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Introduction

These notes present a brief introduction to the mathematics of equilibrium of no–
tension (masonry–like) materials. We first review the constitutive equations using the
idea that the stress of the no–tension material must be always negative semidefinite.
The strain tensor is naturally split into the sum of the elastic strain and fracture
strain. The stress depends linearly on the elastic strain via the fourth–order tensor of
elasticities. Then we consider a body made of a no–tension material, introduce the
loads and the total energy of the deformation with is the sum of the internal energy
and the energy of the loads. Then we examine the question whether the total energy is
bounded from below. That brings us to the important notion of the strong compatibility
of loads. The loads are strongly compatible if they can be equilibrated (in the sense
of the principle of virtual work) by a square integrable negative semidefinite stress
field. The total energy is bounded from below if and only if the loads are strongly
compatible. The notion of strong compatibility of loads is central in the limit analysis
and in a strengthened form in the theory of existence of equilibrium states. Roughly
speaking, if the loads are strongly compatible, then the body is safe, while otherwise
strongly incompatible loads lead to the collapse of the body. To determine whether
the loads are strongly compatible, it is not necessary to solve the full displacement
problem, it suffices to find the negative semidefinite square integrable stress field,
which is independent of the constitutive theory.
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The considerations concerning the limit analysis and strong compatibility of loads
are based on the displacements that belong to the Sobolev space of square integrable
maps with square integrable gradients. Roughly speaking, this means that the fracture
part of the strain is always without macroscopic cracks. To obtain the existence theory
of equilibrium states, it is necessary to enlarge the class of deformations in which
the fracture part of the deformation is a measure in the mathematical sense of that
word. This introduces discontinuous displacements with macroscopic cracks. We
give a brief introduction to the mathematical theory of such displacements, called
displacements with bounded deformation. The full theory of equilibrium states is
nontrivial and many assertions are presented without proofs. However, the basic line
of thought is preserved.

Then the limit analysis for no–tension materials is presented. The loads of the
limit analysis are assumed to be linearly dependent on the loading parameter. The
ideal goal of the limit analysis is to determine the largest value of the loading
parameter for which the loads are strongly compatible. This value is called the
collapse multiplier; the loads corresponding to the loading multiplier bigger than the
collapse multiplier lead to the collapse of the body. The loading parameters for which
the loads are strongly compatible are called statically admissible loading parameters.
By the above, they are characterized by the existence of a square integrable negative
semidefinite stress field equilibrating the corresponding loads. For concrete loads,
it is often easier to find a stress field represented by a negative semidefinite tensor
valued measure equilibrating the loads. We call such loads weakly compatible. The
difference between the square integrable stress fields and the stress fields represented
by measures is that the latter can contain singular part which is concentrated on
surfaces and curves in the body. Of course the strong compatibility implies the weak
compatibility but not conversely: there are weakly compatible loads that are not
strongly compatible. If the loads happen to be weakly compatible on some interval
of the loading parameters, then the averaging procedure to be described in Section
6 may lead to square integrable equilibrating stress fields and hence to the strong
compatibility. The last section presents an example of the averaging procedure which
leads to an explicit determination of the square integrable averaged stress field.

The mechanical tools to be employed include the notion of stress, the virtual
power principle, the notion of weak solution, and the notion of the total energy of the
body. These notions are established in detail in the treatment below.

The mathematical tools necessary for the understanding include in particular the
notions of the convex cones and orthogonal projection upon them, some elements of
the convex analysis, vector valued measures, Sobolev spaces, families of measures,
and the basic notions associated with the space of displacements of bounded defor-
mation. The basic definitions of the mathematical notions are given in the text below
and the basic properties are stated without proof.
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1 Constitutive equations

Throughout we use the conventions for vectors and second order tensors identical
with those in [15]. Thus Lin denotes the set of all second order tensors on RnÙ
i.e., linear transformations from Rn into itself, Sym is the subspace of symmetric
tensors, Skw is the subspace of skew (antisymmetric) tensors, Sym + the set of all
positive semidefinite elements of Sym; additionally, Sym − is the set of all negative
semidefinite elements of SymØ The scalar product of AÙB X Lin is defined by
A ċ B ¨ tr�ABT� and | ċ | denotes the associated euclidean norm on LinØ We denote
by 1 X Lin the unit tensor. If AÙB X SymÙ we write A ² B if B − A X Sym + Ø

To describe the stress, we assume that C Ú Sym r Sym is a given linear
transformation, the fourth order tensor of elastic constants, such that

E ċ CE ± 0 for all E X SymÙE © 0Ù
E1 ċ CE2 ¨ E2 ċ CE1 for all E1ÙE2 X SymØ











(1.1)

For example, the tensor of elastic constants of an isotropic material is of the form

CE ¨ λ�trE�1 + 2µE

for each E X Sym where λ and µ are constants, Lamé moduli, satisfying

µ ± 0Ù nλ + 2µ ± 0

where n ¨ 2Ù 3 is the dimension of the underlying space.
In the case of a general CÙ we introduce the energetic scalar product �ċÙ ċ�E and

the energetic norm | ċ |E on Sym by setting

�AÙB�E ¨ A ċ CBÙ |A|E ¨
√

�AÙA�E
for each AÙB X SymØ

We are now going to review briefly some concepts of convex analysis. We refer
to [27] and [11] for more details.

A nonempty subset K of a vector space V is called a convex cone if tx + sy X K
for each xÙ y X K and each t ³ 0Ù s ³ 0Ø

Let K be a closed convex cone in a vector space V with scalar product �ċÙ ċ� and
norm | ċ |Ø We say that a point y X K is the (orthogonal) projection of a point x X V if
y makes the distance |z − x| minimal among all z X K Ù i.e., if

|y − x| ² |z − x|
for all z X K Ø The projection onto a closed convex cone exists and is uniquely
determined.

Let K be a nonempty set in a vector space V with scalar product and x X V Ø We
define the normal coneNorm�K Ù x� to K at x by

Norm�K Ù x� ¨  y X V Ú �z − xÙ y� ² 0 for all z X K(Ø

1.1 Remark. Let K be a closed convex cone in a vector space V with scalar product

�ċÙ ċ� and norm | ċ | and let x X K Ø Then

Norm�K Ù x� ¨  y X V Ú �yÙ z� ² 0 for each z X K and �xÙ y� ¨ 0(Ø
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Proof If y X Norm�K Ù x� then �z−xÙ y� ² 0 for all z X K ØReplacing zby tzwhere t ± 0
in the last inequality, dividing the resulting inequality by t and letting tr ðwe obtain
�zÙ y� ² 0Ø Similarly, taking z ¨ 0 in �z − xÙ y� ² 0 we obtain �xÙ y� ³ 0 and as x X K
we have also �xÙ y� ² 0 by the preceding part of the proof. Thus we have �xÙ y� ¨ 0Ø
Thus y X  y X V Ú �yÙ z� ² 0 for each z X K and �xÙ y� ¨ 0(Ø Conversely, if y X
 y X V Ú �yÙ z� ² 0 for each z X K and �xÙ y� ¨ 0( then the inequality �yÙ z� ² 0
and the equality �xÙ y� ¨ 0 provide �z − xÙ y� ² 0 for all z X K Ø è

1.2 Remark. Let K be a closed convex cone in a vector space V with scalar product

�ċÙ ċ� and norm | ċ | and let x X V Ø Then a point y X K is the projection of x onto K if

and only if the following two conditions are satisfied:

(i) �wÙ x − y� ² 0 for all w X K Û
(ii) �x − yÙ y� ¨ 0Ø
Equivalently, a point y X K is the projection of x onto K if and only if

x − y X Norm�K Ù y�Ø

Proof Assume that y is the projection of x onto K . Then for every z X K we have

|z − x| ³ |y − x| (1.2)

which can be rewritten as

|z − y + y − x| 2 ³ |y − x| 2

which in turn implies
|z − y| 2 + 2�z − yÙ y − x� ³ 0Ø (1.3)

We now put z ¨ y + tw where w X K and t ± 0 to obtain

t 2|w| 2 + 2t�wÙ y − x� ³ 0Ø
Dividing by t and letting t r 0 we obtain (i). Next we put z ¨ �1 + t�y where t ³ −1
to obtain

t 2|y| 2 + 2t�yÙ y − x� ³ 0Ø
Dividing by t ± 0 and letting t ↓ 0 we obtain �yÙ y − x� ³ 0Û dividing by t ° 0 and
letting t ↑ 0 we obtain �yÙ y − x� ² 0 and hence we have (ii).

Conversely, let (i) and (ii) hold. If z X K then summing the relations 2�zÙ y−x� ³ 0,
−2�yÙ y−x� ¨ 0 and |z− y| 2 ³ 0we obtain (1.3) which in turn implies (1.2) and hence
y is the projection of x onto K .

This completes the proof of the characterization by (i) and (ii). The equivalent
characterization in terms of the normal cone follows from (i) and (ii) via Remark
1.1. è

1.3 Proposition. Assume (1.1). If E X SymÙ there exists a unique triplet �TÙEeÙE f�
of elements of Sym such that the following three equivalent characterizations hold:

(i) we have

E ¨ Ee + E fÙ
T ¨ CEeÙ

T X Sym − Ù E f X Sym + Ù
T ċ E f ¨ 0Û







































(1.4)
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(ii) we have equations (1.4)1Ù 2 and

T X Sym − Ù
�T − T  � ċ E f ³ 0 for each T   X Sym − Û











(1.5)

(iii) we have equations (1.4)1Ù 2 and

Ee is the projection of E onto C
− 1Sym − with respect to �ċÙ ċ�E , (1.6)

Proof Let us first show that the three characterizations of the triplet �TÙEeÙE f� are
equivalent.

