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DISSIPATIVE MEASURE VALUED SOLUTIONS FOR GENERAL
CONSERVATION LAWS

PIOTR GWIAZDA, ONDREJ KREML AND AGNIESZKA SWIERCZEWSKA-GWIAZDA

ABSTRACT. Inthe last years measure-valued solutions started to be considered as a rel-
evant notion of solutions if they satisfy the so-called measure-valued — strong uniqueness
principle. This means that they coincide with a strong solution emanating from the same
initial data if this strong solution exists. This property has been examined for many sys-
tems of mathematical physics, including incompressible and compressible Euler system,
compressible Navier-Stokes system et al. and there are also some results concerning gen-
eral hyperbolic systems. Our goal is to provide a unified framework for general systems,
that would cover the most interesting cases of systems, and most importantly, we give ex-
amples of equations, for which the aspect of measure-valued — strong uniqueness has not
been considered before, like incompressible magentohydrodynamics and shallow water
magnetohydrodynamics.

1. INTRODUCTION

The recent work of Brenier, De Lellis and&@lyhidi [4] significantly ennobled measu-
re-valued solutions of systems of fluid dynamics, as well as hyperbolic systems in general.
They postulated a new principle surprisingly stating that measure-valued solutions, which
were expected to be non-unique to a large extent, become unique once we know that a
strong solution emanating from the same initial data exists. In this case both solutions
coincide on the time interval of existence of the strong solution. What they cada#-
strong uniqueness for measure-valued solutisnsow usually calledneasure-valued-
strong uniqueness, anv-strong uniquenedsr short. We favour the latter term, as it
seems more adequate. The analysis in the case of incompressible Euler system is com-
plete, as DiPerna and Majda had shown in [14] existence of measure-valued solutions to
the incompressible Euler system exactly in the class which, per the result of Brenier et al.,
possesses the property of mv-strong uniqueness.

Careful analysis of the incompressible Euler system allowed the authors of [4] to con-
jecture that an analogue property of mv-strong uniqueness could hold in a more general
setting. They had in fact initiated the studies on mv-strong unigueness for general hyper-
bolic systems. Following this path, we also direct our interest to a hyperbolic system of
the form

AA(U) 4 dgFy(u) =0 (1.1)
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with an initial conditionu(0) = up. Hereu: [0,T] x TY — X, whereX C R" is an open
convex set and bX we mean the closure of. MoreoverA,F,: X - R", o« =1,...,d,

we use the Einstein summation convention and we deQetg0,T] x T9, whereT is a
d—dimensional torus.

In [4] the authors studied system (1.1) wiu) = u, however their result holds in a
class where no existence result is available (and seems impossible to be proven). This lim-
itation is not particular only for such general systems, but persists even in special cases,
including e.g. compressible Euler system, polyconvex elastodynamics or hyperbolic mag-
netohydrodynamics. The solution is in the form of a classical Young measure only (even
satisfying a technical assumption that the first moment of this measure?4@)), not a
triple consisting of a classical Young measure and concentration and concentration angle
measures.

In parallel Demoulini et al. [12] proved a corresponding result on mv-strong unique-
ness for the system of polyconvex elastodynamics. And again the authors attempted to
formulate a more general result for hyperbolic systems. Here the possibility of a con-
centration measure is allowed in the entropy inequality, not in the weak formulation of
the system itself. This approach covers, among others, the case initially considered by
the authors, i.e. the system of polyconvex elastodynamics. For this system the mv-strong
uniqueness result is in the class coinciding with the class in which one shows existence
of solutions. However, this level of generality is still not sufficient to cover the case of
abstract hyperbolic system, as well as e.g. Euler equations, where concentration measure
appears also in the weak formulation.

Therefore there is still a need to dispose of assumptions that solutions satisfy any a pri-
ori bounds, and in particular, that a solution consists only of a classical Young measure.
We find it of great importance to include possibilities of concentration measures appearing
in all termsA(u), the fluxFy(u) and an entropy function. A result on mv-strong unique-
ness shall be deemed complete whenever the class of measure-valued solutions agrees
with the class of an existence result.

Finally, we give a couple of examples of systems, for which the general result statement
gives an original result of mv-strong uniqueness property, namely a system of shallow
water magnetohydrodynamics described in Section 2 and incompressible magnetohydro-
dynamics described in Section 5. Surely the list of new applications is not complete.

1.1. Hypothesis. Throughout the paper we will assume the following conditions hold.

(H1) There exists an open s¥tC R" such that the mapping : X — R" is aC? map
on X, continuous orX and satisfies

OA(u) is nonsingulaivu € X. (1.2)
(H2) The system (1.1) is endowed with a companion law

N (u) +0daQa(u) =0 (1.3)

with an entropyn : X — R, which is aC? map onX, continuous orX and satisfies

n(u)>0and

lim n(u) =oco. (1.4)

|u|—00
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This yields the existence of a smooth functi®@n X — R" such that

On =G-0OA (1.5)
09e = G- OF, oa=1,...d. (1.6)
The conditions (1.5)-(1.6) are equivalent to
OGTOA=D0ATOG (1.7)
OG'OF, =0F ] 0G, a=1,...d. (1.8)
(H3) The symmetric matrix
021 (u) — G(u)- O%A(u) (1.9)

is positive definite for all € X.
(H4) The vectoA(u) and the fluxe$ (u) are bounded by the entropy, i.e.

[A(u)| <Cn(u) (1.10)
IFp(u) <Cn(u), a=1,..d. (1.11)
(H5) Defining for a strong solutiod taking values in a compact subsebofhe relative
entropy
n(u) ==n(u)-nU)-0OnU) -DAU) H(AU)-AU)) (1.12)

=n(u)—nU)-GU)- (A(u)-AU))
and defining the relative flux as

Fo(uU) := Fg(u)— Fy(U) — OF(U)OAU) " (AU)— AU)) (1.13)
fora =1,...,d we assume it holds
|Fe(ulU)| <Cn(uu). (1.14)

Remark 1.1. Observe that in the above definitions the relative fiyx-|U) and relative
entropy (-|U) are continuous functions K. This follows directly from the continuity

of Fy(-) andn(-). Note that there is an asymmetry, the relative functions are well defined
foru e X, but forU € X.

Remark 1.2. Note that if instead of (H4) we assume that

AU _
|J1Too ) =0, [Fa(u)]<C(1+n(u)), a=1,...4d, (1.15)

then (H5) follows directly from (1.15), see Lemma A.1 in the appendix.

An analogue lemma under more restrictive assumptions

lim M = lim w =0, (1.16)

jul=e M(U)  Jul—e 1(U)
was proved in [7, Lemma A.1]. Note however that (1.16) is not satisfied e.g. by com-
pressible Euler equations. Any concentration in teAandF, are not present due to
assumption (1.16), which is a stronger requirement than (H4) assumed in the present pa-

per. This however allowed the authors to omit the general representation of concentrations
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introduced in [14] and [1], because the concentration effect is considered just for the en-
tropy, which is a non-negative scalar function. Thus one can provide a simple derivation
of weak limit as a Young measure and a concentration measure. Under slightly differ-
ent assumptions on the entropy and in the same formulation as currently considered, i.e.,
A(u) is not necessarily an identity, as in the aforementioned results, the issue of measure-
valued-strong uniqueness was considered in [7].

