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Abstract Peridynamics is a nonlocal continuum mechanics which replaces the differential

operator embodied by the stress term div S in Cauchy’s equation of motion by a nonlocal force

functional L to take into account long–range forces. The resulting equation of motion reads

ρ, ¨ L u + bÙ (u ¨ displacement, b ¨ body force, ρ ¨ density).

If the characteristic length δ of the interparticle interaction approaches 0, the operator L admits

an expansion in δ which for a linear isotropic material reads

L u ¨ �λ + µ�∇ div u + µá u + δ2Λ
2
ċ ∇4 u + δ4Λ
3
ċ ∇6 u +Ü Ù

where λ and µ are the Lamé moduli of the classical elasticity, and the remaining higher order

corrections contain products of the type Tsu Ú¨ Λs ċ ∇
2s u of even order gradients ∇2s u (i.e.,

the collections of all partial derivatives of u of order 2s) and constant coefficients Λs collectively

forming a tensor of order 2sØ Symmetry arguments show that the terms Tsu have the form

δ2s − 2�λs + µs�á
s − 1 ∇ div u + δ2s − 2µs á

s u

where λs and µs are scalar constants. This note determines explicitly λs and µs in terms of the

properties of the material (i.e., of the operator L) in all dimensions n (typically, n ¨ 1Ù 2 or 3).
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1 Introduction

Peridynamics is a nonlocal continuum theory that does not use the spatial derivatives
of the displacement field. This reformulation of elasticity theory to accommodate dis-
continuities and long–range forces was introduced by S. A. Silling in [16] and revised
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and broadened by S. A. Silling, M. Epton, O. Weckner, J. Xu & E. Askari in [18]. It
is a convenient tool to study defects such as cracks and interfaces. Peridynamics is
similar in goals but different in form from the earlier versions of nonlocal mechanics
summarized by I. A. Kunin in [11–12] and by A. C. Eringen in [9]. The reader is
referred to the last three references for notes on the history and authorship.

To formulate the equation of motion, let Ω ⊂ R
n (n arbitrary, but typically

n ¨ 1Ù 2 or 3), be the reference configuration of the body with material points labeled
by x X ΩØ Let u ¨ u�xÙ t� be the time–dependent displacement, and b ¨ b�xÙ t� the
body force. The motion is governed by the equation

ρ, ¨ L u + b (1.1)

where ρ is the density and Lan operator which describes the density of force �L u��x�
at the point x exerted on x by the rest of the body. The exact form of the operator
L often differs in different authors; cf. e.g., [17, 21, 8, 19–20, 7, 1, 14, 5, 4]. It is
hard to find compelling arguments for the preference of one form over another, and
generality must be sought in this situation instead. We record the main forms of the
operator L from [16] and [18], viz.,

L u�x� ¨ �
Ω

f�u�y� − u�x�Ù y − x� dV
y
Ù

L u�x� ¨ �
Ω

�T�u�y� − u�x�� − T�u�x� − u�y��	 dV
y
Ù

respectively, where f and T are materially dependent functions of the indicated argu-
ments. Throughout the paper, dV and dA denote the elements of the n–dimensional
volume and n − 1–dimensional area in R

n.
The present note deals with the linearized isotropic case, with

L u�x� ¨ �
Ω

K�y − x��u�y� − u�x�	 dV
y

(1.2)

where the form of the kernel K is dictated by the representation theorem of isotropic
functions, i.e.,

K�p� ¨ ψ�p�|p|21 + ω�p�p � p (1.3)

p X R
nÙ where ψ and ω are radial scalar functions determined by the properties of

the material. A function η is said to be radial if the value η�p� depends only on |p|Ø
The form (1.3) is used also by S. A. Silling in [16; §8] within the particular theory
leading to Poisson’s ratio ν ¨ 1/4# and generally by T. Mengesha & Q. Du [13].
This is seemingly different from later proposal of S. A. Silling in [20; p. 104], also
applied in [4], where L contains a double integration over the body while (1.2) does
not. It will be shown in Section 2, below, that the discrepancy is only optical and
(1.2)–(1.3) cover also that case.

