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Preface

This book presents the nonlinear theories of continuum thermomechanics. Through-

out I emphasize issues that are foundational in nature, and seek results common to

materials of arbitrary symmetry. The central part of the book deals with thermoelastic

bodies with heat conduction and viscosity, including the inviscid or ideal dissipation-

less bodies. A surprising variety of phenomena can be modeled within this framework.

Moreover, the main ideas can be transferred into more complicated theories.

At present, the major challenge to the nonlinear thermoelasticity is posed by phase

transformations with changes in symmetry. J. W. Gibbs’ immensely influential treatise

On the equilibrium of heterogeneous substances has provided a highly successful

theory of phase transitions in fluids. Gibbs brought the view that the thermodynamics

is not only the theory of heat, but also a theory of equilibrium, with the main tool

the minimum principles. A large portion of the book is an extension of Gibbs’

ideas to bodies of general symmetry by the methods of the calculus of variations.

The interplay between the convexity properties of the stored energy functions, the

resulting equations, and the physics of the phenomena is a leading theme.

I would like to thank many people for discussions held over the years of this

long-term project, and reserve the chief place among them for Jan Kratochvı́l and

Ivan Samohýl. Earlier versions were written partly during my stays at the Institute for

Mathematics and its Applications, University of Minnesota, Minneapolis, CNUCE,

Istituto di C.N.R., Pisa, Helsinki Technological University, Espoo, and at Carnegie

Mellon University, Pittsburgh, Pa. The hospitality of these institutions is gratefully

acknowledged. Special thanks are due to I. Samohýl, W. Hrusa, and J. Vı́tek, who read

earlier versions and suggested many improvements, and to Professor W. Beiglböck

who contributed with valuable remarks. I also gratefully acknowledge the support of

Grant No. 119110 of the Academy of Sciences of the Czech Republic during the final

stage of the project.

Prague, April 1996 M. Šilhavý
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Synopsis

To allow the existence of phase transformations, shock waves and other phenomena,

the response of a body must be nonlinear. As this book is designed to treat bodies

with a response of general symmetry, the deformation gradient must be used as the

basic measure of deformation. The passage to specific symmetries – isotropic solids,

fluids, or crystals – is made only to reach conclusions that do not hold generally, or

to give the general assertions a more concrete form in the variables of the specific

situation. The relationship between the response functions and the material behavior

is established by isolating leading features of the response functions rather than by

examining concrete models. Apart from the natural restrictions from the entropy

inequality, frame indifference, and symmetry, the main unifying concepts are the

convexity/nonconvexity properties of the thermodynamic potentials.

The understanding of these concepts is now much fuller than, say, at the time

of [Truesdell and Noll, 1965]. Since then, the closely related concepts of quasicon-

vexity and rank 1 convexity have proved to be basic for the mathematical theory

of materials. They are related to the qualitative features of the equilibrium states,

like their existence/nonexistence, stability/instability, uniqueness/nonuniqueness, the

occurrence/nonoccurrence of phase boundaries, etc. Moreover, the violation of these

and other ‘mathematically desirable’ features is now understood not as a mathemat-

ical pathology, but as a sign indicating (the possibility of) an interesting physical

phenomenon, phase transition, observable large- or fine-scale instability or another

‘catastrophic’ feature. For fluids, the quasiconvexity and rank 1 convexity in the de-

formation gradient reduce to the convexity in the specific volume, and its relevance to

the stability has been known since the times of Gibbs. Also the violation of the con-

vexity of the energy, i.e., the occurrence of an interval where the pressure increases

with the specific volume (the spinodal interval of the Van der Waals isotherm), is

clearly necessary for a phase transition. The values of the specific volumes of the

stably coexistent liquid and its vapor are determined from the equality of the chemical

potentials of the phases.

