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Abstract The paper deals with the cyclic second law and Il’yushin’s condition for isothermal,

ideal, isotropic, elastic–plastic materials at large deformations. The second law is equivalent

to the existence of the elastic potential and the nonnegativity of plastic power. The material

admits infinitely many free energies: the set of all energy functions is described in terms of a

dissipation function. Its convexification provides the optimal lower bound for plastic work;

it also figures in the maximal and minimal energies. Il’yushin’s condition is equivalent to

the existence of the elastic potential and a new condition that is stronger than the normality

of the plastic stretching and the convexity of the stress range. Il’yushin’s condition is also

equivalent to the existence of a new kind of energy functions, ’the initial and final extended

energy functions. Materials of type C are introduced for which the initial extended energy

function has additional convexity properties. It can be viewed as a stored energy of a Hencky

hyperelastic material associated with the elastic–plastic material.
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1 Introduction

This paper deals with the cyclic second law and Il’yushin’s condition for isothermal,
ideal, isotropic elastic–plastic materials at large deformations. The ideal nature of the
material excludes hardening. Both the isothermal cyclic second law and Il’yushin’s
condition assert the nonnegativity of the work of external forces on for certain classes
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of cyclic processes. The former speaks of cycles in the state space; the latter of cycles
in the space of total deformations.

Sections 3–5 analyze the material from the point of view of the general theory of
actions and potentials on thermodynamical systems by Coleman & Owen [5]. That
theory provides an unbiased derivation of potentials like the free energy; moreover,
it enables one to discuss their uniqueness/nonuniqueness and to determine the max-
imal and minimal potentials. For materials treated here, the plastic flow rule can be
”nonassociated, and the restrictions equivalent to the second law are the existence of
the elastic potential for the elastic stress function and the nonnegativity of the plastic
power in every process. Using that, and defining the free energy as any state function
satisfying the dissipation inequality, one finds that the elastic potential is a possible
free energy. However, the free energies are highly nonuinque here: infinitely many of
them differ mutually by a nonconstant state function. A complete description of the
set of all free energy functions is given using a dissipation function which is closely
related to the plastic power. The central result of this part says that the optimal lower
bound for the plastic work is the convexification of the dissipation function. The max-
imal/minimal free energies are the elastic potential plus/minus the convexification
of the dissipation function at the logarithmic plastic stretching. Analyses of elastic–
plastic materials from the standpoint of [5] have been given previously by Coleman
& Owen [6–7] for unidimensional infinitesimal ideal materials, by Lucchesi [15]
for three-dimensional infinitesimal materials with hardening, and by Lucchesi &
áilhavů [19] for large-deformations three-dimensional infinitesimal materials with
hardening.

In the context of infinitesimal deformations theory, Il’yushin’s condition is clas-
sically known to imply the convexity of the stress range (CSR) (the stress range
is the region below the yield surface) and the normality rule (NR) asserting that
during loading, the plastic stretching is proportional to the exterior normal to the
yield surface (e.g., [27]). The analysis has been extended to large deformations by
Lucchesi & Podio-Guidugli [16–17] (see also [18] and [11]). Their analysis showed
that Il’yushin’s condition still implies the CSR and NR provided that the stress range
is interpreted as the set of elastically reachable Kirchhoff stresses (as opposed to
Cauchy stresses; see Section 2 for definition); in addition, it implies the existence
of the elastic potential (EP). However, their analysis shows that conversely EP, CSR
and NR lead to Il’yushin’s condition only for deformation cycles which are small in
a precisely defined sense. The main feature of the analysis in Sections 6–7, and what
distinguishes it from the previous work, is the possibility of treating arbitrarily large
deformation cycles. Namely, Il’yushin’s condition is shown to be equivalent to EP
and a new condition E (Condition (ii) of Theorem 2). Condition E is stronger than NR
and CSR. On the basis of Il’yushin’s condition for large cycles, new energy functions
are constructed satisfying dissipation inequalities stronger than those based on the
second law. Their main feature is that they are nonlocal in time (have no localized
counterparts). There are two types of the new energy functions; I call these the initial
and final (extended) energy functions.

In Sections 8–9 materials called materials of type C are studied which permit a
more explicit analysis. The main requirement is a restricted convexity in the logarith-
mic deformation on symmetric deformation gradients of fixed determinant. Materials
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of type C satisfy Il’yushin’s condition and the initial extended energy admits a de-
scription in terms of convex–conjugated functions in the logarithmic deformation.
The initial extended energy can be interpreted as a stored energy of some hyperelastic
material; this material is the large–deformations analog of the hyperelastic material
in the infinitesimal Hencky theory of plasticity. Its stress relation coincides with the
nonlinear elastic response of the plastic material for deformation gradients from the
original elastic range; if the deformation is outside the elastic range, then the stress
is determined by some nonlinear projection onto the elastic range (in the space of
the logarithmic deformations, see Section 8 for a precise description). Unexpectedly,
the extended energy grows logarithmically at large deformations, in contrast to the
infinitesimal Hencky theory, where the growth is linear, cf. TŽmam [33]. As an il-
lustration, an elastic–plastic material of type C is considered for which the extended
energy and all other derived objects can be calculated explicitly.

The above description makes it clear that the logarithmic deformation and loga-
rithmic convexity/concavity emerge naturally from the analysis. The reason is that for
large deformations theory, the processes of minimal dissipation are those for which
the logarithm of plastic deformation, and not the plastic deformation itself, is linear
in time.

2 Ideal elastic–plastic materials

Let Lin denote the set of all second–order tensors on a three-dimensional space; we
use the scalar product A ċB ¨ tr�ABT� on Lin and the euclidean norm |A| Ú¨

√
A ċ A Ø

The deformation gradients are interpreted as the elements of the set Lin + of all
second–order tensors with positive determinant. Sym + is the set of all positive
definite symmetric tensors.

For the considerations of the paper, it is convenient to describe the response in
terms of states and processes (cf. [22, 5–7, 30, 18, 31, 2–3, 26]). The state space Σ is

Σ ¨  σ ¨ �EÙ P� Ú E X EÙ P X Unim( ¨ E � Unim

where E ⊂ Lin + and Unim is the set of all tensors with determinant 1Ø The set E is
closely related to the elastic range, see below. The states σ are pairs �EÙ P� where
E X E is the elastic deformation and P is an unimodular plastic deformation. The
total deformation and the Kirchhoff stress of σ ¨ �EÙ P� are

Z�σ� Ú¨ EPÙ h�σ� Ú¨ ½�E� (1)

where ½ Ú E r Sym is a given function and Sym is the set of all symmetric tensors.
Equation (1) expresses the multiplicative decomposition of the deformation gradient
into the elastic and plastic parts [14]. The Kirchhoff stress T Ú¨ �det F�TC is more
convenient than the Cauchy stress TC here. Let ¼ Ú E r Lin
0

denote the mapping
defined by

¼�E� ¨ ET½�E�E −T − 1
3
�tr ½�E��1Ù

where Lin
0

is the set of all traceless tensors. The definition is motivated by the
expression for the plastic work (4), below. The stress range S is defined by
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S Ú¨ ¼�E�Ø

To specify the class of processes ΠÙ we assume that the plastic deformation changes
only when E is on the boundary ãE ofEÙ and that the direction of the plastic stretching
is determined by a prescribed function ¶ mapping ãE into the set of all traceless
symmetric tensors Sym
0
Ù normalized by |¶�E�| ¨ 1Ù E X ãEØ Thus we assume the

flow rule of the form
Dp�t� ¨ α�t�¶�E�t��Ù (2)

where the plastic stretching Dp�t� is the symmetric part of Lp�t� ¨ 2�t�P�t� − 1Ù and
α�t� ± 0 is a coefficient of proportionality. Formally, Π consists of all functions π ¨
�E�ċ�Ù P�ċ�� mapping closed intervals of the type �0Ù d

π
�Ù d

π
± 0Ù into ΣÙ which are

continuous and piecewise continuously differentiable and which satisfy the following
condition: for every t X �0Ù d

π
� for which Dp�t� © 0Ù one has E�t� X ãE and (2)

holds for some α�t� ± 0Ø For convenience it is assumed that every process starts at
time t ¨ 0Ø The number d

π
can be different for different processes and it is called the

duration of the process. The states πi ¨ π�0� and πf ¨ π�d
π
� are called the initial

and final states of the process πØ We also write πi ¨ �EiÙ Pi�Ù πf ¨ �EfÙ Pf� and
Fi ¨ Z�π i�Ù Ff ¨ Z�πf�Ø The considerations in the paper require to construct new
processes from given ones via the operation of continuation. If π
1
Ù π
2
X Π are two

processes with πf
1
¨ πi
2

then the continuation π
1
 π
2

of π
1

with π
2
Ù is

π
1
 π
2
�t� ¨















π
1
�t� if t X �0Ù d

π1
�Ù

π
2
�t − d

π1
� if t X �d

π1
Ù d
π1
+ d

π2
�Ø

For every δ ± 0 let
E
δ
¨  A X E Ú det A ¨ δ(Ø (3)

A set M ⊂ Lin is said to be objective or isotropic if

RA X MÙ RART X MÙ

respectively, for every A X M and R X RotØ Here Rot is the proper orthogonal group.
A function f Ú M r RÙM ⊂ LinÙ is said to be objective or isotropic ifM is objective
or isotropic, respectively, and

f �RA� ¨ f �A�Ù f �RART� ¨ f �A�Ù

respectively, for every A X M and R X RotØ A function G Ú M r Lin is said to be
objective or isotropic if M is objective or isotropic, respectively, and

G�RA� ¨ RG�A�RTÙ G�RART� ¨ RG�A�RTÙ

respectively, for every A X M and R X RotÛ G is said to be scalar–objective if M is
objective and

G�RA� ¨ G�A�

for every A X M and R X RotØ

Definition 1 The objects EÙ ½Ù ¶ are said to determine an ideal elastic–plastic ma-
terial if they satisfy the following conditions:
(i) E is a closure of its interior, any two points of E can be connected by a piecewise

smooth curve in EÙ and ½ is continuous.
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(ii) For every C X Sym
0
Ù |C| ¨ 1Ù we have ¶�E� ¨ C for at least one E X ãEØ

(iii)S is bounded and ¼ maps the interior and the boundary of E onto the interior
and boundary of SÙ respectively.