The present note deals with the limit of the theory if the range of the interparticle
forces approaches zero, i.e., the limit of vanishing nonlocality. Our concern is

# Indeed, a closer examination of Silling’s derivation of his [16; Eq. (61)] shows that he obtains

(1.3) with ψ and ω satisfying the extra restriction

ω�p� ¨ 2ψ�p� + p ċ Dp ψ�p�Ù

which is the root of the unwelcome consequence ν ¨ 1/4Ø
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(i) whether the theory approaches the classical isotropic linear elasticity

ρ, ¨ N u + b

with the Navier operator

N u ¨ �λ + µ�∇ div u + µá uÙ and (1.4)

(ii) how to determine the form of the higher–order corrections to NØ
These questions were first addressed and solved by O. Weckner & R. Abeyaratne [21]
in the unidimensional case and by E. Emmrich & O. Weckner [8] in dimensions n ¨ 1Ù
2 and 3 within the original particular theory [16], which covers only materials with
Poisson’s ratio ν ¨ λ/�2�λ + µ�	 ¨ 1/4Ø The considerations in [21] and [8] are based
on the Taylor expansion of the difference u�y� − u�x� in (1.2), an approach used to
solve Question (i) several times since [2–3, 7, 14, 4], the present note inclusive.

Question (ii) seems to be treated only in [21] and [8]. Both these reference show
that the higher order corrections contain only gradients ∇2s u of even orders 2s
(s ¨ 2Ù 3ÙÜ) with the coefficients Λs of the expansion

L u ¨ N u + δ2Λ
2
ċ ∇4 u + δ4Λ
3
ċ ∇6 u +Ü Ù

where δ is the length scale of the theory. In the unidimensional case of [21] the
coefficients Λ
2s are just numbers and no problem arises. In the higher dimensional

case in [8] the coefficients Λs are tensors of order 2s. These are determined for low
values of s in [8] by introducing the polar coordinates in R
2 or R
3Ù which results in

complicated coordinate–dependent formulas which are hard to interpret.
In the present note we use the isotropy, apply elementary representation theorems

for isotropic functions, and integrate over the unit spheres S
n − 1 in R

n to show that
the expansion takes the form

L u ¨ N u + δ2N�2�
u + δ4N�3�

u +Ü Ù

where N
�s� are Navier operators of order 2s of the form

N
�s�

u ¨ �λs + µs�á
s − 1 ∇ div u + µsá

s
u (1.5)

with the Lamé moduli λsÙ µs determined explicitly by the peridynamic material, see
(3.4) (below). Thus only very specific combinations of the partial derivatives of u

occur. The form (1.5) alone with unspecified coefficients λsÙ µs follows directly from
the isotropy; however, to determine their explicit values requires an integration as
outlined.

2 Linear isotropic peridynamic materials

In this section we discuss the form of the force operator L in (1.1) for a linear isotropic
nonlocal material. We assume the form

L u�x� ¨ �
Ω

K�y − x��u�y� − u�x�	 dV
y

(2.1)

x X ΩÙ where the kernel K vanishes if the distance |x−y| exceeds some characteristic
length δ of the material. Then for points x X Ω whose distance from the boundary
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of Ω exceeds δ, the integral in (2.1) over Ω can be replaced by the integral over R
nØ

Later we shall deal with the limit δ r 0 and thus the distance from the boundary of
every point x X Ω eventually exceeds δØ In other words, we identify Ω ¨ R

n and
integrate over R

nÙ i.e.,

L u�x� ¨ � K�y − x��u�y� − u�x�	 dV
y

(2.2)

x X R
nÙ where here and below, we abbreviate � Ú¨ �

R n

Ø

The author believes that the form of K is dictated by the representation theorem
of isotropic tensor–valued functions rather than by heuristic visualizations of inter-
particle bonds. Thus, denoting by O�n� the full orthogonal group on R

nÙ we base our
treatment on repeated uses of representation theorems for O�n�–invariant scalar and
tensor valued functions of a vector argument. Let f and G be functions on R

n and
taking their values in R and in the space of symmetric second order tensors on R

nÙ
respectively. We say that f and G are O�n�–invariant (equivalently, isotropic) if

f �Qc� ¨ f �c�Ù G�Qc� ¨ QG�c�QT

for all c X R
n and Q X O�n�. The well–known elementary representation theorems

(a particular case of [6; §13.32; General Representation Theorem]) then say that f is
radial, i.e., the value f �c� depends only on |c| and G has the form

