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| Prologue: Coleman & Noll’s retardation theorem, 1960

An Approximation Theorem for Functionals, with Applications in Continuum Mechanics, [Coleman
and Noll, 1960]

Viscoelasticity theory (rheology): The present value of the stress T'(x,7) at x depends on the
history Fi(x,s) = F(x,t—s), s > 0 of the deformation gradient F from —oo up to ¢,

T(x,1) =T(F'(x,-))
where T is generally a nonlinear functional, obeying

the hypothesis of fading memory

remote past of F has a negligible influence on the present value of T.

For a functional T of unspecified structure this is expressed by
e choice of the mathematical space of histories
e continuity and differentiability of “T.
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for slow motions ‘T can be approximated:

T(F(x,)) ~ f(F(x,1),F(x,1),F(x,1),...)

e.g., for an incompresible fluid the first approximation
1
T~ —pl+2nD+ A(tr D)1 where D = E(grad v+ gradv

Spatial version: On Retardation Theorems, [Coleman, 1971].
time derivatives replaced by spatial gradients

Goal of the talk:

e recapitulate Coleman’s theorem
e apply it to an isotropic solid

T).
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Remark 1 Paolo Podio-Guidugli informed me after | had announced the title of this talk that he
and Gianfranco Capriz planned a similar work, which, though, never materialized.

Remark 2 Victor ]. Mizel draw my attention to the paper [Coleman, 1971] in 1992.
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2 Introduction

Peridynamics is a nonlocal continuum theory that does not use the spatial derivatives of the
displacement field

S. A. Silling in [Silling, 2000],

S. A. Silling, M. Epton, O. Weckner, J. Xu & E. Askari in [Silling et al., 2007] revised and broadened;
Predecessors |. A. Kunin in [Kunin, 1982], [Kunin, 1983] and by A. C. Eringen in [Eringen, 2002].

The equation of motion:

Q < R" reference configuration
&= &(x,t) deformation,

b = b(x,t) body force,

p is the density,

pE=F(E) +b

% (&) (x) force at x exerted on x by the rest of the body.
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The exact form of the operator § often differs in different authors.
[Silling, 2000] and [Silling et al., 2007] proposes the following forms:

& (x) = | f(&(y) —&(x), y—x)dV,,
0

&(&(x) = [ (T(&(y) = &(x)) —T(&(x) - &(p)))dv,,
Q

respectively, where fand T are materially dependent functions
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3 Asymptotic expansion for vanishing nonlocality

Does the theory reduce to the classical local or higher-grade continuum theory under
certain circumstances? What are these “cicumstances?”

The concrete form of the functional § often contains a physical parameter, called the horizon by
S. A. Silling, of dimension of length

= the limit of vanishing viscosity.

For a general, formally unspecified §, one has to apply

B. D. Coleman’s spatial retardation.
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4 Influence Functions

Assume
{ Q = Rl’l
o the force F(&) calculated at x = 0

We assume that the values of the deformation &(x) for |x| — o influence F(&) in a negligible
way. This is expressed by working in the Banach space

Ly n= ={&:R" > R” measurable, | (&(x)h(x))?dV, <o}
Rl’l

with the norm

= (] (&m0 an) v

wherel <p<owand #:R"” — (0,x), an influence function. / is said to be of order s > 0 : if for
each o > 0 there exists a constant M such that
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h(x/a)
Sup{ash(x) cxeR” x| 2 0} <M,

for all a € (0, 1].
Remark |. If i is an influence function of order s then
h(x) <clx| % xeR"

The function
1

1+ |x|S
is an influence function of order s, while an exponential,

h(x) =

h(x)=e "Xl y50

is an influence function of all orders.
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5 Fields and their Taylor Approximations

Lemma 2. Let /4 be an influence function of order s. Let &: R — R " such that
|€(x)] < Kx|¥
for all x e R" and some K, k = 0. If

k<{s—n/p if 1<p<oo,
S if p= oo,

then ¢ € Jp,h.
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Afield £: R — R” is said to be m-times differentiable at x = 0, if

o

E(x)= X

k_oyka-xk+o(|x|m)

where VX is a tensor of order k + 1, symmetric in the las £ indices,

The Taylor transformation 11, is a linear transformation defined for all fields which are m-times

differentiable at x = 0 :
m

In,é= X %Vké‘- xk
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Theorem 3. If the order of the influence function / is s, then the Taylor transformation 11,, maps the
set &, of all m times differentiable functions into & Y provided that

< s—n/p if 1<p<o,
S if p=oo.
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6 Retardation

The retardation operator I', with retardation factor a(0, 1] is the linear transformation § — &,
defined by

[ é(x)=¢,(x) =¢(ax).

