calculus of variations is shown to be a particular
case of the present approach. Our main motivation work was, however, the polyconvexity for
electro-magneto-elastic interactions in continuous bodies, where the constraints (*) come from
the combination of Maxwell’s equations with the compatibility of deformations. It will be shown
that the mult. ext. polyconvexity takes the form determined by an involved direct calculation in
an earlier paper of the author [32].
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| Introduction

This note deals with the integral functionals of the form

I(a)l,...,a)m)=§[2f(a)1,...,a)m)dx (1.1)

where Q is a bounded open subset of R”, w,,...,®»,, are closed differential forms
on €, i.e., forms satisfying the differential constrains

do,=...=dw, =0 (d = the exterior derivative). (1.2)

The degrees s(1),...,s(m) of the forms w,,...,w,, are generally different from
each other, with 1 < 5(i) < n. Accordingly, f is a continuous integrand defined on
the product

Agi=Agqy X XA

s(m)

of the spaces A, of s-vectors on R”. The reader is referred to Sections 9 and 10 for
the terminology and notation for the exterior algebra and analysis employed here.
Here we only note that we identify the spaces A with their duals A®; thus we do not
distinguish the s-vectors from s-covectors and use these terms interchangeably.

Our main interest is in the convexity properties for integrand f', called below
the mult. ext. quasiconvexity, mult. ext. one convexity and mult. ext. polyconvexity.
These notions are particular cases the .o/-quasiconvexity [18, 24-25, 34, 9] corre-
sponding to the differential constraints (1.2).

Anintegrand f : Ay > R U {oo} is said to be mult. ext. quasiconvex if

[ flo;+y(x),...,0, + v, (x)dx 2 f(w,...,0, (1.3)
0
for each constant multivectors @, ..., w,,, each m-tuple of differential forms y; on
R" that are periodic with respect to Q = (0, 1 )" and satisfy
dy;=0 on R" and [y,;(x)dx=0, i=1,....,m.
0

The integrand /" is said to be mult. ext. quasiaffine if (1.3) holds with the equality sign
for all w; and y; occurring there. The integrand /" is said to be mult. ext. polyconvex
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if it can be expressed as a convex function of a finite number of mult. ext. quasiaffine
functions. It then follows from Jensens’s inequality that mult. ext. polyconvexity
implies mult. ext. quasiconvexity.

The main result of this note is the determination of all mult. ext. quasiaffine and
mult. ext. polyconvex functions. It turns out (see Theorem 2.8, below) that any mult.
ext. quasiaffine function is a linear combination, with constant coefficients, of the
products of integer exterior powers of w;, i.e., linear combinations of the system of
functions*

Fs=1o' A naoym:(ry,...,r,) € Ry}, (1.4)

where
o ' =oA-A®
NNy
r times

and the collection R, of exponents is given by * *

m
Ry ={(r,....r,,) NG : X rys(i) <noand r; <1 if s(i) isodd}. (1.5)
i=1

Thus if /" is a mult. ext. quasiaffine function then for each (r,...,r,) € R, there
exists a multivector of appropriate degree a,., . ~such that
flw),...,0,) = ) R O VNN (1.6)

(rl,...,rm)e.‘fts

for each (wy,...,w,, ) € A,. The mult. ext. polyconvex functions are convex func-
tions of the elements of the list ¥ (Theorem 2.9), i.e.,

fop,.,0,)=0.., 0" A Aw)m, ) (1.7)

foreach (w,...,w,,) € Ag where (r{,...,r, ) range the set Ry and @ is a convex
function. Under this notion of mult. ext. polyconvexity, an existence theorem is proved
for the minimum energy state for integrands that need not be finite everywhere on their
domains (Theorem 3.1). The descriptions (1.6) and (1.7) of mult. ext. quasiaffine and
mult. ext. polyconvex functions are extensions of earlier results of Bandyopadhyay,
Dacorogna & Sil [4] dealing with ext. quasiaffine and ext. polyconvex functions of a
single differential form.

The case of several differential forms has been motivated by the desire to encom-
pass the classical calculus of variations with several unknowns, nonlinear elasticity
and electro-magneto-elasticity; areas that remain outside the scope of [4]. Referring
to Sections 4 and 5 for details, we now outline these motivations.

Example A: Classical calculus of variations and nonlinear elasticity This example
shows that the general results of the paper yield the well-known structure of quasi-
affine and polyconvex functions of the calculus of variations. Here one deals with
integrals of the form

* In (1.4) and at similar places below, the symbol a)'il A -+ Ay stands for the function f
definedon A by f (@ ,...,,,) = a)'i‘ Ao Ao foreach (o, ...,0,,) € Ay,
** The conditions on ( @®,...,w,) in (1.5) are necessary and sufficient to guarantee that the
product in & in (1.4) does not vanish identically.
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I(uy,...ouy) = [f(Vuy,...,Vu,, ) dx (1.8)
o)

where u = (u,,...,u,,) is an m-tuple of scalar dependent variables. Under our
identifications of vectors and covectors, the gradients Vu; are 1-forms and thus the
integral in (1.8) is a particular case of that in (1.1) with

w;,=Vu;, and s(i)=1, i=1,....,m. (1.9)

The exterior derivative of a 1-form is the curl and thus the differential constraints
(1.2) are satisfied by the interchangeability of the second partial derivatives. The
mult. ext. quasiconvexity coincides with Morrey’s quasiconvexity, and mult. ext.
quasiaffinity with the quasiaffinity derived from Morrey’s quasiconvexity. In view of

(1.9), the exponents r = (r,...,r, ) from the list R have all entries equal to 0 or
1, and so the list of mult. ext. quasiaffine functions reduces to

s =107, A rwp Telf, 0<h<q}, (1.10)
where

g :=min{m,n}

and
m={I=,...I,)eN": 1<, <..<I, <m} (1.11)

is the set of all m dimensional multiindices of order 4. It will be shown in Section
4 that the list (1.10) is isomorphic to the well-known collection 9% of all minors of
the matrix /' = Vu of all possible orders #, i.e., to the set

My ={FM h=1,.,¢1ell, Jelll, (1.12)

where ,
FI(J) =detFr  ,)i<a. p<ns

with F; , the matrix elements of F'. Thus the integrand /" is mult. ext. polyconvex if
f (F) = aconvex function of the minors in (1.12),

which is Ball’s original notion of polyconvexity. In the nonlinear elasticity we have
m = n = 3 and the triplet of 1-forms

W = Vul, W, = VMZ, w3 = Vu3 (113)

from (1.9) represents the deformation gradient F'. The list (1.10) of mult. ext. quasi-
affine functions is
%\S: 1, @;, C()j/\C()k, W1 NWy N W3, ISZS?’, 1S]<k£3 (114)

consisting of the absolute, linear, bilinear and trilinear expressions, which is isomor-
phic, expression-by-expression, to Ball’s list

1, F, cofF, detF.
The associated polyconvexity takes the well-known form
f(F)=®(F,cof F,detF)

where @ is a convex function.
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Example B: Electro-magneto-elastostatics The electro-magneto-elastic interactions
have recently received much theoretical attention in view of the technological appli-
cation of electro- or magneto-sensitive elastomers, smart materials whose mechanical
properties change instantly by the application of an electric or magnetic fields. The
total energy is the sum of the energy of the body, the energy of the vacuum electro-
magnetic field in the exterior of the body, and the term corresponding to the loads.
Only the first term is of interest here, which in dimension n = 3 takes the form

I(u,D,B) = [f(F,D,B)dx (1.15)
Q

where ' = Vu = (Vu,,Vu,,Vu,) is the deformation gradient as above and
D = (D,,D,,Dy) and B = (B, B,, B;) are the referential (lagrangean) electric
displacement and magnetic induction, satisfying

divD=0, divB=0 in Q. (1.16)

The integral in (1.15) is of the format (1.1) with m = 5, where w,, w,, w4 are the
1 -forms representing the deformation gradient as in (1.13) and w,, w5 are 2-forms

Wy = Dld)el +D2d)/C\2 +D3d)/C\3, W5 = Bld)el +Bzd)€2 +B3d)€3,

where
dX| =dx, ndx;, dX,=dx;rndx), dX;=dx;Adx,.