G�c� ¨ η�c�1 + θ�c�c � cÙ (2.3)

c X R
nÙ where ηÙ θ are radial functions. Here 1 is the identity transformation on R

nØ
Moreover, if f is a polynomial in the components of c then f can be expressed as a
polynomial in |c|2Ø The last is a particular case of [22; Statement Tmn , §9], but also
follows elementarily. Taking the trace of (2.3) and forming the scalar product of (2.3)
with c � c we obtain

nη�c� + |c|2θ�c� ¨ tr G�c�Ù |c|2η�c� + |c|4θ�c� ¨ G�c�c ċ c

from which

η�c� ¨
|c|2 tr G�c� − G�c�c ċ c

�n − 1�|c|2
Ù θ�c� ¨

nG�c�c ċ c − |c|2 tr G�c�
�n − 1�|c|4

Ø (2.4)

Consequently, by the representation theorems,

K�p� ¨ ψ�p�|p|21 + ω�p�p � pÙ (2.5)

p X R
n, where ψ an ω are radial functions. We make the following permanent

assumptions: if η stands for ψ or ω then

η�p� ¨ 0 if |p| ³ 1 and � |η�p�||p|3 dV
p
° ð (2.6)

Assumptions (2.6) guarantee that all the integrals that occur in our treatment will
converge, see Remarks 3.2, below.

The above form (2.2) and (2.5) of K is not the one assumed in [20; p. 104] and in [4; §2]. Rather,

L is assumed to consist of two parts,

L ¨ Ls +L
d

where the first operator takes the form

Ls u�x� ¨ � K
d
�y − x��u�y� − u�x�	 dV

y
(2.7)
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with

Ks�p� ¨ ζ�p�p � pÙ (2.8)

p X R
nÙ where ζ is a radial function. However, L
d

u is given by more complicated expressions which

involves double integrals over the body R
n involving a materially dependent radial function γ. As

pointed out in [4; Eq. (2.10)], for points at the distance at least 2δ from the boundary of the body, one

has

L
d

u�x� ¨ � � γ�z − x�γ�z − y��z − x� � �z − y�u�y� dVz dVyØ (2.9)

This can be rewritten as

L
d

u�x� ¨ � C�xÙ y�u�y� dVy (2.10)

where

C�xÙ y� ¨ � γ�z − x�γ�z − y��z − x� � �z − y� dV
z
Ø (2.11)

Observe that

� C�xÙ y� dV
y
¨ 0Ø (2.12)

To see it, note that � γ�z − y��z − y� dVy ¨ � γ�v�v dVv ¨ 0 where the first equality results from the

substitution y w v ¨ z − y and the second since the integrand is an even function of vØ Hence

� C�xÙ y� dVy ¨ � γ�z − x��z − x� � � γ�z − y��z − y� dVy dVz

¨ � γ�z − x��z − x� � � γ�v�v dVv dVz ¨ 0Ù

which proves (2.12). Using (2.12), one rewrites (2.10) as

L
d

u�x� ¨ � C�xÙ y��u�y� − u�x�	 dVyØ (2.13)

One readily finds from (2.11) that C is translationally invariant, i.e., C�x + aÙ y + a� ¨ C�xÙ y� for

every aÙ xÙ y X R
nÛ hence C�xÙ y� ¨ K
d
�x − y� with K
d
¨ C�ċÙ 0�Ù and (2.13) is converted into

L
d

u�x� ¨ � K
d
�x − y��u�y� − u�x�	 dVyØ (2.14)

