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Abstract

We consider the compressible Navier-Stokes system on time-dependent domains with prescribed motion of the
boundary. For both the no-slip boundary conditions as well as slip boundary conditions we prove local-in-time
existence of strong solutions. These results are obtained using a transformation of the problem to a fixed domain
and an existence theorem for Navier-Stokes like systems with lower order terms and perturbed boundary conditions.
We also show the weak-strong uniqueness principle for slip boundary conditions which remained so far open question.
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1 Introduction

We consider a barotropic flow of a compressible viscous fluid in the absence of external forces. Such flow is described
by the isentropic compressible Navier-Stokes system

Oro + divg(ou) = 0, (1.1)

O(ou) + div,(ou ® u) + V;p(e) = div,S(Vyu), (1.2)
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where g is the density of the fluid and u denotes the velocity. We assume that the stress tensor S is determined by
the standard Newton rheological law

S(Vyu) = p (qu +Via— gdivzu]l> + ndivyul (1.3)

with u > 0 and > 0 being constants. The pressure p(p) is a given sufficiently smooth function of the density and we

introduce the pressure potential as
?“p(2)
H(o) =0 [ —*da. (1.4)
1 Z
We are interested in proving local existence of strong solutions to the system of equations (1.1)-(1.2) on a moving
domain ) = Q; with prescribed movement of the boundary. More precisely, the boundary of the domain €2, is assumed

to be described by means of a given velocity field V (¢, z), where t > 0 and 2 € R3. Assuming V is regular and solving
the associated system of differential equations

%X(t,x) = V(t7X(t, x)), t>0, X(0,2) =z (1.5)

we set

QT:X(T,Q()),

where ©Qy C R3 is a given domain. Moreover we denote I'; = 99, and

Q-= |J {t} x=:(0,7) x Q.

te(0,7)

System (1.1)-(1.2) is supplied with the Navier slip boundary condition stated as the combination of the imperme-
ability relation
(u—V)-n|r, =0 for any 7 > 0, (1.6)

where n(t, ) denotes the unit outer normal vector to the boundary T';, and equation

([Sn],,, + k[u—=V]_.)Ir, =0, (1.7)

e

where k > 0 represents a friction coefficient. In particular the choice k = 0 yields the complete slip boundary condition
and in the limit kK — 400 we recover the no-slip boundary condition (7.1).
Finally, the system of equations (1.1)-(1.2) is supplemented by the initial conditions

0(0,-) = 00, u(0,:)=wup in Q. (1.8)

Global weak solutions to the compressible barotropic Navier—Stokes system on a fixed domain were proved to exist
in a pioneering work by Lions [20]. This theory was later extended by Feireisl and collaborators ([12], [6], [7], [8])
to cover larger class of pressure laws. The existence theory in the case of moving domains was developed in [10]
for no-slip boundary conditions using the so-called Brinkman penalization and in [11] for slip boundary conditions.
Recently these results have been generalized to a complete system with thermal effects in [18] and [19].

There is also quite large amount of literature available concerning existence of strong solutions for the system
(1.1)~(1.2) (or even for more complex systems involving also heat conductivity of the fluid) on a fixed domain, such
solutions are proved to exist either locally in time or globally provided the initial data are sufficiently close to a rest
state, let us mention among others [22], [23], [31], [32] in the framework of Hilbert spaces and [24],[25],[26] in the L?



setting. All these results are proved under the no-slip boundary conditions. The case of slip boundary condition on
fixed domain was considered by Zajaczkowski [34] and Hoff [17]. Free boundary problems for the system (1.1)-(1.2)
has been investigated by Zajaczkowski et al. ([35],[36]) where global existence of strong solutions in L? setting is
shown under assumption that the domain is close to a ball. Recently, Shibata and Murata [29] showed global well
posedness using entirely different approach in the L? — L? maximal regularity setting. For moving domains with given
motion of the boundary local-in-time existence results of strong solutions (incompressible case) can be found in the
L? setting by Hieber and al. [3]. Moreover, in the case of fluid-structure interaction we can mention work of Hieber
for incompressible and also compressible case [15, 16].

The concept of relative entropies has been successfully used in the context of partial differential equations (see
among others Carillo et al. [1], Masmoudi [21], Saint-Raymond [28], Wang and Jiang [33]). Germain [14] introduced
a notion of solution to the system (1.1)—(1.2) based on a relative entropy inequality with respect to a hypothetical
strong solution. Similar idea was adapted by Feireisl et al. [13] who defined a suitable weak solution to the barotropic
Navier-Stokes system based on a general relative entropy inequality with respect to any sufficiently smooth pair of
functions. In [9] the authors used relative entropy inequality to prove the weak-strong uniqueness property. Doboszczak
[5] proved both the relative entropy inequality as well as the weak-strong uniqueness property in the case of moving
domain and no-slip boundary condition.

In this paper we first prove the local existence of strong solutions to the system (1.1)—(1.2). The general approach
consist in nowadays classical method of splitting the problem into continuity and momentum equations and investi-
gation of linearized problems. Here we adapt a mixed approach. The continuity exuation is solved directly on moving
domain. For this purpose we extend the known existence theory for the linear transport equation based on the method
of characteristics. Analogous result on a fixed domain has been applied for example in [34], however without proof
which turns out to be quite involved and here we present it for the sake of completeness. To treat the linear momentum
equation we apply the Lagrangian coordinates. The main difficulty in the resulting system on a fixed domain is in
nonhomogeneous boundary conditions which, in spite of smallness of time, require careful treatment with appropriate
extension of the boundary data. Having completed the proof of the local existence we show that weak solutions to the
system (1.1)—(1.2) on moving domains proved to exist in [11] possess also an energy inequality (Proposition 6.1). Using
this energy inequality we prove the relative entropy (energy) inequality (Proposition 6.2) and finally the weak-strong
uniqueness property (Theorem 1.2).

We are now in a position to formulate the main results of our paper. The first one gives the local existence of
strong solutions (a precise definition of function spaces defined on the moving domain is given in Section 2.1).

Theorem 1.1 Let Q5 C R3 be a bounded domain of class C%. Assume that p(o) is a C? function of the density
and V € C3((0,T) x R®). Assume further that ug € H>(Q0), 00 € H?*() and there exists positive constants ci, co
such that 0 < ¢1 < g9 < co. Then there exists (sufficiently small) T > 0 and a unique solution (u,p) to the system
(1.1)-(1.3) with boundary conditions (1.6)-(1.7) (or (7.1)) and initial condition (1.8) such that

u € L*(0,T,H*(y)) N L2(0,T, H3()),u; € L>(0,T,HY(Q4)) N L2(0,T, H*(Q)), 0 € L*(0,T, H*()), 00 €
L2(0,T, H*(S%)).

The second main result concerns the weak-strong uniqueness principle.

Theorem 1.2 let V € C1([0,T]; C3(R3)) be given. Assume that the pressure p € C[0,00) N C*(0,0) satisfies

p'(0)
ot

Let (o,u) be a weak solution to the compressible Navier-Stokes system (1.1)-(1.8) constructed in Theorem 2.1. Let
(8,1) be a strong solution to the same problem satisfying

p(0) =0, p'(0) >0 for any 0 >0, lim = Poo > 0 for a certain v > 3/2.
0—00

0<infp <supo < o0 (1.9)
Qr Qr



V.o € L*(0,T; LY()), VZiae L*(0,T,LY()) (1.10)
with ¢ > max{3; 55—16}, and emanating from the same initial data. Then
o=0,u=u inQr. (1.11)

Remark 1.1 Notice that the strong solution constructed in Theorem 1.1 satisfies the assumptions of Theorem 1.2

since by the imbedding theorem we have (1.10) for ¢ <6 and 5,?16 <6 fory > %

The paper is organized as follows. In Section 2 we discuss the proper definition of function spaces on moving domains,
recall the existence theorem for weak solutions from [11] and introduce the iterative scheme used in the proof of
Theorem 1.1. In Sections 3 and 4 we present the existence theory for the linear continuity and momentum equations
respectively in appropriate function spaces. In Section 5 we show the convergence of the iterative scheme which
completes the proof of Theorem 1.1. Section 6 is dedicated to the proof of Theorem 1.2. Finally, in Section 7 we
present concluding remarks regarding different boundary conditions, regularity of V etc.

2 Preliminaries

2.1 Function spaces

To begin with we introduce the function spaces LP(0,T, X (€2)). For fixed T' > 0 we assume that there exists R > 0
such that for all ¢t € [0, 7] it holds €; C Br(0), where Br(0) denotes the ball in R? of radius R centered at the origin.
Then we define

LP(0,T, L)) := {u € LP(0,T, LY(Bg(0))), u(t,-) = 0 in Br(0)\  for a.e. t € (0,T)} (2.1)

with the norm

T 3
lull o 0,7, Lacen)) = (/0 |u(t)||1£q(9t)dt>

[ull Lo 0.7, La(62)) = €58 SUPse (0,1 [[u(t) | pa(q,) -

Similarly we define spaces LP(0,T, W"4(€);)). Let I € N and « be a multi-index. Then

for p < co and

LP(0, T, Wh(§,)) := {u € LP(0,T, L9()), 0% € LP(0,T, LY()) Vol <1}

with the norm

HU||Lp(o7T7Wl,q(Qt)) = Z ||aau||LP(07T7Lq(Qt))'
loe<l]

The spaces of continuous functions in time with values in Lebesgue or Sobolev spaces in space variable C ([0, T], Wh4(€2;))
are defined similarly as in (2.1) using the large ball Br(0).

We also recall that we denote as usual H* := W*?2. If no confusion may arise, we often drop the time interval and
also the spatial domain to denote LP(Wh4) := LP(0,T, Wh4()).

Finally we introduce a compact notation for the regularity class of the velocity in Theorem 1.1. For a function f
defined on (0,T") x §; we define

ey = 1 f 1l zoe 0,7, 12200 L2 0,553 (00)) + 1 fell oo (0,7, 51 (20))n L2 (0,1, H2 (€2,)) (2.2)



and for a function f defined of (0,T) x Q where  is a fixed domain

||ny(T) = Hf||Loo(o,T,H2(Q))mL2(o,T;H3(Q)) + ||ftHLoo(o,T,Hl(Q))mLz(o,T,m(Q))- (2.3)

and obviously we denote by X(T') and Y(T') spaces for which above norms are finite.