The equations dw, = dwg = 0 are equivalent to (1.16) (see Section 5). The list of
mult. ext. quasiaffine functions is obtained by combining the mechanical list (1.14)
with

which leads to the isomorphic set
l, F, cofF, detF, D, B, FD, FB,

with the unexpected cross-effect terms F'D and F'B, as determined by a direct calcu-
lation in [32]. The associated polyconvexity reads

f(F,D,B) = ®(F,cof F,detF,D, B, FD, FB)

where @ is a convex function of the indicated variables.

This paper is organized as follows. Section 2 introduces the central convexity
concepts and presents the main results of the paper for them without proofs. Section
3 presents a sample-type existence theorem for minimizers of the total energy under
the mult. ext. polyconvexity; in contrast with the analogous result under mult. ext.
quasiconvexity, the integrand may take infinite values. Section 4 shows that the
classical calculus of variations and nonlinear elasticity may be viewed as particular
cases of the present theory. Section 5 describes the mult. ext. polyconvexity for
electro-magneto-elastostatics. Section 6 and 7 present the proofs of the main results
of the paper, Proposition 2.3 and Theorem 2.8. Appendix A (Section 8) outlines the
o/-quasiconvexity theory and Appendices B and C (Sections 9 and 10) present an
axiomatic (index-free) approach to the exterior algebra and analysis.
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Notation Throughout the paper, 7 is a positive integer, the dimension of the underlying
space. We denote by N and N, the sets of all positive or nonnegative integers,
respectively, by S” ~! the unit sphere in R”, by R = R U {0} the extended real line
and by M %" the space of real m by n matrices. If Q is an open subset of R” and
Z afinite-dimensional vector space then C”(Q, Z) denotes the set of all indefinitely
differentiable Z-valued maps on Q and by Cy(Q,Z) the set of all indefinitely
differentiable Z-valued maps on R” with compact support which is contained in Q.
Further, we let O = (0, 1)” be the unit cube and denote by Cg’er(R" ,Z) the set of
all indefinitely differentiable Q-periodic Z-valued maps on R”. If /" is a Z-valued
functionon Q, we denote by f*; the partial derivative of /' (x) withrespectto x;. If s is
a positive integer then P, is the set of all permutations 7 : {1,...,5} = {1,...,s};
sgn(r) is the index (sign) of 7 € P, .

2 Main results

The reader is referred to the appendices in Sections 9 and 10 for the notations and
definitions for the exterior algebra and analysis employed here.

2.1 Definitions Lets = (s(1),...,s(m)) be an m-tuple of integers satisfying 1 <
s(i) < n.

(1) Wedefine Ay :=A )X XA, yand Tg=Agy X XA s

(ii) forany 4 = (4,...,4,,) e 'y wedefine A Ay and n A4 € Ag by

inn = An,cchy,nn) and pAA=(MAAL....,nALy);
(iii) for any & = (&}, ..., &) € CH(R™, T'y) we write
dé: = (dé—,l’"'adfrn)’

which is an element of C?(R”, Ag);
(iv) we define the characteristic cone A by

A={ian:2eTl, and neS" '} (2.1)

(v) anintegrand of type s is any continuous function f : Aj — R. The arguments of

S arethusmtuplesw = (w,, ..., w,, ) of multivectors of degrees s(1),...,s(m),
respectively.

Specializing the general concepts of the .o/-quasiconvexity theory (see Section 8§,
below) to the constraints (1.2), we introduce the following notions.

2.2 Definitions An integrand f of type s is said to be
(1) mult. ext. quasiconvex at ® € A if

éf(wﬂ//(x))dx > f(w) (2.2)

for every w € A and every y € C, . (R", A) such that

per

dw=0 on R” and [ w(x)dx=0; (2.3)
0
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(i1) mult. ext. quasiaffine if f takes only finite values and both f and —f are mult.
ext. quasiconvex;

(iii) mult. ext. polyconvex if there exists a finite number of mult. ext. quasiaffine
functions fi, ..., fg and a convex lower semicontinuous function ® : RE — R

such that
f(o) = 0(fi(o),....f; (o))
foreach w € Aq.

The following alternative forms of the mult. ext. quasiconvexity condition, with
different classes of test functions y, will be useful.

2.3 Proposition Foranintegrand f of type s the following conditions are equivalent:
(1) f is mult. ext. quasiconvex;

(i) (2.2) holds for every m € A and every w € C7(R", Ay) satisfying (2.3);

(iii) we have

éf(erdé(X))dx >f (o) (2.4)

forevery w € Ag and every & € C, . (R", T'g);

er

(iv) we have (2.4) for every m € Ay anIZl every & € C7(R", T'y).

The proof is given in Section 6. The equivalence (ii1) < (iv) is well-known in the
classical calculus of variations, see, e.g., [2; Remark, p. 141] or [33]. Condition (iv)
is adopted in [4] to define the ext. quasiconvexity of an integrand depending on a
single differential form. All the above equivalences depend crucially on the fact that
the equation d w = 0 has a potential, i.e., it is satisfied locally if and only if w = d ¢
for some other form &.

2.4 Theorem Any mult. ext. polyconvex function is mult. ext. quasiconvex.

This is a standard application of Jensen’s inequality; see, e.g., [9; Corollary 2.5].
Besides being a sufficient condition for the mult. ext. quasiconvexity, the main mo-
tivation for the mult. ext. polyconvexity is that it allows to prove the existence of a
minimizer of the variational problem without the restrictive growth conditions needed
in the case of mult. ext. quasiconvexity, see Section 3.

To understand the condition of the mult. ext. polyconvexity, we need a good
description of mult. ext. quasiaffine functions. These will be approached via an apriori
larger class of mult. ext. one affine functions to be now introduced. The analysis will
show that in the present special case the classes of mult. ext. quasiaffine functions
and mult. ext. one affine functions coincide (as they do in the classical calculus of
variations).

2.5 Definition An integrand f of type s is said to be
(i) mult. ext. one convex if

fltoy+ (1 -Nw,y) <1f (o) + (1 -1)f ()
forevery t € (0,1) and every w,, w, € Agsuchthat w, —w, € A,
(i1) mult. ext. one affine if /" takes only finite values and both /" and —f" are mult. ext.
one convex.

The descriptions of mult. ext. quasiaffine and mult. ext. polyconvex functions
uses the exterior products of exterior powers to be now introduced.
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2.6 Definitions
(1) If o € A is on s-vector and r a nonnegative integer such that rs < n, we define
the exterior power w” € A, ; by

Jl if r=0,
0" =V oA-rw if r>0.
= 7
r times

If risodd and » = 2 then " = 0 by a simple application of (9.1).
(ii) For a given vector of degrees s = (s(1),...,s(m)) we define the set R, of
admissible exponents by

m
Re={r=0,..,rp) €Ny : ¥ r;s(i)<n and r; < 1 if s(i) is odd}.

i=1
(2.5)
iIfr=(r,...,r,) eRgandw = (v,...,w,) € Ay, we put
m
o' = '/\160’”
which an element of A ;| .y, Where dim(r) := S rs(i).
(iv) We define the set of admissible powers

& ={o":reR;}. (2.6)
Recall that we interpret the elements " of & as functions f,. : Ay — Ay,
givenby f,.(w) = 0", w € A,.
We are about to analyze mult. ext. quasiaffine functions. It will be convenient to
take into account also the following condition, which will turn out to be equivalent
to the mult. ext. quasiaffinity.

2.7 Definition An integrand of type s is said to be a mult. ext. null lagrangian if for
any bounded open set Q@ C R”, any ¢ € C*(R",T’y),andany @ € C5(Q,T’y) we
have

[f(dE+dO)dx=]f(d&)dx.
Q Q
This reduces to Condition (iii) of Proposition 2.3 if @ := d ¢ is constant and Q = Q.

2.8 Theorem Foranintegrand f of type s the following three conditions are equiv-

alent:

(1) f is mult. ext. quasiaffine;

(1) f is mult. ext. one affine;

(1) £ is a linear combination, with constant coefficients, of the products from the set
of admissible powers § ¢; thus for each r € R there exists a, € Ny () such
that

fw)=Y a,-0" 2.7)
refig

foreach w € Ag;
(iv) f is a mult. ext. null lagrangian.

Thus the set §, is a basis of the finite-dimensional space of mult. ext. quasiaffine
functions. The proof of Theorem 2.8 is deferred to Section 7. The particular case
m = 1 is [4; Theorem 17].
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29 Theorem Let r(1),...,r(g) be any enumeration of the elements of R. An
integrand [ of type s is mult. ext. polyconvex if and only if there exists a convex lower
semicontinuous function © : Ndim(r(1)) X+ X /\dim(r(g)) — R such that

flw)=0(0"V, ..., 0"®)
foreach w € Aj.
This is a direct consequence of Theorem 2.8.