(iv) For each δ ± 0Ù the set E
δ

is nonempty.
(v) The set E and the function ½ are objective and isotropic and the function ¶ is

scalar–objective and isotropic.

The quadrupleM ¨ �ΣÙ ΠÙZÙh� is called the ideal elastic–plastic material, or briefly
the material. The material just constructed is a special case of a material with elastic
range, cf. [27, 24–25, 29, 8, 18]. For processes starting at σ ¨ �EÙ P� and remaining
in the elastic range E�σ� Ú¨ EP the material behaves like an elastic material with the
elastic response

h  �σÙ F� ¨ ½�FP − 1�Ù F X E�σ�Ø

Item (v) of definition 1 express the objectivity and isotropy of the material.
The objectivity and isotropy of E and ½ need not be commented; however, note
that they imply that ¼ is scalar–objective and isotropic; moreover, its values are
symmetric tensors. The scalar–objective nature of ¶ is consistent with the following
transformation rules under a change of frame and change of reference configuration:
if π ¨ �E�ċ�Ù P�ċ�� is a process, Q a piecewise continuously differentiable function
on �0Ù d

π
� with values in RotÙ and R a fixed element of RotÙ then

F w QF j E w QEÙ P w PÙ

F w FR j E w EÙ P w PRØ

Other transformation laws are possible since the plastic deformation is determined
only to within a rotation in isotropic materials [29].

3 The cyclic second law; its first consequences

The work of external forces on the material in the process π ¨ �E�ċ�Ù P�ċ�� is

w�π� ¨
d

�
0

T ċ L dtÙ

where L ¨ (F − 1Ù F ¨ EPÙ d ¨ d
π
Ù and T ¨ ½�E� is the time evolution of the

Kirchhoff stress in the process. Using the isotropy and symmetry of ½ we find that

w�π� ¨ wE�π� + wP�π�Ù

where

wE�π� ¨
d

�
0

T ċ 'E − 1 dtÙ wP�π� ¨
d

�
0

S ċ Dp dt (4)

are the elastic and plastic works in πÙ respectively, where S ¨ ¼�E� is the time-
evolution of the traceless part of the Kirchhoff stress. A process π is said to be a
σ-cycle if πi ¨ πfØ For isothermal materials the second law reduces to the following
assertion [5].
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3.1 The cyclic second law For every σ-cycle πÙ w�π� ³ 0Ø
A function p Ú E r R is said to be an elastic potential for ½ if

p�Ef� − p�Ei� ¨ wE�π� (5)

for every process. It follows that if p exists, it is objective and isotropic, and contin-
uously differentiable in the interior of E with the stress relation ½�E� ¨ Dp�E�ET

prevailing there.

Proposition 1 The material satisfies the cyclic second law if and only if ½ has an

elastic potential and

¼�E� ċ ¶�E� ³ 0 (6)

for every E X ãEØ
Inequality (6) says that the plastic power, and hence also the plastic work, is nonneg-
ative: S ċ Dp ¨ α�t�S ċ M ³ 0Ø Let us emphasize that this consequence does not hold
for general, nonideal, elastic–plastic materials.

Proof Suppose that the material satisfies the cyclic second law. To prove the existence
of the potential, consider the elastic process π ¨ �E�ċ�Ù 1� where E�ċ� Ú �0Ù 1� r E is
a path with values in EØ If E�0� ¨ E�1� then the cyclic second law asserts w�π� ³ 0Ø
Applying the same to the time reversal Ïπ we obtain w�Ïπ� ¨ −w�π� ³ 0 and thus
w�π� ¨ 0Ø Since w�π� ¨ wE�π�Ù the vector field ½ is path independent on EÛ hence
it has an elastic potential. Proof of (6): Let E X ãE and set D Ú¨ ¶�E�Ø Consider
an orthonormal basis of eigenvectors of D so that D ¨ diag�d
1
Ù d
2
Ù d
3
�Ø Let P
3 be

the group of all 3 by 3 permutation matrices Z which we identify with orthogonal
tensors Z in our basis. Enumerate the elements of P
3 arbitrarily to obtain a sequence

Z
α
Ù α ¨ 1ÙÜ Ù n ª 3! Ø Since

Z
α

DZT
α
¨ diag�d

σα�1�Ù dσα�2�Ù dσα�3��

where σ
α

is the permutation corresponding to Z
α
Ù the family  Z

α
DZT

α
Ù α ¨ 1ÙÜ Ù n(

is commutative. Using tr D ¨ 0Ù one finds that
n

�
α ¨ 1

Z
α

DZT
α
¨ 0Ø (7)

Define inductively the processes π
α
¨ �E

α
�ċ�Ù P

α
�ċ��Ù of duration 1Ù by

E
1
�t� ¨ Z
1

EZT
1
Ù P
1
�t� ¨ Z
1
eDtZT
1
Ù

and for α ± 1Ù
E
α
�t� ¨ Z

α
EZT

α
Ù P

α
�t� ¨ Z

α
eDtZT

α
Pf
α − 1Ù

t X �0Ù 1�Ø These are really processes and one finds that Dp
α
�t� ¨ Z

α
DZT

α
Ù and

wP�π
α
� ¨ ¼�E� ċ ¶�E�Ø (8)

Let ρ
α
¨ �U

α
�ċ�Ù Pf

α
��Ù α ¨ 1ÙÜ Ù nÙ be elastic processes such that

Ui
α
¨ Z

α
EZT

α
Ù Uf

α
¨ Z

α + 1EZT
α + 1

if i ° nÙ and
Uin ¨ ZnEZTn Ù Ufn ¨ Z
1

EZT
1
Ø
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One finds that the process π ¨ �E�ċ�Ù P�ċ�� Ú¨ π
1
 ρ
1
 π
2
 ρ
2
Ý πn ρn can be con-

structed,
Ei ¨ Z
1

EZ
1
Ù Ef ¨ Z
1

EZ
1
Ù

and

Pi ¨ 1Ù Pf ¨ exp�
n

�
α ¨ 1

Z
α

DZT
α
� ¨ 1Ø

Here we use (7) and the commutativity of the family  Z
α

DZT
α
Ù α ¨ 1ÙÜ Ù n(Ø As

also Ei ¨ EfÙ the process π is cyclic. Since wE�π� ¨ 0 by (5), w�π� ³ 0 reduces, by
(8), to

wP�π� ¨ n¼�E� ċ ¶�E� ³ 0

and (6) follows. Conversely, if the two conditions of the theorem hold and π is a
cyclic process then wE�π� ¨ 0 by the existence of the potential and wP�π� ³ 0 by
(6). Hence the cyclic second law holds. è

4 The free energy functions

Any function ψ Ú Σr R satisfying

ψ�πf� − ψ�πi� ² w�π� (9)

for every process π is referred to as the free energy function. Using the nonnegativity
of the plastic power, it is shown below that the elastic potential is one example of
the free energy function, and a description is given of all free energies. The specific
features of the material imply that any free energy function splits into a sum of the
reversible elastic potential and a residual energy function that depends only on the
plastic deformation.

Proposition 2 Let the material satisfy the cyclic second law and let p be its elastic

potential. A function ψ Ú Σr R is a free energy function if and only if

ψ�σ� ¨ p�E� + r�P� (10)

for every σ ¨ �EÙ P� X ΣÙ where r Ú Unim r R satisfies

r�Pf� − r�Pi� ² wP�π� (11)

for every process π ¨ �E�ċ�Ù P�ċ�� X ΠØ In particular, the function ψ Ú Σr R given

by

ψ�σ� ¨ p�E�Ù (12)

σ ¨ �EÙ P� X ΣÙ is a free energy function.

Let us emphasize that a general, (nonideal) elastic–plastic material need not have a
free energy independent of plastic deformation. Every function r satisfying (11) in
every process is called the residual energy function. The problem of describing all
free energy functions reduces to that of describing all residual energy functions.

Proof By Proposition 1, ½ has an elastic potential p and the plastic work is nonnegative
in every process. If ψ is a free energy function and P X UnimÙ then for every path
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E�ċ� Ú �0Ù 1� r E the process π ¨ �E�ċ�Ù P� is elastic and as w�π� ¨ wE�π� is given
by (5), the dissipation inequality (9) reads

ψ�EfÙ P� − ψ�EiÙ P� ³ p�Ef� − p�Ei�Ø (13)

Replacing π by its time-reversal Ïπ we obtain the opposite inequality and hence the
equality must hold in (13). It follows that for each P X UnimÙ ψ�ċÙ P� differs by a
constant r�P� from p which leads to (10). Using (10), one sees that (9) reduces to
(11). Reversing the direction of the arguments, one finds that every function ψ of the
form (10) is a free energy function. Since the plastic work is nonnegative, the function
r ª 0 satisfies (11) and hence the ψ given by (12) is a free energy function. è

To simplify notation, if AÙ B X LinÙ we write

A ∼ B

to mean that |A| ¨ 1Ù B © 0 and
A ¨ B/|B|Ø

Define the dissipation function m Ú Sym
0
r R by

m�D� Ú¨ inf  ¼�E� ċ D Ú E X ãEÙ ¶�E� ∼ D(

if D © 0 and m�0� Ú¨ 0Ø Note that the infimum is taken over a nonempty set by
Definition 1(ii). If the material satisfies the cyclic second law, then m is nonegative
by Proposition 1.