In the spirit of these results, the issue of mv-strong uniqueness was considered for var-
ious systems, including compressible Euler system and Savage-Hutter system describing
granular media in [21], compressible Navier-Stokes in [17] and complete compressible
Euler system in [5]. An overview of these results is provided in [10, 32]. At this moment
it is worth mentioning that the result offBzina and Feireis| [5] does not fit in any of
the presented frameworks for general hyperbolic systems, including also the framework
presented in the current paper. Contrary to the other cases, they consider the full thermo-
mechanical system. Thus a new element here is an appearance of the physical entropy.
The system consisting of conservation of mass and conservation of momentum is not a
closed system, as the pressure depends on the energy. To complete the system additional
equation for the energy is considered. Then the role of an entjoglyould overtake a
physical entropy, not as it was in the case of isentropic compressible Euler (as the system
for the variableg,v), whenn was the energy (kinetic and potential). In the setting of
Bfezina and Feireisl the entropy inequality does not carry information that would allow to
bound the flux=,(u). We claim that appearance of thermal energy in the system results
that the system does not fit into the approach initiated by Brenier et al.

The relative entropy method, which is fundamental for mv-strong uniqueness results,
appears to be useful for other areas such as stability studies, asymptotic limits and dimen-
sion reduction problems (e.qg. [7], [20], [18], [3], [6]). Not only the systems describing
phenomena of mathematical physics fall into these applications. Also results on problems
arising from biology, cf. [26], [25], [27], [22], can serve as examples. The framework
is known in this context as General Relative Entropy (GRE) and applies for showing as-
ymptotic convergence of solutions to steady-state solutions. Finally we would like to
underline how these results on measure-valued solutions in fluid mechanics affected cer-
tain numerical experiments, cf. [19].

1.2. Dissipative measure-valued solutionsOur interest is directed to the measure-valued-
strong uniqueness principle for dissipative measure-valued solutions. We start with the
motivation for our definition of measure valued solutions.

Assume we have at hand a sequence of solutiBiselving some approximating prob-
lem

KHAU") + 9o Fo (U") = Py (1.17)
together with appropriate approximating entropy equation

an(U") + 9o ba (U") = Qn (1.18)
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with B,,Q, — 0 in appropriate topologies. Natural a priori bound for such problem is
derived through the entropy equation (1.18) and yields

17 (U") | (0,72 (1)) < C- (1.19)

Due to our assumption (H4), see (1.10), we have the d&i@, T,LY(T9)) bound for
quantitiesA(u") andF,(u"). Therefore due to Lemma A.2 and Remark A.3 we are able
to desintegrate concentration measures related to each of these quantities as follows

my (dxdt) = mk (dx) @ dt. (1.20)

Before defining solutions let us shortly describe the notation. ZByX) we mean
the set of probability measures 6f) L&, ((0,T) x T9; 2 (X)) stands for the space
of weakly-star essentially bounded measurable maps with valugg (lﬁ) We mean
by .#([0,T] x T9) the space of measures M T] x T¢ and.#*([0,T] x TY) refers to

positive measures.

Definition 1.3. We say that(v,ma,me,,my), a = 1,....d, is a dissipative measure-
valued solution of syste(d.1) with initial data (vo.,m},m)) if {Vix} ¢ xeoT)xrd: V €

00

eeak((0,T) x T4, 2 (X)) is a parameterized measure and together with concentration
measures me (.Z([0,T] x T9))", mg, € (.#(]0,T] x T9))™" satisfy

| 0nxA@) - dpaxdtr [ do-ma(xdt + [ (. Fa(2)) - dupdxa
Q Q Q (1.21)
+/Q8a(p e, (dx) + [ (voxAR)) - @(0)dx+ [ 9(0)m(d) =0
for all ¢ € CZ(Q)". Moreover, the total entropy balance holds for &l CZ([0,T))
() g Odxats [ ¢ dxat + [ (o n(A)¢(0)x

+ [, @ e >0

(1.22)

with a dissipation measurere .#*([0,T] x TY).

Throughout our paper we always assume that there exists a generating sequence of ap-
proximate solutions to the system (1.1). Therefore we introduce the following definition.

Definition 1.4. We say that the dissipative measure-valued solutiama, me,, my),
a=1,....d, of systenfl.1)is generated by a sequence of approximate solutions if there
exists sequenced P, and Q, such that(1.17)-(1.18)hold in the sense of distributions,

P, and @, converge to zero in distributions and

f(U"(t,x))dxdt > (vex, f(A))dxdt+my
hold for f = A,Fy andn.

Our main theorem reads as follows.
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Theorem 1.5. Assumehat hypothesis (H1)-(H5) hold. Lét,ma, mg,,my), o =1,....d,

be a dissipative measure-valued solution(1ol) generated by a sequence of approx-
imate solutions. Let Ut W1*(Q) be a strong solution t@1.1) with the same initial
data i € LY(RY), thusvox = 8yyx, MR = m) = 0. Thenvix = &4 a.e. in Q and
Ma = Mg, = My, =0.

One of the key ingredients in the proof of Theorem 1.5 is the following proposition
stating relations between different concentration measures.

Proposition 1.6. Assume that the hypothesis (H1)-(H5) hold. [etma,me,,my),
a=1,...,d, be a dissipative measure-valued solutiofltd ) generated by a sequence of
approximate solutions. Let @ W1*(Q) be a strong solution t¢1.1). Then the dissipa-
tive measure valued solutigw, ma, mg,, My ) has the following properties:

(i) The concentration measure of the relative entrgpgy|U ) is equal to

my —ma-G(U)
and
m, —ma-G(U) > 0. (1.23)

(ii) The concentration measure of the relative flgXuHU ) is equal to
M, — OFy(U)OAU) ma
and it is bounded by the concentration measure of the relative entropy, i.e.
me, — OFg (U)DAU) " 'ma| < C(my —ma-G(U)). (1.24)

1.3. Historical perspective. Measure-valued solutions, despite being a relatively weak
notion of solutions, play an important role in modern analysis of nonlinear systems of par-
tial differential equations. The basic concept behind this approach is to embed the prob-
lem into a wider space. Instead of considering sequences solving approximate problems,
which are some measurable functions, one passes to the level of parametrized measures.
The benefit of this idea is passing from a nonlinear problem to a linear one. The essence of
the proof of existence of such solutions becomes a matter of appropriate estimates rather
than subtle weak sequential stability arguments. There is of course a cost to be paid —
the result of a limit is only a weak object represented bfpang measure, namely by a
parametrized family of measures.