3 Existence of minimizers of energy under mult. ext. polyconvexity

We consider the integral functional
m
o) =](f(o)- ZI%i-a)i)dx (3.1)
Q i=
depending on the collection ® = (@, ..., ®,, ) of closed differential forms on an open
bounded region Q < R” where f is an integrand f of type s = (s(1),...,s(m)).
The prescribed functions X; : Q — A, represent external influences such as the
body forces and boundary tractions in elasticity, as will be shown below.
To formulate the assumptions, we let let p,...,p,, be numbers in (1,), put
p=p;/(p; — 1) and consider the following conditions:
H, f is amult. ext. polyconvex (continuous) integrand of type s;
H, f satisfies
flo,...,0,) Zc(lo P+ .+ o, |P"-1)
for some ¢ > 0 and all (w,...,®w, ) € Ag;
H ; the numbers p, ..., p, satisfy

ry/py+...+ry,/p, <1 forall (r,...,r,) e R
H, %, e LPI(Q A ;). i=1,....m.
For the purpose of the treatment below, we define the domain & of the functional / in
(3.1)tobe thesetof all v = (w,...,w,,) eLpl(Q,/\S(l))><-~-><me(Q,/\S(m))
which satisfy

do;=-+-=dw,, =0 on Q (3.2)
in the weak sense, which means that
Jw; -divy;dx=0
Q

for each y; € C3°(Q,/\S(i)+1) and all i = 1,..., m. We refer to Definition 10.3,
below, for the definition of the weak exterior derivative.

It is not assumed that the integrand f is finite. Condition H, implies that f* is
bounded from below and thus the integral in (3.1) is well defined as a finite number
or c. We denote by

domf ={ceA,:f(0) <o}
the effective domain of /. The assumed continuity of f (which is a part of the
definition of an integrand of type s) implies that dom /" is an open subset of A .

The following theorem presents an existence result for a minimizer of / under

Neumann’s boundary conditions.
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3.1 Theorem Suppose that Hypotheses H, — H, hold. Then
(1) if I is not identically equal to o on & then I has a minimizer @ in ¥, i.e., an

element such that
I(w) <1(0)

for all 6 € &,

(i1) each minimizer o satisfies f (@ (x)) < o for almost every x € Q;

(i) if f is differentiable on dom f and @ is a minimizer whose range is contained in
a compact subset of domf then we have the weak form of the Euler-Lagrange

equations
div(D,.f-%;,)=0 on R", i=1,...,m (3.3)

which means that
Q

foreveryo; € CP(R", Ag;y_1).

3.2 Remarks
(1) The possible infinities of the integrand in Theorem 3.1 should be contrasted
with the existence theorem under mult. ext. quasiconvexity, which would require

c(lo]” = 1) <f(o) <C(lo]” - 1)

forsome p > 1, ¢ > 0, C > 0 and all @; hence f must be finite for all @. Only for
such integrands there is a sequential lower semicontinuity theorem, see [18; Theorem
3.7].

(i1) The coercivity hypothesis H, underp, ..., p,, asin H; may be unnecessarily
strong in concrete cases. For example, in the case of elasticity (see Section 4, below),
the unknown o is a triplet 1-forms and thus H; requires that the triplet p,, p,, p;
satisfy

p123, ppy23, p3=3,
while the existence theorems in nonlinear elasticity [1, 23] require much weaker
coercivity conditions.

To prove the existence of the solution, we need the compensated compactness
and the lower semicontinuity results in Theorems 3.3 and Theorem 3.5.

3.3 Theorem Letp;,i=1,...,m, be a collection of numbers satisfying
l<p;<ow and l/p;+...+1/p, <1

and let {t//i,k}z’:l C Lp"(Q,/\ll_), i=1,...,m, be sequences such that with some
e eLPi(Q,/\li)wehave

Wik =Wy, as k— oo in LPI(Q,A;) (3.5)
and foreachi=1,...,m,
the sequence {dy; ;}7_, is boundedin L9 (Q,A; )
where q; 2 1 satisfy np,/(n+p;) < q; < p,. Then

m m
./_\1 Wik = ./_\1 i in A(Q,N;) (3.6)
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where | = I, + ...+ [,,, and where (3.6) denotes the convergence in the sense of
measures, i.e.,

m m
Jo- AN wigdx— o Ay dx
Q i=1 Q i=1

for every continuous function o : R" — A, such that o = 0 outside Q.

This is due to Robbin, Rogers & Temple [29; Theorem 1.1] and Iwaniec & Lutoborski
[21; Theorem 5.1] (see also Remark 3.4). If p; = oo then (3.5) should be understood
to mean weak™* convergence in L*(Q, A /i ). The exterior derivatives in the above
statement are understood in the weak sense as in Definition 10.3. However, in the
proof below, Theorem 3.3 will be applied to sequences for which the weak exterior
derivatives vanish.

3.4 Remarks

(i) Theorem 3.3 is a generalization of the div-curl lemma by Murat [24] and
Tartar [34]. Their versionism = 2,/, = 1,1, =n—1.

(i1) The L* version of Theorem 3.3, i.e., the case p; = --- = p,, = oo much
predates the celebrated work of Murat and Tartar: it is due to Whitney and dates back
to 1957 [35; Chapter IX, Theorem 17A]. This, however, went unnoticed and the result
was forgotten, the exception being the present author in [31]. Rephrasing slightly, we
state Whitney’s result as follows. If in the notation of Theorem 3.3 we have

Wik, as k—oin L2(Q,A;),
and foreachi=1,...,m,
the sequence {dy; ,}7_, isboundedin L*(Q,A; )
then

m " m .
A t,z/i,kéi/:\1 w; in L*(Q,A)).

1

i
Whitney proves the case m = 2; an obvious iteration of this particular case leads to
the above statement.

3.5 Theorem (Reshetnyak [28], Ball & Murat [3]) Let @ : R" — R be convex,
lower semicontinuous and bounded below. If 0, 0, € L L(Q,RM) satisfy

O =0 in M(Q,R")

then
lim inf [ ®(0;)dx = [ ©(0)dx.
J ™™ Q Q

Proof of Theorem 3.1 (i): Let w, = (a)l,k,...,cum,k) € % be a minimization
sequence. By Hypothesis H,, the sequence @, is bounded in LP'(Q, A )) X
e X LPm(Q, A () The reflexivity implies that there exists a subsequence, again
denoted by @, such that

W, in Lpl(Q,/\S(l))X"'Xme(Q’/\s(m))‘

Theorem 3.3 and Hypothesis H; imply that for every r € t; we have
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o, = o" in ML A gim(r))-

By hypothesis H,, /" is polyconvex and hence there exists a convex lower semicon-
tinuous function @ : R€ — R such that

flo)=d(0" M, ... "))
for each ® € Ag. By Theorem 3.5,

lim inf | (D(wz(l),...,wz(g))dx > | (0" V..., 0" dx.
k— o Q Q

This can be rewritten as
liminf [ f(@;)dx 2 [ f(w)dx.
k— o Q Q

As also
lim [X; -0, ;dx=[%; w;dx,
k—)OOQ ’ Q
i=1,...,m, wehave
liminf/(w;) 2 I[(w).
k— o0

Since the condition (3.2) survives the limit, we see that @ is in & and thus it minimzes
I on Z. The proof of (i) is complete.
(i1): Follows immediately form /(@) < oo.
(iii): Let w € Cy(R", Ag). The hypothesis of (iii) implies that @ + ty € dom f
for all sufficiently small |#|. Then
I(o+ty) 2 (o).