2.2 Weak solutions
For weak solutions it is enough to assume the initial condition in a more general form
0(0,) =00, (ou)(0,-) = (ou)g in Q. (2.4)

We define weak solutions to the compressible Navier-Stokes system with slip boundary conditions on moving domains
as follows.

Definition 2.1 We say that the couple (o,u) is a weak solution of problem (1.1)-(1.2) with boundary conditions
(1.6)-(1.7) and initial conditions (2.4) if

e 0€ L>=(0,T; L7 (R3)), 0 >0 a.e. inQr.
e u,V,ue L3Qr), (w—V) -n(r,)|r, =0 for a.a. 7 €[0,T].

o The continuity equation (1.1) is satisfied in the whole R® provided the density is extended by zero outside ),
i.e.

[ ety do= [ o0 = [ [ (edrp+ou-Vop) dadt (2.
Q, o o Jo
for any T € [0,T] and any test function ¢ € C([0,T] x R3).

e Moreover, equation (1.1) is also satisfied in the sense of renormalized solutions introduced by DiPerna and Lions

1J:
/ bo)p(r ) dz — / b(20)p(0, ) da = / / (b(0)up + b(o)u - Vo + (o) — '(0)0) divsugp) dadt (2.6)
Q, Q0 o Ja,

for any T € [0,T], any ¢ € C=([0,T] x R3), and any b € C[0,00), b(0) =0, b/'(r) =0 for large .

e The momentum equation (1.2) is replaced by the family of integral identities

/QT ou-(r,:) doe — / (ou)o - ¢(0,-) dz (2.7)

Qo

= / / (ou-Op + olu®u] : Vo + p(p)divyp — S(Vau) 0 V) dedt
o Ja,
for any T € [0,T] and any test function ¢ € C([0,T] x R3) satisfying

@-nlr, =0 for any T € [0,T]. (2.8)

The existence of weak solutions to the problem (1.1)-(1.8) was proved in [11].



Theorem 2.1 Let Qg C R3 be a bounded domain of class C*TV. Assume V and p(o) satisfy the assumptions of
Theorem 1.2. Let the initial data (2.4) satisfy

1
00 € LY (R®), 00 >0, 0o %0, 00lrs\0, =0, (ou)o =0 a.a. on the set {go = 0}, Q—|(Qu)0|2 dx < co.
Qo 20
Then the problem (1.1)-(1.7),(2.4) admits a weak solution on any time interval (0,T) in the sense specified through
Definition 2.1.

We also notice that the existence theorem for the problem with no-slip boundary condition was proved in [10].

2.3 Iterative scheme

Theorem 1.1 will be proved with the method of successive approximations. At each step we will solve the linear system
solving coupled linear continuity and momentum equations. Here we adapt nowadays classical approach ([31], [34]).
The linear continuity equation is solved in a moving domain which is possible since the characteristics are well defined
due to boundary condition (1.6). Then in order to solve the momentum equation we use Lagrangian transformation
determined by the velocity field V. It should be noticed that such approach is admissible since the transformation
depends only on V and not on the solution, therefore is independent on the step of iteration. Then the crucial difficulty
is in showing appropriate estimates that will give convergence of the iterative scheme. We restrict our presentation
to the proof of the result for slip boundary condions. With our method this case is more complicated as it requires
treatment of boundary terms which otherwise vanish.

In view of the above considerations we define our iterative scheme as follows. We set p1 (¢, X (¢, z)) := po(x) and
uy (¢, X(t,2)) :=ug(x) for all t € (0,T).

Assume we already have (g, u,). We define the next step of approximation (9,41, un41) as follows.

1. We solve for g,4+1 the linear continuity equation

a:‘,Qn—i-l +uy, - Van—H + Qn-l—ldikun =0 inQr (29)

with the initial condition g,41(0,2) = go(z) in Q.
2. We solve for u,4; the linear momentum equation

On10i0nq1 — A U, 1 — (% +n)Vdiveu,41 = (2.10)

—On+1Up * qun - vrp(9n+1) = F(Qn—i—ly un) in QT

with boundary conditions
(Wp41 —V)-njr, =0 (2.11)

[S(vxun-l—l)n]tan + R[un-&-l - V]tanh‘,, =0 (212)

for all t € (0,T) and initial condition u,11(0,z) = ug(x) in Q.

3 Linear continuity equation
In order to have the iterative scheme well defined we have to solve in particular the linear continuity equation
ot +v-Veo+odivy,v =0 inQp (3.1)

with (v — V) -n|r, = 0. As pointed out earlier, we treat the linear continuity equation (3.1) directly in the moving
domain and we do not use here any change of variables. The following result gives existence of solution to (3.1).



Proposition 3.1 Assume g9 € H*(Qo), v € L>=(0,T, H*(Q4)) N L*(0, T, H3()). Then for T > 0 sufficiently small
there exists a unique solution ¢ to the linear transport equation (3.1) such that

o€ C([OvT]vHQ(Qt))7 ath C([OvT]le(Qt)) (32)
Moreover the following estimates hold
loll o2y < Cllooll 2 (VT |Vl L2(ms)) =: Do (3.3)

and
10c0ll 2 sy < CVT ool a2 d(VT |V L2 aray) V]| L2 o) (3.4)

where ¢(+) is an increasing, positive Lipschitz function. Moreover, if oo > k > 0 then 9 > C(k,T,v) > 0.

Remark. In what follows we will denote by ¢(-) an increasing, positive, sufficiently smooth function which may vary
from line to line.

In order to obtain the desired form of estimates with the factor v/T we use the solution formula provided by the
method of characteristics. We have

o(t, X(t,2)) = go(z)exp( — /0 divyv(s, X (s, z))ds), (3.5)

where
X(t,2) ==z +/O v(s, X (s, z))ds. (3.6)

Note that the mapping X (¢, z) is different from the mapping X(¢, z) introduced in (1.5), since one is related to the
velocity field v while the other to the velocity field V. Before we proceed with the proof of Proposition 3.1 we first
need some properties of the mapping X and its derivatives.

Lemma 3.1 Let v € L*(0,T, H3(Q;)). Let X(t,2) be defined by (3.6), i.e. for fized t € (0,T) we have X(t,-) :
Qo — Q. Then there exists sufficiently small T > 0 such that for all t € (0,T) there exists an inverse mapping
z2(t, ) : Qe — Qo, d.e. z(t, X(t,y)) =y for ally € Qo and X (¢t,z(t,y)) =y for ally € Q. Moreover it holds

[Vez(t,z) =1L (q.) < E(7) (3.7)

and
”sz(taZ)||L°°(O,T,L4(QO)) < o(IvilLzco,1,H3(2:))); (3.8)

where 1 denotes the identity matriz, E(t) is a nonnegative function such that E(t) — 0 ast — 0% and ¢ is an
increasing positive function.

Proof: [Lemma 3.1] We have
¢
V. X(t,z) =1+ / Va.v(s, X(s,2))V,X(s,z)ds, (3.9)
0

hence V, X satisfies a system of ODE
WV, X =V,.v(t,X(t,2))V. X.



Multiplying the component of the above equation corresponding to 9., X; by |9., Xz-|p_28zj X, and integrating over €
we obtain

d
% ||VzX||1£p(QO) < C”V:EV”HZ(Qt) ||VZX||1[)/P(QD)’

therefore by Gronwall inequality

T
V2 X{| Lo (0,7,20(020)) < Cexp </ ||V|H3(Qt)d5> < o([vllpzms)) <M. V1<p<oo. (3.10)
0

Moreover, tracking the dependence of the above estimate on p we can justify the limit passage p — oo to conclude
that (3.10) holds also for p = co.

In order to show the bound for the second gradient we differentiate (3.9) w.r.t. z and ¢ obtaining

0

avgx(t, 2) ~ V2v(t, X (1, 2)) (V. X (1, 2)* + Vav(t, X (¢, 2) VX (t, 2).
Note that we don’t really care about the precise structure of the right hand side, in order to obtain estimates, it is
enough for us to know that we have term involving second gradient of v multiplied twice by first gradient of X and
second gradient of X multiplied by first gradient of v.

We proceed similarly as before. Multiplying the component corresponding to Vgizj X by |V§izj Xk|2V§izj X and
integrating over 2y we obtain

d
%IlviX(tw)llizL < C/ |V§V(t,X(t7~))||VzX(t,')IQIVEX(tw)I?’dIJrC/ Vav(t, X (8 )|[VEX () 'de <

o Qo
< CIVEV) | s @ V=X 01724000 IVEX D100y + V2V )l 22020 IV 2X (O] 2020

which by Sobolev embedding and Gronwall inequality implies (3.8).
Now we are ready to finish the proof of (3.7). Recall that from (3.10) we have

VX (L, 2)|| Lo 0,1y x00) < M (3.11)

for some M > 0 which depends on the L?(H?) norm of v. Therefore from (3.9) we have

t
V. X(t,2) - 1| = /0 Vav(s, X(s,2)) VX (s,2)ds| < M HVzVHLl(o,T,Loc(Q,,)) < CM\/;”V”LQ(O,T,H?’(Q,,)) (3.12)

The expression on the right hand side of (3.12) will be small for small times, which yields the invertibility of V,X
and also the bound (3.7).
O
Now we proceed with the proof of Proposition 3.1.
Proof: [Proposition 3.1] The solution formula (3.5) immediately gives the last statement of the lemma. Moreover,
denoting g(t, z) = o(t, X (¢, z)) we obtain from (3.5)

t t
lo(t, L2, < Cllat, )l < C||QO||L2||6XP(*/ divyvds)|[L= < Cllgollmexp(/ [div o v]|zeds)  (3.13)
0 0
and consequently

ol = (0,7.22(00)) < Clloll = (0,7,22(9)) < Clloollzzexp(|div avzior,=)) < loollL2d(VTIVl L2 ms).  (3.14)



Differentiating (3.5) w.r.t z we obtain

Vaeo(t, X(t,2))V.X(t,2) (3.15)
= exp(—/0 div,v(s, X(s, 2))ds) <Vzgo(z) - QQ(Z)/O Vdivev(s, X(s,2))V.X(s, 2) ds)

and thus at least for small times
t t t
|Vaeo| < [(V.X)7! (|Vzgoexp(—/ divxv)|—|—|g0exp(—/ divxv)/ deivvaZdeD. (3.16)
0 0 0