This framework begun with a celebrated paper of Young [33], see also [2] for a sum-
mary of the concept of Young measures. Later, Tartar [31] and DiPerna [13] applied
this approach to define measure-valued solutions to scalar conservation laws and, as a
bystep in the proof of existence of entropy weak solutions, showed uniqueness of entropy
measure-valued solutions (we mean by that solutions satisfying in addition a variant of
entropy inequality for measures).

The next breakthrough is due to DiPerna and Majda who directed their attention to the
incompressible Euler system. Here, sequences of approximate solutions may not only
oscillate, but also concentrate. Thus the original Young measure, capable of handling os-
cillations only, was insufficient to fully characterize weak limits of such sequences. An
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extension togeneralized Young measurgs DiPerna-Majda measures) was later pro-
posed, see [14] and also [1] for some refinements. A measure-valued solution was then
defined not only as a Young measure, but a triple describing oscillations, concentrations
and concentration angle. Since this framework transfers to other systems and to general
case as well we provide the full details in Section 3.2.

We direct our interest to measure-valued solutions to hyperbolic conservation laws.
Unlike in the scalar case, for systems of conservation laws we cannot show uniqueness
of entropy measure-valued solutions. The main obstacle to formulate analogous result is
that, in most cases, we are equipped with only one entropy-entropy flux pair, contrary
to a rich family of entropies available in the scalar case. Even more, the corresponding
relative entropy inequality lacks appropriate symmetry.

For most systems of mathematical physics it is well known that even weak solutions
may fail to be unique. Only some conditional uniqueness can be claimed.This conditional
uniqueness property had been studied for many systems of fluid mechanics. First, in
their classical papers, Prodi [28] and Serrin [30] had shown that a weak solution to the
incompressible Navier-Stokes equations is unique and coincides with the strong solution,
provided such a strong solution is known to exist. For conservation laws a conditional
uniqueness of weak solutions was established firstly by Dafermos in [8]. This is somehow
an extension of the result on uniqueness of strong solutions (cf. [24]), asserting that they
are unique not only in the class of strong solutions, but also in the wider class of entropy
weak solutions. This property became knowmask-strong uniqueness.

It was discovered, rather surprising, that the class of entropy weak solutions in the
above can be widened to the class of measure-valued solutions which satisfy some kind of
entropy inequality. One can asks it to the benefitAfter all, measure-valued solutions
seem a very weak notion and, admittedly, carry hardly any information about the physical
problem. Nevertheless, measure-valued solutions, intimately related to Young measures,
prove to be a powerful tool in the analysis of nonlinear PDEs.

Numerous results on mv-strong uniqueness for various systems have already been de-
scribed at the beginning of the introduction, as well as some of the results which concern
a general hyperbolic case.

2. APPLICATIONS

In this section we provide a short list of applications of the general theory presented
above. The first impression is that the general framework cannot cover e.g. incompress-
ible Euler system. In Section 5 we show that a slight refinement allows to include not
only incompressible Euler system, but also incompressible magnetohydrodynamics.

2.1. Compressible Euler system.The compressible Euler system is the following sys-
tem of equations

op +divk(pv) =0 (2.1)
& (pv) +divy(pve V) +Uxp(p) =0, (2.2)

for an unknown vector field: Q — R" and scalap : Q — R. The pressur@(p) is a given
function and ifp’(p) > 0O, the resulting system is a hyperbolic system of conservation
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laws. The associated entropy is given by

1

n(p.v) =5plvF+P(p), (2.3)

here the pressure potentR(p) is related to the original pressupép) through
P p(r

P(p):p/l %dn (2.4)
We assume the pressure satisfies the following assumptions

p € C[0,)NC?(0,), p(0) =0, p'(p) >0 forp >0, (2.5)
and

o .. . P(p)

liminf p'(p) > 0, liminf —= > 0. 2.6

PP p== p(p) (2.6)

Since the quantitp represents the physical density, we want it to be nonnegative, hence
X = (0,00) x R"andX = [0,00) x R".

We will show that the system satisfies the assumptions of Theorem 1.5 and fits into the
presented framework. We choose the variatti@beu = (u,uz) = (p,/pV),u1 € [0,),
u; € R". Note that we have some freedom in choosing the variables, however keeping
in mind thatA and F, need to be continuously extendable frofto X. Our choice
of variables is convenient for further estimates. Note however thatsf(p, m) with
m = pv, then the second component of the fkg having then the forrﬁ";&“ does not

extend continuously tX. Nevertheless, in the chosen variables (ug,uz) = (p,/pV)
we have (denoting b, then x nidentity matrix)

A(u):< Uy > F(u):(Fl,...,Fn)(u):( e ) 2.7)

VUil Uz @ Uz + P(U1)In
The entropy in these variables has a form
1
n(u) = 5]uzl® +P(uy). (2.8)
Obviously hypothesis (H1) and (H2) are satisfied with
P/(U1) — 5= |up|?
G(u) = ( () uf”l| 2 > (2.9)
N
and the matrixd?n (u) — G(u) - O%A(u) is equal to
P/ 1lw? 1w
( (un) M (2.10)
—3 2 I

and is positive definite, hence (H3) is satisfied. Instead of checking hypothesis (H4)-(H5)
we will check that (1.15) holds, see Remark 1.1.
We want to show that
M —0 (2.11)
n(u)
as|u| — . Observe firstly that

P(p) > plogp (2.12)
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for everyp > 0. Consider the convex functiohd, (p) := p?,/log(p + 1) andMy(p) :=
p2. It holds that

. Mz(Ap)
YA >0 lim =0, 2.13
P Ma(p) 19
indeed, ap — 0
;szz 22

p%y/log(p+1) +/log(p +1) ° (244

This is equivalent to saying that the functibh is essentially stronger thavi, (for the
definition and the facts used in the sequel see Appendix B). Define the Fenchel conjugate
toM asM*(S) :=sup,(§ - p —M(p)). Then the corresponding relation for the conjugate
functions reads ad; is essentially stronger thawi; and asvi; (&) = &2, then in particular

Mi(§) _ o Mi()
* - 2
g M3(S)  E—o &
The term, /Uy U, is estimated with help of Fenchel-Young inequality as follows
|[v/Ubz| < Ma(y/U1) + Mg (Juz]).
This allows us to estimate

AW _ wtlVil] o w | Mi(/u) | Mi(ju))
nu)  Lwl2+Pu) ~ Pl) = Puw) 1w

Taking into account (2.12) and (2.15) allows to conclude the above converges to zero
as|u| — c. Moreover

F(u)l _ [v/Uruz|+ ugl® + p(uy) U1+ 5|Up|* + |up|* + p(ur)
nu) = 3|w2+Pu) $|uz[2+ P(uy)
thus the fraction is bounded and (1.15) is satisfied.

—0. (2.15)

(2.16)

< (2.17)

Remark 2.1. In the casep(p) = p the pressure potential is given Bp) = plogp.
In order to make the entropy(p,Vv) a nonnegative function, we have to add a proper
constant, in this case the constangié, so we have

1 _
n(p,v) =5plv+plogp +e
Then the rest of the arguments follow the same lines.