The quasiconvexity and rank 1 convexity in the deformation gradient are the

generalizations of the convexity in the specific volume for fluids, and the continuity



4 Synopsis

of the normal component of the Eshelby energy-momentum tensor across the static

phase interface is the generalization of the equality of the chemical potentials. The

common origin of the quasiconvexity and of the continuity of the Eshelby tensor is

in the minimum principles, e.g., the principle of minimum total stored energy. (The

past attempts to generalize the convexity on an a priori basis, and the attempts to

generalize the equality of chemical potentials by formal considerations, have proved

unsuccessful.) At the regions where the rank 1 convexity prevails, the equations

of mechanical equilibrium are elliptic. The occurrence of the spinodal region in

fluids is translated into the violation of the rank 1 convexity on a subinterval of the

line segment connecting the deformation gradients at the two sides of the interface

(“generalized spinodal region”). These are unavoidable consequences of minima,

valid for the response of a general symmetry, with numerous consequences. The

theory of materials in equilibrium appears to be quite mature. Wide varieties of

mathematical tools have been assembled, with major profit from and impact on the

calculus of variations, partial differential equations and nonlinear functional analysis.

In dynamics, the thermal phenomena cannot be neglected. If the static theory

admits states with several coexistent phases, the dynamic theory must describe the

evolution of the phase interfaces, and in this respect it may be viewed as a broad gen-

eralization of the Stefan problem. Moreover, the energy function cannot be globally

elliptic and the evolution equations change their type from hyperbolic to elliptic in the

spinodal region. A violent nonuniqueness in the initial-value problem accompanies

that, a nonuniqueness far more severe than the known nonuniqueness in the hyperbolic

systems of nonlinear conservation laws. The results concerning this general approach

are scarce. The present book describes a recent proposal for an additional kinetic

equation for the speed of an evolving phase boundary. This is another interesting

application of the Eshelby tensor.

The idealized dissipationless materials are described in a more detail. The ever-

present discontinuities of solutions are shock waves, and the thermodynamics pro-

vides the entropy admissibility criterion, i.e., the increase of entropy across the shock.

In fluids in the hyperbolic and genuinely nonlinear regimes, the shock waves and the

entropy criterion are understood, at least on the constitutive level, since the late for-

ties. The genuine nonlinearity means here that the pressure is a convex function of the

specific volume at constant entropy, another remarkable constitutive restriction. The

entropy criterion is known to secure the realistic behavior of shocks, most notably

the uniqueness in the Riemann problem and Lax’ inequalities. When the genuine

nonlinearity fails but the hyperbolicity still holds, the entropy criterion is insuffi-

cient for that, and Liu’s criterion must be employed, which may be interpreted as

a strengthening of Lax’ inequalities, or as a generalization of Oleinik’s E-condition

to systems of equations. Its relation to the entropy criterion is established, both for

bodies of general material symmetry and for fluids. Naturally, the latter case leads to

more perfect results.

Part I deals with the basic language of continuum mechanics. This includes

tensor algebra and analysis, the geometry and kinematics of continuous bodies, and

the balance equations. The constitutive equations characterizing particular materials

are kept distinct form the balance equations, as is now common. The direct notation

is used throughout. In the tensor analysis, the emphasis is on somewhat less standard
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questions like the differentiation of the eigenvalues of the stretch tensors (principal

strains) with respect to the deformation gradient, differentiation of the square root

of a tensor, etc. The kinematics deliberately avoids the classical analysis of the

deformation in the manner of engineering elasticity. Not that it would be useless,

but the just mentioned analysis of principal strains is more advantageous in the

nonlinear range. The displacement vector and the infinitesimal strain tensor enter only

at the stage of linearization. The shock waves and (coherent) phase fronts are sharp

surfaces across which the deformation gradient and velocity have jump discontinuities

(singular surfaces) but the actual position is continuous. The main consequence is

the Hadamard lemma saying that the limiting values of the deformation gradient

at the two sides of the interface are rank 1 connected. This opens the way to a

number of essentially geometric topics, such as the mechanical theory of twinning, the

austenite/martensite interface and others. The singular surfaces are assumed to bear no

material structure: the surface tension, surface heating, and the surface concentration

of mass are excluded. The transport theorems for processes with singular surfaces are

proved. Then the balances of mass, momentum, energy, and entropy are introduced

and their local forms for the bulk matter and for singular surfaces are derived.

Part II is somewhat independent of the rest. It deals with the foundations –

the basic quantities of continuum thermodynamics, the total energy and entropy,

are derived from a set of elementary axioms. For this, a state space formalism is

introduced with a generality that covers also the memory phenomena and hysteresis.