Now, the first term in (3.16) can be estimated as before (see (3.13) and (3.14)) and with the second term we proceed
as follows

t t
||(VZX)*1QOeXp(—/ divxv)/ deivaVZXdSHLQ(QO) < (3.17)
0 0

t t
1(7=X) ™ o 520 | 20l 2 20l (— / div o) | L= (00) / (IVadiv ov] 2620 [ VX | 1o (62 s <

t t
1722 o=y 120 272 209D / 1div 2Vl 2 20) / (IVadiv 2 ¥ 22620 V5 X [ 22w (20y)

Taking supremum over ¢ € (0,7'), using the fact that both [|(V.X) ™| e (q,) and [|[V.X || (q,) are bounded in time
for sufficiently small 7" and using Holder inequality similarly as in (3.14) to obtain the factor VT we arrive at

IVaollz=o.r.2(0.)) < Clleollm2(00) @ (VT IVl L2 0,1, 13 (00)) )- (3.18)

In order to estimate the second derivatives of ¢ we differentiate (3.15) one more time with respect to z. Again we
are not particularly interested in the precise structure of the resulting equation, for the purpose of the estimate it is
enough to recognize all kinds of terms appearing on both sides of the resulting equation. We have

V20(V.X)? +V,0V2X ~ (3.19)

¢ ¢ ¢

~ V200 exp(f/ div zv) — 2V 00 exp(f/ divzv)/ (Vpdiv, vV, X)ds
0 0 0

2

t t t t
+ 00 exp(f/ div ,v) </ (Vpdiv, vV, X) ds> — 00 exp(f/ divmv)/ (V,div,vV2X)ds
0 0 0 0

¢ ¢
— oo exp(— / div ,v) / (V2div,v(V.X)?)ds.
0 0

Since (V,X)~2 is bounded for small times, our goal is to estimate the L>°(L?) norm of the right hand side of (3.19)
and also of V,oV2X. Let us start with the latter. Due to Lemma 3.1 we have the L>°(L*) bound for V2X and for
V.0 we use the formula (3.16). We show only the estimates in the space variable, the time variable is handled always
the same way as in (3.14) or (3.18). We have

t t
HViX(VZX)leXp(—/ div ,v)V. 00 exp(—/ div ,v)
0 0

< [VEX| (107220 7]

Vool (3:20)

L2 L

t
< C[[V2X ) (V2 X) 7 e / Idiv o vil ) 2ol e



and

t t
HVgX(VZX)_leXp(—/ divgcv)go/ (Vediv vV, X)
0 0

(3.21)
L2

t
<92 e V-3 fexpl= [ aiv )

t
leoll i [ (19390 19-1,)
Lo 0

t t
< CVEX| L [[(V=2) 7] exp(/o HdinVIILoo)Ilgollm/O(HVIIHS V=Xl )

Now let us treat the right hand side of (3.19). The first term can be handled similarly as above in (3.14). For the
second term we have

t t
Hvzgoexp(—/ div Jcv)/ (Vodiv,vV,X)
0 0

t
exp(— / div V)
0

< ||sz0||L4
2

t
RO ETASCES
L Lo JO

t t
SCllQollyzexp(/O HdivIv||L°°)/O(HVHH3 VX[ o)

The third term on the right hand side of (3.19) is estimated as

t t 2
00 exp(—/ div zv) (/ (Vpdiv, vV, X) ds) (3.23)
0 0 L2
t t 2
< ool [fexpl= [ aivew)| ([ (192l 19.X10,0)
0 Lo \Jo
t t 2
< Cllalleexo( [ v vl [ vl 19:¢1,2) )
The fourth term is estimated similarly as in (3.21). We have
t t
‘ 00 exp(— / div ,v) / (Vodiv,vV2X) (3.24)
0 0 L2

< lleoll L

t
exp(— / div ,v)
0

t
IR PN P
L JO0

t t
< C 100l g2 exp( / 1div 2V o) / (¥ s 92X .)

The last term on the right hand side of (3.19) is the only one involving third derivatives of the velocity field v. We
proceed as follows

00 exp(— /0 div ,v) /O (V2div,v(V.X)?) (3.25)

2

t
exp(— / div ,v)
0

t
< Jlooll o / (I93v] o 1IV-X2-0)
LOO

t t
. 2
< C g0 72 exp( / div v o) / (¥l 1V X 20)
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As we mentioned above, handling the time variable is the same as in the estimates for ¢ and V,p. Since we have the
L?(H?) bound for v and under the time integrals there is always only first power of the H norm of v we always gain
the factor v/T and finally end up with

V20l 2010200 < Cllooll a2 @(VT V|| L2 0.7, 55 (02, )))- (3.26)

Combining (3.13), (3.18) and (3.26) we obtain (3.3).
With the estimates of g in L°°(H?) at hand we can use the equation (3.1) to obtain estimates for the time derivative
of p. We have
0p0 = —Vv - Vo — odiv ,v. (3.27)

Estimating the right hand side as
100l 120,712 (0,)) < 1V Vaol 20,7, 22(00)) T 10diva Vil 20 71200 (3.28)
<CVT <||VHL°°(O,T,H2(Qt)) IVaoll Lo or,L2 () + 0l 01, m2(020)) HdiV“V”L""(O’T)LQ(Qt)))
< CVT 0ol 52(00) ¢ (VT IVl 20,7153 00) V]| Lo 0.0, 12 (620 -

Next we apply the spatial gradient to (3.27) to obtain

OtVy0=—-—v-ViVy0—V,0Vv—V,odiv v — oV,div v (3.29)
and we estimate the L?(L?) norm of the right hand side. Starting first with the norms in the z variable we have
[vV2oll 20, < IVl V2l 2 < ClIvIge: lloll e (3.30)
HvacQVwVHLQ(Qt) <IVaoll s IVavllpe < Cllvlge lloll g (3.31)
1092V 1oy < Nl 1929]] 0 < C VI ol (3:32)
so altogether we conclude
Hatva”Lz(O,T,L?(Qt)) < Cﬁ||v||L°C(H2) ||Q||Loo(H2) (3.33)
< CVT | goll a2 (20) VTNV || 20,715 (20))) IVl oo 0,7, 12(20)) -
O
4 Linear momentum equation
In this section we treat the linear momentum equation
00yu — pAzu — (% +n)Vediv,u=F inQrp, (4.1)

(w—V)-nlp, =0,

(IS0 + [ = V] I, = 0.

tan

The next proposition gives existence of solutions to the linear momentum equation on moving domain and we
deliberately skip emphasizing the domains of all function spaces in this proposition in order to shorten the notation.
However we recall here that by LP(B) we mean in this lemma the function space LP(0,T, B(2;)). We recall that the
space X(T') was defined in (2.2).
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Proposition 4.1 Let T' > 0 be sufficiently small. Let V,p(o) satisfy the assuptions of Theorem 1.1. Assume o €
L>®(H?), 0y € L>(H"), F € L*>(H"), F, € L*(L?), F(0) € H' (), ug € H3(Qo) and let V € C*((0,T) x R®). Then
there exist a unique solution u to the system (4.1) such that u € X(7) and the following estimate holds

[ullx(r) < d(llollLoe a2y, loel| L2 (1)) (4.2)
X (IRl L2y + IRl L2 z2y + IF O + (ol s + [ Viipe iy + [ Villzzayy + 1 Veellez2y)) »
where ¢ is a positive increasing function of its arguments.

This time it is more convenient to convert the problem to fixed spatial domain. For this purpose we introduce the
Lagrangian coordinates determined by V. As this is an important and independent step we present it in a separate
subsection.

4.1 Lagrangian coordinates and linearization

We start with rewriting the problem (4.1) defined on Q7 to a problem defined on a fixed spatial domain (0,7 x Qg
using time dependent change of coordinates. To this end we use the formula (1.5). We set

ot,y) = o(t, X(t,y)), u(ty):=u(t,X(y)) (4.3)

and we denote the components of the vector X as X = (X7, X2, X3). To proceed we also need the inverse mapping to
X(t,y) which we denote by Y (¢, x), thus it holds for all ¢ > 0 and all z € Q;

X(t,Y(t2) =z (4.4)

and again we denote the components of Y as Y = (¥1,Y5,Y3).
Differentiating (4.4) with respect to time we obtain

0X 90X J0Y

ke e 4.

at "oy ot (45)
and thus P

—=-V-V,Y. 4.

5 v (4.6)
Using (4.6) we thus transform the time derivative of u; as follows

8’ui 87?% - oY o aﬂi ~

The spatial derivatives transform just by multiplying by the Jacobian of the change of coordinates. Therefore the i-th
component of the equation (4.1); rewritten in terms of g, t defined on fixed domain € reads

ou O, Y 9% dY, 9,

e Laf R an 48
g ay; il oz, 0z, (48)
Dii; L 0%, oY, OYe . 0u, 9%Ye -
uZAy (M p 9N 9%k (KT - F
“ayk k (3 +) Oyrdy; Oxy, Ox; (3 +1) Ayx, 0x;01, ’
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where we have used Einstein summation convention. This can be rewritten as a usual linearized momentum equation
with a transport term on the left hand side and a right hand side containing terms which are either small for small
times or of lower order:

ou - o } . o .
00— uthy (1) — (& )V ,div, i = F 4 gV V04 R(p,0) = F(z, ) (49)
where
. _oa. (oY 9% [0V, 0Y;,
%oy, F\ oz 4.1
R(Q7 a) Qayj Vi (6% 0j ) Maykayl (8$p O — 01p0kp (4.10)
E 82’&1) 6Y _ 6 I aup %
+(3+n)8yk8yl <8xpv Y — diper +ua A Yk+( +n )aykvxa%,

where e; is the j-th unit vector.
The boundary conditions are transformed in a nontrivial way as well. In particular, the condition (4.1)s transforms
as

(@ =V)(ty) -n(y) = (a-V)Ety) (n(y) - nXEy)) + (V(EXEy) - VLy) n(X(Ey) = d@ V)t y) (4.11)

for y € 9Qp. Note however, that for small times, the expression d(11, V) will be small due to the fact that the mapping
X is close to identity and its regularity is given by the regularity of V.