Remark 2.2. Notice that condition (2.11) provides that the concentration measure re-
lated to a sequenc@(u")) will not appear. This can be immediately concluded from
Proposition 3.3, which we prove later. Indeed, since (2.11) provides that

lim |A(u)] <C lim n(u)

|u|—o0 |u]—o0
for anyC > 0, thus due to the Proposition 318, < Cm, also for anyC > 0 and hence
mp = 0.
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2.2. Shallow water magnetohydrodynamics.Consider the following system of equa-
tions of shallow water magnetohydrodynamics

ah+ divy(hv) =0, (2.18)
o (hv) +divy (hv@ v —hb® b) + Ox(gh?/2) =0, (2.19)
o (hb) +divx(hb® v —hv® b) +vdivy(hb) =0, (2.20)

whereg > 0 is the gravity constanh: Q — R, is the thickness of the fluid;; Q — R? is
the velocity,b: Q — R? is the magnetic field. Note that once initially gitngby) is zero,
then dik(hb) vanishes for all times due to the transport equation for the magnetic field.
Thus we can omit this term in further analysis.
We choose the variables= (ur,u,uz) = (h,v/hv,v/hb), thus

Up VAL
Aw={ viuz |, Fu)=F.R)W=| uou-uou+ ),
/U1U3 Uz ® U2 — Uz ® U3
(2.21)
and the entropy
1,1 51
n(u) = 5|uz|* + 5 |ug| +§gu§. (2.22)
We observe that
gur — 5 (U + |usf?)
G(u) = N (2.23)
U3
uy
and
Uz |2+ |u 1 1
g+|2\4u%\3| _zu_i _23_';*
01 (u)— G(u)- D*A(u) = 1 b 0 (2.24)
_lu_%» 0 |
2t 2

and thus (H1)-(H3) are satisfied.
The appropriate estimates providing that (1.15) is satisfied follow the same lines as for
compressible Euler system, the additional terms do not require any new effort.

2.3. Polyconvex elasticity. In this section we consider ttgystem of elasticity

9% 0.0 2.25
wherey : QxR — R3 stands for the motior = Oy, v = diy, andSstands for the Piola-
Kirchoff stress tensor obtained as the gradient of a stored energy furféﬂ@%%. Here
we assume that/ is polyconvex, that iV (F) = G(®(F)) whereG : M3*3 x M3*3 x
R — [0,) is a strictly convex function and(F) = (I, cofF, detF) € M3*3 x M3*3 x R
stands for the vector of null-Lagrangiar:the cofactor matrix cdf and the determinant

detF. It is observed in [9] and [12] that this system can be embedded into the following
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symmetrizable hyperbolic system in a new dependent variabl¢F, Z, w) taking values
in M3*3 x M3*3 x R
Vi o (9G ,_ 9P~
(55E55-®),

ot 9xe

2.26
9=% 9 [JP° (F)v (2:20)
ot oxe \ dFjq ')
This system admits the following entropy-entropy flux pair
nv,F,Z,w) = %|v|2+G(]F,Z,W),
(2.27)

0G _ 0P~

Qo = Vi ﬁ(:)m(w)

A strong solution to (2.25) is a functigne W2®. It automatically satisfies

an(y) +dada(y) =0. (2.28)

Under the following additional growth assumptions on the func@on
(A1) GeC3(M>3 x M3*3 x R;[0,00)) is a strictly convex function satisfying for some
C > 0 the bound?G > C > 0,
(A2) G(F,Z,w) > c1(|F|P+|Z|9+|w|" + 1) — co wherep € (4,), q,r € [2,0),
(A3) G(F,Z,w) < c(|F|P+|Z|9+|w[ +1),
(A4) |95G|+ |92G|P T +|AG[P 2 < o(1)(|F|P+|Z|%+ W' +1) whereo(1)— 0 as
|Z] — oo,
an existence of dissipative measure-valued solutions as well as a weak-strong unigueness
result are proven, cf. [11,12]. According to the discussion in the Introduction it is enough
to show that conditions (1.16) are satisfied and thus (H5) follows.
9G =\ JF
Au) = V), Fa(Uu) = W(:)m)
w3 ) R ( o
By condition (A2) we conclude that

A
lim =0. 2.29
jul—e 7(U) (229
The combination of conditions (A2) and (A4) provides that
- |Fa ()
lim ——~= =0. 2.30
jul—e 1(U) (2:30)

For the discussion on the remaining assumptions (H1)-(H3) we refer the reader to [7].

3. RELATIONS BETWEEN CONCENTRATION MEASURES

Our aim in this section is to prove Proposition 1.6. We provide two proofs, the first
one works with the Radon-Nikodym derivatives of measures, whereas the second one re-
lates our concept of dissipative measure valued solutions to the framework of generalized
Young measures and is in its core based on the slicing lemma for products of measures.
In particular, in the second proof we have to assume that the modified recession functions
(for definition see below) exist for nonlinear functions appearing in our problem.
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3.1. Radon-Nikodym derivatives of concentration measuresLet us assume that we
have a sequence of functiod§x) : Y — X, hereY is an underlying physical space, in the
applicationsy = [0,T] x T9, andX c RN.

We recall the definition of the concentration measure related to a nonnegative nonlinear
functionf : Y x X — R*. The concentration measure is a nonnegative Radon measure
such that

m¢, x) = lim lim f(y,u" d
(mr, x) := lim lim Yok (Y, u(y))x (y)dy

forall y € Cc(Y), x > 0.
Leth:Y x X — R* be a nonnegative function satisfying

h(y,u) <Cf(y,u)
forally e Y and allu € X. Then it is easy to observe that

{y;:Ct(y,u(y)) > k} > {y;h(y,u(y)) > k}
and therefore

(M, %) < lim lim h(y,u"(y))x (y)dy.

k—eoN—o Jyn{f>k}

If g(y,u) is not a nonnegative function, we can split it into its positive and negative part
gy,u) =g"(y,u)—g (y,u),
and
9y, u)l = g™ (y,u) +g (y,u),
where bothg™ andg™ are nonnegative. Thus we have

(Mg, )| = [{Mg+, ) — (Mg, )| < (Mg, x) + (Mg, ) = (Mg, X)- (3.1)

Finally, just using the same argument componentwise and using as a norm for vectors in
RN the|® norm, we get the same for vector-valued functignsnd thus vector-valued
concentration measureg,. In particular if we assume

l9(y,u)] < Cf(y,u)

for a nonnegative functiom and a vector-valued functiapn we end up with
)] < lim lim u” dy.
[{mg, )| < lim_lim Yok 9y, U (y))l 2 (y)dy.
Next, we recall the concept of the Radon-Nikodym derivative of measuregt; laetd

Uz be nonnegative Radon measures such ghat < u;. Then there exists a function
Dy, M2(X) € L”(uq) called a Radon-Nikodym derivative gb with respect tqu; such that

alA) = [ Duyttz()dH1 (). (32)
Moreover one can characterize the Radon-Nikodym derivative as follows (see e.g. [16])
. B(x, e
Dy t2(X) = lim H2(BO€)) (3.3)

£—0" ‘LL]_(B(X, 8))
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for up—a.e.x. HereB(x,r) denotes as usual the ball with certeand radiug.