Proof of (iii) j (i)Ø Assume that Characterization (iii) holds. Let Ee be the
projection of E onto the convex cone C

− 1Sym − with respect to the energetic scalar
product and let E f and T be as in (1.4)1Ù 2. Since Ee X C

− 1Sym − Ù we have T ¨
CEe X Sym − and by Remark 1.2(i) �E fÙC − 1T  �E ¨ �E − EeÙC − 1T  �E ² 0 for all
T   X Sym − which can be rewritten as E f ċ T   ² 0Ù which in turn implies that E f X
Sym + Ø Thus we have (1.4)3Ø Finally, by Remark 1.2(ii) we have �E fÙ C − 1Ee�E ¨
�E − EeÙ C − 1T�E ¨ 0 which can be rewritten as E f ċ T ¨ 0Ø Thus we have (1.4)4Ø
This proves that (iii) j (i)Ø

Proof of (i) j (ii)Ø Assume that Characterization (i) holds. Then we have (1.5)1.
Furthermore, if T   X Sym − then T   ċE f ² 0 since E f X Sym + by (1.4)3. Combining
with (1.4)4 we obtain (1.5)2Ø Thus (i) j (ii).

Proof of (ii) j (iii)Ø Assume that Characterization (ii) holds. Using (1.4)1Ù 2 we
can rewrite (1.5) as

Ee X C
− 1Sym −

�E   − EeÙE f� ² 0 for each E   X C
− 1Sym − Û Ø

Thus
E f ª E − Ee X Norm�C − 1Sym − ÙEe�Ù

and Remark 1.2 asserts (1.6). Thus we have shown that (ii) j (iii).
Summarizing, we have shown that the three characterizations of the triplet

�TÙEeÙE f� are equivalent. Characterization (iii) shows that the triplet exists and
is unique, because Ee, being the projection of E on C

− 1Sym − is unique, and the
uniqueness of E f and T follows from (1.4)1Ù 2. è

We define the elastic stress ÐT Ú Symr Sym and stored energy � Ú Symr R of
a masonry material by

ÐT�E� ¨ TÙ ��E� ¨ 1

2
ÐT�E� ċ E ¨ 1

2
|PE| 2E (1.7)

for any E X Sym where �TÙEe ÙE f� is the triplet associated with E as in Proposi-
tion 1.3 and where P Ú Sym r C

− 1Sym − denotes the projection from Sym onto
C

− 1Sym − with respect to the energetic scalar product �ċÙ ċ�E . The tensors Ee and E f

are called the elastic and fracture parts of the deformation EØ
The no–tension materials have been introduced in the eighties [9, 5, 14, 7, 4]. The

explicit form of the response function ÐT and its further analysis have been given in the
case of C isotropic in [5, 14] in dimension 2 and in [16–17] in dimension 3Û see also
[18]. We also note for the reader’s curiosity that the membranes with continuously
distributed wrinkles differ from the no–tension materials by the exchange of the roles
of the cones Sym − and Sym + [12, 6].
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If F Ú V r ÏR Ú¨ R T  ðÙ −ð( is a function on an inner product space V then
F   Ú V r ÏR is the convex conjugate function defined by

F  �y� ¨ sup !�xÙ y� − F�x� Ú x X V)Ù

y X V Ù [10; Part One].

1.4 Proposition. The map ÐT is monotone and Lipschitz continuous and the function

� is continuously differentiable, convex and D� ¨ ÐTÛ in fact, we have the following

inequalities:

�ÐT�F� − ÐT�E�� ċ �F − E� ³ k|ÐT�F� − ÐT�E�| 2Ù (1.8)

|ÐT�F� − ÐT�E�| ² k − 1|F − E|Ù (1.9)

��F� ³ ��E� + ÐT�E� ċ �F − E� + 1

2
k|ÐT�F� − ÐT�E�| 2 (1.10)

for any EÙF X Sym where

k Ú¨ inf!A ċ C − 1A Ú A X SymÙ |A| ¨ 1) ± 0Ø (1.11)

We have

�  �T� ¨










1

2
T ċ C − 1T if T X Sym − Ù
ð if T X Sym∼ Sym − Ø

(1.12)

Cf. Del Piero [7; Proposition 4.4 and Lemma 5.1] for (1.8)–(1.10).

Proof Let EÙF X Sym and put T ¨ ÐT�E�ÙU ¨ ÐT�F�Ø From (1.5)2 we obtain

�T −U� ċ �E − C
− 1T� ³ 0Ù �U − T� ċ �F − C

− 1U� ³ 0Û (1.13)

summing these two inequalities and rearranging we obtain

�T −U� ċ C − 1�T −U� ² �T −U� ċ �E − F�Û

using (1.11) we obtain (1.8). Using the Schwarz inequality on the left hand side of
(1.8) we obtain (1.9). To prove (1.10), one finds that

��F� − ��E� − T ċ �F − E� − 1

2
�T −U� ċ C − 1�T −U� ¨ �U − T� ċ �F − C

− 1U�Û

the last expression is nonnegative by (1.13)2 and hence

��F� − ��E� − T ċ �F − E� − 1

2
�T −U� ċ C − 1�T − U� ³ 0Û

a reference to (1.11) then yields (1.10) and hence also the convexity of �. To prove
that � is continuously differentiable and ÐT is its derivative, we note that using (1.10)
twice we obtain

ÐT�F� ċ �F − E� ³ ��F� − ��E� ³ ÐT�E� ċ �F − E�

for any EÙF X SymÛ dividing by |E − F|, letting F r E, using ÐT�F� r ÐT�E� and
invoking the definition of the Fréchet derivative we obtain D��E� ¨ ÐT�E�Ø To prove
(1.12), let v Ú Sym r R T  ð( be the function defined by the right hand side of
(1.12). We calculate the convex conjugate v  �E� of h at E X SymØ We note that
if �TÙEe ÙE f� is the triplet associated with E as in Proposition 1.3, then algebraic
manipulations show that (1.5)2 can be rewritten as

T ċ E − v�T� ³ S ċ E − v�S� + 1

2
�T − S� ċ C − 1�T − S� (1.14)
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for every S X Sym − with the equality if S ¨ TØ Since (1.14) holds also if S Z Sym −

as the right hand side is −ð in that case, we have

T ċ E − v�T� ³ S ċ E − v�S�

for all S X Sym and thus the definition gives v  �E� ¨ T ċ E − v�T� ª ��E�. Then
�   ¨ v    ¨ v by [13; Theorem 4.92(iii)] since v is lowersemicontinuous, convex
and bounded from below by an affine (continuous) function. The proof of (1.12) is
complete. è

1.5 Proposition. The stored energy � is decreasing in the sense that

��E + P� ² ��E� (1.15)

for any E X Sym and any P X Sym + Ø Moreover, the function � is completely

characterized by the following two equivalent requirements:

(i) � is the largest decreasing function such that

��E� ² 1

2
E ċ CE (1.16)

for every E X SymÛ
(ii) we have

��E� ¨ inf 1
2
�E − P� ċ C�E − P� Ú P X Sym + (Ø (1.17)

Proof To prove (i), we invoke (1.10) in which we omit the last term on the right
hand side to obtain

��E + P� − ÐT�E + P� ċ P ² ��E�Ø

Noting that ÐT�E+P� ċP ² 0 since ÐT�E+P� X Sym − and P X Sym + completes the
proof of (1.15).

Next let � Ú Sym r R be any function and let us prove that if it is given by
(1.17) then it is the largest decreasing function satisfying (1.16). Clearly, � satisfies
(1.16). Let E X Sym and Q X Sym + . Then

��E − Q� ¨ inf  1
2
�E −Q − P� ċ C�E −Q − P� Ú P X Sym + (

and noting that Q + P X SymÙ we see that S ′ Ú¨  Q + P Ú P X Sym + ( ⊂
 P X Sym + ( thus

��E −Q� ¨  1
2
�E − P ′� ċ C�E − P ′� Ú P X S ′(

³  1
2
�E − P� ċ C�E − P� Ú P X Sym + (

¨ ��E�Ø

Thus � is decreasing. Next assume that � ′ is a decreasing function satisfying (1.16)
and prove that � ′�E� ² ��E� for every E X SymØ Let P X Sym + Ø We have

� ′�E� ² � ′�E − P� ² 1

2
�E − P� ċ C�E − P�Ø

Taking the infimum over all P we obtain

� ′�E� ² inf 1
2
�E − P� ċ C�E − P�( ¨ ��E�Ø

This proves the equivalence of (i) and (ii).
Let now � be the stored energy of a no–tension material and prove that it satisfies

(i). We have already seen that � is decreasing. To prove (1.16), we note that
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E ċ CE ¨ E ċ CEe + E ċ CE f

¨ Ee ċ CEe + �Ee + E f� ċ CE f

¨ 2��E� + Ee ċ CE f + E f ċ CE f

³ 2��E�Ø

Thus � satisfies (1.16). Furthermore, we have

��E� ¨ 1

2
�E − E f� ċ C�E − E f�

and noting that E f X Sym + we see that

��E� ³ inf 1
2
�E − P� ċ C�E − P� Ú P X Sym + (Ø

Thus � is a decreasing function satisfying (1.16) that is larger than the function
defined by the right hand side of (1.17). However, since this right hand side defines
the largest function with this property, we have the equality (1.17). è

2 Vector valued measures

In this section we introduce the main object which will represent stresses in masonry
bodies and loads applied to the bodies. These two classes of objects will be represented
by tensor valued measures and vector valued measures, respectively. Among measures
there are ordinary functions (up to an identification), i.e., stresses and loads in the usual
sense, but most importantly, measures can represent stresses or loads concentrated
on lower–dimensional objects–surfaces or curves. The main goal in this section
is to introduce the terminology and notation for measures with values in a finite
dimensional vector space. We refer to [3; Chapter 1] for further details.