Similarly the boundary condition (4.1)3 will also be transformed, however since it contains differentiation, the
resulting expression is more complicated. We denote by 71, 72 tangent vectors to 9§2. A lengthy yet straightforward
computation yields for y € 9 the following:

u(Vya+ Vya)(ty)ny) -7 (y) + @ = V)(ty) - (y) = (4.12)
=1 (Vyu(t,y) I - V. Y) + (I- VY)Vya(t,y)") n(X(ty) - 7(X(,y))
+u(Vya+ Vya)(t y)[(n(y) —nX(t,y))) - 7 (X(ty) +n(ty) - (7" (y) — 77X (L, y))]
+r(@ = V)(ty) - (T5(y) = (X8, 9)) + £(V(E, X (L, y)) = V() - 7(X(t,y)) = B(@, V)(t,y).
Again we emphasize that despite the rather complicated structure of B(q, V) it is easy to observe, that this expression
will be small for small times as a consequence of a fact that X is close to identity for small times.
The right hand side of (4.9) and boundary conditions (4.11), (4.12) contains the solution and variable coefficients
dependent of the change of variables. However, all these quantities will remain small for small times in appropriate

norms. Therefore what is important is the structure of the left hand side and in particular we will be able to solve
the system (4.9), (4.11), (4.12) once we have solved the following linear problem on a fixed domain (0,7 x €.

ou o .
05 ~ pAy(u) — (5 +n)Vydivyzu =F, (4.13)

(u—V) n|r, =d,
([S<vyu)n]tan Tk [ll - V]tan) |F0 = B.

For simplicity we denote the unknown of this system as u instead of u. This system is solved in the next subsection.
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4.2 Solution of the linear momentum equation on a fixed domain

In this subsection we work with a system of differential equations stated on a domain (0,7) x Qp. We again skip
emphasizing the domains of all function spaces in this subsection in order to shorten the notation and we note here
that by LP(B) we mean here the function space LP(0,T, B(€y)). We also skip the index y in differential operators.

Lemma 4.1 Assume that B and d admits an extension to Qg given by

u’ - nlp, =d,
([S(Vu®)n] on T [u”] Ir, =B (4.14)

tan)
such that u® € Y(t). Let p,'V satisfy the assumptions of Theorem 1.1. Assume further that o € L>=°(H?), o; € L*(H"),
F ¢ L2(HY), F; € L*(L?), ug € H3(Q) and V € C>((0,T) x R*). Then there exists a unique solution u to the
problem (4.13) such that

Iallyr) < d(llollmzy, loclzeay) (IRl 2 ynners) + IFllzzzzy + 1y (4.15)
+ [[wollgs + [ Vilzee wroey + I Villzo @y + Vil L2z2)))

where ¢ denotes a positive increasing function of its arguments.

The result is based on Lemmas 2.2-2.4 from [34] where the same linear system is considered, however with d = B =
V = 0. Therefore we present here some details to show how we treat the inhomogeneous boundary data. For simplicity
of notation we set for the rest of this subsection 2 := .

We start with removing the inhomogeneity from the boundary data. For this purpose we take the extension u
defined by (4.14). Taking & = u — u® we obtain

b

00y — pA() — (% + n)Vdiva = F — gd;u’, (4.16)

(@—V)-n|r =0,

([S(Vﬁ)n]tan + K [ﬁ - V}tan) |F = 07
where
F=F+uAd)+ (% + ) Vdivut. (4.17)

We have to solve the above system, for simplicity we denote 1 again by u. We can also assume the friction coefficient
K = 0, positive friction yields only additional lower order terms which are easy to treat.

First we can write the weak formulation of (4.16) and using u—V as a test function (we have to test by a function
with vanishing normal component at the boundary) we obtain the energy estimate

[l oo 2y + IVl 222y < ClIE, V,ug]| 2 22)]. (4.18)

Next we multiply (4.16) by 0;(u—V)+cAu, where ¢ is sufficiently small and Au = —pAu— (5 +n)Vdivu. Integrating
over ) we get

/g|ut\2dx+/(u—V)t~Audx+5/ |Aul?dz = —5/ Qut-Audx—i—/ Qut-thx—l—/(F—Q@tub)-(ut—i—eAu)da: (4.19)
Q Q Q Q Q Q
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Integrating by parts the second term on the left hand side we obtain
/ (u—V); - Audz = — / (u—V);-divS(Vu)dz = / S(Vu) : V(u — Vy)do — / (u—V);-S(Vu)ndS =
Q Q Q a0

= / S(Vu) : Vuydz — / S(Vu) : VV,dz,
) )

where in the last step we decomposed S into tangential and normal part and used the boundary conditions. Notice
that we have

d
/ S(Vu) : Vayda > C(u,n) |Vl .
Q

Moreover, the elliptic theory yields ||[V2u|| : < C||Aul|z 2. Now we apply the Holder and Young inequalities to most
of the terms on the right hand side of (4.19) and use the fact that g is bounded from below by a positive constant.
The first term on the right hand side can be absorbed by the left hand side for sufficiently small € and so we get

d _
laellZ + = [ VullZ: + e V2ullZe < CUVilE + IFIZ: + llowllZ) + ClIVuls,

The energy estimate (4.18) gives a bound on the last term of the right hand side. Therefore applying the Gronwall
inequality we obtain

[aellzzze) + [Vl oo 2y + V20l 222y < (ol @x 0,0 [ Vell 2y + IFl 222y + a0’ [lyer)]- (4.20)
Next we take the time derivative of (4.16), multiply by (u — V); and integrate. We get

1d 1
—— [ olwfda +/ Aug - (u—V)dz = — */ ot|ue|*dz +/ ouy - Vidw +/ otu; - Vida
2dt Jq Q 2 Ja Q Q
+ / (F; — gsu?) - (u—V),dz — / oul, - (u—V)dz. (4.21)
Q Q

As before we integrate by parts the second term on the left hand side. Using the fact that (u — V); -n = 0 and the
identity [S(Vui)n]tan = 0:[S(Vu)n]tan = 0 we obtain

/ Aug - (u—V)dz = / S(Vwy) : Vupdzr — / S(Vuy) : VVidz.
Q Q Q

The condition (u — V); - n = 0 implies the Poincaré inequality for (u — V); which yields
[aell2 < C([[Vuel|pz + [[Vellmr)-

Now we examine the right hand side of (4.21). For the first term we have by Poincaré inequality

’/ gt|ut|2dx
Q

where ¢ is a sufficiently small number coming from application of Young inequality (we keep this notation in what
follows). The remaining terms are estimated directly and we get from (4.21)

< lleellze laellz2 (IVael e + [Vellmn) < 6(IVuellze + 1 Vellzn) + C @) lleell7s /Q olu|*d,

d
& [ etPde + [Vl < {1Vl + 0 [ oluldo -+ [Vilzo(lerls + o)
Q Q

+C(02)(|ellz)(IFel|72 + llorug Iz + I Vell3) +52IIUttHi2} —/QQUZ S(u—V)dr. (4.22)
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The first term on the right hand side can be absorbed by the left hand side and the second term will be treated with
the Gronwall inequality. For the L? norm of u; we use (4.20). Integrating by parts the last term we get

T T
—/ / oud, - (u— V) dadt = / / ou? - (u — V)ydadt.
0o Ja o Jo

Therefore integrating (4.22) in time we obtain

luellLo<0,7;02) + IVl L2(0,7522) <A([loll Lo (m2), ll0el L2y [ Villz )y + @1 (IVell) Loz 1 Fellz(22)]
+ €(||utt||L2(L2) + ||Vtt||L2(L2)) + C(E)HUQQ”L2(L2) =: O. (423)

Next, computing Au from (4.16) we get a bound on || Aul| 1o, 7;r2) Which due to (4.23) and ellipticity of A yields
V20| oo 22y < | Loo 22y + 00|l o (22) + el Loe (0.7 x2) P (4.24)
In order to show the bound on ||ul|z2(g3) we take the spatial gradient of (4.16) which yields
VAu = VF — oV (u; +u?) — (u; + u?)Vo. (4.25)
We compute the L?(0,T; L?) norm of the right hand side. From the Holder inequality we get
1w +ug) Vol 22y + 0V (e +ug)l| 22y < bl Lo (ar2y)llwe + v L2 .-
Therefore we obtain a bound on ||V3ul| r2(r2) which, together with previously obtained estimates on lower derivatives
gives a bound on [|u| ;2 (gs) assuming we can estimate |[ug||z2(r2)-
Hence, in order to close the estimates we need to show a bound for [|uy||z>(z2) which appears in the term @ in

(4.23). Taking the time derivative of (4.16) we obtain the elliptic problem for u,:

— divS(Vw,) = F; — oyuy — ouyy — opu} — oul,,
[S(Vuy)
(u _ V)t . n|89 =0, (4.26)

n]tan |852 = 07

recall that we have set kK = 0. For this problem the classical elliptic theory yields
el e < C (IFellz2 + [loe(ue + up) ||z + [[owse] 2 + [l oug, | 22) - (4.27)
Integrating (4.27) with respect to time we get
el 22y < C (IRl L2 (z2) + gl 22y + L2 z) + el oz (luell Loy + gl amy)) - (4.28)

Now we multiply (4.26) by (u — V) and integrate over €2:
/ g|utt|2dx —/ dle(Vut) . (u — V)ttd.’II = / (Ft — Qu?t) . (u— V)ttdl’ +/ O+ (ut +ug) . (V — u)tt =+ OOyt - Vttdl‘ (429)
Q Q Q Q
Again, from the boundary condition (4.26)2 we have

_ / divS(Vay) - (u— V)yda = / S(V) : V(u - Vpde (4.30)
Q Q
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and for the second term on the right hand side of (4.29) we have
/Q oe(u+u’) - (V= wudr < 6([uel|Ze + [ VeellZ2) + C(8)(Ileell7allueliZ)-
Treating similarly the other terms on the right hand side of (4.29) we obtain

d
ollusl|z2 + allvllt\liz < OlluellFz + CO) (IFelIZ2 + lugeliFe + 1 Vel 2o + ol (lwelF + uglF)) . (4.31)
Integrating this inequality in time we get

el 2222y + el zoe )y < dlleelZzamy) (Fellzz2y + 103 22y + Vil 22y + [ (0) | a1) - (4.32)

Remark 4.1 For k > 0 we obtain in (4.30) additional boundary term

/ (1= V)it - K[(1 = V)i]randS
o0

which contains ug. However we can integrate this term in time

T
// imu—vﬁdet:/ m\(u—V)t(T)|2dS—/ k(1 — V), (0)2dS
0 Joq dt 09 29

and the first term has good sign and second is given.