If r is a function on an open subset of Unim and P is in the domain of rÙ then
r is said to have a total differential at P if the function A w r�eA P�Ù A X Lin
0
Ù has

a FrŽchet derivative at 0 in the sense of [9; Part I, Chapter VIII]. The differential
(derivative)Dr�P� is then defined as the unique element satisfying tr�Dr�P�PT� ¨ 0
such that

d

dt
r�γ�t��

∣

∣

∣

∣

t ¨ 0
¨ Dr�P� ċ Ëγ�0�

for every smooth curve in Unim with γ�0� ¨ PØ Note that Unim is a regular 8-
dimensional surface in the 9-dimensional space Lin and that the unit normal and
the tangent space to Unim at A are A −T/|A −T| and  M X Lin Ú tr�MA − 1� ¨ 0(Ø
The Haar measure ([9; Part II, Chapter XIV and Part IV, Chapter XIX]) and the
surface measures on Unim are mutually absolutely continuous and their images in
any local coordinate chart on Unim are absolutely continuous with respect to the
8-dimensional Lebesgue measure in that coordinate chart. Hence there is a well
defined notion of almost everywhere. If r is a locally Lipschitz continuous function
on UnimÙ Rademachers theorem ([21]) asserts the existence of the total differential
for almost every P X UnimØ Finally note that if P
1
Ù P
2
X Unim then there exist a

unique pair R X RotÙ D X Sym
0

such that P
2
¨ ReD P
1
Ø This follows from the polar

decomposition P
2

P − 1
1

¨ RU by writing U ¨ eDÙ D X Sym
0
Ø

Proposition 3 If the material satisfies the cyclic second law and r Ú Unim r R is a

function then the following three conditions are equivalent:

(i) r is a residual energy;

(ii) for every P
1
Ù P
2
X Unim one has
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r�P
2
� − r�P
1
� ² m�D� (14)

where D X Sym
0

is determined by the condition that P
2
¨ ReD P
1

for some

R X RotÛ
(iii) r is locally Lipschitz continuous, objective, and for almost every P X UnimÙ

Dr�P�PT ċ D ² m�D� for all D X Sym
0
Ø (15)

Proof (i) j (ii) Ú Let (i) hold and let P
1
Ù P
1
Ù DÙ R be as in (ii). Let us prove that

r�P
2
� − r�P
1
� ²











0 if D ¨ 0Ù
¼�E� ċ D if D © 0Ù

(16)

where E X ãE is any element such that

¶�E� ∼ DØ (17)

Let E be arbitrary if D ¨ 0 or such that E X ãE and (17) holds if D © 0Ø Let
Q Ú �0Ù 1� r Rot be any continuously differentiable function such that Q�0� ¨ 1 and
Q�1� ¨ RØ Define π ¨ �E�ċ�Ù P�ċ�� by

E�t� ¨ Q�t�EQ�t�T Ù P�t� ¨ Q�t�eDtP
1
Ù t X �0Ù 1�Ø

This is a process, Dp�t� ¨ Q�t�DQ�t�T Ù Pf ¨ P
2
Ù Pi ¨ P
1
Ù and wP�π� ¨ ¼�E� ċ DØ

Thus the residual dissipation inequality gives (16). The definition ofm�D� then gives
(14).

(ii) j (iii) Ú Assume that (ii) holds. Let us first prove that r is locally Lipschitz
continuous. Recall that it is assumed (Definition 1(iii)) S is bounded. Set

c
1
¨ max |S| Ú S X S(Ø

By Definition 1(ii), for every D X Sym
0
Ù D © 0Ù there exists an E X ãE such that (17)

holds. We then have
¼�E� ċ D ² c
1
|D|Ø

Thus for any P
1
Ù P
2
X Unim we have

r�P
2
� − r�P
1
� ² c
1
|D| (18)

where D satisfies P
2
¨ ReD P
1
Ø Since this holds for any P
1
Ù P
2
X UnimÙ we can

interchange the roles of P
1
Ù P
2
Û one finds that D changes to ­ ¨ −RDRT and (18)

for the interchanged pair provides r�P
1
� − r�P
2
� ² c
1
|D|Û hence

|r�P
2
� − r�P
1
�| ² c
1
|D|Ø (19)

This inequality obviously implies that r is locally Lipschitz continuous. To prove that r
is objective, it suffices to note that if P X UnimÙ Q X RotÙ then for P
1
Ú¨ PÙ P
2
¨ QPÙ

(19) reduces to r�QP� ¨ r�P�Ø We finally prove (15). Let P X Unim be such that Dr
exists. The application of (14) to P
2
¨ eDtPÙ P
1
¨ PÙ t ± 0Ù provides

r�eDtP� − r�P� ² m�Dt� ¨ tm�D�Ø

Dividing by tÙ letting t tend to 0 and using the assumed existence of the total differential
of r at P gives (15).

(iii) j (i) Ú Let r satisfy Condition (iii). Note first that a standard consequence
of the objectivity asserts that Dr�P�PT is symmetric for every P X Unim for which
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the total differential exists. Let us now prove (i), i.e., let us prove that the residual
dissipation inequality holds for each process π ¨ �E�ċ�Ù P�ċ��Ø We may assume that
P�ċ� is continuously differentiable; otherwise we divide the process into subintervals
where P�ċ� is continuously differentiable and apply the forthcoming considerations to
each such a piece of the process. We want to integrate (15) along the path P�ċ�Ø Since
the differentialDr exists and satisfies (15) only for a.e. P X UnimÙ it may happen that
Dr�P�t�� exists for no t X �0Ù d

π
�Ø Nevertheless, assume first that Dr�P�t�� exists

for a.e. time t and complete the proof in that case first. At the end of the proof we
shall employ some limiting procedure which reduces the general case to the above
one. The function s Ú¨ r�P�ċ�� is Lipschitz continuous and since Ës�t� is given by the
chain rule for a.e. time by our assumption and Dr�P�t��P�t�T is symmetric,

Ës�t� ¨ Dr�P�t��P�t�T ċ Dp�t� ² m�Dp�t�� ² ¼�E�t�� ċ Dp�t� (20)

for almost every t X �0Ù d
π
�Û here Dp�ċ� is the plastic stretching of πØ We have also

used equation (15) and the definition of m�D�Ø The integration of (20) gives the
residual dissipation inequality.

To complete the proof in the general case, show that we may perturb P�ċ� so that
Dr exists for L-a.e. t X �0Ù d

π
� during the perturbed process. Here L is the Lebesgue

measure on RØ We seek the perturbed path in the form P�ċ�O where O X Unim is
sufficiently close to 1Ø Using Fubinis theorem on the product space Unim � R with
the measure ν Ú¨ µ � LÙ where µ is the Haar measure on UnimÙ one can prove that
for µ-a.e. O X Unim the differential Dr�P�t�O� exists and satisfies (15) for L-a.e.
t X �0Ù d

π
�Ø Thus the above part of the proof can be applied to µ-a.e. process P�ċ�O

which gives
r�PfO� − r�PiO� ² wP�π�Ø

Letting O r 1 and using the continuity of r proves the residual dissipation inequality
in the general case. è

5 A lower bound for plastic work and the extremal residual energies

In this section we calculate a lower bound for the plastic work in processes of fixed
initial and final plastic deformation and determine the maximal and minimal residual
energies vanishing at a given point. Both these results are stated in terms of the convex
hull m    of the dissipation function mÙ i.e., the largest convex function on Sym
0

not
exceeding mØ

The following fact will be useful (see [31; Propositions 18.2.4 and 18.2.5]):

Proposition 4 Let f Ú U r RÙU ¨ SymÙSym
0
Ù be an isotropic function. Then f is

convex if and only if its restriction f
∆

to diagonal arguments (relative to some fixed

orthonormal basis) is convex.

Theorem 1 Let the material satisfy the second law, let D X Sym
0
Ù and let C�D� be

the set of all processes π ¨ �E�ċ�Ù P�ċ�� satisfying Pf ¨ ReD Pi for some R X RotØ
Then
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m   �D� ¨ inf  wP�π� Ú π X C�D�(Ø (21)

Proof Define s Ú Unim r R by

s�P� ¨ m   �D�Ù P X UnimÙ

where we write P ¨ ReDÙ R X RotÙ D X Sym
0

and prove that s is a residual
energy function. By the construction, s is objective. The convex function m    is
locally Lipschitz continuous and hence it has the total differential Dm   �A� for a.e.
A X Sym
0

with respect to the Lebesgue measure on Sym
0
Ø If A X Sym
0

and P X Unim
are related by P ¨ ReA for some R X RotÙ one finds that m    has a differential at A if
and only if s has a differential at PØ Since m is isotropic, nonnegative, and positively
homogeneous of degree 1Ù so also is m   Ø Using the isotropy, and working in the basis
of eigenvectors of A (see, e.g., the corresponding considerations in [1] or [31]), one
derives the formula

Ds�P�PT ċ D ¨ Dm   �A� ċ D (22)

for each D X Sym
0
Ø By the convexity and homogeneity of m   Ù

Dm   �A� ċ D ² m   �D� ² m�D�

for every A X Sym
0
Ù A © 0 for which the total differential ofm    exists. A combination

with (22) provides (15). This proves that s is a residual energy function. Let us now
prove that for every process π ¨ �E�ċ�Ù P�ċ�� X C�D�Ù

wP�π� ³ m   �D�Ø (23)

Since π´ Ú¨ �E�ċ�Ù P�ċ��Pi� − 1� is also a process, wP�π� ¨ wP�π´�Ù and s is a
residual energy,

wP�π´� ³ s�Pf�Pi� − 1� − s�1� ¨ m   �D�

which implies (23). This shows that we have the inequality sign ² in (21).
The rest of the proof is devoted to showing the opposite inequality in (21). Thus

we seek to prove that for every ε ± 0 there exists a process π X C�D� such that

wP�π� ² m   �D� + εØ (24)