2.1 Definition. Let V be a finite-dimensional vector space. By a V valued measure

inRn we mean a map m from a system of all Borel sets inRn to V which is countably
additive in the sense that if B1Ù B2Ù Ü is a disjoint family of Borel sets in Rn then

m�
ð
U
i ¨ 1
Bi
 ¨

ð
�
i ¨ 1

m�Bi�Ø

Below we need the choices V ¨ Sym and V ¨ Rn. We call the Sym valued
measures tensor valued measures; this particular case is used to model the stress
fields over the body. We call the Rn valued measures vector valued measures. These
are used to model the loads applied to the body.

We say that a function φ defined on the system of all Borel sets in Rn is a
nonnegative measure if it takes the values from the set �0Ù ð� of nonnegative numbers
or ð which is countably additive in the sense that if B1Ù B2Ù Ü is a disjoint family of
Borel sets in Rn then

φ�
ð
U
i ¨ 1
Bi
 ¨

ð
�
i ¨ 1
φ�Bi�

and
φ�ó� ¨ 0Ø



9

If Ω is a Borel subset ofRn and m a V valued measure or a nonnegative measure,
we say that m is supported by Ω if m�A� ¨ 0 for any Borel set A such that APΩ ¨ óØ
We denote byM�ΩÙV � the set of all V valued measures supported by Ω.

If m X M�ΩÙV � and if α Ú Ω r V is a bounded Borel function then we have a
well defined integral

�
Ω

α ċ dmÙ

which is a real number.
We denote by L n the Lebesgue measure in Rn [3; Definition 1.52] and if k is

an integer, 0 ² k ² nÙ we denote by H k the k-dimensional Hausdorff measure (“k
dimensional area”) inRn [3; Section 2.8]. If φ is a nonnegative measure or a V valued
measure, we denote by φ A the restriction of φ to a Borel set A ⊂ Rn defined by

φ A�B� ¨ φ�AP B�

for any Borel subset B of RnØ Thus if N is an n − 1 dimensional surface in Rn then
H n − 1 N is the area measure onN Ø

If φ is a nonnegative measure, we denote by f φ the product of the measure φ

by a φ integrable V valued function f on RnÛ one has

�f φ��A� ¨ �
A

f dφ

for any Borel subset A of RnØ
The operations of restriction and multiplication of measures are employed to

construct tensor valued measures concentrated on surfaces as follows:

2.2 Examples. Consider a body Ω ⊂ Rn and an n − 1 dimensional surfaceN ⊂ Ω
and let E Ú Ω r Rn be a bounded continuous function, interpreted as a field of strain
over Ω.
(i) The measure H n − 1 N is supported by N and thus if Ts Ú N r Sym is an
H n − 1 integrable tensor field onN , then the measure

Ts Ú¨ TsH
n − 1
N

is a tensor valued measure inM�ΩÙ Sym� concentrated onN Ø One has

�
Ω

E ċ dTs ¨ �
N

E ċ Ts dH
n − 1Ø

(ii) IfTr Ú Ω r Sym is anL n integrable tensor field, then the tensor valued measure

Tr Ú¨ TrL
n Ω

belongs to M�ΩÙ Sym� and faithfully represents TrÛ the measure is distributed
over ΩØ One has

�
Ω

E ċ dTr ¨ �
Ω

E ċ Tr dL
nØ

The measures of the type Ts and Tr and their combinations T ¨ Tr + Ts will
be employed in Sections 6–7 where we deal with weakly compatible loads. Vector
valued measures will be employed in the following section to define the loads of the
body.
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The polar decomposition of measures (cf. [28; Theorem 6.12]) says that if
m X M�ΩÙV �Ù there exists a pair �rÙ |m|� consisting of a Borel function r Ú Ω r V
and of a nonnegative measure |m| on Ω such that

m ¨ r|m|
and

|r�x�| ¨ 1 for |m| almost every x X ΩØ

The measure |m| is unique and the function r is unique up to a change on a |m| null
set. The measure |m| is called the total variation measure of mÙ and r the amplitude.
We denote byM�m� the mass of mÙ defined byM�m� ¨ |m|�Rn�Ø

If Ω is an open subset of RnÙ we denote by C0�ΩÙV � the space of all continuous
V valued functions on Rn with compact support that is contained in ΩÙ and denote
by | ċ |C 0 the maximum norm on C0�RnÙV �Ø

3 Loads

We consider a continuous body represented by a Lipschitz domain [1] Ω ⊂ Rn
and assume thatDÙS are two disjoint subsets of ãΩ such that D TS ¨ ãΩÙ to
be identified below as the set of prescribed boundary displacement and prescribed
boundary force. We assume thatD is a closed set.

We put
V0 ¨  v X C 1�cl ΩÙRn� Ú v ¨ 0 on D(

and
V ¨  v X W 1Ù 2�ΩÙRn� Ú v ¨ 0 almost everywhere on D(Û

here C 1�cl ΩÙRn� is the set of all continuously differentiable mappings v Ú Ω r Rn
such that v and its derivative ∇v have a continuous extension to the closure cl Ω of
Ω and W 1Ù 2�ΩÙRn� is the Sobolev space of all Rn valued maps such that v and the
weak gradient ∇v of v are square integrable on Ω, i.e.,

�
Ω

|v| 2 dL n ° ðÙ �
Ω

|∇v| 2 dL n ° ðÙ

[1]. We assume thatV0 is a dense subset ofV Ø For any v X V we define the infinitesimal

strain tensor ÐE�v� of v by
ÐE�v� ¨ 1

2
�∇v + ∇vT�Ø

We assume that the body is subjected to loads which consist of a body force acting
in the interior of Ω and of the surface force acting onS Ø We represent both the body
and surface forces as vector valued measures supported by Ω and S , respectively.
Thus we assume that we are given b X M�ΩÙRn� and s X M�S ÙRn� with the
following meaning. For any Borel subset P of Ω the value b�P� X Rn is the body
force acting on P from the exterior and for any Borel S ⊂ S the value s�S� X Rn
is the force acting on the surface S from the exterior of the body. We call the pair
�sÙ b� the loads acting on the body. We note that we define the loads as measures,
which allows for the concentration of the body force and more importantly surface
tractions.
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We define for each u X V the internal energy of the body by

E�u� ¨ �
Ω

��ÐE�u�� dL n

and for each u X V0 the energy of the loads by

〈lÙu〉 ¨ �
Ω

u ċ db + �
S

u ċ dsØ

The total energy of the deformation u X V0 is defined by

F�u� ¨ E�u� − 〈lÙu〉Ø
An important special case arises when there are square integrable functions

b X L 2�ΩÙRn�Ù s X L 2�S ÙRn� such that

b ¨ bL n ΩÙ s ¨ sH n − 1 S Ø (3.1)

Here L 2�ΩÙRn� is the set of allL n measurable maps b Ú Ω r Rn such that

�
Ω

|b| 2 dL n ° ð

and L 2�S ÙRn� is the set of allH n − 1 measurable maps s Ú S r Rn such that

�
S

|s| 2 dH n − 1 ° ðØ

In the case (3.1) one can define the potential energy of the loads 〈lÙu〉 for each u
from the larger space V by

〈lÙu〉 ¨ �
Ω

u ċ b dL n + �
S

u ċ s dH n − 1

u X V Ø
Given the loads �sÙ b� and u X V Ù we say that u is an equilibrium state of Ω

under the given loads if

�
Ω

ÐT�ÐE�u�� ċ ÐE�v� dL n ¨ 〈lÙ v〉 (3.2)

for each v X V0Ø
We note that if the loads are of the special form (3.1) where b X L 2�ΩÙRn�Ù

s X L 2�S ÙRn� and if ÐT�ÐE�u�� X C 1�cl ΩÙ Sym� then the variational equation (3.2)
is equivalent to the strong form

divT + b ¨ 0 in Ω and Tn ¨ s on S

where n is the outer normal to ãΩØ We note that in general the existence of the
equilibrium state is not guaranteed. The existence theory of equilibrium state requires
the extension of the states to admit fracture. See Section 4, below. On the other hand,
the given loads may admit more than one equilibrium state uØ

3.1 Remark. Assume the loads of the special form (3.1) where b X L 2�ΩÙRn�Ù
s X L 2�S ÙRn�. Then u X V is an equilibrium state under the given loads if and only

if u is a minimizer of the total energy under the given loads.

Proof Let u be an equilibrium state under the given loads. Let v X V0Ø Then
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F�u + v� ¨ �
Ω

��ÐE�u� + ÐE�v�� dL n − 〈 lÙu〉 − 〈 lÙ v〉

³ �
Ω

���ÐE�u�� + ÐT�ÐE�u� ċ ÐE�v�� dL n − 〈 lÙu〉 − 〈 lÙ v〉

¨ F�u� + ��
Ω

ÐT�ÐE�u� ċ ÐE�v� dL n − 〈lÙ v〉�

by (1.10). Since u is an equilibrium state, the square bracket on the last line vanishes
and we obtain

F�u + v� ³ F�u� (3.3)

for each v X V0Ø Since V0 is dense in V and the energy a continuous functional, we
have (3.3) for each v X V Ø Thus u is a point of minimum energy.

Conversely, assume that u is a point of minimum energy. Let v X V0 and t X RØ
We have

F�u + tv� ³ F�u�

for all t X R with the equality sign for t ¨ 0 and thus the derivative of the function
tw F�u + tv� at t ¨ 0 vanishes. One has

F�u + tv� ¨ �
Ω

��ÐE�u� + tÐE�v�� dL n − 〈lÙu〉 − t〈lÙ v〉

and differentiating under the integral sign we obtain

d

dt
F�u + tv�

∣

∣

t ¨ 0¨ �
Ω

ÐT�ÐE�u�� ċ ÐE�v�� dL n − 〈lÙ v〉 ¨ 0Ø

Hence u is an equilibrium state of Ω under the given loads. è
Let �sÙ b� be given loads of Ω and let T X L 2�ΩÙ Sym� where L 2�ΩÙ Sym� is

the set of all L n measurable maps T Ú Ω r Sym such that �Ω |T| 2 dL
n ° ðØ We

say that T equilibrates the loads �sÙ b� if

�
Ω

T ċ ÐE�v� dL n ¨ 〈lÙ v〉

for all v X V0Ø We say that T is admissible if T�x� ² 0 forL n almost every x X ΩØ
We say that the lods �sÙ b� are strongly compatible if there exists an admissible
stress field equilibrating the loads. Using this terminology we can say that if u is an
equilibrium state of Ω under the given loads then the stress field corresponding to u
is admissible and equilibrates the loads. Thus the loads must be strongly compatible
for an equilibrium state to exist.