Finally we comment the term u;(0) appearing on the right hand side of (4.32). To this end we differentiate (4.16)
with respect to space and multiply by d,,v; and formally take the resulting equation in ¢ = 0 (rigorously we show it
for a smooth approximation and pass to the limit with the estimate) obtaining

[ (0)[[ 1 < C (I[FO)|[er2 + [[(0)]|rs5) - (4.33)
Combining (4.28),(4.32) and (4.33) we get
el z2(re)+luell poe )+l L2y < ¢(”Qt||%2(H1)) (IF 222y + IFO) 1 + [lugllz2 22y + [ Viellz2 22y + [e(0) | a1)

which together with previous estimates and definition of F gives (4.15). Now, since (4.16) is a linear parabolic problem,
the existence of solution follow from the estimates we have shown and classical theory of parabolic equations, see for
example [31].

a

4.3 Proof of Proposition 4.1

Let us denote
A(t) = [[allye (4.34)

We start with the estimate for the extension of the boundary data.
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Lemma 4.2 Let V satisfy the assumptions of Theorem 1.1. Then there exists an extension u’(u, V) defined by (4.14)
of the boundary data d(u, V), B(u, V) given by (4.11) and (4.12) satisfying the estimate

[0®lyery < BT+ [|[(a = V)llye), (4.35)
where E(t) is continuous and E(0) = 0.

The proof consist in defining the extension in a special way to ensure that, roughly speaking, the regularity of u’ is
the same as the regularity of u. We derive an explicit formula for u® and using the assumed regularity of V and u
together with smallness of time we show the estimate (4.35). As the proof it is quite technical, we show it in the
Appendix.

Next, we need the following estimate for the right hand side of the momentum equation in Lagrangian coordinates:

Lemma 4.3 For R(p,u) defined by (4.10) we have for any e > 0
1oV - Vau + R(e,w)| z2(ar) + 10:[0V - Vou + Rle, w)ll|z2(z2) < Cle + VEC(e) + E() A(t)], (4.36)
where E(t) is small for small times.

Proof: The first two terms on the RHS of (4.36) contain derivatives w.r.t. = and now we need estimates in Lagrangian
coordinates y. However we can easily observe that

oV -Vzu= 9V - -Vyu+ Ri(g,u)

where
[ R1(0, w)llp2mny + [|0:R1(0, )| 2222y < E(t)A(2)

with E(t) small for small times, therefore we can work with these terms directly. Let us treat the term oV - Vu. From
the interpolation inequality we have for any € > 0

V2l p2czay < ellullz2(ms) + C(a)tHu”im(HZ)-

Therefore using again (3.3) we get

t t
/0 /Q oIV V2l < / Lol V12 2ul2 <

Clellullfz(as) + tC@E) [l 1))

Next, recalling the definition (4.10) of R(-,-) we see that it contains terms with derivatives of u of order up to 2
multiplied by quantities which are small for small times, therefore

IR(0, 0)|[z2(mry < E(t)|[ullz2(m3),
where E(t) is small for small times. Let us estimate the time derivative. We have
t
/O PIVIIVue® < ol ) IV 7~ 2yt Zoe 1) < CHA®)]?
and treating similarly the other terms coming from the chain rule we obtain

10:[0V - Vul|[12(22) < CleA(t) + C(e)tA(t)].
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Finally, the structure of R implies
[0:R (0, w)| 22y < E@)[[[ullL2(ms) + el 22 a2)] < E()A(2)

with E(t) as above. This estimate completes the proof of (4.36).
]

Now for clarity let us denote again functions defined in Lagrangian coordinates by @, g. Combining (4.35) and
(4.36) we see that the right hand side of the system (4.9),(4.11),(4.12) satisfies

(3, 0) ]| L2z + Fe(3, 0| L2 (22) + 10 (@, V) lyry < IRl r2cm) + 1Fellz2 22
+ E(T) (A®) + IVIiz2asy + 1 Vil ) + 1 Viell2z2y) (4.37)

where u®(1@, V) is the extension of the boundary data d(@,V),B(@1, V) given by Lemma 4.2 and E(t) is small for
small times. Therefore from (4.15) we obtain the estimate (4.2). Moreover, the right hand side of (4.9), (4.11), (4.12)
is linear w.r.t. u, therefore the existence of a unique solution follows from the Banach fixed point theorem. Therefore,
as Lagrangian transformation is a diffeomorphism for small times, u(t,z) = u(¢, Y (y, z)) is a solution of (4.1).

5 Proof of Theorem 1.1

5.1 Boundedness of the sequence of approximations

In this section we use the estimates for the linear problems to show that the sequence (g, u,) defined by the iterative
scheme described in Section 2.3 is bounded in the space where we are looking for the solution. Let us denote

An(t) = [[unllx(r)- (5.1)

Since our estimate for the linear momentum equation holds on fixed domain, we rewrite (2.10) in Lagrangian coordi-
nates

Qn+18tun+l - ,LLAyun+1 - (% + n)vydivyun+l = Rna
(Wpg1 = V) nfp =d(uy, V),
([S(Vzup41)n] 7 4 ka1 — V] 'Tk) Ir = B(u,, V), (5.2)

where
R, = 0n11(V - Vyupi1 — uy - Voug) — Vep(ont1) + R(0nt1, Ung1) (5.3)

and R(:,) is defined in (4.10). The following lemma gives the estimate L?(H') norm of the right hand side of (5.2);
and L?(L?) norm of its time derivative.

Lemma 5.1 For R(g,+1,unt1) and R, defined by (4.9) and (5.3) respectively we have for any e > 0
IRallzza) + [0Rallz(22) < d(VEALD)[(e + VIC(€) + E(1) An(t) + E(t) Anta (1)), (5.4)

where E(t) is small for small times.
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Proof: Arguing as in the proof of (4.36) we can replace the derivatives w.r.t. x in the definition of R,, with derivatives

w.r.t. y. Since the pressure p is a C? function of the density we have

V2p(o) = p"(0)|Vol* +1'(0)V?e ~ o(IVol* + Vo),

and therefore

VP2 1) < llellioe paytllel o 2y (L + el ) < S(VEIUl L2yt Toe (12,

where in the last passage we applied (3.3). Next, similarly to the proof of (4.36) we get

lont1(w, - Vu, = V- V)l g2y < d(Velul L2 as)) llull 2 sy + tC () [ul| L (12)]-

and
IR(0n+1;Wns1)ll2mry < E) | 0nsillz2 a3y

where F(t) is small for small times. Let us estimate the time derivative. For the pressure we have
9;Vp(e) ~ o(Vor + e:Vo),
therefore from (3.3) and (3.4) we obtain
18:Vp(0)ll12(12) < S(VEAL(E))[eAn(t) + O(e)tAn(t)).
The remaining terms are again estimated like in the proof of (4.36) which leads to
1e[on (wn - Vi, = V- Vgl 2(22) < (VEAL(1)[eAR(E) + C(e)tAn(t))-

and

10:R(0n+1, Uns1) 21y < E@)[uns1llrzcmz) + [[nsrellz2mz)] < E() Ania(t)

with E(t) as above. This estimate completes the proof of (5.4).

With above lemmas we are ready to show the key estimate for the sequence of approximations

Proposition 5.1 Let A, (t) be defined in (5.1). Then there exists M > 0 sufficiently large and T* > 0 such that

A,(t) <M  for t<T".
Proof: The appropriate choice of the extension of the boundary data given by Lemma 4.2 ensures
lufs (wn, V) llyery < B(T)An(t).
Therefore the estimate (4.2) applied to (5.2) yields

Ani1(t) < S(VEAL (D)) [(e +tC(e) + E(1) An(t) + o]l 2 + lleoll 2 + IV | y(r)

(5.10)

for some increasing positive function ¢(-). We conclude that there exists M = M (ug, V) and T* > 0 such that (5.10)

holds.
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5.2 Convergence of the sequence of approximations.

Let us denote
Wp+1 = Up+41 — Up, On+1 = On+1 — On-
Subtracting (2.10) for n + 1 and n we get

Qnatwn+1 - MAWn—i-l - (% + U)lev Wnt1 =

= 0p110iUni1 + 0pa1(Un—1 - VU,_1) + 0ny1(u, - VW, +w,, - Vu,_1) (5.11)
+9'(0n)Von + Von-10n /01 p"(0n)(s0n + (1 = s)on-1)ds
supplied with boundary conditions
W1 -1|p, =0, [S(VWy11)0]tan + K[Wnt1]tan|r, = 0. (5.12)
Subtracting (2.9) we obtain
Oop+1 +uy - Vopig + oprrdivu, = —gpdive, — oy - Von, 0,41(0,:) =0. (5.13)

In order to apply our estimates for the linear momentum equation we rewrite (5.11) on a fixed domain using the
transformation (1.5). We obtain

Qnatwvz+1 - MAyWn—i-l - (g + U)VdiV yWn41 = onV - vyVV’rL-i-l + R(an W7z+1)

+ Un+1atun+1 + U7L+1(un—1 : vzun—l) + Q7L+1(un “VeWy, + Wy, - vxun—l) (514)