(This is also a basis for the general constitutive theory of materials.) There the reader

will find statements of the first and the second laws of thermodynamics free from

traditional ambiguities. The appealing programme of founding thermodynamics on

the first and the second laws is achieved by simple but conceptually clear means. The

theory resulting from Part II is the thermodynamics based on the Clausius–Duhem

inequality, which is used throughout. There is no doubt about the appropriateness of

this choice for the selected class of materials. Part II provides a strong support for

this.

Part III describes the constitutive equations of viscous materials with heat con-

duction. The restrictions placed on the response functions by the Clausius–Duhem

inequality, frame-indifference, and symmetry are derived. The only classes of sym-

metry to be dealt with explicitly are isotropic solids, fluids and crystals having the

symmetry of the underlying Bravais lattice. Each of these classes has its own repre-

sentation theorems. The approach to the representation theorems for isotropic solids

is based here on the principal strains, principal stresses, and principal directions of

strain rather than on the Rivlin–Ericksen representation theorem and the principal in-

variants. This sometimes provides a more direct way to fitting the experimental data

on the empirical side and a somewhat better control over the convexity and ellipticity

properties on the mathematical side. A discussion of the change-of-variables mech-

anism is given, emphasizing that each change of variables leads to a new quantity

that can be useful for understanding certain aspects. Thus, for instance, Eshelby’s

energy momentum tensor is associated with the exchange of roles of the reference

and actual configurations, besides being associated with the translational invariance

in the reference configuration and phase transformations. In addition, a basis for the

changes of the convexity properties under changes of variables is developed. Related



6 Synopsis

to these are the thermodynamic coefficients – essentially the second derivatives of

the thermodynamic potentials. These are the fourth-order tensors of elasticities (the

elastic moduli), in isothermal and adiabatic versions, the coefficients of thermal ex-

pansion, the stress–temperature coefficients, the tensor of latent heats, and the scalar

specific heats at constant deformation or stress. Some of these occur in the linearized

equations in static and dynamic situations. The dynamic part of the response is treated

similarly, which leads to the kinetic coefficients like the tensors of heat conductivity

and viscosity etc. In addition, brief accounts are given of the classical linear irre-

versible thermodynamics and of its recent generalization–the extended irreversible

thermodynamics.

Part IV is the theory of thermodynamic equilibrium. While Part II treats thermo-

dynamics as the theory of heat and work, Part IV treats it as the theory of minima

of integral functionals. The exposition starts with the thermodynamic background:

in the conservative loading conditions, the canonical free energy decreases along

processes. It follows that if an equilibrium state compatible with the external condi-

tions is stable, the canonical free energy must take a minimum value among all states

satisfying the kinematical constraints. The states that satisfy the extremum principles

are examined assuming that they have the smoothness that allows a derivation of the

Euler–Lagrange equations. This smoothness admits the singular surface; hence states

of coexistent phases are included. The quasiconvexity along a minimizer is derived as

a necessary condition for the minimum, as well as its consequence rank 1 convexity.

Also the quasiconvexity at the boundary, equally important to the quasiconvexity

itself, is shown to prevail on the free part of the boundary. While the quasiconvexity

can be viewed as a condition for internal stability, the quasiconvexity at the boundary

is a condition for the surface stability. It has been conjectured that its violation can

cause surface wrinkling of certain metals.

The considerations are then applied to bodies of specified symmetry. For fluids

this gives the classical thermostatics, treated in Part IV with the emphasis on the con-

vexity/nonconvexity properties of the energy surface in the volume-entropy space. A

rigorous proof of the Gibbs phase rule is given based on the Carathéodory theorem on

the convex hull. The Gibbs function is shown to have singularities at the pressures and

temperatures of phase transitions: Its supergradient must contain the specific volumes

and entropies of all stable phases of the given pressure and temperature. Solids are

treated first using the local approach, based on the linearization and implicit function

theorem. This includes the linearized elasticity of stressed bodies and, as an extremely

special but important case, the classical linear elasticity, i.e., the linearization about

a stress-free state. For the general linearized elasticity, the positivity of the second

variation is crucial for the existence and uniqueness of the solutions and for the

absence/presence of bifurcations of the nonlinear equations. The general pointwise

conditions on the tensor of elastic moduli related to the positivity of the second vari-

ation are discussed. These are the well-known strong ellipticity condition governing