3.2 Theorem. Let u X V0 be an equilibrium state under the loads �sÙ b�Ø Then the

stress field S Ú¨ ÐT�ÐE�u�� is a minimum point of the complementary energy functional

G�T� ¨ 1

2 �
Ω

T ċ C − 1T dL
n

among all admissible stress fields T equilibrating the loads.

We call G the complementary energy.

Proof Let T be an admissible stress field equilibrating the loads and let Ee and E f

be the elastic and fracture parts of the strain corresponding to u. Using the convexity
of the functionUw 1

2
�C

− 1U ċU� we find
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G�T� − G�S� ³ �
Ω

C
− 1S ċ �T − S� dL n

¨ �
Ω

Ee ċ �T − S� dL n

¨ �
Ω

Ee ċ T dL n − 〈 lÙu〉

¨ ��
Ω

ÐE�u� ċ T dL n − 〈lÙu〉� − �
Ω

E f ċ T dL n

¨ − �
Ω

E f ċ T dL n ³ 0

since u is an equilibrium state and because the square bracket vanishes as T is a stress
field equilibrating the loads. è

As a corollary to Theorem 3.2 we have that while the displacement corresponding
to equilibrium may be nonunique, the equilibrium stress is unique as the complemen-
tary energy has a unique minimum point. We note also that the complementary
energy may admit a minimum among the admissible stress fields equilibrating the
given loads, and yet the equilibrium state need not exist.

Let �sÙ b� be the loads of Ω. We put

I0 ¨ inf !F�u� Ú u X V0)Ø

In general,
−ð ² I0 ° ð

and we have I0 ± −ð if and only if the total energy F is bounded from below. Let
H Ú L 2�ΩÙ Sym� r R be defined by

H�A� ¨ �
Ω

Ðw�A� dL n

for each A X L 2�ΩÙ Sym�Ø Let

H  �T� ¨ sup !A ċ T − H�A� Ú A X L 2�ΩÙ Sym�)

for any T X L 2�ΩÙ Sym�Ø Then [10]

H  �T� ¨ �
Ω

�  �T� dL n

and hence

H  �T� ¨















1

2 �
Ω

T ċ C − 1T dL
n if T is negative semidefinite,

ð otherwise,

T X L 2�ΩÙ Sym�Ù by (1.12).

3.3 Proposition. Consider the general loads �sÙ b�. Then the loads are strongly

compatible if and only if

I0 ± −ðØ

Proof Let Y Ú¨ L 2�ΩÙ Sym� and X0 Ú¨  ÐE�v� Ú v X V0( so that X0 ⊂ Y . Assume

that c ¨ I0 X R. Prove a preliminary result: if v1 v2 X V0 satisfy ÐE�v1� ¨ ÐE�v2�
then 〈lÙ v1 〉 ¨ 〈lÙ v2 〉Ø Indeed, let t X R and put v ¨ �1 − t�v1 + tv2Ø Then v X V0Ù
ÐE�v� ¨ E Ú¨ ÐE�v1� ¨ ÐE�v2� and thus
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F�v� ¨ �
Ω

Ðw�E� dL n − �1 − t�〈 lÙ v1 〉 − t〈 lÙ v2 〉 ³ cØ

Assuming t ± 0Ù dividing the inequality by t and letting t r ð we obtain 〈lÙ v1 〉 −
〈lÙ v2 〉 ³ 0Û similarly, assuming t ° 0Ù dividing by t and letting t r −ð we obtain
〈lÙ v1 〉 − 〈lÙ v2 〉 ² 0 and thus 〈 lÙ v1〉 ¨ 〈 lÙ v2 〉 which completes the proof of the
preliminary result. Let L0 Ú X0 r R be defined by

L0�ÐE�v�� ¨ 〈 lÙ v〉 (3.4)

for each v X V0Ù where we use the preliminary result to see that the right hand side of

(3.4) depends only on ÐE�v�Ø Then

L0�A� ² H�A� − c for all A X X0.

The convexity of Ðw implies the convexity of H and hence by the version of the Hahn
Banach theorem [13; Theorem A.35] there exists a linear extension L Ú Y r R of L0
such that

L�A� ² H�A� − c for all A X Y Ø (3.5)

The continuity of H on Y , which follows from the properties of ÐwÙ implies that H
is bounded on the unit ball in Y and hence L is bounded on the unit ball and hence
continuous. Thus it can be represented by an element T X Y as a scalar product in Y Ù
i.e., there exists a T X Y such that

L�A� ¨ �
Ω

T ċ A dL n

for each A X Y Ø Taking in particular A X L 2�ΩÙ Sym + � and noting that then
��A� ¨ 0Ù we find from (3.5) that

L�A� ² −cØ

Repalcing A by tA where t ± 0Ù dividing by t and letting tr ð we obtain L�A� ² 0
which implies that T ² 0 for almost all points of ΩØ Further, relation (3.4) gives

�
Ω

T ċ ÐE�v� dL n ¨ 〈lÙ v〉

for each v X V0 and thus T strongly equilibrates the loads �sÙ b�Ø
To prove the converse part of the statement, we let T be a stress field strongly

equilibrating the loads �sÙ b�. Since T is negative semidefinite and square integrable,
we have

H  �T� ¨ 1

2 �
Ω

T ċ C − 1T dL
n ° ð

and hence
ð ± H  �T� Ú¨ sup  �

Ω

T ċA dL n − H�A� Ú A X Y(

from which

H�A� − �
Ω

T ċ A dL n ³ −H  �T� for all A X Y Û

taking A ¨ ÐE�v� where v X V0, this is rewritten as

F�v� ³ c

for all v X V0 [with c ¨ −H  �T�]. è
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4 The existence of equilibrium states

In this section we outline the theory of existence of equilibrium for masonry materials.
This theory is due to G. Anzellotti [5] and M. Giaquinta & E. Giusti [14]. The
presentation below follows [5]. The reader is referred to the cited paper for further
details and proofs. The theories of Anzellotti and Giaquinta & Giusti are based
on the existence of uniformly negative definite stress field, see Definition 4.10,
below. A theory based on an alternative assumption of the strong absence of collapse
mechanism is presented in [30].

4.1 Definition. Let Ω ⊂ Rn be an open set. We denote by BD�Ω� the set of all
u X L 1�ΩÙRn� such that there exist a measure ÐE�u� XM�ΩÙ Sym� such that

�
Ω

u ċ divT dL n ¨ − �
Ω

T ċ dÐE�u� (4.1)

for all T X C ð
0 �ΩÙ Sym�Ø Here C ð

0 �ΩÙ Sym� is the set of all T Ú Rn r Sym such that
the support

sptT ¨ cl  x X Rn Ú T�x� © 0(

is contained in Ω and is compact. We denote by |u|BD�Ω� the BD norm defined by

|u|BD�Ω� ¨ |u|
L 1�ΩÙR n� +M�ÐE�u��

where we recall thatM�ÐE�u�� is the mass of ÐE�u� defined in Section 2. We call the
elements of BD�Ω� displacements of bounded deformation.

In other words, the strain tensor, being generally a distribution defined by

ÐE�u� ¨ 1

2
�∇u + ∇uT�Ù

is a Sym valued measure if u X BD�Ω�Ø If � X C ð
0 �ΩÙR� and if we apply (4.1) with

Tij ¨ Tji ¨
1

2
� for some pair �iÙ j� of indices and Tkl ¨ 0 otherwise we obtain

1

2 �
Ω

��Ù iuj + �Ù jui	 dL
n ¨ − �

Ω

� dÐEij�u�Ù

which is the ‘index form’ of the definition of the space BD�Ω�Ø
The space BD�Ω� endowed with the norm | ċ |BD�Ω� is a Banach space.
We refer to [32, 31] and [2] and the references therein for further details and

proofs of displacements with bounded deformation.

4.2 Example (Fracture in BD�Ω�). Let Σ ⊂ Ω be a surface of dimension n−1which
divides Ω into two open sets Ω1 and Ω2. Let u be a function such that its restriction
uk, k ¨ 1Ù 2Ù onto Ωk belongs to C 1�cl ΩkÙRn�. Then u X BD�Ω� and

ÐE�u� ¨ !ÐE�u�)L n Ω + �u� �mH n − 1 Σ (4.2)

where!ÐE�u�) is the function equal to ÐE�uk� onΩk (k ¨ 1Ù 2), �u��x� ¨ u2�x�−u1�x�
(x X Σ),m is the normal to Σ pointing from Ω1 to Ω2Ù and

a� b ¨ 1

2
�a � b + b � a�

for every aÙ b X RnØ
Proof Let T X C ð

0 �ΩÙRn�. Applying the divergence theorem to Ω1 and Ω2, we
obtain
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�
Ω

u ċ divT dL n ¨ �
Ω
1

u1 ċ divT dL
n + �

Ω
2

u2 ċ divT dL
n

¨ − �
Ω
1

ÐE�u1� ċ T dL
n + �

Σ

Tm ċ u1 dH
n − 1

− �
Ω
2

ÐE�u2� ċ T dL
n − �

Σ

Tm ċ u2 dH
n − 1

¨ − �
Ω

!ÐE�u�) ċ T dL n − �
Σ

T ċ ��u� �m� dH n − 1Ø è

4.3 Theorem. Let Ω ⊂ Rn be an open set with Lipschitz boundary. There exists a

linear map γ0 Ú BD�Ω� r L 1�ãΩÙRn� such that we have

�
Ω

u ċ divT dL n + �
Ω

T ċ dÐE�u� ¨ �
ãΩ
Tn ċ γ0�u� dH

n − 1

for each u X BD�Ω� and T X C 1�cl ΩÙ Sym�Ø One has

|γ0�u�|L 1�ãΩÙR n� ² c|u|BD�Ω�
for each u X BD�Ω� and some c X RØ
The function γ0�u� represents the boundary values of u. We often simplify the
notation and write u for γ0�u�Ø With this notation we have

�
Ω

u ċ divT dL n + �
Ω

T ċ dÐE�u� ¨ �
ãΩ
Tn ċ u dH n − 1Ø

4.4 Theorem. Let Ω ⊂ Rn be an open set with Lipschitz boundary. If u X BD�Ω�
then one has u X L n/�n − 1��ΩÙRn� and there exists a c X R such that

|u|
L n/�n − 1��ΩÙR n� ² c|u|BD�Ω�

for all u X BD�Ω�.