1
+p/(gn)vran + inflo—n/ p//(Qn)(SQn + (]- - S)anl)ds = Rn
0
with boundary conditions
(W1 0)(y)|r = Wny1 - (n(y) —n(X(t,y))) = do(Wn1), (5.15)
= 1 (VyWni1 ()1 = VoY) + (I = VIY)Vy Wi (t,9)7) n(X(t,y)) - 7(X(t, y))
+ 1(Vy Wit + Vi wai1) (6 9)[(n(y) — n(X(t, ) - 78 (X(E,y)) +n(ty) - (7"(y) — 78X (t,9)))]
+ewn g1 (ty) - (T (y) = 78X (t )+ = Bo(Wni1)(ty).
The left hand side of the system (5.14) has exactly the structure of (4.13). As we will not be able to close the estimate
for w,, in the regularity we have for the sequence u,, (see Remark 5.1 below) we show the convergence in a weaker
space. Let us denote
Bn(t) = HWnHLoo(Hl) + HWn||L2(H2) + HWnt||L2(L2)- (5.16)
Repeating the proof of (4.2) we obtain in particular the following (in fact classical) parabolic estimate
Ba(t) < ClIRullr2z2) + Bo(Wat1)ll 2 (ar1/200) + Ildo(Wat1) | 22 (ar5/2 00 - (5.17)
The structure of the boundary data clearly implies
b(Wrt1) |22 00)) + 1d(Wat 1) L2 (32 00)) < E@Whtallz(az2).- (5.18)

The following lemma gives the estimate of the right hand side of (5.14).
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Lemma 5.2 Let R, be defined in (5.14). Then
IRnllz2(22) < Clllonsallepz)y + lonlles 2y + (€ + 1C(e) + E®)) (Vo oe(z2) + Ba(1))), (5.19)
where E(t) is small for small times.
Proof: Arguing as in the proofs of Lemma 5.1 and Proposition 5.1 we get
[R(0n, Wni)llLzary < E@)1WnillL2(ms)- (5.20)

For the remaining terms, we can follow the proof of Lemma 5.1. As we have explained there, we can replace the
derivatives w.r.t x with derivatives w.r.t y. We have

t t

/ /Q|an+1|2|un_1|2\m_1|2s||an+1|\%m@2)||un_1\|%m(H2) / IV |2 < (5.21)
0 0
Cllom 1 P 1) [t |2 g5+ 1CE) 1 |2 1))

Next, consider the term

t
lenV - Vywaial[Z2(2) < ||Qn||2L°°(H2)HV”2L°°(H2)/ IVWai1lZ2 < ClellWnrillzagrz) +tCE) [ Wat |l 2] (5.22)
0

Similarly
[ont1(tn - VWy + Wy - Vap_1)||r2(22) < Clel|wlp2(arz) + tC(€) Wil poe (£2)] (5.23)

and
||Un+18tun+1 ||L2(L2) < ||Un+1 ||L°°(L2) ||atun+1 ||L2(H2)7 (524)

Finally, under our regularity assumptions on the pressure we have

t
1P (0n)Vonllfaz2) < CIWUnH%aa@Z)/() 12" ()72 < Cllonllie mlellenllZa ey +tC(E)llolf~ (12)] (5.25)

and L
IVen-104 / P’ (en)(s0n + (1 = 8)on-1)ds| 2(12) < Cllonll o (22) [ Vou—1lz. (5.26)
0
Combining all above estimates and Proposition 5.1 we get (5.19).
O
In order to show the convergence we need to estimate the norms of o, on the right hand side of (5.19). For this

purpose we investigate the equation (5.13). Again, as in the proof of Proposition 3.1, we stay in a moving domain and
use the transformation

X(t,z)=z —1—/0 u, (X (s, 2))ds. (5.27)

Denoting
On+1(t, 2) = ons1(t, X (¢, 2)),

equation (5.13) rewrites as a nonhomogeneous ODE

Btﬁnﬂ + 5'n+1diV LUy = —(Qndiv W, + W, - Vgn), 5n+1(07 ) =0. (528)
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The solution for this equation is given by the following explicit formula
t
Grin(t, 2) = exp|— / div (s, X (x, 2))ds] (5.29)
0

/Ot {_ (Qndivmwn 4wy - Vaon)(r X(r, z))exp[— /0 div pun (1, X (7, z))dT]} dr.

Remark 5.1 Notice that the above formula contains Vo, and this is the reason why we have to work with lower
reqularity. Namely, if we would like to have the reqularity X (T) then we would have to estimate L?(L?) of the derivatives
of the right hand side of (5.14), therefore V0, which would require information about V2 0,,. Such situation when lack
of sufficient information on the denstity requires to work in lower reqularity is typical for the compressible Navier-Stokes
system, see for example [34],[27].

The required estimate is provided in the following
Lemma 5.3 Let 0,11 solve (5.13). Then
lonsillzms) < (e H1CE)Ba(t).  [Voupllims) < CBalt). (5.30)

Proof: The proof relies on the formula (5.29) and follows the proof of Proposition 3.1, therefore here we show only
the main ideas. The solution formula (5.29) clearly implies

t
1Tt 2)][ L2 < C/ [(endivwy) (s, )2 + [|(Wn - Von)(s, )l L2ds < (5.31)
0

t t
Clloallom [ IWallmds <C [ el Vwallzs + (@) wallis < CleBAlt) +1C() B 1),
0 0

and the regularity of the change of coordinates together with smallness of time yields the same estimate for o, (¢, )
which gives the first statement of (5.30). Let us denote

e(t,z) = exp[—/O div zuy, (s, X (s, 2))ds]. (5.32)

Differentiating (5.29) w.r.t z we get

Vaons1 = Vazd V. [e(t, 2)] /O t {—(gndivmwn W - Vaon)(r X (1, z))e(r, z)} dr

Iy

+e(t,z) -V {/Ot {—(gndivmwn + Wy, - Vaon)(r, X (r, z))e(r, z)} dr]

I

Applying the estimate (3.7) to the change of coordinates (5.27) we obtain

t t ¢
IVez Ii||2 < C|[= [ diveu,(s, X(s,2))ds]||%]| / Vdivuy, ||| / {—ondivw, + w,, - Vo, }ds|| 1,
0 0 0
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where all the derivatives are already w.r.t. x. Therefore

¢ ¢
Vez ||z < C </ ||Vdivun||L4ds> / {llondivwy,||ze + Wy - Von ||z tds <
0 0
Clellunlzz(asy + CE)unt1l 2o molllonll Lo @x0,m) [Wnll L2(ar2) < Cle +tC(e)]Bn(t). (5.33)
With I, we have
t r
I, = e(t, z)/ {(—/ V.div qu,)e(r, 2)(—opdivw,, + w,, - Vgn)} dr
0 0

I,

t
+e(t,2) / {e(r, z)(=Vopdivw, — 0,Vdivw,, + Vw,, - Vo, + w, - VQ,Qn)} dr.
0

Iz2

The first part can be estimated exactly as I7:

However, in I3 we cannot get smallness in time because of the presence of second derivatives of w,,, namely

t
/ 0nVdivwy|r2 < (|0l L= @x 0,70 | V2 WallL1 (£2) < OBy (t),
0

and therefore
IVaz Ina|lr2 < CB,(t). (5.35)

Combining (5.33), (5.34) and (5.35) we obtain the second statement of (5.30).
O
We are now in a position to prove the following Lemma which gives the Cauchy condition for the sequence B, (t),
and therefore completes the proof of convergence of the sequence of approximations.

Lemma 5.4 There exists T > 0 and 0 < K <1 such that
B,(t) < KBp_1(t) for t<T". (5.36)
Proof: Combinining (5.17), (5.19) and (5.30) we obtain
Bn(t) < (e +t(e) + E(t))(Bn(t) + Bna(t))

which implies (5.36).
|
Now we conclude the proof of Theorem 1.1 in a standard way. The sequence u,, converges strongly in the space
with topology given by the norm (5.16). On the other hand, the bound (5.10) implies weak convergence up to a
subsequence in X' (7). The estimates for the linear transport equations imply analogous convergences for the sequence
of densities in appropriate spaces. Therefore the limit (u, o) satisfies the regularity given in Theorem 1.1.
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6 Weak-strong uniqueness

6.1 Energy inequality

In the remainder of the paper we assume that x,n = 0, however all the results hold (with appropriate modifications
of formulae) also with x,n > 0. Our first result is a crucial observation allowing for proving the main theorem about
weak-strong uniqueness.

Proposition 6.1 Let the assumptions of Theorem 2.1 be satisfied. Then the problem (1.1)-(1.7), (2.4) admits a
weak solution on any time interval (0,T) in the sense specified through Definition 2.1, satisfying moreover the energy
inequality in the following form

1 1 /7 2
/ (Q|u|2 + H(Q)) (r,) dz+ = / / I ’VIu + Viu — Zdiv,ul
Q 2Jo Ja, 3

-

< (55 (ool + @) ) ao+ [ (ow V) o= [ (o V(0. ds

2
dxdt (6.1)

2
/ / ( < Ju+ Via— 3divg,:u]I> :V,V—-—pu-0,V—-—pu®u:V,V — p(g)diva> dxdt.
Qy

Proof: We follow the same series of approximations and penalizations as it is introduced in [11, Section 3] in the
proof of Theorem 2.1. The starting point is thus the modified energy inequality written on the fixed domain B which
is a ball large enough such that € C B for all ¢ € [0,7T] and V = 0 on 9B, see formula (3.10) in [11]

1 é 1 (7
[ (emk+s10+ 55 ) as g [

1 [ 1 1)
+= / (u—V)-n|* dS, dt < / (<gu>o,5|2 + H(00,5) + an) da
€Jo 't B 290,6 6 -1

2

2
V,u+ Viu— gdiku]l dadt (6.2)

+ [ ((ew- V() = (gwos - V(0,) do

T 2 )
+/ / <uw <qu +Via— 3divxu]1> VeV —pu-9,V-—puu:V,V —p(p)div,V — Tgﬁdlvx > dadt.
o /B _
Passing first with € to zero, it is not difficult to observe that using the a priori estimates available, all the terms
on the right hand side of (6.2) converge to their counterparts. On the left hand side the last term is positive and thus
can be omitted. Finally, using the convexity of S(V,u) : V,u we have