The definition of the Radon-Nikodym derivative can be extended using the Hahn-
Jordan theorem to signed measures and then componentwise to vector valued signed mea-
sures.

First, let us define the continuous extension of a characteristic function of the ball of
radiuse > 0 as follows: Letk: : R™ — R™ be defined as follows

Ke(x) =1 forx e (0,¢) (3.4)
Ke(X) = 2— g for x € (&, 2€) (3.5)
Ke(X) =0 forx € (2¢,+). (3.6)

Fixx € Y and definegxe 1 Y — R asyy () := ke(ly —X]).

Proposition 3.1. Let u; and up be nonnegative Radon measures such that < pj.
Then it holds

Dy H2(X) = lim (Ha, Xxe) (3.7)

e—0t (U1, Xxe) .

In order to prove Proposition 3.1 we need two elementary observations. Firstly it is a
matter of a simple computation to check that

1 r2e
Axe(Y) ~ = i XB(X7S)(y)dS.

Secondly we need the following lemma.

Lemma 3.2. Let a,b be nonnegative functions and let

{;‘—)OJr b(g)
Then
2
SCa(sds

e-0" [2p(s)ds 3.8)

Proof. Directly from the assumption of the lemma we have

. a(s)
lim sup —= =M.
€—=0" se(g 2¢) b(S)
This yields that for every > 0 there existg€s > 0 such that for ale < €5 and alls €
(g,2¢) it holds
(M—68)b(s)<a(s)< (M+d)b(s).
Integrating this inequality we immediately get
2¢ 2¢ 2¢
(M=) b(s)dsg/ a(sds< (M+5) [ bs)s,
€

€ e

which concludes the proof. O
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Using Lemma 3.2 we now prove Proposition 3.1. We have

. <‘LL27XB(X8)>
D — Jim C2ABXe)/
k200 = 18 s Zagee)

28
i Je (M2 Xe( x7s;

(3.9)

€07 f <.u1;XB (x,8)

_ lim fy%xe( )d,UZ(y)
8—>0+ fyxxs(y)d.ul(y)

The following proposition is a generalization of [17, Lemma 2.1], however the proof fol-
lows differently, without using the connection between biting limit and Young measures.

Proposition 3.3. Let f(y,u) be a nonnegative continuous function on<¥ and let
g(y,u) be a vector-valued function, also continuous or X such that

im_lg(u)l <C lim_f(yu) (3.10)

|uf—co

Let my and g denote the concentration measures related to f and g respectively. Then
Img| < Crry, (3.11)

i.e. [mg|(A) < Cmy (A) for any Borel set ACY.

Proof. First we observe thding| << my as a consequence of (3.10). Then for any Borel
setA C Y we have

[mg| (A /Dmflmgldmf<||Dmf|'TbH|Lw )M (A) < |[Deme Mg [[Le, vy ms (A).
However we also have
. <|mg|alxs>
D =1 —_— 3.12
mf’mg‘()o SI—>rE+ <mf7XX,8> ( )
iMoo lIM N0 fy kg (G0 UNY)) e (Y)Y

< lim — . = <C.
T =0t My e liMnyoo fyn i FOYUNY)) e (Y)Y

O

Finally we use Proposition 3.3 with=n andg = A andg = F, and then withf =
n(-|U) andg = Fy(-|U) to prove Proposition 1.6.

3.2. Generalized Young measuresLet us recall here the result of [1] characterizing the
weak limits of nonlinear functions applied to maps bounded%T?). Supposeun)nen

is a sequence of maps bounded ®(T9;R™). It was proved in [1] that there exists a
subsequence (not relabeled), a parametrized probability measuté) (T9; 22(R™)), a
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non-negative measurac .2+ (T¢), and a parametrized probability measure on a sphere
v® e L2(T9, m;22(S™ 1)) such that
f (X, Un(X))dx = f(x,/l)dvx(ﬂt)der/ . f(x,B)dvy’(B)m (3.13)
RM sm-
weakly-star in the sense of measures. Hér&[9 x R™ — R is any CaratBodory function
with well defined and continuous recession functigh: T¢ x ST — R defined as

£2(x.B) = lim L %SB). (3.14)

S—00 sP

Note that the measunerepresents the classical Young measure describing the oscilla-
tions in the sequence, whereas the second term on the right hand side of (3.13) describes
the concentrations.

We can easily observe that this framework does not apply e.g. in the case of isentropic
compressible Euler system with a pressure giverplpy) = p?, with v # 2. Choosing
the variable$ = (B1, B2) = (p, /pV) the flux function has a form(8) = (/B Bz, B{ +
B2 ® B2). Consider an approximate sequenfe= (p",/p™"). An entropy inequality
provides a priori bounds

i @mﬂurll(pn)y) dx<c. (3.15)

Thus we cannot conclude there exists sqntieat the sequenaé' is uniformly bounded in
LP. Here the first component is bounded._ihand the second one irf. In a consequence
there is no possibility to define a recession function according to formula (3.14).

This example motivates us to claim that in many cases the framework of Alibert and
Bouchité needs a refinement to allow for considering sequences with components of dif-
ferent growth. Following [21] let us take a sequen€e= (V',w"), with (V") bounded in
LP(Q;R') and(W") bounded in_9(Q;R™) (1 < p,q < »). Then we define thaonhomo-
geneous unit sphegs follows

S = {(BuBa) € RV Baf20+ B9 = 1

We can characterize the limit as in (3.13) and this is valid for all integrdndsosep-
g-recession function exists and is continuou€br S'pfqul. The p-g-recession function
is defined as

/ ! PR/’
£ (x pr. ) = lim 1P Pe)

Such an approach however is one of possible frameworks. We could consider more gen-
eral compactifications dk" than compactification with a sphere.

Since

Jim n(su) = 4o

for all u € S"~1 N X we would like to define modified recession function as follows. Let

f(u): X — R be a smooth function and lgt{u) be an entropy related to hyperbolic system

(1.1). Then the modified recession functith(u) : S"™ 1N X — R reads as
£(u) = f(su)

~ s—+o7(SU) (3.16)
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foranyue S"1nX.
However, again here such defined function may not necessarily be continuous. Thus
the correct definition should rather have the form
” . f(s™B,...,5%Bn)
W =, (s, 5 Ba)
with someg; > 0,i=1,...,n.
Assuming that the modified recession functi&iSandF;’ are properly defined (ac-
cording to the definition from (3.17)) it is easy to observe that the properties (1.10)-(1.11)
from hypothesis (H4) transfer to

A®(u) <C (3.18)
FPuw|<C, a=1,..,d. (3.19)
Given a strong solutiod to system (1.1) with values in a compact subsef @fe can also

calculate the modified recession functions for the relative quantjtieg) ) andFy(ulU).
We have

(3.17)

nw(u|U) — lim n((salul,...,sanun)]U)

S e s LG AT (3.20)

and

1 n

s—+o 7 (sMuy,...,S%up) =F;(u)— DFa(U)DA(U)*lA"O(u).