Let  ei( be any orthonormal basis and let ∆ ª ∆�ei� be the space of all A X Sym
0

represented by diagonal matrices in  ei( so that all elements of ∆ commute. Let m
∆

and m   
∆

be the restrictions of m and m    to ∆Ø Let us show that m   
∆
¨ �m

∆
�    where

the last symbol denotes the convex hull of m
∆

on ∆Ø Since m   
∆

is convex, we have

m   
∆
² �m

∆
�    on ∆Ø (25)

Let us extend the function �m
∆
�    from ∆ to a function g Ú Sym
0
r R by isotropy,

i.e., by
g�B� ¨ �m

∆
�   �QBQT�Ù B X Sym
0
Ù

where Q ¨ Q�B� X Rot is chosen so as to satisfy QBQT X ∆Ø Such a Q exists by the
spectral decomposition theorem. Then, first, it is easily seen that g is well defined,
i.e., independent of the choice of QÙ and second, by Proposition 4, g is convex as a
consequence of the convexity of �m

∆
�   Ø The construction gives that g ² m on Sym
0
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and thus sincem    is the maximal convex function not exceedingmÙ we have g ² m   

on Sym
0

and in particular �m
∆
�    ² m   

∆
on ∆Ø Thus combining with (25) we have

�m
∆
�    ¨ m   

∆
Ø Let now D X Sym
0

and let  ei( be any basis in which D is diagonal.
The above considerations show that

m   �D� ¨ m   
∆
�D� ¨ �m

∆
�   �D� (26)

and applying the familiar construction of the convex hull [28] to m
∆
Ù we obtain that

�m
∆
�   �D� ¨ inf  
3

�
i ¨ 1
λim�Ai� Ú Ai X ∆Ù λi ± 0Ù
3

�
i ¨ 1
λi ¨ 1Ù
3

�
i ¨ 1
λiAi ¨ D(Ù (27)

which also gives the value of m   �D� by (26). Here the limit 3 in the sums is related
to the dimension 2 of ∆�ei� through the CarathŽodory theorem. It is noted, and that
is the main conclusion of the above considerations, that all the elements Ai as in (27)
mutually commute and commute also with DØ Let ε ± 0 be given. By (27), there exist
sequences λi ± 0Ù Ai X Sym
0
Ù i ¨ 1Ù 2Ù 3Ù such that

m   �D� +
ε

2
³
3

�
i ¨ 1
λim�Ai�Ù
3

�
i ¨ 1
λi ¨ 1Ù
3

�
i ¨ 1
λiAi ¨ DÙ (28)

and AiÙ D mutually commute. We can also assume that Ai © 0 for i ¨ 1Ù 2Ù 3Ø By the
definition of mÙ for each i ¨ 1Ù 2Ù 3 there exists a Ei X ãE such that

¶�Ei� ∼ Ai and m�Ai� +
ε

2
³ ¼�Ei� ċ AiÙ i ¨ 1Ù 2Ù 3Ø (29)

The desired process is constructed in the form π ¨ π
1
 ρ
1
 π
2
 ρ
2
 π
3

as follows. We
take πiÙ i ¨ 1Ù 2Ù 3Ù as processes of duration λiÙ where πi ¨ �EiÙ Pi�ċ�� and

P
1
�t� ¨ eA1tÙ t X �0Ù λ
1
�Ù

P
2
�t� ¨ eA2te λ1A1 Ù t X �0Ù λ
2
�Ù

P
3
�t� ¨ eA3te λ2A2e λ1A1 Ù t X �0Ù λ
3
�Ø

We further take ρ
1
Ù ρ
2

as elastic processes of the form ρ
1
¨ �®
1
�ċ�Ù e λ1A1�Ù ρ
2
¨

�®
1
�ċ�Ù e λ1A1 + λ2A2� such that E
1
¨ ®i
1
Ù E
2
¨ ®f
1
Ù E
2
¨ ®i
2
Ù E
3
¨ ®f
2
Ø Then the

process π ¨ π
1
 ρ
1
 π
2
 ρ
2
 π
3

can be constructed and

Pi ¨ 1Ù Pf ¨ e λ1A1 + λ2A2 + λ3A3 ¨ eD

where we have used the commutativity of the Ai and (28)
3
Ø Thus π X C�D�Ø Further-

more,

wP�π� ¨
3

�
i ¨ 1
wP�πi� ¨
3

�
i ¨ 1
λi¼�Ei� ċ Ai ²
3

�
i ¨ 1
λim�Ai� +

ε

2
² m   �D� + ε

by (29)
2

and (24). è
A residual energy function r is said to be maximal or minimal at H X Unim if

r�H� ¨ 0 and r ³ Õ or r ² Õ Ù respectively, for any residual energy function Õ such
that Õ�H� ¨ 0Ø Coleman & Owen [5] show that the set of all free energy functions
that vanish at a given state is convex and has the largest and the smallest elements.
By Proposition 2(ii) the problem of describing the extremal free energy functions is
equivalent to that of describing the extremal residual energy functions.
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Proposition 5 Let the material satisfy the second law and define sÙ t Ú Unim r R by

s�P� ¨ m   �D�Ù t�P� ¨ −m   �−D�Ù

P X UnimÙ where we write P ¨ ReDÙ R X RotÙ D X Sym
0
Ø Then sÙ t are the maximal

and minimal residual energies at 1Ø Moreover they satisfy

s�OP� ² s�O� + s�P�Ù t�OP� ³ t�O� + t�P� (30)

for any OÙ P X UnimØ
The extremal residual energies at a general H X Unim are

sH�P� ¨ s�PH�Ù tH�P� ¨ t�PH�Ù

P X UnimØ
Proof By the proof of Theorem 1, s is a residual energy; the proof that t is a residual
energy is similar. To prove that s is maximal at 1Ù let r be any residual energy vanishing
at 1Ù let π ¨ �E�ċ�Ù P�ċ�� be any process in C�D�Ù and let π´ ¨ �E�ċ�Ù P�ċ��Pi� − 1�Ø
The residual dissipation inequality for π´ reads

r�Pf�Pi� − 1� ¨ r�eD� ² wP�π´� ¨ wP�π�Û

taking the infimum over all processes π X C�D� and using Theorem 1 we obtain

r�eD� ² s�eD�Û

combining with the objectivity of both rÙ s this gives r ² sØ To prove (30), consider
only sØ For any function r on Unim and any H X Unim let rH denote the shifted
function given by rH�P� ¨ r�PH�Ø It follows immediately from, e.g., Condition (iii)
of Proposition 3 that r is a residual energy function if and only if rH is a residual
energy function. Note that for any P X UnimÙ the function sP�ċ� − s�P� is a residual
energy vanishing at 1Ø Hence sP�ċ� − s�P� ² s�ċ� and (30)
1

follows by inserting OØ
The rest is immediate. è

6 Il’yushin’s condition; its first consequences

A process π ¨ �V�ċ�Ù P�ċ�� is said to be an F-cycle if Z�πf� ¨ Z�π i�Ø Every σ-cycle
(see Section 3) is an F-cycle.

6.1 Il’yushin’s condition For every F-cycle πÙ w�π� ³ 0Ø
Theorem 2, below, describes the consequences of Il’yushin’s condition on the con-
stitutive objects, which include the normality rule.

Definition 2 The material is said to obey the normality rule if for every E X ãEÙ

¶�E� X N¼�E�SÙ (31)

whereN
¼�E�S denotes the normal cone to S at ¼�E�Ù defined by

NSS Ú¨  D X Sym
0
Ú �Z − S� ċ D ² 0 for every Z XS(Ù

S X Sym
0
Ø

The following lemma gathers some consequences of the normality rule.
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Lemma 1 If the material obeys the normality rule then

(i) the stress range S is convex;

(ii) for every D X Sym
0
Ù

m�D� ¨ sup  S ċ D Ú S X S( (32)

and in particular,

m�D� ¨ S ċ D (33)

for any S XS such that D X NSSÛ
(iii)m is isotropic, convex, positively homogeneous of degree 1Û
(iv) the subdifferential of m is given by

ãm�D� ¨










 S X Sym
0
Ú D X NSS( if D © 0Ù

S if D ¨ 0Û
(34)

(v) the convex conjugate m   of m is given by

m  �S� ¨










0 if S X SÙ

ð otherwise.
(35)

Proof (i): Let us derive (i) from the following assertion, which is easy to prove:
If M ⊂ R

d is a closed set with nonempty interior such that for each x X ãM we

have NxM ©  0(Ù then M is convex. Let us verify that S satisfies the hypotheses
of the assertion. Clearly, S is closed since it is an image of the closed set E under
the continuous mapping ¼Û further, S has nonempty interior since E has nonempty
interior by Definition 1(i) and (iv) and ¼ maps the interior of E onto the interior of
S by Definition 1(iii). Finally, for each S X ãS we have NSS ©  0( since ¼ maps
ãE onto ãS by Definition 1(iii) and for each E X ãE we have (31). (ii): Let D © 0
and E X ãE be any point such that ¶�E�∼ D so that D X N

¼�E�S by the normality

rule which means that �S − ¼�E�� ċ D ² 0Ù i.e.,

S ċ D ² ¼�E� ċ D

for any S X EØ Fixing S and taking the infimum of the right-hand side over all E X ãE
such that ¶�E� ∼ D we obtain

S ċ D ² m�D�

with the equality holding if S ¨ ¼�E�where E is any element as above. Once (ii) has
been established, (iii)–(v) follow from the standard duality theory for homogeneous
degree 1 convex functions, [10, 28]. è

Theorem 2 The material satisfies Il’yushin’s condition if and only if the following

two conditions are satisfied:

(i) ½ has an elastic potential pÛ
(ii) if D X Sym
0

and EÙ Ee − D X E then

p�Ee − D� ³ p�E� −m�D�Ø (36)

Moreover, if (i) and (ii) hold then the material obeys the normality rule.