Theorem 4. I', maps & Y into itself. Let h be an influence function of order s. Suppose that m and p
satisfy
< s—n/p if 1<p<oo,
S if p=oo.

Then

. 1
algo a_mlé:a B Hmé:alp, h~ 0

oreach { € 9,,.
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7 Response Functions

A function § : gp , — R is said to be m-times Fréchet-differentiable at 0 if bounded homoge-

neous polynomials 5/‘%, of degree k = 0, ..., m, such that

m

(&) = 5’%@ +o(¢l",)

forall e 3
If isa tensor of order k + 1, symmetric in the last k indices, we define a homogeneous monomial

o of of degree k of n variables z = (z,...,z,) by

wt(z) =w- /K.

(k)oK
.]17“'7.]S jl!"’js!

Also
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Theorem 5. If & is an influence function of order s, i§ is s times differentiable on ¥ Y and { € Y, a
deformation then

akck(Vé‘,...,st)

S
P +o(a”)

()= 3
k=1

as oo — 0 where

(Ve V= 3 (f)5kg(y1§T,...,Vlgﬁ,...,yS§T,...,VS§{)

J1€Ngs -1 Js€N . - —
Jit o tis=k J1 — times js — times
j1+2j2... +5jg<s
Remark 6 (Particular cases).
(i) Ifs=1then
&(&,) ~F(0) +¢(VE)
where

c)(VE) = 6 (VED).
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(i) If s =2 then
F() ~ F0) +6(VE VD) +20,(VE V)
where
¢ (VEV2E) = 0F(VED) + F(V2ED),
e, (VEV2E) = 62 (VL VED).
(iii) If s = 3 then

F() ~ B0 +q(VE V2E V38 + 56, (VEVZE V) + 10s(VE V2 V)
where
¢ (VEV2EV3E) = F(VED) + 0F(V2ED) + 5F(V3én),
e, (VEV2EVIE) = 62F(VEL VD) +262F(VEL V2ED),
c5(VEVIEV3IE) = 53F(VEL VEL VD),



[r-05] /17
8 Linear isotropic peridynamic materials

Now for any x € R”, he first derivative of  is a linear function of the form

oF(u)(x) = [ K(y—x)(u(y) —u(x))dV,
Q

where the form of the kernel K is dictated by the representation theorem of isotropic functions,
i.e.,
K(p) =y(p)lpl* 1+ w(p)p® p

p € R", where v and w are radial scalar functions determined by the properties of the material.
We write y(r) and w(r) for §(r) and &(r), e.g., [q w(r)dr := [ ¥(r) dr. No confusion can
arise. Further, for any bounded function g on R” with values in any normed space with the norm
| - | we put

Iglleo :=sup {|g(p)|: pe R"} < co.
Let, finally, ¥, _ | be the area of the unit sphere S” “l={peR":|p|=1}in R"
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Theorem 7. Let k =1 be an integer and let u : R"” — R" have bounded continuous derivatives of all
orders < 2k + 1. Then

k
Fu) =Y a¥ 2Nyt akc Ky on R”
> > (8.1)
where || C(Bo(ck)ulloo < |V + 1y, with ¢ independent of o
and u; )

here
NGy = (Ag + pg) AS_IVdivu+,uSASu

are the Navier operators of order 2s with the Lamé moduli of order s given by the equations
A= 1,((2s =Dy — (n+28)y,), ug= 1w+ (n+2s)y,)

that involve a normalization constant i1, and moments v, and w,
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s—1

0.0]
zszicn_l/ZS! I Qi+n), n,=[nr" T2 ar, with 5=y, o.
i=0 0

Remark 8. The first member of the sum in | is the classical Navier operator N = N from ,
with the Lamé moduli

o0

K, _1 (j) (0(r) F(n+2)w(r))r* 3 ar

A —
» H m(2+1n)
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