(3.21)

Note that since botm (ulU) and n(u) are nonnegative, also the modified recession
functionn®(u|U) has the same property, i.e.

n°ulU)=1-GU)-A*(u)>0 (3.22)

for all u € SN X. Moreover the upper bound for the relative flux (1.14) is also trans-
fered to the modified recession functions as
I~ lim |Fe ((S™ug,...,s%un)|U))|
s—+o  7M(S™uy,...,S%up)
. s“uy,...,s%u,) U
SC lim 77(( 1, s n)l )
s—4o  1(s™uy,...,S%Up)
Now we use these bounds for the recession functions to derive the bounds for the con-
centration measures described in Proposition 1.6. We have

o (uU)
(3.23)

=Cn®(u).

NPU)dxdt= (vex n(AU)) dxdte [ 0 (BIU)AVE(B)m, (3.24)

= (MR dxdt+my ~G(U)- [ A”(B)AV5(B)m,
= (i, N(AU))dxdt+my, —GU) - ma.

This proves the form of the concentration measurerftu|U) and also (1.23), since
n®(BJU) is a nonnegative function; is a probability measure (i.e. nonnegative) and
my, iS a nonnegative measure.



DISSIPATIVE MEASURE VALUED SOLUTIONS FOR GENERAL CONSERVATION LAWS 17
Our final aim is to prove (1.24). We start with
FalU'U)dxdt (vx Fa(AU)) dxdt [ FE(BIU)IVEBIm,  (3.25)
= (Vtx, Fa(A|U)) dxdt

n /S  F2(B) — OFa(U)DAU) A (B)dvy(B)my
— (Vux, Fo(A|U)) dxdt+ me, — OF, (U)OAU) ~2ma,

which proves the form of the concentration measure for the relative flex@gu). Fi-
nally we use (3.23) to argue that

me, — OFg (U)DAU) " tma| = /S IR (BIU)[dvex(B)my, (3.26)
<C /[ n*(BU)dvix(B)my =C(m; —G(U)-ma).

sm-1

The proof of Proposition 1.6 is complete.

4. RELATIVE ENTROPY INEQUALITY

4.1. Derivation of the relative entropy inequality. We derive the relative entropy in-
equality. We choose in (1.21) a test functipn= {(t)G(U (t,x)) with { € CZ([0,T)).
As U is a strong solution, thus (1.1) is satisfiedywe multiply it with the same test
function and integrate, finally to subtract it from (1.21) to get

/ C(OGU) - (v AL)) — AU))dxdlt+ /Q ¢'(1)G(U) - ma(dxdlt)
+ [ £02G0) - (o FulA)) ~ Fe(U))dxdt+ [ £(1)3G (W), (cxcy

Q
+/ £(t)aGU )-((vt7x,A(/l)>—A(U))dxdt+/Q§(t)8tG(U)~mA(dxdt)
+[,¢0 ({Vox A(L)) ~ AU(0)))dx+ | £(0)G(U(0)- m(dx) =O.
(4.1)

Following [12] we define the averaged quantities

A (v,U) = (v,n) —n(U) —GU)- ((v.A) ~AU)), (4.2)
Zo(v,U) = (v,Fa) — Fo(U) — OF,(U)DAU) 1 ((v,A) —AU)) . (4.3)

SincedU = —(OA(U))10F,(U)d,U we observe the following
dGU)-(vxAR)) =AU)) +daGU) - (Vix;Fa(4)) —Fa(U))
=0GU)AU - (v xAR)) —AU)) +0G(U)dU - (Vi x;Fa(4)) —Fa(U))
=0G(U)(DAU)) "OF(U)daU - ((wx, A(R)) — AU))
+ DG( 19U - (vt x, Fa(A)) —F(U)
OGU)dgU - Zg (v x,U).
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Using the entropy inequality for measure-valued solutions (1.22) we obtain

JL 8@ v0)+ [ 0 —ma- G(U))(eay
> [ L0062V -Za(v.V)
Q
+/Qz;(t)(mA- 0G(U)aU +me, - 0G(U)JeU)(dxdy
—/Td €(0)((vox,m) —m(U(0)) — ({vox,A) —AU(0)))- G(U(0))dx
- Tdi,’(O)(m?]—mg-G(U(O)))(dx).
(4.4)

Using (1.7)-(1.8) we compute

ma-0GU) U +me, - OG(U)dU
= —ma-0GU)(DAU)) 10Fx(U)deU +me, - OG(U)dyU
= —ma-OA TOG' OF4dgU + me, - 0G(U)deU (4.5)
= —my- DA TOF,0G(U)dgU 4 me, - 0G,U
= (—OF,(U)OAU) *ma+me, ) - OG(U)d,U.

In a standard way we chooge= {" to be a sequence of smooth monotone functions
which approximate the characteristic function of the intefOat] and pass to the limit,
thus (4.4) turns into

/def(v,um)dH /Td(mg — - GU (1)) (dX) < C(U)/OT/Td max|Zy dxat
+/OT/Td(—DFa(U)(DA(U))‘1mA+mpa)-DG(U)aadedt

+ [, 0) Ot [~ ]G (0))(d.

(4.6)
Note that in a same way as in [12] we have
Za(v,U) = (v,Fa) = Fa(U) — OF(U)DAU) " H((v,A) —AU))
= (v,Fa(A]U))
4.7)

S C1<V7n(7t|u)>
=C(v,U).



DISSIPATIVE MEASURE VALUED SOLUTIONS FOR GENERAL CONSERVATION LAWS 19

Consequently, using (1.24) the estimate which allows us to use the Gronwall inequality
has a form

v 0)@)dx+ [ (-G () (e <

C (/OT [ #(v.U)dxdtr /OT </Td(m§1 - GU (t)))(dx)) dt) (4.8)
+ [ Goxn (AU ©O))dxt [ () —mf-G(U (0)))(@.
Thus,
/Tdff(v,uxt)dH /Td(m‘,,—an-G(u (t)))(dx) 4.9)
<c( [ toxn@u©dcr [ (mh - -G )Y &

In particular, we observe that ifox = &y (0x andm) = =0, thenvx = &y x a.e.
and

m, —G(U(t))-my=0 (4.10)

for almost any. Note that at this point it is enough to hav% —m2-G(U(0)) =0to reach

the same conclusion. What remains now is to show that the concentration maagures
ma andmg, are all equal to zero. This is done by comparing the definition of the measure
valued solution withv; x = &yt x) Which we already know with the fact thei(t,x) is a
(strong) solution to the system (1.1). Using here also the facmﬁai 0 we obtain

/OT /TdaﬂP-mA(dxdtH/oT /Td do @ - Mg, (dxdt) =0 (4.11)

for all ¢ € CZ(Q). This yieldsma = 0 andmg, = 0 and thus consequentiy, = 0 due
to (4.10).