Item (ii) is called Condition E in the subsequent discussion.
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Proof Assume that the material satisfies Il’yushin’s condition. Condition (i) follows
from the reversibility of elastic processes via the path-independence argument as in
the proof of Proposition 2(i). (ii): Let E
0
X ãE be such that

¶�E
0
�∼ DØ (37)

Consider a process π ¨ π
1
 π
0
 π
2
Ù where π
1

is any elastic process connecting �EÙ 1�
with �E
0
Ù 1�Ù π
2

any elastic process connecting �E
0
Ù eD� with �Ee − DÙ ReD�, and

π
0

is a process of duration 1 with

E
0
�t� ¨ E
0
Ù P
0
�t� ¨ eDtÙ t X �0Ù 1�Ø (38)

Then π
0

is really a process by (37) and the process π
1
 π
0
 π
2

is an F-cycle. Il’yushin’s
condition says

w�π� ¨ wE�π� + wP�π� ³ 0

where wE�π� ¨ p�Ee − D� − p�E�Ù wP�π� ¨ wP�π
0
� ¨ ¼�E
0
� ċ DØ The last three

relations yield p�Ee − D� ³ p�E�−¼�E
0
�ċDØ Since E
0

is arbitrary subject to condition
(37), the definition of m gives (36). This completes the proof of (ii). Assume that (i),
(ii) hold and prove the normality rule. Let G X ãEØ The goal is to prove that

�S − ¼�G�� ċ ¶�G� ² 0 (39)

for every S X SØ Assume first that S is in the interior of SØ Use Definition 1(iii) to
find that there exists an interior point E of E such that S ¨ ¼�E�Ø Set D ¨ ¶�G� and
note that for all t ± 0 sufficiently small we have Ee − tD X E since E is in the iterior of
EØ The application of (36) and the use of m�tD� ² t¼�E
0
� ċ DÙ which follows from

the definition of mÙ provide

p�Ee − tD� ³ p�E� − t¼�G� ċ DØ

Dividing by tÙ letting t tend to 0 and using the stress relation, we obtain ¼�E� ċ D ²
¼�G� ċD and thus eventually (39). Since E is the closure of its interior, the limit gives
(39) for each S ¨ ¼�E� where E is a boundary point of E and since every boundary
point of S is of the form S ¨ ¼�E� where E is a boundary point of E (see Definition
1) inequality (39) holds for all S X SØ Assume conversely that (i) and (ii) hold and
prove Il’yushin’s condition. Let π ¨ �E�ċ�Ù P�ċ�� be an F-cycle. Since (i), (ii) imply
the normality rule, Lemma 1(iii) sayst that m is convex and thus m ¨ m   Ø Then by
Theorem 1,

w�π� ¨ wE�π� + wP�π� ³ p�Ef� − p�Ei� + m�D� (40)

where D is such that Pf ¨ ReD Pi for some R X RotØCombining with EfPf ¨ EiPi

we obtain Ef ¨ Eie − D RT and (40) reads w�π� ³ p�Eie − D� − p�Ei� +m�D� ³ 0
where the last inequality is Condition (ii). è

Remark 1 Suppose that the material obeys the normality rule and that ½ has an

elastic potential pØ Then:

(i) Condition E holds for all pairs EÙ D as in that condition with |D| sufficiently

small and E in the interior of EØ
(ii) If E is logarithmically convex in the sense that for every pair of EÙ D of tensors

with D X Sym
0
Ù EÙ Ee − D X E one also has Ee − Dt X E for every t X �0Ù 1�Ù then

E holds.
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The logarithmic convexity of Item (ii) seems to be hard to verify. The following
section gives other sufficient conditions to guarantee E.

Proof (i): Since E is an interior point of EÙ if |D| is small enough, also Ee − Dt X E

for all t X �0Ù 1�Ø Writing H�t� Ú¨ Ee − DtÙ one obtains dp�H�t��/dt ¨ −¼�H�t�� ċ DØ
Lemma 1(ii) gives ¼�H�t�� ċ D ² m�D�Û thus dp�H�t��/dt ³ −m�D� and the
integration over �0Ù 1� yields (36). (ii): If E is logarithmically convex, then in the
notation of the proof of (i), one has H�t� X E for all t X �0Ù 1�Ø The proof is then
identical with that of (i). è

7 The extended energy functions

This section shows that Il’yushin’s condition leads to energy functions that satisfy
the dissipation inequalities stronger than those arising from the second law.

Theorem 3 Suppose that the material satisfies Il’yushin’s condition. Let F X Lin +

and define

e�F� ¨ inf  p�Fe − D� + m�D� Ú D X Sym
0
Ù Fe − D X E(Ù (41)

f �F� ¨ sup  p�Fe − D� −m�−D� Ú D X Sym
0
Ù Fe − D X E(Ø (42)

Then

(i) −ð ° f ² e ° ðÛ
(ii) for every F X E the infima and suprema in (41) and (42) are attained for D ¨ 0

and hence

e�F� ¨ f �F� ¨ p�F�Û

(iii) if F Z E then (41) and (42) hold with the condition Fe − D X E replaced by

Fe − D X ãEÛ
(iv) for every process π ¨ �E�ċ�Ù P�ċ��Ù

e�Ff�Pi� − 1� − e�Fi�Pi� − 1� ² w�π�Ù (43)

f �Ff�Pf� − 1� − f �Fi�Pf� − 1� ² w�π�Ø (44)

The proof will show that all the infima and suprema in the above theorem are taken
over nonempty sets but it is not apriori clear that they are finite. The function e is
called the initial extended energy or briefly initial energy and f the final extended

energy or final energy. For a concrete material, the function e is calculated in Section
9. Since for F-cycles the left–hand side s of (43) and (44) vanish and thus w�π� ³ 0Ù
we see that the existence of a function e Ú Lin + r R satisfying (43) or similarly the
existence a function f Ú Lin + r R satisfying (44) implies that the material satisfies
Il’yushin’s condition; thus the existence of such functions is equivalent to Il’yushin’s
condition. Since Il’yushin’s condition is strictly stronger than the cyclic second law,
the dissipation inequalities (43) and (44) are strictly stronger than the dissipation
inequality (9) stemming from the second law. In Remark 2 and the subsequent
discussion we shall see that there are qualitative differences between the inequalities
(43) and (44). It is also noted that similar potentials have been introduced byLucchesi
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&áilhavů [18], but the dissipation inequalities have been proved only for a restricted
class of processes. Recently, a potential similar to e has been introduced by Ortiz
& Repetto [23] and Carstensen, Hackl & Mielke [4] and Mielke [20] to treat
plastic materials from the variational point of view.

Proof (i): If we set δ ¨ det F and take any element E of E
δ

(see Definition 1(iv)) then
by the polar decomposition theorem there exists an R X Rot and D X Sym
0

such that
Fe − D ¨ ER and hence Fe − D X E for some D X Sym
0
Ø Thus the suprema and infima

in (41) and (42) are taken over nonempty sets and hence e�F� ° ðÙ f �F� ± −ðØ It
remains to be proved that f �F� ² e�F�Ø Note first that if ­
1
Ù­
2
Ù­ X Sym
0

are such
that e­1e­2 ¨ Re­ for some R X RotÙ then we have the triangle inequality

m�­� ² m�­
1
� + m�­
2
�Ø (45)

To establish (45), let E
α
X ãEÙ α ¨ 1Ù 2Ù be such that

¶�E
α
�∼ ­

α
Ù (46)

see Definition 1(ii). Let π
α

be processes of duration 1 of the form π
α
¨ �E

α
Ù P

α
�ċ��

where
P
2
�t� ¨ e t­2 Ù P
1
�t� ¨ e t­1e­2 Ù t X �0Ù 1�Ø

Let finally ρ be an elastic process connecting πf
2

with πi
1
Ø Then π ¨ π
2
 ρ π
1

is a
process in which

wP�π� ¨ ¼�E
1
� ċ­
1
+ ¼�E
2
� ċ ­
2

and we have Pf ¨ e­1 e­2 ¨ Re­Ø Thus the lower bound for the plastic work
(Theorem 1; recall m ¨ m   ) gives

¼�E
1
� ċ ­
1
+ ¼�E
2
� ċ ­
2
³ m�­�Ø

Using (33) we obtain (45). Next use (45) to show that if F X Lin + and D
1
Ù D
2
X Sym
0

then
p�Fe − D1� −m�−D
1
� ² p�Fe − D2� + m�D
2
�Ø

Indeed, let D X Sym
0

be such that ReD ¨ eD2e − D1 for some R X Rot so that, by
(45),

m�−D
1
� +m�D
2
� ³ m�D�Ø

Condition E says
p�Fe − D1e − D� ³ p�Fe − D1� −m�D�

and hence
p�Fe − D2� ³ p�Fe − D1� −m�−D
1
� −m�D
2
�

Taking the supremum over all D
1

such that Fe − D1 X E and the infimum over all D
2

such that Fe − D2 X E completes the proof of (i). (ii): This is trivial by (36). (iii): Let

È�F� ¨ inf  p�Fe − D� + m�D� Ú D X Sym
0
Ù Fe − D X ãE(Ø (47)

This is an infimum over a smaller set than in (41) and therefore,

e�F� ² È�F�Ø (48)