By (2.11), K
d

is given by the symmetric expression

K
d
�p� ¨ � γ�z − p/2�γ�z + p/2��z − p/2� � �z + p/2� dVz

p X R
nÙ as an easy translation of the integration variable z in (2.11) shows. Further, if one expands

the product �z − p/2� � �z + p/2� and observes that the mixed terms

�� γ�z − p/2�γ�z + p/2�z dVz� � p and p � �� γ�z − p/2�γ�z + p/2�z dVz�

vanish, one obtains

K
d
�p� ¨ � γ�z − p/2�γ�z + p/2��z � z − p � p/4� dVzØ

One observes from this that K
d

is an isotropic function. The representation theorem yields

K
d
�p� ¨ ρ�p�1 + σ�p�p � p (2.15)

p X R
nÙ where ρ, σ are radial functions, given by

ρ�p� ¨
1

�n − 1�|p|2
� γ�z − p/2�γ�z + p/2��z|2|p|2 − �z ċ p�2� dV

z
Ù

σ�p� ¨
1

�1 − n�|p|4
� γ�z − p/2�γ�z + p/2��|z|2|p|2 − n�z ċ p�2 + �n − 1�|p|4/4	 dVzÙ

see (2.4). To summarize, equations (2.9), (2.7), (2.14) and the representations (2.8), (2.15) show that

the operator L from the references [20] and [4] is given by (2.2) with K represented as in (2.5) with

ψ ¨ ρ and ω ¨ ζ + σÙ as desired.
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3 Asymptotic expansion for vanishing nonlocality

We wish to determine the asymptotic form of the theory under vanishing nonlocality.
Thus we consider small values of the characteristic length scale δ of the material,
i.e., we replace the original length scale δ by εδ where the factor ε ± 0 approaches
0Ø This amounts to passing from the space variable, say, pÙ to p/εÙ as this makes the
effective radius ε times smaller. Under this change, the integrals must be multiplied
by an appropriate factor to compensate the change of volume.

We consider the material determined by the kernel K of the form (2.5), whose
length scale is equal to 1 by (2.6)
1
Ø In view of this, we can consistently use the letter

δ for the scaling factor previously denoted by εÙ and define a family of rescaled
operators LδÙ δ ± 0Ù by

L
δ

u�x� ¨ � Kδ�y − x��u�y� − u�x�	 dV
y

(3.1)

where K
δ

are the rescaled kernels, defined for any p X R
n by

K
δ
�p� Ú¨ δ − n − 2K�p/δ� ¨ δ − n −4�ψ�p/δ�|p|21 + ω�p/δ�p � p	Ø

To state the main result we use the following convention to simplify the formulas:
since ψ and ω are radial, we have ψ�p� ¨ Îψ�r� and ω�p� ¨ Îω�r� where r ¨ |p| and
Îψ and Îω are functions of a scalar argument. We write ψ�r� and ω�r� for Îψ�r� and
Îω�r�, e.g., �

ð
0
ψ�r� dr Ú¨ �

ð
0
Îψ�r� drØ No confusion can arise. Further, for any bounded

function g on R
n with values in any normed space with the norm | ċ | we put

‖g‖ð Ú¨ sup  |g�p�| Ú p X R
n( ° ðØ

Let, finally, κn − 1 be the area of the unit sphere S
n − 1 Ú¨  p X R

n Ú |p| ¨ 1( in R
n.

The main result of this note is as follows.

Theorem 3.1. Let k ³ 1 be an integer and let u Ú R
n r R

n have bounded continuous

derivatives of all orders ² 2k + 1Ø Then L
δ

u is defined and bounded on R
n for all

δ ± 0 and

L
δ

u ¨
k

�
s ¨ 1

δ2s − 2N�s�
u + δ2kS

�k�
δ

u on R
n

where ‖ S
�k�
δ

u‖ð ² c‖∇
2k + 1

u‖ð with c independent of δ and uÛ



























(3.2)

here

N
�s�

u ¨ �λs + µs�á
s − 1 ∇ div u + µsá

s
u (3.3)

are the Navier operators of order 2s with the Lamé moduli of order s given by the

equations

λs ¨ ιs��2s − 1�ωs − �n + 2s�ψs	Ù µs ¨ ιs�ωs + �n + 2s�ψs	 (3.4)

that involve a normalization constant ιs and moments ψs and ωs,

ιs ¨ κn − 1
/

2
ss !
s − 1
�
i ¨0

�2i + n�Ù ηs Ú¨
ð

�
0

η�r�rn + 2s + 1 drÙ with η Ú¨ ψÙ ωØ
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Remark 3.2. The first member of the sum in (3.2)
1