4.5 Theorem. Let Ω ⊂ Rn be an open set with Lipschitz boundary. The operator

imbedding BD�Ω� into L p�ΩÙRn�, 1 ² p ° n/�n− 1�, is compact; i.e., if uj X BD�Ω�
is a sequence bounded in the | ċ |BD�Ω� norm and 1 ² p ° n/�n − 1� then there exists a

subsequence of ujÙ still denoted by uj, such that

uj r u in L p�ΩÙRn�

for some u X BD�Ω�Ø

4.6 Theorem. Let Ω ⊂ Rn be an open connected set and u X BD�Ω�Ø Then
ÐE�u� ¨ 0 if and only if u is of the form

u�x� ¨Wx + a (4.3)

for all x X Ω where a X Rn andW X SkwØ
If n ¨ 3 and b is the polar vector ofWÙ we can write

u�x� ¨ b � x + aØ

We call any u of the form (4.3) a rigid body displacement and denote byR�Ω� the
linear space of all rigid body displacements of ΩØ
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4.7 Theorem. Let Ω ⊂ Rn be an open connected set. There exists a linear map

uw r�u� from BD�Ω� toR�Ω� such that r�u� ¨ u for u XR�Ω� and

|u − r�u�|
L n/�n − 1��ΩÙR n� ² cM�

ÐE�u��

for all u X BD�Ω� and some c X RØ
Recall from Section 1 that P Ú Sym r C

− 1Sym − denotes the orthogonal
projection from Sym onto C

− 1Sym − with respect to the energetic scalar product
�ċÙ ċ�E . Endow Sym with the energetic scalar product. Let u X BD�Ω� and write

ÐE�u� ¨ D|ÐE�u�|

for the polar decomposition of the measure ÐE�u�, with |ÐE�u�| a nonnegative measure
on Ω and D Ú Ω r Sym a function satisfying |D|E ¨ 1 for |ÐE�u�| almost every point

of ΩØ We denote byPÐE�u� the measure defined by

PÐE�u� ¨ �PD�|ÐE�u�|Ø

4.8 Definition. We denote by U�Ω� the set of all u X BD�Ω� such that the mea-
surePÐE�u� is absolutely continuous with respect to the Lebesgue measure, with the
density ÎPÐE�u� such that ÎPÐE�u� X L 2�ΩÙ Sym�Ø We call the elements ofU�Ω� ad-

missible displacements. We define the internal energy of the admissible displacement
u by

E�u� ¨ �
Ω

| ÎPÐE�u�| 2E dL nØ

4.9 Example (Fracture inU�Ω�). The setU�Ω� is the basic set of competitors for
the equilibrium problem. Note that U�Ω� is not a linear space since if u X U�Ω�
then it may happen that −u ZU�Ω�ØAs an example, let u X BD�Ω� be as in Example
4.2. Let us show that u XU�Ω� if and only if there exists a function λ Ú Σ r �0Ù ð�
such that

�u� ¨ λm on ΣÙ (4.4)

i.e., the jump in u across Σ is positively proportional to the normal to ΣØ This seems
to be in agreement with the observation of fractured masonry structures.

Proof Assume that there exists a point x on Σ such that �u� andm are not positively
proportional. Then by the continuity there exists a neighborhood N of x in Σ such
that �u� and m are not positively proportional. One easily finds that in this case the
tensor �u� �m has a nonzero negative definite part, which further implies

P��u� �m� © 0 on N Ù

since otherwise �u� �m would be positive semidefinite. Equation (4.2) then gives

PÐE�u� ¨ P!ÐE�u�)L n Ω + P��u� �m�H n − 1 Σ

and thusPÐE�u� has a nonzero singular part, in contradiction with the definition of
U�Ω�Ø Therefore we have (4.4) with a nonnegative λØ The converse implication:
under (4.4) we have P��u� �m� ¨ 0 and thus

PÐE�u� ¨ P!ÐE�u�)L n Ω
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and hence PÐE�u� is absolutely continuous with respect to L n with a square inte-
grable density. è

We shall deal with the existence of solution for the Neumann problem. Thus we
assume thatD ¨ ó. We call a pair �sÙ b� loads for the system if s X Lð�ãΩÙRn�Ù
b X L n�ΩÙRn�Ø In view of the fact that for any u X BD�Ω�we have γ0�u� X L 1�ãΩ�Ù
u X L n/�n − 1��ΩÙRn�Ù by the Hölder inequality we have a well defined energy of the
loads

〈 lÙu〉 ¨ �
ãΩ
u ċ s dH n − 1 + �

Ω

u ċ b dL n

for any u X BD�Ω� and in particular for any u X U�Ω�Ø We define the total energy
of u XU�Ω� by

F�u� ¨ E�u� − 〈lÙu〉Ø
We say that Ω ⊂ Rn is an admissible domain if for any u X U�Ω� there exists

a sequence uj X C 1�cl ΩÙRn� such that

uj r u in L n/�n − 1��ΩÙRn�Ù
M�ÐE�uj�� r M�ÐE�u��Ù

ÎP�uj� r ÎP�u� in L 2�ΩÙ Sym�Ø
It turns out that all Lipschitz domains in R2 are admissible and that for any n all star
shaped Lipschitz domains are admissible.

4.10 Definition. We say that a stress field T X L 2�ΩÙ Sym� is safe if there exists an
α ± 0 such that

−T�x� ċA ³ α|A|
for all A X Sym + andL n almost every x X ΩØ
In other words, T is uniformly negative definite over ΩÙ which in particular implies
that s ċ n ² −α ° 0 on ãΩÙ i.e., the body must be uniformly compressed on the
boundary. As before we say that a stress field T equilibrates the loads �sÙ b� if

〈lÙ v〉 ¨ �
Ω

T ċ ÐE�v� dL n

for every v X C 1�cl ΩÙRn�Ø
4.11 Theorem. Let Ω be an admissible Lipschitz domain in Rn and consider loads

�sÙ b�Ø If there exists a safe stress field T equilibrating the loads then the functional

F is coercive onU�Ω� in the sense that

F�u� ³ c1" �
Ω

| ÎP�ÐE�u��| 2E dL n +M�ÐE�u��* + c2
for some constants c1Ù c2 with c1 ± 0 and all u XU�Ω�Ø

We say that a sequence uj X U�Ω� converges weakly to u X BD�Ω� if we have
the relations

uj r u in L 1�ΩÙRn�Ù

uj u u in L n/�n − 1��ΩÙRn�Ù

M�ÐE�uj�� ² MÙ

�
Ω

| ÎP�ÐE�uj��| 2E dL n ² M



























































(4.5)

for some M X R.
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4.12 Theorem. Let Ω be an admissible Lipschitz domain in Rn and consider loads

�sÙ b�Ø Assume that there exists a stress field S X L 2�ΩÙ Sym − � and a function

c X L n�ΩÙRn� such that S is bounded and S equilibrates the loads �sÙ c�Ø Then the

functional F is weakly sequentially lowersemicontinuous in the sense that for any

sequence uj XU�Ω� which converges weakly to u XU�Ω�, we have

lim inf
jrð

F�uj� ³ F�u�Ø

4.13 Proposition. The set U�Ω� is closed under the weak convergence of se-

quences, i.e., if uj XU�Ω� converges weakly to u X BD�Ω� then u XU�Ω�Ø

4.14 Theorem. Let Ω be an admissible Lipschitz domain in Rn and consider loads

�sÙ b�Ø Assume that there exists a safe stress field equilibrating the loads and moreover

there exists a stress field S as in Theorem 4.12. Then there exists inU�Ω� a minimizer

of F onU�Ω�Ø
Proof There exists a sequence uj XU�Ω� such that

lim
jrð

F�uj� ¨ inf!F�u� Ú u XU�Ω�)Ø

Since the energy functional F is coercive by Theorem 4.11, the boundedness of the
sequence F�uj� implies that there exists aM X R such that

M�ÐE�uj�� ² MÙ

�
Ω

| ÎP�ÐE�uj��| 2E dL n ² M

If uw r�u� is the map from Theorem 4.7, we have

|uj − r�uj�| ² M�ÐE�uj�� ² M

and thus the sequence vj Ú¨ uj − r�uj� is bounded in L n/�n − 1��ΩÙRn� and hence it
contains a subsequence, again denoted by vjÙ such that

vj u v in L n/�n − 1��ΩÙRn� (4.6)

for some v X L n/�n − 1��ΩÙRn�Ø Since ÐE�vj� ¨ ÐE�uj�Ù we also have

M�ÐE�vj�� ² MÙ (4.7)

�
Ω

| ÎP�ÐE�vj��| 2E dL n ² M Ø (4.8)