5. EXTENSION

As one may easily observe unfortunately this general framework will not cover systems
of conservation laws, which may fail to be hyperbolic, typically incompressible inviscid
systems. In the current approach we present a simple extension of the presented frame-
work to cover the case of incompressible fluids, in case of which the assumptidtAhat
Is a nonsingular matrix is not satisfied. For this reason we distinguish from the flux the
partL (Lagrange multiplier) which is perpendicular to the ved&J ) (which coincides
with the gradient of the entropy of the strong solution in the daseld). Thus we as-
sume that there exists a subsp¥¢such thaG(U) €Y andL € Y+, wherel is a strong
solution to the considered system. Let us then consider a system in the following form

AA(U) +dgFe(Uu) +L =0. (5.1)

The fact thatG(U) € Y can help a lot in constructing entropies for the system (5.1).
Therefore we reformulate the hypothesis (H2) as follows.



20 PIOTR GWIAZDA, ONOREJ KREML AND AGNIESZKA SWIERCZEWSKA-GWIAZDA

(H2’) Thesystem (5.1) is endowed with a companion law

an(U) +09a0a(U) +Lg - dou=0 (5.2)
with an entropyn : X — R, such that)(u) > 0 and
lim n(u) =c. (5.3)

|u|—>oo

This means we assume the existence of a smooth funGtio — R" such that

On =G-0OA (5.4)
and the condition (1.6) is relaxed the following way. We assume that
G‘DFa:an+Ea, OC:l,...,d. (55)

with the additional property that, - d,u = 0 for all u such thalG(u) € Y.

We need a slight modification of the definition of measure valued solution, namely the
class of test functions will change.

Definition 5.1. We say that(v,ma,me,,m,), a = 1,....d, is a dissipative measure-
valued solution of syste(s.1) with initial data (vo.,m3,my) if {Vix} ¢ xe(oT)xmd: V €

eeak((0,T) x T4 22 (X)) is a parameterized measure and together with concentration

measures me (. ([0,T] x T9))", mg, € (.#([0,T] x T9))™" satisfy
[ xAR)) - dgdxdts [ o macxdt) + [ (v Fa(2) - dugxa
Q Q Q

+/Qaa(p-nta(dxdt)+/rd<vo7x,A(l)>-(p(O)dx+/ngo(O)-m2(dx) ~0

for all ¢ € (CZ(Q)NY)". Moreover, the total entropy balance holds for all nonnegative
¢eC([o.T))

L (raen g x| £/ my(exd + [ (o n(4))(0)dx

+ [ com e =0

(5.6)

(5.7)

with a dissipation measurere .#*([0,T] x T9).

Then an analogue result on mv-strong unigueness in this case requires to add the con-
strain on strong solution, which allows to use the ve&dU) as a test function in a
distributional formulation. Thus accordingly we require that the strong solution is such
thatG(U) belongs to the subspa¥e For this purpose we define a spaﬁé’“(Q) as the
set of all elements, which are ilW1*(Q) andG(y) € V.

Theorem 5.2. Assume that the hypothesis (H1)-(H5) hold with (H2) replaced by (H2").
Let(v,ma,mg,,my), o =1,....d, be a dissipative measure-valued solutiorfgd) gen-
erated by a sequence of approximate solutions. LetW;(Q) be a strong solution

to (5.1) with the same initial data gic L*(R?), thusvox = 8x), M = m) = 0. Then

Vix =8y @€ inQand m=mg, =m, =0.
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5.1. Examples for the extended case.

5.1.1. Incompressible Euler systen@onsider the system

o V+divk(Ve V) +Oxp =0, (5.8)
divyv=0, (5.9

for an unknown vector field: Q — R" and scalap: Q — R.
In this case we forget in the formulation about the divergence free constrain as this
information will be carried in the definition of the spa¢enamelyu=v,A=1d, F(u) =
v®V andL corresponds to the gradient of the pressure. The enm)o:p)éMz andG =
On = v. We see that the spa¥ds the space of divergence free smooth vector fields
A direct calculation yieldsj, = %V(XMZ and thereford_, = %Mzea, whereg,, is the
unit vector in thex direction. We easily check that, - dgu = %Mzdivxv =0if G(u) =
vey.

5.1.2. Incompressible magnetohydrodynamit®t us consider the system

8tv+divx(V®v—b®b)+DX(p+%|b|2):0 (5.10)
ab+ divy(vob—b®v) =0, (5.11)

divyv=0 (5.12)

divyb=0 (5.13)

for unknown vector functiong: Q — R" andb: Q — R" and an unknown scalar function
p: Q — R. Itis sufficient to require that dib is equal to zero at the initial time as the
information is then transported. The system describes the motion of an ideal electrically
conducting fluid, see e.g. [23, Chapter VIII].

Hereu= (v,b)T,A=1d, L = (Ox(p+ 3|b[?),0)T and

vVVv—b®b
F(V,b) = (Fl,...,Fn)<V,b) = ( vb—bxov ) )

Similarly as in the previous casg,= %(|v|2jL Ibj?) andG = On = u= (v,b)". The space
Y is the space of divergence free smooth vector fields in the first (velocity) variable, a
common feature in the incompressible problems.
For this system the entropy fluxes arg = 3(|v[? + |b[?)vy — (V- b)by, consequently
we derive that
m:(%WHWM)‘
—(v-b)ey

HencelLy - dgU = %(|V|2 + |b[?) divkv — (v-b)divkb and we see that the first term is zero
wheneverG(u) € Y and the second term is zero whenevertiv= 0 at the initial time
t=0.
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5.1.3. Nonhomogeneous incompressible Euler systeere we consider the system

ap +divk(pv) =0, (5.14)
o (pV) +divy(pve V) +Oxp =0, (5.15)
divyv =0, (5.16)

for an unknown vector field: Q — R" and scalar fieldp: Q — R, andp: Q — R.
Similarly as in the compressible Euler example 2.1 we choose the state variables to be

u=(u,u2)" = (p,+/pv)". ThenA(u) = (u,/t1uz)", L = (0,0xp)" and
F(U) = (Fa,...,F)(u) = ( v/l ) ,

U2 ® U2

The divergence-free condition (5.16) allows us to choose as the entropy the function

M) = 5wl +18)

Indeed, in this case we get

_wf?
G(u) = < U]_ u22u1 )
VU1

and the spac¥ will be again the space of smooth functiansuch that the divergence of
the second component &f(u) is equal to zero, i.e. the space of states with divergence-
free velocities.

The entropy fluxes are noay, = 3(u? + |uz|2)\“/2—uﬂ1 and we derive that

1
T — 72V Uil
La(u) = f 3/2 .
2Up €o
A straightforward computation reveals tHat - dou = %u%divxi and thus it equals to

ST
zero wheneveu is such thaG(u) € Y.