The differentiation with respect to ¢ at t = 0 gives, standardly,
m
J 21 V- (Dwif_%i)dx =0
Qi=

and hence
[vi (Dy,f-%)dx=0 (3.7)
Q

foreachi=1,...,m.If g; € Cg"(R”,/\S(i)_l) then w; = do; satisfies dw; = 0
and (3.7) reduces to (3.4). O

3.6 Remark If Q has a Lipschitz boundary and ©; := D . f and X; are contin-
uously differentiable on cl  then (3.3) is equivalent to a more standard form of
equilibrium equations

dive; +b; =0 in Q, G, Lv=s; on 0Q, (3.8)
where v is the normal to d Q2 and

Bi:_div-%i, gi:'%i |_V,

i=1,...,m. Drawing a mechanical analogy, @, is the stress, b; the body force, and
s, the surface traction.
Proof 'We use the identity (10.6) to rewrite (3.4) to obtain
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[(divg((&; -%,) L o) -0 -div(&; - X;)) dx = 0;
Q

then we apply the classical divergence theorem (for vector fields) to the first term
J((@,—Z‘E,)l_()')vdA(x)—JGle(@,—f‘E,)dXZO
a0 Q

The arbitrariness of ¢ then provides
div(g, -%;)=0 in Q, (©;,-%X;,)Lv=0 on 0Q,
which then gives (3.8). O

4 Example A: Classical calculus of variations and nonlinear elasticity

4.1 The integrand and its variables The classical calculus of variations deals with
the integral functionals of the form

I(uyy..oouy) = [f(Vuy,...,Vu,, )dx 4.1
o)

where Q is a bounded open subset of R” as always and u = (uy,...,u, ) is an
m-tuple of scalar dependent variables. The integral in (4.1) is directly in the format
(1.1) with the 1-forms
w; =Vu;.

The forms w; satisfy (1.2) since for 1-forms the exterior derivative reduces to curl and
we have curl Vu; = 0 by the interchangeability of the exterior derivatives. The orders
of the forms are s(1) =... = s(m) = 1, the vector of ordersiss = (1,...,1) e R™
and the domain of " is A := [/\{‘ 1™ where here and below we use the notation

AR = ApR™ and AJ = ARR”
for any nonnegative integer 4 satisfying
0<h<g:=min{m,n}
in the notation of Section 9.
We denote the integrand collectively as F' = Vu. We interpret its pointwise value

F(x) either as a matrix in M *" or as a linear transformation from R” to R™, i.e.,
as an element of Lin(R”,R" ). Below we identify

by writing
F~w 4.2)
forany F = [F, ;] e M"*" and any @ = (®,...,w,,) € [A]]"if
C()i: Z FiAeA, (43)
A4=1
i=1,...,m,wheree,,..., e, is the standard basis in R".

Itis immediate that in the present case the mult. ext. quasiconvexity coincides with
Morrey’s quasiconvexity, mult. ext. quasiaffinity with the quasiaffinity derived from
Morrey’s quasiconvexity, and mult. ext. one convexity with the rank one convexity.
We now turn to discussing the relationship between the mult. ext. polyconvexity and
Ball’s polyconvexity [1].
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4.2 Mult. ext. polyconvexity and Ball’s polyconvexity Recall that a function f* :
M”75 R is mult. ext. polyconvex if it can be written as a convex lower semi-
continuous function of the collection &, of admissible powers in (2.6). On the other
hand, a function /' : R”*" is said to be polyconvex in Ball’s sense if it can be written
as a convex lower semicontinuous function of the set )t of all minors of F = [F , ],
given by

My={F" h=1,.,q1ll, Jell},

where 7' and I} are the sets of m-dimensional and n-dimensional multiindices of
order /4 (see (1.11)) and

FI(?) =det[F; ;,l1<q. p<n-

Thus to prove the equivalence of the two notions of polyconvexity, it suffices to show
that under the identification (4.2)—(4.3) we have a bijective linear correspondence
between the functions in §¢ and those in M. Since s = (1,...,1) € R™, the
collection of admissible exponents (2.5) is

Re={r=(ry,...,r,) :r; €{0, 1}, % r;<n}.

i=1
If, for a given r € Ry we denote by /4 the number of the occurrences of the value

1 in the sequence r and by / = (/,,..., 1, ) the increasing sequence of the indices
ie{l,...,m}withr; =1,then/ €I}’ and

o' =o; =0, A Aoy, (4.4)

for every o = (w4,...,w,,) € [A]]™. Since the correspondence between r € R,
and / € I U ... U I is bijective, we have

Fs =10, A Aoy Tel), 0<h<g}

If @ and F € M™*" are related as in (4.3), then writing w;, = Z‘r‘ialelaAaeAa’
inserting these expressions into (4.4) and expanding the products, we obtain

n

;= Z lFllAl"'F]hAheAl/\"'/\eAh. (45)
We now note thate ; A---Ae,  * 0 ifand only if there exists a permutation 7 € P,
and J = (Jl,...,Jq) € I} such that
(Al""’Ah) = (Jn'(l)"""]n'(h))

and if this is the case, then

e N ney, =sgn(m)ey.
Thus (4.5) reduces to

— — (h)
;=% Y sgn(n)F“Jn“) Frgamer= X Fryey.
Je ]IZ T E Ph Je HZ
This formula establishes the desired bijective correspondence between &, and M
and hence the desired equivalence of the mult. ext. polyconvexity and polyconvexity
in Ball’s sense.
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In view of Propositions 9.6 and 9.7 yet another (slightly more natural) description
is in terms of the exterior powers A, F'. One can say that /' : M” %" — R is mult.
ext. polyconvex (and hence polyconvex in Ball’s sense) if and only if

f(F) = (I)(/\IF,...,/\qF),
F e M™*" where ® is a convex lower semicontinuous function defined on

Lin(A], AT") X --- X Lin(AZ, AZ).

5 Example B: Electro-magneto-elastostatics

The statics of electro- and magneto-sensitive elastomers has received considerable
attention in recent years [6, 12—15, 7-8, 11, 20] in view of their technological appli-
cations. The main point in modeling these materials is the coupling of the nonlinear
mechanical response with the electric or magnetic response. The goal of this section
is to determine the mult. ext. polyconvexity corresponding to this case; the reader is
referred to [32] for more details. Let Q < R” where n = 2 or 3.

The basic electromagnetic variables are the referential (lagrangean) electric dis-
placement D, magnetic induction B, the electric field £ and the magnetic field H,
defined on the entire space R, satisfying the static Maxwell’s equations

divD =0, divB=0,

curl E = 0, curl H = 0,
where div and curl are the referential versions of these operators, and the equations
are undersood in the weak sense. The mechanical variables are the deformation u :

Q — R”, deformation gradient ¥ = Vu and the referential stress S : Q — M" <",
The latter satisfies

} in R”" (5.1)

divS+b=0 in Q,
Sv=s, on J0Q,

where b is the body force, v is the normal to dQ, and s, is the surface traction on
0Q.

To formulate the constitutive equations, we note that many choices of indepen-
dent/dependent variables are possible. We take the triplet (¥, D, B) as independent
variables, start from the free energy function /' : M"*" x R"” x R" — R, ie.,
f =f(F,D,B), and put

The variational formulation seeks the equilibrium states as minimizers of the total
energy; then the divergence equations (5.1); enter into the definition of admissible
variations (competitors) in the minimum energy principle. On the other hand, the
curl equations (5.1), and the mechanical equilibrium (5.2) will follow as the Euler-
Lagrange equations for the minimizer.

The energy of the body is given by

I(u,D,B) = [ f(F,D,B)dx; (5.3)
Q

(5.2)
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the total energy then consists of this term plus the energy of the vacuum electro-
magnetic field in the exterior of Q and the term describing the loads. The integral in
(5.3) falls within the format (1.1) under the identifications which we now describe
separately for n = 3 and 2.

5.1 Dimension three Here m = 5 and the forms w, ..., @4 are as follows:
a)i:F}ldxl'i‘F}zde +F'i3dX3, 1 <i< 3,
Wy = Dld)el +D2d)/C\2 +D3d)/C\3, W5 = Bldjc\l +Bzd)€2 +B3d)€3, (54)
where 3

and F' is the deformation gradient. Thus @, w,, and w4 are 1-forms and w, w4 are
2-forms. The constraints (1.2) with 1 < i < 3 follow from the interchangeability of
the second partial derivatives while (1.2) for i = 4, 5 are equivalent to (5.1); since
(10.4) gives

3 3
dog= % le,idxi ndX; = .ZlDi,idxl Adxy A dxs
i,j= =
because dx; A dX; = 0;;dx; Adxy A dx;.