Since the sequence vj is bounded in L n/�n − 1��ΩÙRn�, it is also bounded in L 1�ΩÙRn�Ø
Thus we conclude that |vj|BD�Ω� is bounded. The compactness of the imbedding of
BD�Ω� into L 1�ΩÙRn� by Theorem 4.5 implies that we have

vj r v in L 1�ΩÙRn�Ø (4.9)

We thus summarize (4.6)–(4.9) by saying that the sequence vj X U�Ω� converges
weakly to v X BD�Ω�Ø The weak closedness ofU�Ω� (Proposition 4.13) then says
that v XU�Ω�Ø Moreover, one easily finds that F�vj� ¨ F�uj� and thus
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lim
jrð

F�vj� ¨ min!F�u� Ú u XU�Ω�)Ø

On the other hand, the functional F is sequentially weakly lowersemicontinuous
(Theorem 4.12) and thus

lim
jrð

F�vj� ³ F�v�Ø

This gives
F�v� ² inf!F�u� Ú u XU�Ω�)

and thus
F�v� ¨ min!F�u� Ú u XU�Ω�)Ø è

5 Limit analysis

The limit analysis deals with the loads that depend linearly (affinely) on a scalar
parameter λ X R [8]. We thus assume [21, 23] that the body and surface forces
b
λ XM�ΩÙRn� and s

λ XM�S ÙRn� corresponding to λ are given by

b
λ ¨ b0 + λb1Ù s

λ ¨ s0 + λs1 (5.1)

where
b0Ùb1 XM�ΩÙR

n� s0Ù s1 XM�S ÙR
n�Ø

We call �s�λ�Ù b�λ�� ¨ �s
λÙ b λ� the loads corresponding to λØ If v X V0 then the

work of the loads �s�λ�Ù b�λ�� corresponding to v is

〈l�λ�Ù v〉 ¨ �
S

v ċ ds λ + �
Ω

v ċ db λ Ø

If the loads have square integrable densities, i.e., if

b0 ¨ b0L
nÙ b1 ¨ b1L

nÙ s0 ¨ s0H
n − 1Ù s1 ¨ s1H

n − 1Ù

where
b0Ù b1 X L

2�ΩÙRn�Ù s0Ù s1 X L
2�S ÙRn�Ù

then one can extend the definition of l�λ� to elements v of V Ø
In the general context of loads represented by measures we define the total energy

F�vÙ λ� of the body corresponding to the loads �s�λ�Ù b�λ�� and displacement v X V0
by

F�vÙ λ� ¨ E�v� − 〈l�λ�Ù v〉
so that F�ċÙ λ� Ú V0 r RØ Central to our considerations is the infimum energy

I0�λ� X RT  −ð( of the loads �s�λ�Ù b�λ�� defined by

I0�λ� ¨ inf !F�vÙ λ� Ú v X V0)Ø

We denote by A�λ� the set of all admissible stress fields equilibrating the loads
�s�λ�Ù b�λ��Ø Recal that the loads �s�λ�Ù b�λ�� are strongly compatible if A�λ� ©
óØ

We now follow [19].
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5.1 Proposition.

(i) The loads �s�λ�Ù b�λ�� are strongly compatible if and only if I0�λ� ± −ðØ
(ii) The function I0 Ú Rr RT  −ð( is concave and uppersemicontinuous, i.e.,

I0�αλ + �1 − α�µ� ³ αI0�λ� + �1 − α�I0�µ�

for every λÙ µ X R and α X �0Ù 1� and

I0�λ� ³ lim sup
krð

I0�λk�

for every λ X R and every sequence λk r λØ Hence the set

Λ ¨ !λ X R Ú I0�λ� ± −ð) ª !λ X R Ú A�λ� © ó) (5.2)

is an interval.

Since the notion of compatibility of loads is independent of the tensor of elastic
constants C, also the finiteness of I0�λ� is independent of C [within the class specified
by (1.1)], even though the concrete value of I0�λ� depends on CØ We emphasize the
role of the square integrability requirement of the stress field in the definition of
strongly compatible loads; there are loads �s�λ�Ù b�λ�� with I0�λ� ¨ −ð and yet
with �s�λ�Ù b�λ�� being weakly equilibrated by a stress field T X L 1�ΩÙ Sym� ∼
L 2�ΩÙ Sym� with values in Sym − Ø
Proof (i): This follows from Proposition 3.3.

(ii): The affine dependence of l�λ� on λ implies that the function λ w F�uÙ λ�
is affine for each u X V0Û thus the function λ w I0�λ�, being the lower envelope of
the family of affine continuous functions over the parameter set !u X V0)Ù is concave
and uppersemicontinuous [10; Chapter I, Section 2]. è

5.2 Definitions. Let Λ be given by (5.2). A loading multiplier λ X R is said to
(i) be statically admissible if λ X ΛÛ otherwise λ is said to be statically inadmissible;
(ii) be a collapse multiplier if it is a finite endpoint of Λ;
(iii) be kinematically admissible if there exists a v X V0 such that ÐE�v� ³ 0 〈Ï Ù v〉 ¨ 1

and
λ ¨ −〈 l0Ù v〉Û (5.3)

(iv) admit a collapse mechanism if λ is kinematically admissible and λ ² sup ΛØ

5.3 Remarks.

(i) The collapse multiplier can be statically admissible as well as statically inad-
missible.

(ii) The notion of collapse multiplier can be given a dynamical meaning. The paper
[26] considers no–tension bodies in dynamical situations with a viscous perturbation
of the equations of motion. It turns out that if I0�λ� ± −ð then the motion with
arbitrary initial data stabilizes in the sense that the kinetic energy satisfies K�t� r 0
as t r ð while if I0�λ� ¨ −ð then the total energy, given by the sum of the total
potential energy and the kinetic energy, T�t� ¨ F�t� + K�t�Ù satisfies T�t� r −ð as
tr ðØ

(iii) If λ admits a collapse mechanism then there exists a v X V with ÐE�v� ³ 0Ù
〈Ï Ù v〉 ¨ 1 and 〈l�λ�Ù v〉 ¨ 0Û each such a v is said to be a collapse mechanism for

the loads �s�λ�Ù b�λ��.
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(iv) If λ admits a collapse mechanism and if additionally λ is statically admissible
then each admissible equilibrating stress field for �s�λ�Ù b�λ�� is called a collapse

stress field. A stronger version of the definition of collapse mechanism v in [8]
requires that v be as in (iii) and that additionally λ be statically admissible.

5.4 Remark. IfT X L 2�ΩÙ Sym�, we denote the normal cone to the setL 2�ΩÙ Sym − �
at T byNorm�L 2�ΩÙ Sym − �ÙT� and applying the definition from Section 1 we ob-
tain

Norm �L 2�ΩÙ Sym − �ÙT�
¨ !D X L 2�ΩÙ Sym� Ú �

Ω

D ċ �T − S� dL n ³ 0

for each admissible stress field S)

¨ !D X L 2�ΩÙ Sym� Ú D ċ �T −U� ³ 0
for every U X Sym − andL n almost every point of Ω)Ø

Let λ X RØ If v X V satisfies

ÐE�v� X Norm�L 2�ΩÙ Sym − �ÙT�Ù 〈Ï Ù v〉 ¨ 1 (5.4)

and
λ ¨ −〈l0Ù v〉 (5.5)

for some T X A�λ� then v is a collapse mechanism for the loads �s�λ�Ù b�λ��Ø
Indeed, the second characterization ofNorm�L 2�ΩÙ Sym − �ÙT� implies that ÐE�v� ³
0 almost everywhere on ΩØ

The number of collapse multipliers ranges from 0 to 2Ø In applications, one is
interested in the larger of the possibly two collapse multipliers. Motivated by this,
we introduce the multiplier

λ +
c Ú¨ sup !λ X R Ú λ is statically admissible) (5.6)

−ð ² λ +
c ² ðÛ thus if λ +

c is finite, then λ +
c is a collapse multiplier, and if there are

two collapse multipliers, then λ +
c is the larger of these two. Also, we consider the

multiplier
Ïλ
+
c ¨ inf !λ X R Ú λ is kinematically admissible)Ø (5.7)

5.5 Remark. The above definitions of λ +
c and Ïλ

+
c are based on the square inte-

grability: in the definition of λ +
c the admissible equilibrating stresses are square

integrable and in the definition of Ïλ
+
c we consider mechanisms that are square inte-

grable with the square integrable gradients. The definitions of the analogs of λ +
c and

Ïλ
+
c using different function spaces is treated in detail in [24]. However, it must be

emphasized that the definitions based on the square integrability are well motivated
by Proposition 3.3.

5.6 Remark. It turns out [24] that the definition of the kinematic multiplier (5.7) can
be reformulated to the format of the variational problem by Ekeland & Temam [11]
and then the static multiplier (5.6) takes the form of the dual problem in the sense of
the cited reference.