the behavior of the bulk matter, and the complementing and Agmon’s conditions,

controlling the surface phenomena. The latter appear to be less recognized explicitly,

but the more enlightened portion of the elasticity literature treats the violation of the

complementing condition under the name surface instabilities. The complementing

and Agmon’s conditions are discussed for isotropic states under tension or compres-
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sion in some detail. A linear bifurcation analysis of a column under compression is

presented as an example for the determination of parameters at which the uniform

positivity of the second variation fails. Also an absence of instability under tension

is explained for a model stored energy of the Blatz–Ko (special) type: at the tension,

for which the principal forces are all nonnegative, the stored energy is convex. (In

fact, one of this book’s side goals is a rehabilitation of points of convexity, within

limits. The folklore wrongly deems the convexity in the deformation gradient as

‘contradicting the frame-indifference.’)

The global theory of existence of solutions depends critically on the convexity

properties of the stored energy and the related sequential lower semicontinuity of the

total energy. The direct methods of the calculus of variations are the main working

tools. For rubber-like materials the existence theory is based on a strengthened ver-

sion of the quasiconvexity known as polyconvexity. The minimizers must be sought

in the Sobolev spaces, and their quality depends dramatically on the exponent p in

W 1Ù p
Ø This is explained on the famous radial deformations with or without cavities.

Also the devices to ensure reasonable versions of injectivity (invertibility) of defor-

mations are reviewed in some detail. Unfortunately the book’s size did not permit

a systematic treatment, despite the author’s opinion that a rather complete picture

can be reconstructed from the existing literature. The polyconvexity, let alone rank

1 convexity, cannot be satisfied by crystalline bodies. In this case the total energy

fails to be lower semicontinuous, and the properties of the minimizing sequences

are not sufficiently fully reflected by the limiting macroscopic deformation. A finer

device, Young’s measure, must be used to encode the (spatial) oscillation phenomena

occurring in the minimizing sequence. Physically, Young’s measure describes the

possible microstructures consistent with the given macroscopic deformation (in this

context), and the set of all Young’s measures may be viewed as an enlargement of

the state space of the body.

Part V is about the dynamics. Besides the propagating phase boundaries men-

tioned above, this part deals with the dissipationless materials with shock waves,

and with the resulting hyperbolic systems of equations. The current activities in

the theory of hyperbolic systems involve one-dimensional models, susceptible to a

fairly detailed analysis. Since the present book attempts to present general, three-

dimensional bodies and the features common to responses of arbitrary symmetry, I

found it necessary to present the entropy and Liu’s criteria, Lax’ inequalities, and

the necessary background in this general setting. There appears to be no systematic

treatment except for the isentropic case or fluids. The main problem is that the equa-

tions cannot be put in the form of a first-order system of conservation laws popular

in fluid dynamics. Moreover, when the entropy is used as the independent thermal

variable, which seems to be the only natural setting, the system does not have, even

in the hyperbolic regime, a strictly (rank 1) convex mathematical entropy function:

here the entropy is linear. The hyperbolicity, strict hyperbolicity, and genuine nonlin-

earity are formulated in this setting. The existence of the Hugoniot curve is proved

locally, and the local equivalence of the entropy criterion with Lax’ inequalities and

Liu’s criterion is established in the strictly hyperbolic, genuinely nonlinear regimes.

The analogs of the centered waves of fluid dynamics are defined, and using this, the

existence of the solution of the Riemann problem for nearly equilibrium initial data is
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proved through the implicit function theorem. Only then do I pass to fluids and show,

using the classical analysis of Zemplén, Bethe, and Weyl, the global equivalence of

the criteria for fluids satisfying the classical restrictions.

The presence of dissipation, e.g. the viscosity of the differential type, makes the

problem of proving the existence of the time-evolution and examining its asymptotics

easier. Despite that, the existing proofs deal only with one-dimensional models. Rather

than these, this book includes only the proof of the existence of the time evolution

of the model linearized at an equilibrium state of a solid. Even though the proof uses

standard means, it is presented because in this case the ideal goal of the theory can

be carried out to the end: the realistic conditions for the existence of evolution are

given and the asymptotic properties, i.e., the trend to equilibrium, is proved when

the second variation of the stored energy is positive definite. Moreover, efficient

Liapunov functions can be calculated explicitly.