is the classical Navier operator
N

�1� ª N from (1.4), with the Lamé moduli

λÙ µ ¨
κn − 1

ð

�
0

�ω�r� ∓ �n + 2�ψ�r�	rn + 3 dr

2n�2 + n�
Ø

Remarks 3.3. (i) The hypothesis of Theorem 3.1 implies that u is a lipschitzian
function, i.e.,

|u�y� − u�x�| ² ‖∇ u‖ð|y − x|

for all xÙ y X R
n. Thus the integrand in the definition of L

δ
in (3.1) can be bounded

by

‖∇ u‖ð|K
δ
�x − y�||x − y| ² ‖∇ u‖ðδ

− n − 4
|z|3�n|ψ�z/δ�| + |ω�z/δ�|	Ø

where we abbreviate z ¨ x − yØ Since

� |K
δ
�x − y�||x − y| dV

y
² δ − n − 4� |z|3�n|ψ�z/δ�| + |ω�z/δ�|	 dV

z

¨ δ − 1� |p|3�n|ψ�p�| + |ω�p�|	 dV
p

and the last integral converges in view of the standing assumption (2.6), we see that
the integral in the definition (3.1) of L

δ
converges and defines a bounded function on

R
n with the bound Cδ − 1

‖∇ u‖ð where C is a constant independent of δ and uØ
(ii) The integrals

ηs ¨
ð

�
0

η�r�rn +2s + 1 drÙ with η Ú¨ ψÙ ωÙ

in the definition of ψs and ωs converge in view of the standing assumption (2.6).

Indeed, by (2.6)
1

we can replace the integration �
ð
0

by �
1

0
and since s ³ 1, we have

r2s + 1 ² r2 for 0 ² r ² 1 and hence

1

�
0

|η�r�|rn + 2s + 1 dr ²
1

�
0

|η�r�|rn + 2 dr ¨ κ − 1
n − 1� |η�p�||p|3 dV

p
° ð

by (2.6)
2
Ù as desired.

(iii) The above considerations and the proof of Theorem 3.1, below, show that
the standing assumption (2.6) can be replaced by a weaker requirement that η decays
rapidly at infinity in the sense that

� |p| l|η�p�| dV
p
° ð

for all integers l ³ 2Ø This covers the Gaussian kernel given by

η�p�∼ e − |p|2

up to a rescaling and even the family of kernels η ¨ ηq parametrized by a scalar
parameter q where

η�p�∼ e − |p|2/|p| qÙ −ð ° q ° n + 3Ù

which vanish at the origin if the parameter q is negative and which are singular at the
origin if q is positive.



3. Asymptotic expansion for vanishing nonlocality 8

Proof of Theorem 3.1 To simplify the notation, let us establish the formula (3.2)
1

for L
δ

u�x� and related statements for x ¨ 0Ø Then

L
δ

u�0� ¨ � Kδ�y��u�y� − u�0�	 dV
y

¨ δ − n − 4� �ψ�y/δ�|y|21 + ω�y/δ�y2	�u�y� − u�0�	 dV
y

¨ δ − 2� K�p��u�δp� − u�0�	 dV
p

(3.5)

where in the last line we have performed a substitution y w p ¨ y/δ and K is given
by (2.5). We apply Taylor’s expansion to u�δp� − u�0� to obtain

u�δp� − u�0� ¨
2k

�
i ¨ 1

δ i

i !
�p ċ ∇� iu�0� +

δ2k +2

�2k + 1� !

1

�
0

�p ċ ∇�2k + 1u�tδp� dtØ

Hence (3.5) provides
L
δ

u ¨ T
�k�
δ

u + R
�k�
δ

u

where

T
�k�
δ

u Ú¨
2k

�
i ¨ 1

δ i − 2

i ! � K�p��p ċ ∇� iu�0� dV
p
Ù

R
�k�
δ

u Ú¨
δ2k

�2k + 1� !