To determine the mult. ext. quasiaffine functions, we refer to Theorem 2.8, which
reduces the question to determining the list §, in (2.6) where R is defined in
(2.5). This construction of ¥ can be rephrased as follows: (a) construct all possible
multiple exterior products of the elements of the set

Wy, s, w3, Wy, (OF

(including the products of an element with itself) which result in forms of order < n.
(b) Then eliminate all redundancies from the resulting list (as some products will
occur several times or will differ by the sign or will vanish). (¢) The result is a set
which differs from § at most by the signs of its elements. This procedure produces

the following list of mult. ext. quasiaffine functions
l, o, wjrop, oiroyrey, 1=i<3, 1<j<k<3, (55)
Wy, @5, O, A0y, ©;,A05, 1<i<3. (5.6)

This is isomorphic to

1, F, cofF, detF, D, B, FD, FB. 5.7
Indeed, it was shown in Section 4 that (5.5) is isomorphic to the first four members
of (5.7); the first two members of (5.6) of course correspond to D and B, and for the

remaining two memebrs it suffices to note that
;i Awy=(FD),;dx; Andxy Adxz, ®; Aws=(FB); dx; Adx,y A dxs.

The list (5.7) was determined by a direct calculation in [32]. Thus the free energy
f =f(F,D,B) is mult. ext. polyconvex if there exists a convex function @ such that

f(F,D,B) = ®(F,cof F,detF,D,B,FD,FB) (5.8)
for each (F,D,B) € M"*" x R" x R" [32; Theorem 6.5].*

* After the research presented in this section and in [32] had been completed, I became aware
of the recent papers by Gil & Ortigosa [19] and Ortigosa & Gill [26-27]. (I thank M. Itskov for
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5.2 Dimension two Then (5.3) takes the form (1.1) with m = 4 and with the 1-forms
®q,...,w, given by

C()i:Fildxl +Fi2de, ISZSZ,
(O8] :Dlde _Dzdxl, Wy :Blde _Bzdxl.

The reader will have no difficulty to check that the list §¢ of mult. ext. quasiaffine
functions is

1, Wy, s, w3y, Wy, C()i/\a)j, 1 SZ<JS4,
which is isomorphic to
1, F, detF, D, B, FD, FB, DXB. 5.9

We note that the term D X B comes from the 2-form w; A w, € &, since w4 and
w, are 1-forms. This has no analog in dimension n = 3 since the corresponding
term w4 A ws (Where w,, ws are as in (5.4)), being a product of two 2-forms, is
a 4-form in dimension 3, and hence w, A wy vanishes. From (5.9) one finds that
f =f(F,D,B) is mult. ext. polyconvex if there exists a convex function @ such that

f(F,D,B) = ®(F,detF,D,B,FD,FB,D X B)
[32; Theorem 6.5].

6 Proof of Proposition 2.3

We shall prove
(1) = (i) = (v) = (i) = ().
(1) = (i1): Immediate.
(i) = @(v): If £ € CF(R",T§) then y := d¢ satisfies (2.3) and hence (2.2)
reduces to (2.4).
(iv) = (iii): Assume that we have

[fw+d0(x))dx 2 f(w) (6.1)
0

for every o € A and every 0 € C7(R",I'y) and prove (2.4) for every & e
Coer(R™, I'y). A scaling argument shows that (6.1) implies that for any positive
integer a we have a similar condition for the cube Q, = (0, a)”, namely,

[ flo+dbo(x))dx>a"f(w) (6.2)
04

forall 0 € Cy(Q,,Ty). Let ¢ € C*(R,R) be any function such that ¢ = 0 on
(—o0,0]and g =1on[1,0).Let m, : R” — R be defined by

drawing my attention to these papers.) In [19] and [26-27], the authors postulate, under the name
multi-variable convexity, Condition (5.8) as a convenient way to satisfy the electro-magneto-elastic
ellipticity condition. The relationship of their condition to the .e7-quasiconvexity theory, the main topic
of the present section, is not studied in these papers.
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mg(x) = q(xp)qla—xy)---q(x,)q(a~-x,)
forany x = (x,...,x,) € R". Thenm, € C;(Q,,R) and putting
Za::(laa_l)n’ Z((Z:::Qaw(l’a_l)n’

we have
m,=1 on Z,, my=0 on R"~Z,, |m,|+|Vm,|<C on Z,
where C is independent of a. If & € C;"GI(R", I'y)then@, =m, ¢ e Cy(Q,,Ty)
and the formula d@, = m_,d& +Vm,_, A & shows that
d0,=d¢é on Z, and |d0,|<C on Z (6.3)

where the bound C is independent of a. The left-hand side of (6.2) is written as the

sum of
| flo+d0,(x))dx and [ f(w+dO,(x))dx;
7

a Zg
noting that

| flo+do,(x))dx=(a—-2)" [ f(w+d&(x))dx
Z, 0

by the periodicity of &, we obtain

(a=2)"[f(w+dO(x))dx+ | f(w+d8,(x))dx2a"f(w). (6.4)
0 z§

Next we note that
|| fw+d0,(x))dx| <a""'C (6.5)
Zg

where the bound C is independent of a since the volume of the boundary layer
Z¢ satisfies £ (Z¢) < na"~! and since |f (@ +d0,(x))| < C on Z¢ by (6.3),.
Dividing (6.4) by a”, letting a — o and noting that the second term on the left-hand
side tends to 0 by (6.5), we obtain (2.4).

(iii) = (i): Suppose that (iii) holds and prove (i). Thus let @ € A and let
/S C;’er(R”, Ay) satisfy (2.3), and prove that (2.2) holds. Since every such a y
can be approximated by a sequence of trigonometric polynomials in CJ,.(R", Ay)
satisfying (2.3), we can assume from the start that y is a trigonometric polynomial,
ie.,

U/I(X) — Z ‘/'}kGZTCik-x’
kezn
x € R", where , € A and only finitely many ¢, are different from 0. The

conditions (2.3) give
kAaw,=0 forall keZ"” and =0 (6.6)
and we have additionally the reality conditions
Vi =W_; (6.7)

where now we work (tacitly) in the complexifications of the spaces, and % denotes
the complex conjugation. The first of (6.6) implies that foreach k € Z", k + 0, there
exists an ¢, € I'g such that
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r=kn&, (6.8)
and only finitely many & « are different from 0. Moreover, Condition (6.7) and the
‘odd’ nature of the requirement (6.8) shows that the coefficients g, can be chosen as
to satisfy E]:‘ = —E_k. Thus, putting Eo = 0 and defining & by

Ex)=Q2ri)y !ty g embr
kezn

we see that ¢ takes only real values and & € C;"CI(R”, I'y ). Thus (2.4) holds for this
¢ and since by the construction y = d &, we see that (2.4) reduces to (2.2). O

7 Proof of Theorem 2.8

We prove Theorem 2.8 by establishing the following cycle of implications:
mult. ext. affinity =
mult. ext. one affinity =
the explicit form (2.7) = (7.1)
f is a mult. ext. null lagrangian =

mult. ext. affinity.

The first implication is the general assertion in Theorem 8.4; one has only to verify
that the general definition (8.2) of the characteristic cone reduces to (2.1) in the case
of the constraints given by (1.2). But this is immediate.

We now turn to the remaining three implications in (7.1).

7.1 Lemma Any mult. ext. one affine integrand f of type s is a polynomial of degree
< n in the components of ® € A; moreover, for any integer p 2 2 the derivative
D?f(w) of f of order p at any point @ € A satisfies

DPf(A) ANg(1yseesdp Allgpy) =520(T) DPF(Ay Amy,easdy Amp). (7.2)

forany ... ,lp elg ny,..., N, € R" andt € IP’p. Here and below we consistently
omit the argument @ of DP [

By Definition 9.4, the alternating property (7.2) is equivalent to the condition
DPf(AyAnyseesdy Am,) =0 (7.3)

whenever 7, ..., 17, are linearly dependent. In the broader context of the theory of
compensated compactness, the analog of (7.3) is a necessary, and under the constant
rank assumption also sufficient condition for the weak continuity of a function f* (see
[34; Theorem 18], [25; Theorem 3.4]). Here f is a function of a general variable, not
necessarily of a collection of differential forms. Alternatively, the analog of (7.3) is
necessary for f to be quasiaffine in the context of higher-order variational problems
(see [2; Theorem 3.4]). Nevertheless, Lemma 7.1 does not follow from any of these
results, because its hypothesis is (slightly) weaker.