To prove the opposite inequality, let D X Sym
0

be such that Fe − D X EØ As F Z EÙ
there exists a τ X �0Ù 1� such that Fe − Dτ X ãEØ Inequality (36) gives
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p�Fe − D� ¨ p�Fe − Dτe − �1 − τ�D� ³ p�Fe − Dτ� −m�D� +m�Dτ�Ù

where we have used the homogeneity of mØ Thus

p�Fe − D� + m�D� ³ p�Fe − D´� + m�D´�

where D´ Ú¨ Dτ X ãEØ Thus for each D as in the infimum (41) there exists a D´
as in the infimum (47) with a value of p�Fe − D´� + m�D´� that does not exceed
p�Fe − D� + m�D�Ø This proves the opposite inequality in (48). The assertion about
f �F� is proved similarly. (iv): If π ¨ �E�ċ�Ù P�ċ�� is a process and if we write
Pf ¨ ReD Pi for some R X RotÙ D X Sym
0

then Theorem 1 (recall m ¨ m    ³ 0)
gives

w�π� ³ p�Ef� − p�Ei� + m�D�Ø (49)

We have

e�Ff�Pi� − 1� ² p�Ff�Pi� − 1e − D� +m�D� ¨ p�Ef� +m�D�

by the definition of e and

e�Fi�Pi� − 1� ¨ e�Ei� ¨ p�Ei�

by (ii); hence (49) leads to (43). Equation (44) is proved similarly. è
Let us estimate the extended energy functions at large values of |F|Ø

Lemma 2 For every U X Sym + with det U ¨ 1 we have

1

2
√
3
| ln U| ² ln |U| ² ln

√
3 + | ln U|Ø (50)

Proof Denote by | ċ |ð the maximum norm of SymÙ i.e.,

|D|ð Ú¨ max |d
1
|Ù |d
2
|Ù |d
3
|(Ù

where d
1
³ d
2
³ d
3

are the eigenvalues of D X SymØ Write U ¨ eD with D X Sym
0

since det U ¨ 1Ø We have d
1
+ d
2
+ d
3
¨ 0Û hence d
3
² 0 and |D|ð ¨ max  d
1
Ù −d
3
(Ø

If |D|ð ¨ d
1

then trivially |D|ð ² 2d
1
Ø If |D|ð ¨ −d
3
Ù then d
1
+ d
2
− |D|ð ¨ 0Ù i.e.,

|D|ð ¨ d1 + d2 ² 2d1Ø Hence in every case |D|ð ² 2d1 and so

|eD|2 ³ e2d1 ³ e |D|ð

which implies 1
2
|D|ð ² ln |eD|Ø Combining this with |D| ²

√
3 |D|ð we obtain (50)
1
Ø

To prove (50)
2
Ù it suffices to note that

|eD|2 ² 3e2d1 ² 3e2|D|ð Ù

i.e., ln |eD| ² ln
√
3 + |D|ðØ Combining this with |D|ð ² |D| we obtain the desired

result. è

Remark 2 Suppose that the material satisfies Il’yushin’s condition and assume that

for each fixed δ ± 0Ù the set E
δ
Ù given by (3), is bounded and that δ1/31 X E

δ
Û

moreover, assume that

m�D� ³ Ïc
0
|D|Ù D X Sym
0

(51)
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for some Ïc
0
± 0Ø Then there exist positive constants βeÙ ÏβeÙ βfÙ Ïβf and functions

γeÙ ÏγeÙ γfÙ Ïγf Ú �0Ù ð� r R such that

Ïγe�δ� + Ïβe ln |F| ² e�F� ² γe�δ� + βe ln + |F|Ù (52)

γf�δ� − βf ln + |F| ² f �F� ² Ïγf�δ� − Ïβf ln |F| (53)

for every F X Lin + where δ ¨ det F and ln + is the positive part of lnØ
Proof Let us first prove the upper bound (52)
2
Ø Since S is bounded, there exists a

c
0
± 0 such that

m�D� ² c
0
|D| (54)

for each D X Sym
0
Ø Let γ0e Ú �0Ù ð� r R be defined by

γ0e �δ� ¨ max  p�E� Ú E X E
δ
(Ù (55)

for each δ ± 0Ø The maximum exist and is finite since E
δ

is bounded p is continuous.
Let

βe ¨ 2
√
3 c
0
Ù γe�δ� Ú¨ γ
0

e �δ� + �2c
0
/
√
3�| ln δ| (56)

for each δ ± 0Ø Since the functions on both sides of (52)
2

are objective and isotropic,
it suffices to prove (52)
2

only if F X Sym + Ø If F X E then the proof is immediate.
Let F X Sym + ∼ EØ Set δ ¨ det F and

D Ú¨ ln�F/δ1/3�Ù i.e., Fe − D ¨ δ1/31 (57)

Then by (41) we have e�F� ² p�δ1/31�+m�D� and using successively (57), (55), (54),
(57), (50)
1

and (56), we obtain (52)
2
Ø Let us prove (52)
2
Ø We have |AB| ² m
0
|A||B|

for somem
0
± 0 and all second-order tensors AÙ BØ Let H X ãE so that H is invertible

and |H| © 0Ø Then |F| ¨ |HH − 1F| ² m
0
|H||H − 1F| for each F X Lin + and hence

|H − 1F| ³ c
3
|F|

for all H X ãE and F X Lin + where c
3
¨ min m − 1
0

|H| − 1 Ú H X ãE( ± 0Ø The
compactness assumption of E

δ
implies that the minimum exists and is positive. For

the same reason,
Ïγ0e �δ� Ú¨ min p�H� Ú H X ãE

δ
( (58)

is finite. We now prove that (52)
2

holds with
Ïβe ¨ Ïc
0
± 0Ù Ïγe�δ� ¨ Ïγ0e �δ� − Ïβe ln

√
3 + Ïβe ln c
3
Ø (59)

We can again assume that F X Sym + Ø Let D X Sym
0

be such that H Ú¨ Fe − D X ãEØ
Then using successively (58), (51), (50) and (59) we obtain

p�Fe − D� + m�D� ³ Ïγe�δ� + Ïβ
i

ln |F|Ø
Equation (47) implies (52)
2
Ø Inequality (53) is proved similarly. è

Remark 2 shows that there are strong differences in the behavior of eÙ f for large
values of |F| on the surfaces det F ¨ δØWe see that f is not even bounded from below.
For this reason, we restrict ourselves to eØ The growth of e is sublinear on surfaces of
constant determinant since the set S of all values of the stress SÙ as opposed to the
Piola Kirchhoff stress, is bounded: the assumption that

|S| ² c ° ð (60)

leads to the logarithmic growth due to the extra factor FT in S ¨ FTDp�F�Ø The
sublinear growth is at variance with the linear growth of the energy in the infinitesimal
deformations Hencky plasticity theory (see TŽmam [33]). There the stress relation
reads S ¨ Dp�E� with S satisfying (60), which excludes the superlinear growth.
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7.1 Appendix: a strange conjugation Next let us show that Condition E has
little or nothing to do with the convexity properties of pØ To this end, we introduce a
transformationon the set of materials which does not change the work in appropriately
changed processes but changes the signs of potentials like the elastic potential, free
energy, extended energies, etc.

Consider a material M ¨ �ΣÙ ΠÙZÙh� determined by the constitutive objects
EÙ ½Ù ¶ and define #½ Ú E r SymÙ #¶ Ú ãE r Sym
0

by

#½�E� ¨ −½�E�Ù E X EÙ #¶�E� ¨ −¶�E�Ù E X ãEØ

It is easily seen that EÙ #½Ù #¶ satisfy Conditions (i)–(v) in Definition 1 and thus
EÙ #½Ù #¶ determine a material which we denote #

M ¨ �#ΣÙ #ΠÙ #ZÙ #h�Ø Clearly,

#Σ ¨ ΣÙ #Z ¨ ZÙ #h ¨ −hØ

To determine the relationship between #Π and ΠÙ define, for every π ¨ �E�ċ�Ù P�ċ�� X
ΠÙ a pair #π ¨ �#E�ċ�Ù #P�ċ�� by

#E�t� ¨ E�d
π
− t�Ù #P�t� ¨ P�d

π
− t�Ù t X �0Ù d

π
�Ø

It is easily seen that for every process π X Π we have #π X #Π and the operation #�ċ�
establishes a one-to-one correspondence between Π and #ΠØ One finds that

wE�#π� ¨ wE�π�Ù wP�#π� ¨ wP�π�Ù
#m�D� ¨ m�−D�Ù D X Sym
0
Ù

and:

M satisfies the cyclic second law h #
M satisfies the cyclic second law,

p is an elastic potential for M h #p Ú¨ −p is an elastic potential for #
MÙ

ψ is a free energy for M h #ψ Ú¨ −ψ is a free energy for #
MÙ

r is a residual energy for M h #r Ú¨ −r is a residual energy for #
MÙ

M satisfies Il’yushin’s condition h #
M satisfies Il’yushin’s condition,

S is convex h #
S is convex,

M satisfies the normality rule h #
M satisfies the normality rule,

e is an initial energy for M h #f Ú¨ −e is a final energy for #
MÙ

f is a final energy for M h #e Ú¨ −f is an initial energy for #
MØ

8 Materials of type C

The rest of the paper is devoted to a class of materials for which the elastic potential
is logarithmically convex on deformation gradients of fixed determinant. They are
shown to satisfy Il’yushin’s condition and the extended energy e can be calculated
using the double convex conjugation with respect to the logarithmic deformation. An
example of a material of type C is in Section 9.

If f is any mapping defined on Lin + and δ ± 0Ù define the mapping f
δ

on Sym
0

by
f
δ
�A� ¨ f �δ 1/3eA�Ù A X Sym
0
Ø
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If Ñ Ú Lin + r R is a continuously differentiable objective isotropic function then Ñ
δ

is isotropic and continuously differentiable and

DÑ
δ
¨ ¼

δ
Ù (61)

where ¼ is the traceless part of ½ defined by

½�F� Ú¨ DÑ�F�FTØ (62)

To establish (61), note that in view of the isotropy of both sides of (61) it suffices to
verify (61) only on diagonal elements (relative to some orthonormal basis), which is
trivial.