1

�
0

� K�p���p ċ ∇�2k + 1u�tδp�	 dV
p
dt

We analyze these two terms separately. We have

R
�k�
δ

u ¨ δ2kS
�k�
δ

u

where

S
�k�
δ

u ¨
1

�2k + 1� !

1

�
0

� K�p���p ċ ∇�2k + 1u�tδp�	 dV
p
dtØ (3.6)

Let us show that S
�k�
δ

u satisfies (3.2)
2

with

c ¨
1

�2k + 1� ! �
|p| ² 1

|p|3χ�p� dV
p
° ð (3.7)

where χ�p� ¨ n|ψ�p�| + |ω�p�|Ø To see it, we estimate the inner integrand in (3.6)
by

|K�p�||p|2k + 1|∇2k + 1 u�tδp�| ² |K�p�||p|2k + 1‖∇2k + 1 u‖ð
¨ χ�p�|p|2k + 3‖∇2k + 1 u‖ð

and hence

∣

∣

1

�
0

� K�p���p ċ ∇�2k + 1u�tδp�	 dV
p
dt

∣

∣ ²
1

�
0

� χ�p�|p|2k + 3 dV
p
dt ‖∇2k + 1 u‖ð

which we combine with
1

�
0

� χ�p�|p|2k + 3 dV
p
dt ¨ �

|p| ² 1
|p|2k + 3χ�p� dV

p
² �

|p| ²1
|p|3χ�p� dV

p

which is finite by (2.6). This proves that S
�k�
δ

u satisfies (3.2)
2

with c from (3.7).
Further to analyze T

�k�
δ

uÙ we observe that the integrand in T
�k�
δ

u is an odd
function of p if i is odd, we have
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T
�k�
δ

u ¨
k

�
s ¨ 1

δ2s − 2

�2s� ! �
K�p��p ċ ∇�2su�0� dV

p
Ø

A substitution p w �rÙ q� where r ¨ |p|Ù q ¨ p/rÙ provides

T
�k�
δ

u ¨
k

�
s ¨ 1

δ2s − 2

�2s� !
�ψsIs + ωsJs� (3.8)

where

Is ¨ �
S n − 1

�q ċ ∇�2su�0� dA
q
Ù Js ¨ �

S n − 1
q � q�q ċ ∇�2su�0� dA

q
Ø

To evaluate these integrals, we are going to use Formulas (4.1) and (4.2), below,
with the vector c identified formally with the “differential vector” ∇Ø This step
is justified by the Fourier transformation which converts the action of ∇ into the
multiplication by the true vector c ¨ i ξ where ξ is the Fourier variable. Thus
applying (4.1) and (4.2) with c ¨ ∇ and b ¨ u and noting that |c|2 ¨ ∇ ċ∇ ¨ á and
c � c ¨ ∇ � ∇ ¨ ∇ divÙ we obtain from (4.1) and (4.2),

�
S n − 1

�q ċ ∇�2s dA
q
¨ �sá

sÙ �
S n − 1

q � q�q ċ ∇�2s dA
q
¨ αsá

s
1 + βsá

s − 1∇ divØ

Hence Is ¨ �sá
s uÙ Js ¨ αsá

s u + βsá
s − 1∇ div u and (3.8) reduces to

T
�k�
δ

u ¨
k

�
s ¨ 1

δ2s − 2

�2s� !
�ψs�sá

s +ωs�αsá
s

u + βsá
s − 1∇ div u�	u (3.9)

Invoking the definitions (4.3)–(4.4) of �sÙ αs and βsÙ we rewrite (3.9) as

T
�k�
δ

u ¨
k

�
s ¨ 1

δ2s − 2ιs ��ψs�n + 2s� + ωs	á
s

u + 2sá s − 1∇ div u


where ιs ¨ �s/��n + 2s��2s� ! 	 and (3.2), (3.3) and (3.4) follow. è

4 Moments over the sphere

We now establish Formulas (4.1) and (4.2), below, that were used in Proof of Theorem
3.1 in Section 3.