Our first result shows that our definition of the collapse multiplier generalizes
that based on the collapse mechanism:



23

5.7 Theorem.

(i) We have λ +
c ² Ïλ

+
c Ø

(ii) If λ X R admits a collapse mechanism then λ ¨ λ +
c ¨ Ïλ

+
c Ø

Proof (i): Let λ X R be kinematically admissible, i.e., there exists a v X V0 such that
ÐE�v� ³ 0 almost everywhere on ΩÙ 〈Ï Ù v〉 ¨ 1Ù and 〈 l�λ�Ù v〉 ¨ 0Ø Then λ ¨ −〈 l0Ù v〉
and thus

Ïλ
+
c ¨ inf !−〈 l0Ù v〉 Ú v X V0Ù ÐE�v� ³ 0Ù 〈Ï Ù v〉 ¨ 1)Ø (5.8)

Let λ X R be statically admissible with the admissible equilibrating stress field T and
let v X V0 be such that ÐE�v� ³ 0 almost everywhere on Ω and 〈 Ï Ù v〉 ¨ 1Ø Then we
have

0 ³ �
Ω

T ċ ÐE�v� dL n ¨ 〈l�λ�Ù v〉 ¨ λ + 〈l0Ù v〉Ù

Thus
λ ² −〈 l0Ù v〉Ø

Taking the infimum over all v with the indicated properties and using (5.8) we find

λ ² Ïλ
+
c and taking the supremum over all T with the indicated properties, we obtain

the inequality in (i).
(ii): Assume that λ X R admits a collapse mechanism. Prove first that λ ¨ λ +

c Ø
Since λ admits a collapse mechanism, λ is kinematically admissible and hence there
exists a v X V0 with

ÐE�v� ³ 0Ù 〈Ï Ù v〉 ¨ 1 and 〈 l�λ�Ù v〉 ¨ 0Ø (5.9)

Prove that I0�µ� ¨ −ð for all µ ± λØ We have E�tv� ¨ 0 and hence

F�tvÙ µ� ¨ −〈l�µ�Ù tv〉 ¨ −〈 l�λ�Ù tv〉−�µ− λ�〈 Ï Ù tv〉 ¨ −�µ− λ�t〈Ï Ù v〉 ¨ −�µ− λ�tØ

Letting tr ð we thus obtain F�tvÙ µ� r −ð as tr ð for all µ ± λ. Hence λ +
c ² λ;

on the other hand, λ ² λ +
c as part of the definition of the multiplier admitting a

collapse mechanism. This completes the proof of λ ¨ λ +
c Ø

On the other hand, λ is kinematically admissible as part of the definition of

the property of λ admitting a collapse multiplier. Thus Ïλ
+
c ² λ ¨ λ +

c and Item (i)
completes the proof. è

6 Families of measures and the weak compatibility of loads

In this section we introduce the generalized compatibility of loads called weak com-
patibility. This involves balancing the loads by a stressfield represented by a measure
T from M�ΩÙ Sym�. Thus in contrast to the strong compatibility, which is based
on balancing by a square integrable function, we here admit concentrations of stress
on objects of dimension lower than the dimension n of the physical space RnÙ see
Example 2.2(i). In many concrete cases, it is easier to prove the weak compatibility
than the strong compatibility. However, Proposition 3.3 on the boundedness below of
the total energy requires strong compatibility. In the case of the limit analysis, where
we deal with the loads depending on the loading parameter λÙ we have the balancing
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measures depending on λ as well. Then we can use a procedure of integrating the
balancing stress measures with respect to the loading parameter to smear out the
singularities of the stress measure to obtain a square integrable function.

We say that T XM�ΩÙ Sym� is admissible if T takes the values in the set Sym −

of the negative semidefinite symmetric tensors, i.e., if T�A�a ċ a ² 0 for any Borel
set A ⊂ Ω and for any a X RnØ We say that T weakly equilibrates the loads �sÙ b� if

�
Ω

ÐE�v� ċ dT ¨ �
Ω

v ċ db + �
N

v ċ ds

for any v X V0Ø We say that the loads �sÙ b� are weakly compatible if there exists an
admissible T XM�ΩÙ Sym� which weakly equilibrates them. The reader is referred
to [29] for the general properties of stresses represented by measures.

If the loads are strongly compatible then they are weakly compatible; however,
there are examples of loads that are weakly compatible but not strongly compatible.

6.1 Example. Consider a stress measure of the form

T ¨ Tr + TsÙ where Tr ¨ TrL
n ΩÙ Ts ¨ TsH

n − 1
N

where Tr Ú cl Ω r Sym is a smooth L n integrable function over the body and
Ts Ú clN r Sym is a smooth H n − 1 integrable function over a smooth surface N
contained in ΩØ Assume furthermore given the loads �sÙ b� of the form (3.1) with b
and s continuous integrable functions over Ω and S , respectively. Then T weakly
equilibrates the loads �sÙ b� if and only if the following two conditions hold:
(i) we have

divTr + b ¨ 0 in Ω ∼N Ù (6.1)

where div is the classical divergence operator;
(ii) the stress field Ts is superficial in the sense that Tsm ¨ 0 where m is the normal

toN and we have
�Tr�m + divN Ts ¨ 0 on N (6.2)

where �Tr� ¨ T +
r − T −

r is the jump discontinuity of Tr on N and divN is the
superficial divergence [20; Section 4];

(iii) we have
Trn ¨ s on S

where n is the outer normal to ãΩØ
We now pass to the details of the integration procedure.

6.2 Definition. An integrable parametric measure [21] is a family  m
λ Ú λ X Λ(

of V valued measures on Rn where Λ ⊂ R is a L 1 measurable set of parameters
such that
(i) for every continuousV valued function f onRnwith compact support the function

λ w �R n f ċ dm
λ isL 1 measurable on ΛÛ

(ii) we have
c Ú¨ �

Λ

M�m λ� dλ ° ðØ

We note that parametric measures similar to those defined above occur in the
context of disintegration (slicing) of measures [3; Section 2.5] and, what is related,
in the context of Young’s measures [25; Chapter 5].
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6.3 Proposition. If  m
λ Ú λ X Λ( is an integrable parametric measure then there

exists a unique V valued measure m on Rn such that

�
R n
f ċ dm ¨ �

Λ
�
R n
f ċ dm λ dλ (6.3)

for each continuous V valued function f on Rn with compact support.

We write
m ¨ �

Λ

m
λ dλ (6.4)

and call m the integral of the family  m
λ Ú λ X Λ( with respect to λØ

Proof We note that for each continuous V valued function f on Rn with compact
support the right hand side of (6.3) is a well defined real number: indeed

∣

∣ �
Λ
�
R n
f ċ dm λ dλ

∣

∣ ² �
Λ
�
R n

|f | d|m λ | dλ

² max  |f �x�| Ú x X Rn( �
Λ

M�m λ� dλ

² cmax  |f �x�| Ú x X Rn(Ø
Thus by the Riesz representation theorem [3; Theorem 1.54] there exists a measure
m such that (6.3) holds. è

The following two propositions give two important examples of integrable para-
metric measures. In both cases the corresponding integral (6.4) is absolutely contin-
uous with respect to the Lebesgue measure.

6.4 Proposition. Let  T λr Ú λ X Λ( be a family of Sym valued functions on Ω ⊂ Rn
defined for all λ from aL 1 measurable set Λ ⊂ R such that the mapping �xÙ λ� w
T λr �x� isL n + 1 integrable on Ω � ΛÙ i.e.,

�
Λ

�
Ω

|T λr �x�| dxdλ ° ðØ (6.5)

If we define a Sym valued measure T
λ
r by

T
λ
r ¨ T

λ
r L

n Ω

then  T
λ
r Ú λ X Λ( is an integrable parametric measure and we have

�
Λ

T
λ
r dλ ¨ TrL

n Ω

where

Tr�x� ¨ �
Λ

T λr �x� dλ

forL n almost every x X ΩØ
Proof This follows directly from Fubini’s theorem. è

6.5 Proposition. Let Ω0 ⊂ Rn be open, let � Ú Ω0 r R be locally Lipschitz

continuous and let Ts Ú Ω0 r Sym beL n measurable on Ω0Ù with

�
Ω
0

|Ts||∇�| dL n ° ðØ (6.6)



26

Then for L 1 almost every λ X R the function Ts is H n − 1 � − 1�λ� integrable;

denoting by Λ the set of all such λ we define the measure m
λ by

T
λ Ú¨ TsH

n − 1 � − 1�λ�

for each λ X ΛØ Then  T
λ Ú λ X Λ( is an integrable parametric measure and we have

�
Λ

T
λ dλ ¨ Ts|∇�|L n Ω0Ø (6.7)

Proof Let T be given by
T ¨ �

Λ

T
λ dλØ (6.8)

If E X C0�RnÙ Sym� then by the coarea formula [3; Section 2.12] we have

�
Ω
0

E ċ Ts|∇�| dL n ¨ �
R

�
� − 1�λ�

E ċ Ts dH
n − 1
dλ

¨ �
Λ
�
R n
E ċ dT λdλ

¨ �
R n
E ċ dTØ è

We now assume that the loads depend affinely on the loading parameter as in
(5.1), thus we have loads �s

λ Ù b λ� defined for each λ X RØ It may happen that there
exists an interval �λ− εÙ λ+ ε� such that each load �s

µÙ b µ�, with µ from this interval,
is weakly equilibrated by a stress field T

µ XM�ΩÙ Sym� in such a way that

 T
µÙ µ X Λ( (6.9)

is an integrable parametric measure. In this situation, we have

6.6 Remark. The measure U defined by

U ¨
1

2ε

λ + ε

�
λ − ε

T
µ dµ

weakly equilibrates the loads �s
λ Ù b λ�. However, depending on the nature of the

family (6.9), it may happen that the measure U is such that

U ¨ UL n Ω U X L 2�ΩÙ Sym − �Ù

i.e., the loads �s
λÙ b λ� are strongly equilibrated by the stress fieldUØ Such a situation

arises when the family (6.9) satisfies the hypothesis of Proposition 6.4 or Proposition
6.5, or is a sum of families such that one satisfies Proposition 6.4 and the other
Proposition 6.5. In many concrete cases, it is hard to evalueate U explicitly but for
the analysis it suffices to know that U is represented by a square integrable function.