The function Ñ is said to be (strictly) logarithmically convex if for every δ ± 0Ù
the function Ñ

δ
is (strictly) convex. It must be emphasized that this definition involves

only symmetric tensors of constant determinant. By (61) the convexity inequality
reads

Ñ
δ
�B� ³ Ñ

δ
�A� + ¼

δ
�A� ċ �B − A� (63)

for any AÙ B X Sym
0
Ù with the strict inequality sign if Ñ is strictly logarithmically

convex and A © BØ The convexity in the logarithmic deformation has been examined
byHill [12–13] for elastic materials, and was shown to be free from undesirable con-
sequences (in contrast to the convexity in the principal stretches); our assumption is
actually weaker because of the determinant restriction. Note also that the logarithmic
convexity is consistent with the polyconvexity [32]. Let us show that the logarithmic
convexity implies the Baker–Ericksen inequalities.

Lemma 3 Let Ñ be objective and isotropic, let ½ be given by (62), let E ¨
diag�e
1
Ù e
2
Ù e
3
� X Sym + be diagonal so that also T Ú¨ ½�E� ¨ diag�t
1
Ù t
2
Ù t
3
� is

diagonal. If Ñ is logarithmically convex then we have the Baker–Ericksen inequalities

ti ³ tj if ei ³ ej (64)

with the strict inequality sign if Ñ is strictly logarithmically convex and ei ± ejØ

Proof Write E ¨ δ1/3eA where A ¨ diag�a
1
Ù a
2
Ù a
3
� X Sym
0
Ù and fix the pair iÙ jØ Ap-

ply the monotonicity �¼
δ
�B�−¼

δ
�A��ċ�B−A� ³ 0 to B ¨ diag�b
1
Ù b
2
Ù b
3
�where the

triple �b
1
Ù b
2
Ù b
3
� is obtained from �a
1
Ù a
2
Ù a
3
� by interchanging the iÙ j-components.

Then ¼
δ
�B� is a diagonal tensor which differs from ¼

δ
�A� by interchanging the

iÙ j-components and one obtains

�ti − tj��ei − ej� ³ 0 (65)

with the strict inequality sign if ei © ej and Ñ
δ

is strictly convex. Thus if ei ± ejÙ we
have ti ³ tjØ Since the derivative of Ñ is continuous, a limit provides that ti ³ tj also
if ei ¨ ejØ è

Lemma 4 (i) If Ñ is objective, isotropic, of class C 1Ù and strictly logarithmically

convex and EÙ M X Sym + satisfy

Ñ�ERMRT� ³ Ñ�EM�

for each R X Rot then E and M commute. (ii) Similarly, if f Ú Sym
0
r R is strictly

convex and continuously differentiable and AÙ B X Sym
0

satisfy
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f �A + RBRT� ³ f �A + B�

for each R X Rot then AÙ B commute.

Proof (i): If W is any skew tensor, then the differentiation of

Ñ�EeW Me − W� ¨ Ñ�EeW M� ³ Ñ�EM�

with respect to W at W ¨ 0 gives ETE − 1 ċ W ¨ 0 where T Ú¨ ½�F� and F Ú¨ EMØ
Hence ETE − 1 is symmetric which means that E2T ¨ TE2 and hence

ET ¨ TEØ (66)

Since ½�ċ� is objective isotropic, we have T ¨ ½�C� where C ¨ �FFT�1/2Ø Let us
show that (66) implies that

EC ¨ C EØ (67)

In a suitable orthonormal basis we have C ¨ diag�c
1
Ù c
2
Ù c
3
�Ù T ¨ diag�t
1
Ù t
2
Ù t
3
� and

(67) reads (no summation)

�ci − cj�Eij ¨ 0Ù 1 ² iÙ j ² 3Ù (68)

where Eij are the components of E in our basis. If ci ¨ cj then (68) holds trivially.
If ci © cj then the strict convexity of Ñ

δ
implies ti © tj by the strict version of the

Baker–Ericksen inequalities (65) (Remark 3), and as (66) reads �ti − tj�Eij ¨ 0 we
have Vij ¨ 0 and (68) holds again. Hence also E and FFT commute. This leads to

EM2 ¨ M2EØ That is, E commutes with M2 and hence also with �M2�1/2 ¨ MØ
(ii) is proved similarly. è

Definition 3 An ideal elastic–plastic material is said to be of type C if it satisfies the
following conditions:
(i) the material obeys the normality rule (see Definition 2);
(ii) ½ has an elastic potential p which admits an objective, isotropic, class C 1 exten-

sion Ñ Ú Lin + r R which is strictly logarithmically convex and bounded from
below;

(iii) for every δ ± 0ÙS ¨ ¼�E
δ
� (see (3) for the definition of E

δ
);

(iv) 0 is in the interior of SØ
Note that (iv) and the boundedness of S imply that

c
1
|D| ² m�D� ² c
2
|D| (69)

for some positive constants c
1
Ù c
2

and all D X Sym
0
Ø

Proposition 6 Each material of type C satisfies Il’yushin’s condition.

Proof Verify Condition (ii) of Theorem 2. It suffices to establish (36) for pairs E
and D as in that condition and satisfying additionally E X Sym + Ø Let Q be a point of
minimum of the function R w Ñ�ERe − D RT� ¨ Ñ�ERe − D�Ù R X RotÙ so that

Ñ�Ee − D� ³ Ñ�EQe − D QT�Ø (70)

By Lemma 4(i), E and Qe − D QT commute and hence so also do E and QDQT Ø Let

δ ¨ det E and A ¨ ln�E/δ1/3�Ø By the commutativity, Ee − QDQT ¨ δ1/3eA − QDQT

and thus Ñ�Ee − QDQT� ¨ p
δ
�A − QDQT�Û the convexity of p

δ
gives
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p
δ
�A − QDQT� ³ p

δ
�A� − ¼

δ
�A� ċ �QDQT�Ø

Since E X EÙ this reads

Ñ�EQe − D QT� ³ p�E� − ¼�E� ċ �QDQT� ¨ p�E� − ¼�QTEQ� ċ DØ

By Lemma 1(ii), ¼�QTEQ� ċ D ² m�D� which in conjunction with (70) leads to
(36). è

We now give simplified constructions of the initial energy for materials of type
C.

Theorem 4 Consider a material of type C and let F X Lin + Ø Then

(i) there exists a unique D X Sym
0

such that E Ú¨ Fe − D X E and

e�F� ¨ p�E� + m�D�Û (71)

(ii) if F X E then E ¨ FÙ D ¨ 0Û
(iii) if F Z E then E X ãE and

D X N¼�E�SÛ (72)

if additionally F X Sym + Ù then FÙ EÙ D commute.

Hence, setting
P ¨ eDÙ

we have the elastic–plastic decomposition

F ¨ EP (73)

with E X EÙ D X N
¼�E�S and

e�F� ¨ p�E� +m�D�Ø

For F X Sym + the logarithm of (73) and the commutativity give

ln F ¨ ln E + D

which decomposes ln F into its projection ln E onto ln�E P Sym + � and the com-
plement D in the normal direction to S at the corresponding stress. If we interpret
the energy e as a stored energy of the associated nonlinear Hencky material, the
above shows that the constuction of e involves the same pojections as in the small
deformation theory, but in the space of logarithmic deformations.

Proof It is enough to give the proof in the case F X Sym + Ø Write F ¨ δ1/3eA where
δ ¨ det FÙ A X Sym
0
Ù and consider an auxilliary minimum problem

È ¨ min Ñ
δ
�A − D� +m�D� Ú D X Sym
0
(Ø (74)

The minimum exists since Ñ is bounded from below andm coercive (see (69)). Let D
be a point of minimum. The optimality conditions say that

¼
δ
�A − D� X ãm�D�Ø (75)

Furthermore, we have in particular

Ñ
δ
�A − D� ² Ñ

δ
�A − RDRT�
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for each R X Rot and hence AÙ D commute by Lemma 4(ii). We conclude from (75)
and ãm�D� ⊂ S (see (34)) that ¼

δ
�A − D� X SØ From Definition 3(iii) we have

¼�E
δ
� ¨ ¼�E

δ
� ¨ S and thus ¼

δ
�M� ¨ ¼

δ
�A − D� for some M X Sym
0

such that
δ 1/3eM X E

δ
Ø The strict monotonicity of ¼

δ
Ù which is a consequence od the strict

convexity of Ñ
δ
Ù implies that M ¨ A − D and as AÙ D commute, we obtain Fe − D X EØ

Hence
È ¨ p�Fe − D� +m�D�

with Fe − D X E which implies that

e�F� ² ÈØ (76)

Let us further prove that the opposite inequality holds in (76). Note that the infimum
in (41) exists as a minimum in the present case. Let D be the point of minimum in (41).
Let further Q be a point of minimum of the function R w Ñ�Fe − RDRT�Ù R X RotØ
Lemma 4(i) tells us that FÙ QDQT commute and hence

p�Fe − D� +m�D� ³ Ñ�Fe − QDQT� +m�QDQT�

¨ Ñ
δ
�A − QDQT� + m�QDQT�

³ ÈÙ

which proves the opposite inequality in (76). Moreover, the argument shows that D
is a point of minimum in (41) if and only if D is a point of minimum in (74) and that
such a point commutes with FØ

(i): To prove the uniqueness of the point of minimum in (41), it suffices to prove
the uniqueness of the point of minimum in (74). Let D

α
Ù α ¨ 1Ù 2Ù be two distinct

points of minimum in (74), so that, in particular, FÙ AÙ D
α

commute,

¼
δ
�A − D

α
� X ãm�D

α
�Ù (77)

and
Ñ
δ
�A − D
1
� +m�D
1
� ¨ Ñ

δ
�A − D
2
� +m�D
2
�Ø (78)

The inclusions (77) imply

¼
δ
�A − D

α
� ċ D

α
¨ m�D

α
�Ù (79)

and the strict convexity provides

Ñ
δ
�A − D
1
� ± Ñ

δ
�A − D
2
� + ¼

δ
�A − D
2
� ċ �D
2
− D
1
�

which in combination with (78) and (79) leads to

¼
δ
�A − D
2
� ċ D
1
± m�D
1
�

in conttradiction with (32). Thus the minimizer is unique. (ii): This follows from
the uniqueness and Theorem 3(ii). (iii): The inclusion E X ãE follows from the
uniqueness and Theorem 3(iii). The inclusion (72) follows from the above proof. è

Remark 3 If we consider the unique minimizer D and the E from Theorem 4 as a
function of F X Lin + Ù written D ¨ X�F�Ù E ¨ Y�F�Ù then the form of (41) implies
that the functions have the following transformation properties:



9. The duality; example 25

Y�QF� ¨ QY�F�Ù d�QF� ¨ d�F�Ù

Y�FQT� ¨ Y�F�QTÙ d�FQT� ¨ Qd�F�QTÙ

for every F X Lin + Ù Q X RotØ We define n Ú Lin + r Sym by

n�F� ¨ ½
0
�Y�F��Ø

where ½
0
�E� ¨ ½�E� − 1
3
�tr ½�E��1 is the traceless part of the Kirchhoff stresss.