Proof (Cf. [30; Proof of Propositions 13.5.2 and 13.5.3].) Let f be a mult. ext. one
affine integrand of type s. Prove first the assertion of the lemma under the additional
assumption that /" is infinitely differentiable.
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(i1): Differentiating the mult. ext. one affinity condition
flto; + (1 -Do,) =1tf (o)) + (1 —1)f (,)
with respect to ¢ twice at = 0 and using w, — @, = 4, A5, forsome 4, € I'g and
n € R”, we obtain
D%f (A ANy Ay Anpy) = 0. (7.4)
Next, we shall employ twice the following direct consequence of the polarization
identity, which we record formally for a future convenience: If B(-,-) is a bilinear
form on a vector space X then
B(a,a) =0 forall ae X < B(a,b)+B(b,a)=0 forall a, b e X.
(7.5)
Recalling (7.4) and applying (7.5) to the bilinear form
B(41,42) = D[ (A1 ANy, dp A )
one obtains sz(,ll AN Ay Al )+ sz(,l2 ANy, Ay A1) =0 and hence
D’f (Ay Ay, g ATy) =0
by the interchangeability of the second partial derivatives. Thus applying (7.5) to the
bilinear form
B(4).4;) = D’ (4y Any. 2y App) =0
and using the interchangeability of the second partial derivatives we obtain
D*f (A Anis2g Alp) + D2 Ay Anp,dy Any) = 0.
Differentiating the last identity p — 2 times in the directions 45 A #75,..., 4, A7, We
obtain
DPf(Ay Any Ay Afgs Ay ANz, Ay ATYL)
+ DPf (A ANyl AN A3 AT,y dp A,) = 0.
This establishes (7.2) for the special case of the permutation 7 which interchanges the
first two indicesin { 1, 2,..., p}. Using the invariance of D? /" under all permutations
from PP, one extends (7.2) to any permutation z which interchanges any pair of indices
in{1,2,...,p}. Since any permutation is a composition of these special cases, one
establishes (7.2) generally.
Applying (7.2) with p = n + 1 and using the elementary fact that there is no
nonzero alternating » + 1-form on R”, we obtain

D" GGy Anysisdy iy Ay ) = 0 (7.6)

foreach w € Ag,each4,,...,4,,, € I'yandeach #,...,7n, ., € R". Since
span{ian:4el,neR"}=A,,
Equation (7.6) implies
D"*lf(6),....6,,,) =0
forany 6,,...,06, ., € Aj by the n + 1-linearity of D”*1f Thus f is a polynomial
of degree at most n.

This proves the lemma under the additional assumption that /" is infinitely differ-
entiable. If /* is merely continuous, we approximate it by the sequence f,,, p > 0, of
mollifications of /. Clearly, the functions f,, are mult. ext. one affine as a consequence
of the same property of /. By the already proved part, each f, is a polynomial of
degree < n and hence the limit /° of f,, is again a polynomial of degree < n. O
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7.2 Remark Let f be a mult. ext. one affine integrand f of type s. By Lemma 7.1,
f is a polynomial in the variable @ € A of degree deg(f') < n. Let us decompose f
into the homogeneous polynomials, i.e., let us write

deg(f)
f= % g (1.7
p=0
where each g, is a homogeneous polynomial in the variable @ € Ay of degree p,
ie., one satisfying g, (t@) = t’g, (@) for each ¢ € R. An easy scaling argument
shows that the mult. ext. one affinity of /° is inherited by each of g, separately. Thus
to establish the general form of an mult. ext. one affine integrand /', we can consider
only homogeneous polynomials of degrees p = 0,...,n, and to sum the results of
these particular analyses at the end.

A crucial step in the succeeding analysis of mult. ext. one affine integrands is
that even homogeneous degree p mult. ext. one affine integrands can be decomposed
into smaller and more tractable pieces, each of which is mult. ext. one affine as well,
as Equation (7.9) of the next proposition shows.

This requires the following notation. For any integer p € {0,...,n} let 4(s,p)
be the set of all sequences f# = (f,,...,5,,) of nonnegative integers satisfying
S B; =p.Forany g € #(s,p)let (((B,1),...,J(B,p)) beap-tuple of positive
integers with the components {(f, k), 1 <k < p, given by

s(1) if 1 <k<py,
s(2) if B+ 1<k<p+p,,

)=y
¢(B.E) s(iy if pi+...+B,_+1<k<p +...+5,,
s(m) it py+...+p,1+1<k<p+...+5,.
For any object ¢ and any nonnegative integer S let [c] 5 be the S-tuple (c,...,c) if

p times

B> 0and [c]; = nothingif # = 0.

7.3 Proposition Let f be a mult. ext. one affine integrand that is simultaneously
a homogeneous polynomial of degree p. Then for each B € A(s,p) there exists a
real-valued p-linear form Gﬁ = Gﬂ(al, s O ) of p variables

(01""’0]7) S /\C(ﬂ,l) X/\C(ﬂ,z) X oo X/\C(ﬂ,p) (78)
with the following two properties:
(i) foreachw = (w,,...,0,,) € Ag,
BeB(s,p)

(i1) we have

Gﬂ(il A nr(l),...,ip A ﬂr(p)) = sgn(7) Gﬂ(il A ql,...,ip /\ﬂp) (7.10)

whenever
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(A1seesdp) € Npp 1y—1 XA (g 21 X XA py-1
(155 ,) € [R™"]?, and 7 e P,.
Each expression

in the decomposition (7.9) contains exactly f, repetitions of @, f, repetitions of w,,
etc., with some of the w,’s (possibly) omitted. Each block (7.11) has the alternating
property (7.10), which, of course, is inherited from the same property of f, as stated
in (7.2).

Proof Foranyie€ {1,...,m} and any object ¢, we denote by (c; i) the m-tuple
(c;i)y=1(0,...,0,¢,0,...,0)

with the entry ¢ on the i-th place. Writing @ = 37| (®,; i) in the formula

Df(w,..., )
f(o) = ! I
and expanding, one obtains the decomposition
1 m . .
f(w)=— Y D?f((w;,3i1),.... (@, 51,)). (7.12)
pli i,=1 PP
e ip=

Given f € %(s,p), we denote by S(f) the collection of all sequences y =
(rys---s Vp ) of integers between 1 and m such that y contains the valuei € { 1,...,m}
exactly £, times. Then (7.12) takes the form

flo)= ¥ Hg(o)

BeXB(s,p)
where

1
Hy(w) = o1 ye%(m Dpf((cum;y1>,...,(coyp;yp ).

We observe that ({(f,1),...,{(B,p)) is a member of S(f), in fact the unique
element of S'(f) that is a nondecreasing sequence. A general element y of S(f) is a

permutation of ({(f,1),...,{(f,p)). Combining this with the symmetry of D? f
under permutations, one obtains (7.9) with

Gp(01s00,) = DPS (00 (g 1) 0 (g )
for any (oy,...,0,) as in (7.8). Then the alternating property (7.10) follows by
obvious choices of arguments in (7.2). O

The functions G ) of Proposition 7.3 admit the following simple description.

7.4 Lemma Foranyf € #(s,p) there exists o = ag € Ny whered = Sy s(i)B;,
such that

Gﬂ(o'l...,o'p)=Ocﬂ~(01/\-~-/\0p) (713)
forany (o4, ...,0,) as in (7.8).
Proof Let us consider the expression G p(‘71 ..., 0,) with the arguments o, equal to
simple vectors, i.e.,
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ak:Uk,lA"'Avk,C(ﬂ,k)’ lgkgp,

where Uk, 12>V, o (p, k) are vectors in R”. The result is a d-linear form F on
[R” ]9 of the variables

d
(Ul,l""’vl,f(ﬂ,l)’02,1""’UZ,C(ﬂ,Z)""’Up,l""’vp,f(ﬂ,p)) S [Rn] .

(7.14)

Let us show that the form F is alternating, i.e.,
F(WF(I)”WF(d)) = Sgn(E)F(WI,...,Wd) (715)
forevery w,...,w, € R" and every permutation ¢ € IP ;. To prove this, it suffices to

establish (7.15) only for all simple permutations, i.e., those which exchange only two
indicesin { 1,...,d}. The construction of F' gives that (7.15) holds if & represents an
exchange within the same block in the right-hand side of (7.14), i.e., for all &£ which
exchanges

Vg O U where 1 <k<p, 1<i,j<{(p k). (7.16)
Next, to establish (7.15) for permutations exchanging

Vi O U where 1 <k+[/<p, 1 <i<{(p, k) 1<j<{(B1),
(7.17)
we invoke (7.10). Indeed, that equation shows that (7.15) holds for some particular
cases of (7.17), viz., for any ¢ that exchanges

Vkcp k) € Uy gp Where 1 <k *[<p are arbitrary.