7 Integration with gravity

In this section we consider a rectangular panel made of a no-tension material that is
fixed at its base and subject to both the weight b which constitutes the permanent part
of the loads, and a horizontal compressive load s λ of intensity λ, which is uniformly
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distributed on the right lateral side of the panel and constitutes the variable part of the
loads. Then, for every λ in an appropriate interval �0Ù λc�, we determine a negative
semidefinite and square integrable stress field T λ which is in equilibrium with the
given loads and we conclude that every λ X �0Ù λc� is statically admissible (see
Definition 5.2). Let

Ω ¨ �0ÙB� � �0ÙH� ⊂ R2

be the rectangular panel. We introduce the coordinate system xÙ y in R2 with the
origin in the upper right corner of the panel and with the x axis pointing to the left
and the y axis pointing downward. We denote a general point of Ω by r ¨ �xÙ y� and
the coordinate vectors along the axes x, y by i, j, respectively. We put

D ¨ �0ÙB� �  H(Ù S ¨ ãΩ ∼D
and consider the loads �s λ Ù b λ�where, for b ± 0Ù b λ ¨ bj in Ω, and for r ¨ �xÙ y� X S
and λ ± 0Ù

s λ�r� ¨










λi on  0( � �0ÙH�Ù
0 elsewhere.

(7.1)

The stress field T λ will be constructed in two steps. Firstly, for every λ X �0Ù λc�
we determine a measure stress field T

λ X M�ΩÙ Sym − � that is in equilibrium with
the loads, i.e., such that

�
Ω

ÐE�v� ċ dT λ ¨ b �
Ω

v ċ j dL 2 + λ �
 0(� �0Ù H�

v ċ i dH 1

for every v X V ¨ W 1Ù 2�ΩÙR2� (we recall thatL 2 stands for the Lebesgue measure
and H 1 for the 1-dimensional Hausdorff measure in R2). This expression is well
defined because the loads are of the special form (3.1). Secondly, we determine a
square integrable negative semidefinite and equilibrated stress field T λ for every
λ X �0Ù λc� by the integration procedure described in Section 6, i.e. T λ X A�λ�Ø This
will prove that the loads �s λÙ b λ� are strongly compatible for every λ X �0Ù λc� (see
(5.2)).

To determine the stress measure T
λÙ we use the results of [22]. We consider a

smooth curveN λ which starts at the upper right corner and ends at the bottom of the
panel, and which is the graph of an increasing function ω λ Ú �0Ù t λ� r �0ÙH� to be
specified below. In this way, Ω is divided into the regions Ω λ

+ (on the left) and Ω λ
−

(on the right) by the curve N λ. We are looking for a weakly equilibrated measure
stress field T

λ which is absolutely continuous with respect to the Lebesgue measure
in Ω λ

+ and Ω λ
− with a piecewise continuously differentiable density T λr and has a

concentration onN λ with a continuously differentiable density T λs Ù i.e.,

T
λ ¨ T λr L

2 Ω + T λsH
1
N

λ Ø

The equilibrium condition (6.1) implies that

divT λr + b
λ ¨ 0 in Ω ∼N λ Ø (7.2)

Furthermore, T λs is superficial by Item (ii) of Example 6.1, which means here

T λs ¨ σ
λt λ � t λÙ (7.3)
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where t λ is the unit tangent vector toN λ and σ λ is a scalar function onN λ Ø By (6.2)
we have

�T λr �m + divN T λs ¨ 0 on N λ (7.4)

where �T λr � is the jump discontinuity T λ
r onN λ,m is the unit normal toN λ pointing

toward Ω λ
+ .

Following the method presented in [22] we obtain (see [22; Eqs. (4.6), (4.7) and
(3.1)])

T λr �r� ¨























−byj� j if r X Ω λ
+ Ù

−λi� i − 2bxi� j −
b2x2

λ
j� j if r X Ω λ

−
(7.5)

which satisfies the equilibrium equation (7.2) and the boundary conditions (7.1).
From (7.4) we deduce the equation of N λ (see [22; Eq. (4.16)] with λ ¨ βH and
p0 ¨ 0)

ω λ�x� ¨ cbx2/λÙ c ¨ 1/2 +
√
3/6 (7.6)

which has the unit tangent vector

t λ�r� ¨
xi + 2yj

√

x2 + 4y 2
(7.7)

Moreover, from (7.6) and (7.4) we obtain (see [22; Eq. (2.19)], with s0 ¨ 0, and
f �xÙ y� at the end of page 229)

σ λ�r� ¨ −
√
3

6
bx

√

x2 + 4y 2 (7.8)

r X N λ. If λ X �0Ù λc�, with λc ¨ cbB2/H , thenN λ is contained in Ω, except for the
endpoints and the measure stress field T λ is well defined by relations (7.5)–(7.8).

The parametric measure T λr L
2 Ω is of the form considered in Proposition 6.4

and the integrability condition (6.5) is satisfied because we have

λc

�
0

�
Ω

|T λr �r�| drdλ ° ð

Hence for 0 ° λ ° λc and ε ± 0 such that

Λ ¨ �λ − εÙ λ + ε� ⊂ �0Ù λc� (7.9)

the measure
ÏT
λ

r ¨
1

2ε
�
Λ

T
µ
r dµ (7.10)

is an absolutely continuous measure with respect toL 2 Ω,

ÏT
λ

r ¨ U
λ
r L

2 ΩØ

To compute U λ
r , let us put

A ¨  r ¨ �xÙ y� Ú bcx2/y X Λ(Ø (7.11)

We obtain
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U λ
r �r� ¨







































−byj� j if r X Ω λ
+ ∼ AÙ

−λi� i − 2bxi� j − �2ε� − 1b2x2 ln

(

λ + ε
λ − ε

)

j� j if r X Ω λ
− ∼ AÙ

�2ε� − 1 �ξ1�r�i� i + 2ξ2�r�i� j + ξ3�r�j� j� if r X AÙ
(7.12)

where

ξ1�r� ¨
b2c 2x4

2y 2
−
1

2
�λ + ε�2

ξ2�r� ¨ bx�
bcx2

y
− λ − ε�Ù

ξ3�r� ¨ by�λ − ε� − b
2x2

(

c + ln
y�λ + ε�
bcx2

)

Ø

In order to verify the first two regimes in (7.12) we note that if r X Ω µ
+ ∼ A or

r X Ω µ
− ∼ A then, for all values of µ in Λ, the expression of T

µ
r �r� is that given by

(7.5)1 and (7.5)2, respectively. Thus, (7.12)1 and (7.12)2 can be immediately obtained
from (7.6). For r X A, we have r X Ω µ

+ for µ X �λ − εÙ bcx2/y� and r X Ω µ
− for

µ X �bcx2/yÙ λ + ε�. Therefore

U λ
r �r� ¨ �2ε� − 1

λ + ε

�
λ − ε

T
µ
r dµ

¨ �2ε� − 1
{bcx 2/y

�
λ − ε

−byj� j dµ +
λ + ε

�
bcx 2/y

�−µi� i − 2bxi� j −
b2x2

µ
j� j� dµ

}

¨ �2ε� − 1
{(b2c 2x4

2y 2
−
1

2
�λ + ε�2

)

i� i + 2bx
(bcx2

y
− λ − ε

)

i� j

+
[

by�λ − ε� − b2x2
(

c + ln
y�λ + ε�
bcx2

)]

j � j
}

Ø

The densityU λ
r is bounded in Ω (we note that for rX Awe have λ− ε ° cbx2/y ° λ+ ε

by (7.7)).
Next we consider the measures T λs Ø Let � Ú Ω r R be defined by

��r� ¨ cbx2/yÙ (7.13)

r ¨ �xÙ y� X Ω. Then, for any λ X �0Ù λc�Ù the curve N λ is the level set of �
corresponding to the value of λ, i.e.

N
λ�r� ¨  r X Ω Ú ��r� ¨ λ(Ø

Moreover, � is continuously differentiable and

|∇��r�| ¨ cbx
√

x2 + 4y 2

y 2
(7.14)

Firstly we note that

|∇��r�||T λs �r�| ¨ |∇��r�||σ λ�r�| ¨
√
3

6
c 2b2�4x2 +

x4

y 2
�

is bounded in
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Ω0 ¨  r ¨ �xÙ y� Ú cbx2/y X �0Ù λc�( ¨ � − 1�0Ù λc�Ù

in view of (7.14), (7.3) and (7.8). Then, Proposition 6.5 says that for any interval Λ
as in (7.9) the measure

ÏT
λ

s ¨
1

2ε
�
Λ

T
µ
s dµ

isL 2 absolutely continuous over Ω, i.e.,

ÏT
λ

s ¨ U
λ
s �r�L

2 Ω0Ù

with the density given by (6.7), i.e.

U λ
s �r� ¨







�2ε� − 1T λs �r�|∇��r�| if r X AÙ
0 otherwise.

(7.15)

Note that ��r� X Λ if and only if r X A, by (7.13) and (7.11). In the present case we
have

T λs �r� |∇��r�| ¨ σ λ�r�t λ�r� � t λ�r� |∇��r�|

¨ −
√
3cb2x2

6y 2
�xi + 2yj� � �xi + 2yj�

¨ −
√
3cb2x2

6y 2
�x2i� i + 4xyi� j + 4y 2j� j�

r X A, by (7.14), (7.3) and (7.8).
Finally, we obtain the negative semidefinite and square integrable (in fact

bounded) stress field U λ ¨ U λ
r +U λ

s ,

U λ�r� ¨



































−byj� j if r X Ω λ
+ ∼ AÙ

−λi� i − 2bxi� j − �2ε� − 1b2x2 ln

(

λ + ε
λ − ε

)

j� j if r X Ω λ
− ∼ AÙ

S�r� if r X AÙ
where

S�r� ¨ −�2ε� − 1
{[

−
b2x4

12y 2
+
1

2
�λ + ε�2

]

i� i

+ 2
[

−
b2x 3

3y
+ bx�λ + ε�

]

i� j

+
[

�
√
3

2
+
5

6
+ ln
y�λ + ε�
bcx2

�b2x2 − by�λ − ε�
]

j� j

by (7.12) and (7.15). It is an easy matter to verify that, for every λ X �0Ù λc�, U λ

verifies the equilibrium equation divU λ + bj ¨ 0 in Ω and the boundary conditions
(7.1), so that λ is statically admissible and the loads �s λ Ù b λ� are strongly compatible.
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