Then n is objective and isotropic and for every δ ± 0 we have the strerss relation

n
δ
�A� ¨ De

δ
�A�

for a.e. A X Sym
0
Ø More precisely, e

δ
is convex and n

δ
�A� is a subgradient of e

δ
at A

for every A X Sym
0
Ø Thus the Hencky material with the stored energy e is such that

traceless part of the Kirschhoff stress always belong to the stress range SØ
Proof Let A be fixed and D the corresponding minimizer. If BÙ ­ X Sym
0

then the
convexity of Ñ

δ
says that

Ñ
δ
�B − ­� ³ Ñ

δ
�A − D� + ¼

δ
�A − D� ċ �B − A + D − ­� (80)

and the convexity of m that

m�­� ³ m�D� + ¼
δ
�A − D� ċ �­ − D� (81)

since ¼
δ
�A − D� is a subgradient of m at DØ A combination of (80), (81) with

e
δ
�A� ¨ Ñ

δ
�A − D� +m�D�

provides
Ñ
δ
�B − ­� + m�­� ³ e

δ
�A� + ¼

δ
�A − D� ċ �B − A�

Fixing B and taking the infimum of the left-hand side over all ­ X Sym
0

we obtain

e
δ
�B� ³ e

δ
�A� + ¼

δ
�A − D� ċ �B − A�

which shows that e
δ

is convex and ¼
δ
�A − D� is its subgradient at AØ It follows that

e
δ

is locally Lischitz continuous and the subgradient coincides with the derivative for
a.e. A X Sym
0
Ø è

9 The duality; example

This section gives a description of the initial energy for materials of type C in terms
of the convex conjugation in the logarithmic measure of deformation (Proposition 7).
The dual description is the analog, for large deformations, of the duality considerations
presented inTŽmam [33; Chapter 1, Section 3] in the context of the small deformation
theory of plasticity.

Proposition 7 Consider a material of type C. Then for every δ ± 0 we have

e
δ
¨ �  

δ

where �  
δ

is the convex conjugate of �
δ

given by
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�
δ
�S� ¨











Ñ  
δ
�S� if S X SÙ

ð otherwise,

where Ñ  
δ

is the convex conjugate of Ñ
δ

on Sym
0
Ø

Proof The proof of Theorem 4 shows that

e�F� ¨ min Ñ
δ
�A − D� + m�D� Ú D X Sym
0
( (82)

and the proof of Remark 3 that e
δ

is convex on Sym
0

for every δ ± 0Ø For a fixed δÙ
consider the family  fD Ú D X Sym
0
( of convex functions on Sym
0

given by

fD�A� ¨ Ñ
δ
�A − D� + m�D�Ø (83)

Equation (82) asserts that

e
δ
�A� ¨ min  fD�A� Ú D X Sym
0
(Ù A X Sym
0
Ø (84)

The application of the general formula for the convex conjugate of a minimum of a
family of convex functions [10; Chapter I, Equation (4.6)] in the present case gives

e  
δ
�S� ¨ �min fD Ú D X Sym
0
(


 
�S� ¨ sup  f  D�S� Ú D X Sym
0
(Ù (85)

S X Sym
0
Ø We have

f  D�S� ¨ �Ñ
δ
�ċ − D� + m�D�


 
�S� (86)

where Ñ
δ
�ċ−D� denotes the shifted function A w Ñ

δ
�A−D�Ø In (86), D is a parameter

and hence m�D� an additive constant during the evaluation of the convex conjugate.
The rules for the evaluation of the conjugate of a function shifted by an additive
constant and shifted in the domain space [10; Chapter I, Equations (4.8) and (4.9)]
yield in the present case

f  D�S� ¨ Ñ  
δ
�S� + S ċ D −m�D�Ù (87)

where Ñ  
δ

is the conjugate of Ñ
δ
Ø Inserting (87) into (85),

e  
δ
�S� ¨ Ñ  

δ
�S� + sup  S ċ D −m�D� Ú D X Sym
0
( (88)

and we note that

m  �S� Ú¨ sup  S ċ D −m�D� Ú D X Sym
0
(Ù

is the conjugate of the convex dissipation function mØ A combination of (35) with
(88) then gives e  

δ
�S� ¨ �

δ
�S�Ø Since e

δ
is convex, we have e

δ
¨ �e

δ
�    ¨ �  

δ
Ø è

9.1 Example Finally, an elastic–plastic material is described for which the initial
energy and the Hencky type response are calculated explicitly. Let

E ¨  E Ú¨ VR X Lin + Ú V X Sym + Ù R X RotÙ |L| ² τ/β(Ù

where τÙ β are given positive numbers and L ¨ ln V− 1
3

tr�ln V�1Ø Define ½ Ú Lin + r
Sym by

½�E� ¨ α´�δ�δ1 + βL

for each E X Lin + Ù where δ ¨ det E and α Ú �0Ù ð� r R is a continuously
differentiable function. We use the same symbol ½ for the restriction of ½ to EØ
Define ¶ Ú ãEr Sym
0

by
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¶�E� ¨ �β/τ�RTLRÙ E X ãEØ

The objects EÙ ½Ù ¶ determine an ideal elastic–plastic material �ΣÙ ΠÙZÙh� (see
Definition 1) and one finds that

¼�E� ¨ βRTLRÙ E X Sym + Ù

S ¨  S X Sym
0
Ú |S| ² τ(Ø

The material is of type C. Indeed, other things being obvious, it suffices to verify
Condition (ii) of Definition 3. One finds that if p Ú Lin + r R is defined by

p�E� ¨ α�δ� + 1
2
β|L|2

for each E X Lin + Ù where E ¨ VR is the polar decomposition of EÙ then p is an
elastic potential for ½ on Lin + Ø We identify Ñ with pØ One finds that

Ñ
δ
�A� ¨ α�δ� + 1
2
β|A|2Ù A X Sym
0
Ù

which is a strictly convex function. Thus the material is of type C. The dissipation
function is given by

m�D� ¨ m   �D� ¨ τ|D|Ù D X Sym
0
Ù

and since it is convex, by Proposition 5, the maximal and minimal residual energies
are

s�ReD� ¨ τ| ln D|Ù t�ReD� ¨ −τ| ln D|Ù
R X RotÙ D X Sym
0
Ø The initial energy is given by

e�F� ¨















α�δ� + 1
2
β|L|2 if |L| ² τ/βÙ

α�δ� − 1
2
�τ/β� + τ|L| if |L| ± τ/βÙ

(89)

for each F X Lin + Ù where throughout, F ¨ VR is the polar decomposition of F and
δ ¨ det FØ The case |L| ² τ/β in (89) follows from Theorem 3. Let us consider
the case |L| ± τ/βØ By the objectivity and isotropy we may restrict ourselves to
F ¨ V X Sym + ∼ EÛ in fact it suffices to consider an F that is diagonal in some
orthonormal basis. By Theorem 4, it suffices to seek the infimum in (47) only on
those D which are diagonal in some basis of eigenvectors of FØ If Fe − D X ãE then

p�Fe − D� ¨ α�δ� + τ2/2βØ

Consider an orthonormal basis of eigenvectors of F so that F ¨ diag�v
1
Ù v
2
Ù v
3
�Ø By

(47),
e�F� ¨ α�δ� + τ2/2β + τM (90)

where
M Ú¨ inf  |D| Ú D X Sym
0
Ù Fe − D X ãEÙ D diagonal(Ø (91)

For a D ¨ diag�d
1
Ù d
2
Ù d
3
� as in (91) the condition Fe − D X ãE gives | ln
0

F−D| ¨ τ/β
and we are led to

M ¨ inf  |d| Ú d X C(
where C ¨  d X PÙ |d − c| ¨ τ/β( is the circle with the center cÙ ci ¨ ln�vi/δ
1/3�Ù δ Ú

¨ v
1
v
2
v
3
Ù in the plane P ¨  d X R
3 Ú d
1
+ d
2
+ d
3
¨ 0(Ø By | ln
0

F| ± τ/β the origin
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�0Ù 0Ù 0� is not in the interior of CØ Thus we are looking for the point of the circle C
whose distance from the origin is minimal and hence M ¨ | ln
0

F| − τ/δØ for each
F X Lin + Ø A combination with (90) gives (89). Note the linear growth of e in |L|
outside EØ A differentiation of e gives

n�F� ¨










βL if |L| ² τ/βÙ
τL/|L| if |L| ± τ/βØ
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