Combining this with the exchanges within single blocks as in (7.16) provides (7.15)
for arbitrary simple permutation, and hence also for every permutation ¢ € IP ;. Then
(7.15) and Proposition 9.5 (below) imply that there exists a a 5 €Ny such that

Fwi,oowg) =ag - (Wp A Awy)
for every wy,...,w, € R". This establishes (7.13) when o, ..., o ; are simple mul-
tivectors; the linearity then extends (7.13) to any collection 5, ..., 0. O

7.5 Lemma An integrand f of type s is mult. ext. one affine then it is of the form
described in Item (ii1) of Theorem 2.8.

Proof As explained in Remark 7.2, it suffices to consider the case of a homogeneous
polynomial /" of degree p = 0, ..., n. Assuming this, we combine (7.9) with (7.13) to
obtain

f(w):ﬁeﬁz(,s p)aﬂ~(a)((ﬂ,1)/\-~-/\a)5(ﬁ,p)) (718)

Referring to the remark in Definition 2.6(i), if # € %(s,p) is such that for two
different indices k, / we have { (f,k) = (f,1) and s({(p, k)) is odd, then

Orpg )N A0 ) =0

forany @ € Ag. Thus all # of this type can be omitted in the sum (7.18). The set of
all remaining f# coincides with the set R of admissible exponents. Observing that
Orp YN ADrp ) T w” we see that (7.18) takes the form
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flo)= ¥ a0
redig
deg(r)=p

where deg(r) = 37_ | r;. This gives the desired form of homogeneous mult. ext. one

affine integrand which is a homogeneous degree p polynomial. The decomposition
(7.7) then leads to the general expression (2.7). O

7.6 Lemma I[fanintegrandf of type s has the form described in Item (iii) of Theorem
2.8, then it is a mult. ext. null lagrangian.

Proof We have to prove that any function /" of the form /' = 0", ® € A, where
re Ry, satisfies

[f(dé+dO)dx=[f(d&)dx (7.19)

Q Q
for any bounded open set Q < R”,any { € C*(R”,I'y), andany @ € C7(Q,Ty).
Note first that it suffices to establish (7.19) for regions Q with smooth boundary.
Indeed, if Q does not necessarily have smooth boundary and & € C*(R",T’), and
0 € C7(Q,T'y), we take any bounded region Q with smooth boundary such that
Q c Q. The assumed validity of (7.19) for Q then yields

[f(dé+d0)dx=[f(dS)dx (7.20)
Q Q

and noting that on Q~Q wehave 0 = 0, we can subtract the integral JQNQ f(d¢é)dx
from (7.20) to obtain (7.19).

Thus assume that Q has smooth boundary and prove (7.19). The case of a
constant function f* corresponding to r = (0,..., 0) being clear, we assume that

. .. ; 1 )
r; 2 1 for some i € {1,...,m}. Writing o' = w; A o'~ ", we factorize the

function /" according to
fo)=w; n0!
where ¢ = (r{,...,7; = 1,...,7, ). Then
f(dE+dO)=d(&+0,)A(dE+dO)I =d((&E+0,)A(dE+dB)T)
and Stokes’ theorem yields
gj}f(d§+d0)dx = 6{2(@ +0,)A(dE+dO)I AvdA = anfi A(dE)I AvdA

where A is the area measure and v the normal to d Q and where we have used that 8
and d @ vanish on 0 Q. A similar application of Stokes’ theorem yields

[fd&)dx= | & A(dE) AvdA.
Q a0
A comparison of the last to equations provides (7.19). O

7.7 Lemma Any mult. ext. null lagrangian is mult. ext. quasiaffine.

Proof It suffices to apply Definition 2.7 to ¢ such that d¢ = e is constant, and
Q = Q. This shows that f* satisfies Condition (iv) in Theorem 2.8 and hence that
theorem yields that / is mult. ext. quasiconvex. O

Collecting the above lemmas, we see that the cycle of implications (7.1) is
complete and so Theorem 2.8 holds.
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8 Appendix A: .o/-quasiconvexity

The purpose of this section is to discuss the general notions of .o/-quasiaffinity,
o/-polyconvexity and A-convexity and A-ellipticity conditions [18, 24-25, 34, 9].

8.1 The differential operator .o/ and the characteristic cone A The following
dimensions will be needed in the subsequent discussion:

n = the number of independent variables, x = (x,,...,x,,), l
d = the number of dependent variables, u = (u,,...,u ), (8.1)
[ = the number of differential constrains.

We shall consider the following first-order differential constraint on a map v €
C*(R",RY):
v =0
where . 3
v =Y AU ) 28

i=1 dx;

with 40 e Lin(R4,R’), i = 1,...,n. Foreach n = (y,...,7n,) € R" define
A(n) = 3 7,49,
i=1
which is an element of Lin(R“, R!), and make the standing assumption that the rank

of A(#n) is the same for all # + 0. Next, we put
A={ueR?:A(p)u=0 forsome 7 €R" : 7% 0}. (8.2)

8.2 Definition A continuous function f : R” — R is said to be
(i) o/-quasiconvex if
éf(u+v(x))dx > f(u) (8.3)

for all u € RY and all v € C% (R",R?) such that /v = 0 on R” and
[ovdx=0.

(i1) .oZ-quasiaffine if /* takes only finite values and both /" and —f" are .o/-quasiconvex,
i.e., if (8.3) holds with the equality sign for all # and v described in (i).

(iii) .7-polyconvex if there exists a finite number of .«/-quasiaffine functions f1, ..., f,

and a convex lower semicontinuous function ® : R — R such that

S ) =0 (u),....[g(u))
for each u € R".

We also introduce the following terminology to ease the formulations below.

8.3 Definition A continuous function f : R¢ — R is said to be
(i) A-convex if
S (uy+ (1 =uy) < tf (uy) + (1 = 1)f (uy)

for every t € (0, 1) and u, u, € R¥ such that u, —u; € A;
(i) A-affine if it takes only finite values and both /" and —f are A-convex.
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8.4 Theorem ([18; Proposition 3.4]) Iff : R? — R is a continuous o/ -quasiconvex
function then f is A-convex; consequently, if f is .o/-quasiaffine then f is A-affine.

9 Appendix B: Grassmann’s algebra

This and the following sections briefly recapitulate the basic notions of exterior
algebra and analysis. I follow [5; Chapter 4] and [16; Chapters One & Four] in taking
a straightforwardly abstract attitude.

Throughout this section, V' denotes an n-dimensional real inner product space.
The inner product enables us to identify V' with its dual; consequently, we do not
distinguish between multivectors and covectors and between differential forms and
multivector fields. Of course the theory is applied with ¥ = R” in the preceding
sections.

9.1 Theorem There exists a unique (up to an isomorphism) associative algebra
AV with identity e with the following properties:

1) AV DOV,

(i1) every v € V satisfies v A v = 0 (here A denotes the productin N\, V');

(i) dim A,V = 2";

Av) A,V is generated by e and V.

We refer to [5; Sections 4.3 & 4.4] for a proof. We call A,V the Grassmann al-
gebra over V, its elements multivectors, and A the exterior product. The following
proposition decomposes A, V' into a direct sum of subspaces AV of homogeneous
elements of different degrees. An alternative approach introduces the spaces A,V
first and then defines (often implicitly) A, as the direct sum.

9.2 Proposition If for each nonnegative integer s we put
A Y= ! span {Af_  u; tuy,...,ug €V} if s>0,
§ _[/\SV:span{e} if s=0
then Y
ANV =& NV
s=0
and
(AT )A(A,V) S A,V for all nonnegative integers s, f;
moreover, the following commutativity-anticommutativity rules hold:
unv=_(-1)" Au, 9.1
Va(y A AUg(s)) =8gn(m)vy Avs A vy
forany u € AV, v € \,V, any collection v,,...,v; € V and any permutation
=

The elements of AV are called s-vectors or equivalently multivectors of degree s.
It is well-known that n

dimA, ¥ = ().