We denote by B and Γ the beta and gamma functions

B�sÙ t� ¨
1

�
0

xs − 1�1 − x� t − 1 dxÙ Γ�t� ¨
ð

�
0

x t − 1e − x dxÙ

see, e.g., [15; Chapter 5] or [23; Chapter XII], whose elementary properties are used
below without any further reference. The area of S

n − 1 is given by

κn − 1 ¨ 2π
n/2/Γ�n/2�Ø
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Proposition 4.1. If s is a positive integer and c X R
n then

�
S n − 1

�q ċ c� 2s dA
q
¨ �s|c|2sÙ (4.1)

�
S n − 1

q � q�q ċ c�2s dA
q
¨ αs|c|2s1 + βsc � c|c|2s − 2 (4.2)

where

�s ¨ �2s� ! πn/2/�22s − 1s ! Γ�s + n/2�	Ù (4.3)

αs ¨ �s/�2s + n�Ù βs ¨ 2s�s/�2s + n�Ø (4.4)

Formula (4.1) is known, see, e.g., [10; p. 445], and (4.2) is an easy consequence. For
convenience, a complete proof is given.

Proof Let f Ú R
n r R be given by

f �c� ¨ �
S n − 1

�q ċ c� 2s dA
q
Ù

c X R
nØ The isotropy of the sphere implies the easily verifiable fact that f is invariant

with respect O�n�; since f is also a polynomial in cÙ the remarks on polynomial
invariant functions at the beginning of Section 2 yield that f is expressible as a
polynomial in |c|2Ø Since f is a polynomial of degree 2s in cÙ one easily deduces that
this polynomial must have the form of the right–hand side of (4.1) with some scalar
constant �s. Let us show that �s is given by (4.3). Taking c ¨ �1Ù 0ÙÜ Ù 0� in (4.1) we
obtain

�s ¨ �
S n − 1
q2s
1
dA

q

where q
1

is the first component of the vector qØ Performing the trivial integration
perpendicular to the first axis in R

n we obtain a one–dimensional integral

�s ¨ 2κn − 2
1

�
0

q2s
1
�1 − q2
1
� �n − 3�/2 dq
1

(4.5)

where

κn − 2 ¨
�n − 1�π �n − 1�/2

Γ��n + 1�/2	
¨
2π

�n − 1�/2

Γ��n − 1�/2	
(4.6)

is the area of the unit sphere in R
n − 1Ø The substitution q
1
w x ¨ q2
1

reduces the
integral (4.5) into

�s/κn − 2 ¨
1

�
0

xs − 1/2�1 − x� �n − 3�/2 dx

¨ −
�n − 3�
2s + 1

1

�
0

xs + 1/2�1 − x� �n − 5�/2 dx

¨
�n − 3��n − 5�
�2s + 1��2s + 3�

1

�
0

xs + 3/2�1 − x� �n − 7�/2 dx

¨
1

�s + 1/2��s + 3/2� Ý �s + n/2�

1

�
0

xs + n + 1/2�1 − x� − 2 dx
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�s ¨ κn − 2
1

�
0

xs − 1/2�1 − x� �n − 3�/2 dx ¨
κn − 2Γ�s + 1/2�Γ��n − 1�/2	

Γ�s + n/2�
(4.7)

where we have used

B�sÙ t� ¨
Γ�s�Γ�t�
Γ�s + t�

Ø

Combining (4.7), (4.6) with

Γ�s + 1/2� ¨ �2s� ! π1/2/�22ss ! �

we obtain (4.3).
To proceed to the proof of (4.2), let G be a function on R

n with values in the
space of symmetric second order tensors defined by

G�c� ¨ �
S n − 1

q � q�q ċ c�2s dA
q
Ù

c X R
nØ This an O�n� invariant function and hence of the form (2.3) with η and θ

given by the general formulas (2.4) which in the present case read

η�c� ¨ ��s − �s + 1�|c|2s/�n − 1�Ù θ�c� ¨ �n�s + 1 − �s�|c|2s − 2/�n − 1�Ø

where we have used (4.1) with s replaced by s + 1Ø A combination with the identity
�s + 1 ¨ �2s + 1��s/�2s + n�Ù which follows from the elementary properties of the
gamma function, leads to

η�c� ¨ αs|c|2sÙ θ�c� ¨ βs|c|2s − 2

and hence to (4.2) via the formula (2.3). è
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