T
/ /Sw(vmu): mudxdt<hm1nf/ /S Viue) : Vyue dedt. (6.3)
o JB

Next, passing with w to zero, we first observe that all the terms which include the density can be rewritten as the
integrals over €, instead of integrals over B using the fundamental Lemma 4.1 in [11]. The viscosity term on the right
hand side can be treated easily, in particular the integral over B \ €; vanish due to the fact that p, — 0 on this set.
On the left hand side we split the integral of the term with stress tensor into two parts, the integral over B\ € can be
omitted since it is positive and on 2; we use the fact that u,, = p is constant and thus we can use again the convexity
of S(V,u) : V,u to obtain similar inequality as (6.3).
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Finally, we pass with § to zero. Here we use the - nowadays already standard - results of [7] to pass to the limit on
the right hand side and to adjust the initial conditions, while on the left hand side we use the weak lower semicontinuity

of the energy at time 7.
O

6.2 Relative energy inequality

Having now already the energy inequality, we can deduce the relative energy inequality in the spirit of [9]. Before
stating the theorem, we introduce some notation. For a weak solution (p,u) and a pair of test functions (r, U) defined

on Q7 we define the relative energy £ ([g, ul|[r, U]) as

(el 1)) = [ (Gelu=UP 4 H@) - (e -) - H0)) () (6.4

We prove the following

Proposition 6.2 Let (o,u) be a weak solution to the compressible Navier-Stokes system (1.1)-(1.7), (2.4) constructed
in Proposition 6.1. Then (p,u) satisfies the following relative energy inequality

& (lo]|[r 0]) (7) + /0 ' /Q (6(Vaw) = S(V,U) : (Vou = V,U) dadt (6.5)

<& (foo w(0.9.00,]) + [ Rz n 0) 0

Jor a.a. T € (0,T) and any pair of test functions (r,U) such that U € C*(Qr), U-n=V -n on Ty fort € [0,T],
r € CX(Qr), r > 0. The remainder term R is given by

R(o,u,r,U)(t) = / 0 U+u-V,U)- (U—-u)+S(V,U): (V,U—-V,u)dz (6.6)
Q

+ / div, U(p(r) — p(o)) + (r — 0)0:H'(r) + (rU — gu) - V. H'(r) dx
Q
Proof: The idea of the proof is the same as in the original paper [9]. We will combine the energy inequality (6.1)
provided by Proposition 6.1 together with weak formulations of the continuity and momentum equations with suitable

test functions. Since U is not a proper test function in the momentum equation due to its boundary condition, we
test the momentum equation with ¢ = U — 'V to obtain

[ on@-V) ) do= [ (oo (U= V)(0.) do (67)
Qr Qo
:/ / (ou-0:(U—-V)+pu®u]:V,(U-=V)+p(o)div, (U - V) = S(V,u) : V(U - V)) dzdt.
o Ja,
Subtracting (6.7) from the energy inequality (6.1) we obtain

/Q <;9 Jul* + H(o) — ou- U) () da — /Qo %Kw)o\z +H(go) — (eu)o - U(0,-) dz (6.8)

+/ / S(Vou) : (Vou — V,U) dadt < / / (—ou-9U — gfu® ] : Vo U — p(o)div,U) dadt.
0 Qy 0 Q
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Next, we use in the continuity equation as a test function the quantities § |U|2 and H'(r) respectively to obtain

1 1 T
/ Lo ) dx—/ Lo U2 (0, ) dm:/ / (0U-8,U + ou - V,U-U) dadt
Q- 2 Qo 2 0 Qi

and

/ oH'(r)(r,-) dx—/ ooH'(r dx—/ / (00:H'(r) + ou-V H'(r)) dadt.
Q Qo Qy

T

Adding (6.9) and subtracting (6.10) from (6.8) we obtain

/ (lmu ~UP + H(o) - H'(r)g) (r,) dz — /Q 2i0|<gu>o 00 U(0, ) + H(go) — H'(r(0, ))go do

-

/ S(Vzu) : (Vyu—V,U) dadt < / / (00:U 4 pu-V,U) - (U —u) — p(o)div,U) dadt
o o)

// (00:H'(r) + ou-V H'(r)) dadt.
Qq

Observing that the definition (1.4) implies
p(r) =rH'(r) = H(r),
we immediately achieve

Op(r) = ro H' (r).

Hence, the inequality (6.11) can be further rewritten as

/ (Qlu—Ul T H(g) - H'(r)g) (r,) dz — /Q L (o) — 00U(0, )2 + H(go) — H'(r(0, ))go da

020

/ / (V1) — S(V,U)) : (Vou — V,U) dadt + / O,p(r) dadt
0 Q4 0 Q4

S/ /Q (02U + ou-V,U) - (U —-u) +S(V,U) : (Vou—V,U)) dzdt
[ = 00 )~ pokiv,U = gu- 9.1 dad.
Now we claim that the following identity holds
/Q p(r)div,U +rU-V, H'(r) dz = /Q div,(Vp(r)) du.
¢ ¢
Indeed, using the boundary condition U -n =V - n we write

/ p(r)div,U dx = / p(r)div, (U — V) dz +/ p(r)div,V dzx
o [oH

Q

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

=— [ U-V,p(r)de+ div,(Vp(r)) de = —/ rU-V.H'(r) dz + div,(Vp(r)) dz,
[N

Qy Q Q
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where we used (6.12) as well. Adding (6.15) to (6.14) we obtain

/ (g|uU L H(o) - H'(r)g) (e do = [ Sl(own 0000, + H(e) — H (70, )eo o

020

/ / (Vzu) —S(V,U)) : (Veu—V,U) dzdt —|—/ (Orp(r) + div,(Vp(r))) dadt
o 0o Jo,

< / / (00,U + ou - V,U) - (U — 1) + S(V.U) : (Vou — V,U)) dadt
Q4

+ / ' / ((r — QOH'(r) + (p(r) — p(@))diveU + (rU — ou) - Vo H'(r)) dadt.
0 Q4

The proof of Proposition 6.2 is finished observing that standard transport theorem yields the identity

/ o, (Oep(r) + div,(Vp(r))) dedt = / /Qt ) dzdt
= [ sy e [ ) (0,) dr = / (PH'0) - H)(r,) d - / (PH'0) = H))O.)

-

(6.17)

(6.18)

O

Note that the class of admissible test functions (r, U) can be extended by density arguments in a similar manner

as in [9, Section 3.2.2].

6.3 Proof of Theorem 1.2

The proof follows the same ideas as in [9], however we present it here for completeness of presentation. Plugging in

(r,U) = (g,0) in the relative energy inequality (6.5) we obtain
¢ (lo.u][2.8) (7) + /O ' /Q (V) — S(V.) £ (Vi — V)
< /OT /Q o(Orii+u-Vzya) - (a—u)+S(Veu) : (Vyu— Vyu)dedt
o [ i ip(0) ~ p(e) + (2~ O (@) + (o) V.1 (@) .
Using the strong formulation of the momentum and continuity equations we find out that
Dyit 4+ 11 Vit — %S(Vxﬁ) _ VL H(5)

in Q7. Moreover, multiplying the strong formulation of the continuity equation by H"'(g) we obtain
0,H'(0) +u -V, H'(0) = —div,upH"(9) = —div,up'(0).

Finally, integrating by parts we have for a.a. ¢t € (0, 7)

/ S(Vzua) : (Ve — Vyu)de = 7/ div,S(V,1) - (@ — u)de,
Q4 Q
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where the boundary integral vanishes due to boundary condition (1.7) (recall we set k = 0) and the fact, that
(@—u)-n =0 on I Combining (6.19), (6.20), (6.21) and (6.22) we arrive to the following version of the relative
energy inequality

5([9, ul|[2, ﬁ])(f) + /O i /Q (S(Veu) = S(V,id)) : (Vou — Vi) dadt (6.23)
< /0 /Qt olu—u)-V,u-(u—u)—div,u(p(e) —p'(0)(e— 2) — p(0)) dzdt

T 1 3 . i ]
’ /0 /Q E(g = 0)div,S(Vyu) - (@ — u) dzdt.

Now we would like to show that all the terms on the right-hand side of (6.23) can be absorbed by the left hand side
and then use the Gronwall lemma. To do that we need the following estimate which can be easily checked
H(o)— H'(r)(o—7)— H(r) > c(r)(o—7)* for g <o<2r (6.24)
>c(r)(1+ ") otherwise
and also the following Korn-type inequality
||Z||W1»2(Q,,) <C ||S(V$Z)HL2(Qt) (6.25)

for all z € WhH2(€,).
Thus, it is not difficult to observe that

< CIVaill o) € ([0, ull[z @) (1), (6.26)

/Q ofu—1a)-Vya- (4 —u)—divea(p(e) — p'(8)(e - 6) — p(0)) dz
It remains to handle the last term on the right hand side of (6.23). We split the integral into three parts, considering

first o close to 9, then p small and finally p large. We have using the Hdlder inequality, the Young inequality and
(6.25)

(6.27)

/{ i(g — 0)div,S(Vza) - (0 —u) dx

5/2<0<25} ©

2
<C(5) Hi}diva(Vrﬁ)

| e oo sla-uli,
L3(y) J{o/2<0<20}

1 2
<C(6) Hédiva(Vxﬁ)

. - 2
& (le.ull[2, 6] ) (1) + 6C |S(Va (@) = Vi (W)]F2(q, -
L3(Q¢)
The last term can be absorbed into the left hand side for § small enough, whereas the first term can be treated using
the Gronwall lemma.
On the set where g is small we can proceed in the following way

/ i(g — 0)div,S(V,0) - (1 —u)dz| < / div,S(Vza) - (0 —u)de (6.28)
{0<o<g/2} @ {0<0<5/2}
< CO) IS(Vad) i, [ 1de+dla-ulie,
{0<0<5/2}

< C0) [div,S(V2®) 25 o) € ([0, ull[6, 8] ) (1) + 5C [S(V (@) — Ve (w))[[22(c, -
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Again, the last term is absorbed into the left hand side for § small enough and the first term is treated using the
Gronwall lemma.