The inner product on V' extends to an inner product on A, V' via Grassmann’s

formula (9.2) as follows.
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9.3 Theorem
(1) There exists a unique inner product on A\, V, denoted by u - v for each u, v € V',
such thatu - v =0 ifu e N\; and v € \, with s + t and with

N N
(./\lui)-(./\lvi)=det[u,~~vj]lsl~,jss (92)
1= 1=
for every positive integer s and every u,...,ug, vy,...,v5 € V;
(1) ifu e NgV, v e N,V and s 2 t then there exists a unique u L v € N, _, such

that
(L v)-w=u-(wav)
forallw e N, _,V while if s < t then there exists a unique u _| v € N\,_ such

that
(u dv)-w=(uaw)- v

forallweN,_,V.
The reader is referred to, e.g., [16; §1.7.5] for a proof.

9.4 Definition We say that ¢ : '* — R is an alternating s-form on V if it has the

following two properties:

(i) ¢ is s-linear, i.e., for each integer £ satisfying 1 < &k < s and each
Uysees V15 Vpyqs---» Uy € Vthemap v, = ¢(v,...,v ) is linear on V;

(ii) we have ¢(v,...,vy) = 0 if the collection (v ,..., v ) € V¥ contains at least
two identical elements.

We have the following two equivalent forms of Property (ii):
(iii) for each (vy,..., v;) € V* and each permutation 7 € P; we have
¢(U71;(1)7 [ XE] U][(S)) = Sgn(n)¢(01a reey US );
(iv) if the collection (v, ..., v ) € V¥ is linearly dependent then ¢ (v, ..., vy) = 0.

The following proposition establishes the well-known relationship between multi-
vectors and alternating forms on V.

9.5 Proposition ¢ : V¥ — R is an alternating s-form on V if and only if there
existsaw € N,V such that

d(vy,...,0 ) =w-(v; A A V)

for each (v,...,v,) € V?; this establishes a bijective correspondence between
alternating s-forms on V and the elements of A\ V.

The following result provides an invariant (coordinate-free) approach to deter-
minants and subdeterminants of a linear transformation; see in Proposition 9.7.

9.6 Proposition If W is another finite dimensional real inner product space then ev-
ery F € Lin(V, W) has a unique extension \ , F to an unital algebra homomorphism
from A,V into N, W. The map A, F satisfies (N, F) N, V C A W.

See [5; Remark (3), p. 56] for proof. The restriction A F of A, F to AV is called
the exterior power of F' of degree s. Clearly, A(F' = 0 forall s > g := min {m,n}.
Since A, F' is a homomorphism, we have
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ANFQuy A Aug)=(Fuy) A A (Fuy)

for every u,,...,uy € V, which is often taken as a defining property of A F. If
F eLin(V,W) and E € Lin(W, X)) then

AN (EF) =(AE)YAN,F) and A  (EF) = (AE)(A\F).
The last proposition of this section identifies the matrix elements of the exterior
power A F of a transformation ¥ € Lin(V, W) with minors of order s of the

matrix of F. Let e,...,e, and f},...,f,, be arbitrarily chosen bases in V' and WV,
respectively. If we define

ej=ey A neys, fr=f A AT 9.3)

foreach J = (J,...,J;) €I and each I € I, then the collections e, J € I, and
Jp. I € I, are bases in AV and A W, respectively. The matrix elements of /' and
A F are defined standardly by

m
Fe; = '21 Fiifis (AsFe; = 121[ FI(-SJ)fI’
i= ely

i=1,..nJel.

9.7 Proposition The matrix elements of A\ F are given by

Fl(j) :=det[F1an]15a,bgs, ]EH;”, JGH?

See, e.g., [16; Subsection 1.3.4] or [22; Section XIX.2].

10 Appendix C: Exterior calculus

In this section, € is an open subset of R”. We write
ANy =A R A =AR", T =17,

it will be convenient to put A_; = {0}. An s-form on Q (or interchangeably an
s-vector field on Q) is any map w : Q — A . We let e, ..., e, be the canonical
basis in R” and use the induced basis e;, I € [ in A; see (9.3). The expansion of
o 1in this basis is

0= Y wre (10.1)

el

where w; € C*(Q,R). A more standard notation denotes by x; : R” — R the
i-th coordinate function, associating with any x = (x,,...,x,) € R” the number x,,
notes that dx; = e;, and rewrites (10.1) as

W= > Op . dXp A ANdXg
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0.1 Theorem For each open subset Q of R" there exist unique linear maps d and
div from C*(Q, A\, ) into itself such that

d(fu) =Vf Aru, div(fu)=Vf _Ju (10.2)
forevery u e A, and every f € C*(Q,R).

The operation d is called the exterior derivative and the operationdiv the (generalized)
divergence [as it coincides with the usual divergence on 1-vector fields (see Item (iii)
of Theorem 10.2, below)]. Alternatively, the divergence (or its multiple by a factor
+1 that may depend on the dimension and degree) is denoted by & and called the
interior derivative or codifferential in the literature. The definition based on (10.2) is
possible only because R” is flat; the formulas (10.2) are meaningless on manifolds.
Moreover, the definition of div makes use of the inner product on R” via the operation
_I. With an association to the formulas curl v = V X v and dive = V - v from the
elementary vector calculus, we may write in a perfect analogy

do=VArw, divo=V _lw

as motivated by (10.2) and by the formulas to follow.
Proof The operations d and div defined by
n n
do=3% e;rnw ;, divo= 3 e, 1o (10.3)
i=1 i=1
for any w € C*(Q, A, ) plainly satisfy (10.2). On the other hand, expanding any
o e C*(Q,A,) into components in the basis e;, I € I, s = 1,...,n, using the

linearity of d and div, a multiple application of (10.2) shows that d and div must be
given by the formulas (10.3). O

10.2 Theorem The maps d and div from Theorem 10.1 have the following proper-
ties:
(1) we have

d*=d o d=0, div?:=div o div=0;

(ii) for each nonnegative integer s, the map d maps C*(Q,A) into C*(Q, A )
and div maps C*(Q,\;) into C*(Q, A\, _,);

(ii)on C*(Q,R), d coincides with the usual gradient and on C*(Q,R"), div
coincides with the usual divergence;

(iv)ify e C*(Q,A;) and w € C*(Q,A\,) then

diyrw)=dyro+(-1)’yArdo (10.4)
and if additionally s > t then
diviy L @) = (divy) L o+ (-1)* """y L do; (10.5)
V) ifye C*(Q,Ay) and w € C*(Q,A\,_,) then
diviy L w)=w-divy +y-do (10.6)

where the divergence on the left-hand side is the usual divergence of a 1-vector
field.



11. References 30

Proof We refer to, e.g., [5; Section 4.6] for the proof of Items (i)—(iii) and (10.4).
Formula (10.5), which is perhaps less standard, is proved analogously; it is stated
without proof in [16; p. 356] as the second member of the list of eight formulas for
the boundary operator d = —div.* The proof is completed by noting that (10.6) is a
particular case of (10.5). O

10.3 Definition Let 1 < p,g <cand w € LP (Q,Ay).
(i) We say that @ has the weak exterior derivative in L? if there exists a do €
L7(Q, A, ) such that

Jo-divpdx=-[y -dodx (10.7)
) )

forevery y € CF(Q, A, ).
(i) We say that @ has the weak interior derivative in L? if there exists a divw €
L7(Q,A_,) such that

Jdivo-ydx=—-[w- -dydx
Q Q

forevery y € C5(Q, A, _,).

If w is continuously differentiable then the weak definitions of dw, div @ coincide
with the classical ones. Indeed, in the context of Item (i), one can employ Formula
(10.6) to show that

diviy L w)=w-divy+y-do (10.8)

where on the left-hand side div is the classical divergence of a 1-vector field and
div i and dw are the classical derivatives given by (10.3). Since i L @ vanishes near
the boundary of ), the elementary divergence theorem for n-dimensional regions in
R™ and 1-vector fields and (10.8) give

0=[diviyLw)dx=[w-divydx+ | y-dodx
Q Q Q

and hence (10.7). The same reasoning applies to div .

The same procedures as in Items (i) and (ii) lead to the definitions of d and div
in the class of A,-valued distributions 2/(Q, A;), i.e., to the space of de Rham’s
currents in Q [10, 17, 16]. If T € 2'(Q, A,), we define dT € Z'(Q, A, ) and
divl € 2'(Q,A,_,) by

(dT,y) =—(T.divy), (divT,x)=—(T,dy)

foreach y € Z(Q, A, ) and y € Z(Q, A, _,) where we use the brackets to denote
the values of the distributions on test functions. The so-defined divergence operator
is related to the boundary operator d central to the homological integration theory by
oT =—divT.

* A different sign convention is used to define L so that the signs are different in [16; p. 356].
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