Finally, consider the integral over the set where ¢ is large. Here we distinguish two cases. First for v < 2 we have
0—20

/ 02 =L iy, S(V,) - (i1 — u) dz
{o>25y 00

<

/{ i(g — 0)div,S(V,1) - (0 — u)dz

(6.29)
0>25} ©

<

1
/ 0=div,S(V,0) - (1 —u)dz
{o>20} @

2 2/’Y
| cdr) 4ol
L3 () </{g>é/2} ) L@

1 2
< C(6) H~divxS(Vxﬁ) .
0 L3576 ()

< C(6) H;diva(Vrﬁ)

2-1 2
&(lewllz.a)) 0 (lo iz 8) (2) + 0C S(Va(®) = V(@) [F2(q -

In this case the power % —1 is nonnegative and we use also the property 5([9, ul|[g, ﬁ]) € L*°(0,T) to proceed further.
For v > 2 we have

<

7 (6.30)

/{ i(g — 0)div,S(Vza) - (0 —u)de

0>24} @

/ 02— 2div,S(V, i) - (it — u) do
{0>20}

<

/ 0 idiva(vxﬁ) (1 —u)dz
{o>28} @

2

- 2
/ - o'dz | +dfla—ullieq,
L3(Q,) \/{e>a/2}

2

< C(6) H;diva(Vrﬁ)

< () H;divxS(Vmﬁ)

£ (le.wlllz. 8] ) (1) + 6C [S(Va (@) = Vi (W) 720, -
L3(Q¢)

Altogether we end up with the inequality

& (le.ulliz-al)r) < | “h€ (o vlle. 1)) () (6.31)

for some h(t) € L'(0,T) and the Gronwall lemma finishes the proof.
(]

Remark 6.1 The case of nonzero bulk viscosity coefficient n > 0 in (1.3) as well as the case of nonzero boundary
friction coefficient k > 0 in (1.7) can be treated by obvious modifications just adding proper integrals to appropriate
formulas.

7 Concluding remarks

For clarity of the proof we have so far restricted our presentation to the case of slip boundary conditions. In case of
homogeneous Dirichlet boundary condition

(u=V)|p. =0for any 7 >0 (7.1)
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the weak-strong uniqueness principle has been shown recently in [5]. However, the existence of regular solutions
has remained so far open question. Theorem 1.1 easily extends to this case as well, in fact the proof can be not
only repeated but considerably simplified since the boundary condition (7.1) remains homogeneous under Lagrangian
transformation and therefore we do not need the extension operator defined in Lemma 4.2.
It is also clear from our proof that it remains valid if we assume the right hand side in the momentum equation
on the form of with
fe L2(HY(0,T,)), fieL*(L*0,T,%%)), fl—oec H(Q).

We also notice that the regularity assumptions on V in Theorem 1.1 are not optimal. However, we need some
integrability of the third order derivatives of V and therefore it is not enough to assume the regularity from Theorem
1.2 which is sufficient for the existence of weak solutions and for the weak-strong uniqueness.

Taking into account known existence results for weak solutions [10], [11] and the weak-strong uniqueness result
[5], our paper completes a part of the local existence theory for the compressible barotropic Navier-Stokes system on
moving domains at least in the framework of Hilbert spaces. A natural generalization now could be existence result
for regular solutions in LP setting. A more involved interesting issue is the global well-posedness of strong solutions
for small data. In case of the complete system with thermal effects, for which existence of weak solutions on moving
domains has been shown recently in [18] and [19], both the existence of strong solutions ad weak-strong uniqueness
remain open problems.

Appendix

Proof of Lemma 4.2. For the purpose of our construction it is convenient to define the whole velocity at the
boundary. Therefore we look for the extension of the boundary data satisfying conditions

u’(t,y) - n(y) = (u—V)(ty) - (n(y) —nX(ty) + (V(EX(Ey) = V(Ey) -n(X(ty)), (A1)
“(ty) - T(y) = (u=V)(ty) - (") — X () + (V(EX(Ly) = V(t,y) - 75 (X(ty))

=

and

u(Vyu® + Vi) (¢ y)n(y) - m(y) = p (Vyult, )1 — VoY) + (1= VEY)V]u(t,9)") n(X(t,9)) - 75 (X(t,))
(A.2)

+u(Vyu+ Vi), y)[(ny) — n(X(ty) - 78 (X(t,y)) +n(t,y) - (7" (y) - 7 (X))
First of all, notice that it is enough to define appropriate extension only in a neighbourhood of the boundary
Qe ={z € Q: dist(z,00) < €}.
Then multiplying it by a smooth function ¢ such that

o(z) €[0,1], ¢

we obtain a function defined on the whole € which also satisfies the estimate (4.35). Next important observation is
that it is enough to consider the case of flat boundary which is obtained by nowadays classical technique of partition
of unity. The cutoff functions involved in this procedure enjoys the regularity of the boundary of 2 and therefore all
their contribution to our estimates can be put in the constant in (4.35). Therefore we assume

. =1, oo\, =0

1’1(.1317562,0) = (0,0, 1)7 71(33171‘2,0) = (Loao)v 72($171‘230) = (07 1a0) (AS)
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Our construction will be carried out in two steps. First we find @ satisfying only relations (A.1). In the second step
we will use it to define an extension satisfying also the relation for the derivatives. Let us focus on the extension of
the normal component of @°. For y = (y1,¥2,y3) € Q we define

5n(t7 y) = Il(t, (yh Y2, 0)) - H(X(t, (y17 Y2, O)))

and
§V(t,y) = V(t, X(, (y1,92,0))) — V(¢ (41,92, 0)).

Then it natural do define the extension of the normal component of u® as

ui(t,y) = (u—V)(t,y) - on(t,y) + 6V (t,y) - n(X({, (y1,42,0))). (A4)
Let us start with the first compontent. We have

[(u=V)-dnly=(u—-V)gon+2(u— V), (dn), + (u—V)(0n)s. (A.5)
By (1.5) we have )

snit.y)~ [ V. @n(t)~ V. (Gn(t)~ Vi

We use these relations to estimate the L?(L?) norm of the right hand side of (A.5). The idea is that when we have
(u — V), we can get the smallness in time from fot V and in the remaining terms we get smallness in time using
boundedness in time of appropriate norms of u — V. Precisely, for the first term we have

T T T
/O (0 = V)om|[2 ) < / 1002 (= V)2 < T2 V]2 i 0.1, / (= V)il 2,

for the second

T T
/O = V)o(@m)ell2a < [0m)el2m o 0.1, / [ = V)el2s < TV e oyl = V)2 1)

and similarly for the third with ||V¢||r_.. We conclude
1w~ V)onlull ey < CT + VIV w1 [0 = V)iell e + 100 = V)l 2] (A.6)
Now we write the second time derivative of the second term in (A.4) (we denote En := n(X(¢, (y1,y2,0)):

Notice that we have t
5V ~ VV(X(t, (4y1,42,0)) — (y1,42,0)) ~ TV / V.
0

Therefore

t
GV ~ V'V, / V4 VYV
0

and

t
(OV)ie ~ VVy / V+VVV,+V,VV.
0
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Like previously, in the first term of the RHS of the latter formula we get the smallness in time from fg V:

T t
/ ||vvtt/ VEn|7.dt < CT||V| L IVViul2(r2)-
0 0

In the terms where we does not have this factor we still get smallness in time using boundedness in time of appropriate
norms of V, for example

t
|1V En < OV
Treating similarly the other terms in (A.7) we obtain
185 4l r2cre) < CVT (L + V)OIV we s IVIwe ey, IV Vel p2ry)- (A.8)
Combining this estimate with (A.6) we conclude
IE(” n)ullr2me) < E@)[L+ [[(a— V)ullpere) + [lu— Vw2l (A.9)

The extension of tangential components is done exactly in the same way and so the estimate (A.9) holds for the whole
@’. Now we will use @ to construct a function with the same values on the boundary satisfying also the relations

(A.14) for tangential stress. Conditions (A.1) can be written in a compact form
u’ = Elu+ E? (A.10)

where E! and E? are small and sufficiently regular matrix and vector functions respectively. Furthermore, conditions
(A.2) rewrite as (we denote fy, by f;):

3
ui g +ugy = Z Aij(t, x)u 4 (A.11)
ij=1
3
US,?) + Ug,z = Z Bij(t, x)ui ;. (A.12)
ij=1

First of all it is natural to take u§ = 4. Next we can construct u} and u} separately. As both will be defined

analogously, we focus on u}. As u? is determined on the boundary, so are its tangential derivatives, hence 9,, and 0,

due to (A.3). In particular,

3 3
uf =15, = Z B3 uin + ZEézlul +E3 .
i=1 =1
Substituting this relation to (A.11) we get
3 —
Ulf,s = Z Aijuij — Z E%zlul - E32,1- (A.13)
i,j=1 i
Now we can define 18 = ub! + u%? where
3
uft (y) = (Z Ejui + E7)(y) + 2 Z Aijui((y1,y2,0) + yse;) — 2 Z Aijui((y1,y2,0) + %ej), (A.14)
i=1 i,j i,J
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where

A=Ay, J#3
A=A —-E1,;,, i=123. (A.15)

Differentiating (A.14) wrt x3 we obtain

ully —ZEhuzg—f—ZEhguz+E13+ZAUu”,

which by the definition of flij reduces to

ullly —ZA”u” +ZE11 sti + Bf 5. (A.16)

()

We see that u®! = 4" on the boundary and (A.16) differs from (A.13) only up to lower order terms (without derivatives
of u). Therefore we need u42 = 0 on the boundary which will compensate these lower order terms, hence it must
satisfy

u13* ZElzi‘)ul E13 ZE&lul Eslfp()

We can define u%? simply as

U’lll,z?) = Pu(xlax27s)d5' (Al?)
0

We see that u = ubl + ub! satisfies all required relations. The estimate (A.9) for u}! can be shown similarly to the
estimate for @° Namely, the structure of the terms A, is either of a form 7(y) — T(X(y)) which has been treated in
the estimate for @’ or of a form I — V,Y which can be treated in the same may. Indeed, we observe easily that

11— VoYL @x(0,m)) < E(T)
where E is continuous, F(0) = 0 and
(T = VoY), (I = VoY)l Lo axo,ry < C.

Therefore, we obtain the estimate for u%'. In order to show the estimate for u%? it is enough to show it for the integrand
P, due to boundedness of €2. Again, P, contains the terms of structure Wthh we already investigated except for space
derivatives of E'. However, we have

t
VE17VE2~/ VvV,
0

therefore we can repeat the estimates having the assumed regularity of V. Finally, the second component of u®
constructed in the same way. Therefore all the arguments can be repeated and we obtain the estimate for [|u?,||12(r2).
As now we have the explicit formula for u®, the other norms entering ||u§t||y(7) are obtained using similar arguments,
therefore we skip the details.

O
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