5.1.4. Nonhomogeneous incompressible magnetohydrodynaMiesconsider the sys-
tem

ap +divk(pv) =0, (5.17)
) 1
a(pv) +divi(pvev—b®b) +Ox(p+ E|b|2) =0, (5.18)
db+divy(vedb—-bov) =0, (5.19)
divyv =0, (5.20)
divb =0, (5.21)

with unknown vector fieldv: Q — R" andb: Q — R" and scalar fieldp: Q — R,
andp: Q — R. Again if we assume dpb = 0 at the timet = 0, this information gets
transported.
In order to be able to continuously extend the flukgsfor zero densities, we can
not proceed the same way as in the previous cases. Therefore we now choose the state
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variables to bei = (ug,Up,u3)T = (p,v,b)T. ThenA(u) = (ug,usup,uz)™, L = (0,0x(p+
$|b[2,0)T and
uiuo
F(u)=(F,...,F)(u) = | Ul2®Uz —Uz® U3
Uy @ Uz — U3 @ Up

Similarly as in the case of nonhomogeneous Euler equations, we can choose as the entropy
the function

1
n(u) = 5 (U + gl +|usl).

and obtain
Ug — 3|Up|?
G(u) = uo
us
The spacé&’ will be once again the space of smooth functiorsich that the divergence
of the second component Gf(u) is equal to zero, i.e. the space of states with divergence-
free velocities.
The entropy fluxes arg, = %(uf + Ug|up|? + |us|?) Uz — Uz - UsUz, and consequently

0
Lo(u) = | 3(uf+|usf’)eq
—U2 - U3€qy

In particular we see thdl, - deu = 3(u? + |ug|?) divk Uy — Uz - uzdivyUg. Similarly as in
the example of incompressible magnetohydrodynamics we conclude,thégu = 0 for
all usuch thatG(u) € Y if we moreover assume that giv= 0 at the initial timet = 0.

APPENDIXA. AUXILARY FACTS

We include a lemma similar to [7, Lemma A.1], however under weaker assumptions,
see the discussion in Remark 1.2. The proof follows similar lines, however we include it
for reader’s convenience.

Lemma A.1l. Let (H1)-(H3) and(1.15)be satisfied. Then for each=1,....d
Fe(uU) <Cn(ulu) (A.1)
for each uec X and bounded U.

Proof. LetD C X be a compact setand Bt := {y+ o :y € D, || < €}. The condition
(H3) does not provide thaf is necessarily convex, nevertheless we can introduce an
entropyH = 1 o A~1 which is already uniformly convex iD. If we define now

HAWIAU)) :=H(A(u))—H(AU)) - TWH(AU))(Au) - AU)) (A-2)
we immediately observe that

nuU) =n(u)-nU)-GU)(A)-AU)) =H(AU)AUV)) (A-3)



24 PIOTR GWIAZDA, ONOREJ KREML AND AGNIESZKA SWIERCZEWSKA-GWIAZDA

just due to chain rule and an observation that(u) = CyH (A(u))JA(u). We also intro-
duce a flux in new variables, i.eQ, = F, o A~1. Similarly we define the relative flux

of Qu
Qu(AU)AU)) = Qu(A(U)) — Qu(AU)) — DvQa (AU)) (A(U) —AU)). (A4)
As OF,(U) = O0\Q(A(U))OA(U), thus we observe that

Fo (UlU) = Fg (u)—Fe (U) — OFy (U)[DAU)]H(AU)—AU)) = Qu(AU)|AU)).

(A.5)

Step 1.Consider first the casee D¢,U € D. Observe that there exists a constent- O
such that

N(ulU) =HAW)AU)) > ci]Au) - AU)[? (A.6)

wherec; = infyep, 02H (A(y)), which is positive by the uniform convexity ¢f on the
set ImA(D¢)). Next we estimate the relative flux as follows

Fo(uU)] = [Qa(AU)AU))| < Sup DHAY)) [AU) —AU)? < con(ulu).

€D¢

where the constamy includes sup.p, |0°F (y)| and SUPep, |O2A(y)].
Step 2.Let nowu € X\ D andU € D. Observe that since is bounded then there
exist constantg&s, ko such that

nuy)=n(u)-nU)-GU)AU)-AU)) = n(u)—ki—kA()[. (A7)
Observe that for anR > 0
AW
AW < suplAl)|+ sup {E ) (A8)

and thus by the first condition of (1.15) and/ss continuous orX we can claim there
exists a constarks such that

AW < ke + (W) (A.9)
and hence
n(ul) > 2n(u)- (A.10)

We further estimate using (1.1b)
[Fa(UlU)] = [Fo(u) — Fe(U) — OF(U)DAU) "H(AU) - AU))|

< |Fa(u)| + Ke|A(u)| 4+ Kz < ce(1+n(u)). (A.11)
Observe then that from (A.11) together with (A.10), we conclude
Fo(ulU)] < c(1+n(uV)). (A.12)

We shall denote by* € dD, such a vector that there exigtse (0,1) such thatu* =
(1—-t*)u+t*U. Obviously|u* —U| > €. Thus sincelA is nonsingular then there exists
€ > 0 such thatA(u*) — A(U)| > €. Notice that the function

Ry 3t—=H((t(AU)-AU)) +AU))AU))
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is monotone and hendé(A(u)|AU)) > H(A(U*)|A(U)). As we have already shown in
(A.6) we have thaH (A(u*)|A(U)) > c1|A(u*) — A(U)|?, consequently we obtain that

n(uU) =HAU)AV)) = ¢

Thus we conclude (A.1) for all € X from (A.12). By the continuity of,(-|U) and
n(-|U) condition (A.1) holds for all € X. O

For reader’s convenience we recall here the slicing lemma (cf. [15, Theorem 1.5.1]),
which is used for showing desintegration of the concentration measure. Lefithera
finite, nonnegative Radon measure®i™™ and leto be the canonical projection f
ontoR", which means that(E) = u(E x R™) for each Borel seE C R".

Lemma A.2. For o —a.e point xe R" there exists a Radon probablity measwgeon
RM, such that

(i) the mapping x= [pn f(X,y)dvx(y) is c—measurable
and

(i) Jgoem T(XY)AU(X,Y) = [rn (Jrm T(X,¥)dV(Y))do(x) for each bounded, continu-
ous f.

Remark A.3. Note that in case we consider measures associated to sequences which
are bounded in one of the variables, we can even claim that the corresponding canonical
projection is absolutely continuous with respect to the Lebesgue measure. In the case con-
sidered in the current paper we deal with a don@iif] x T9. Considered sequences are
bounded irL*(0,T;L1(T9)). Then the corresponding concentration measuggmits a
desintegration of the form

m = (dx) @ dt, (A.13)
wheret — m is bounded and weak-star measurable as a map[@gFj to .2 (T9).

APPENDIXB. CONVEX FUNCTIONS

We include here the facts used to show that compressible Euler system satisfies the
assumptions of the main theorem. We consider a convex funbtioR ; — R, which
is continuousM(v) =0 iff v= 0 and

im MY _o jim MY _ (B.1)

v—0 V V—oo

A function satisfying the above properties is called\aafunction. We define the Fenchel
conjugate taVl asM* (&) :=sup, (& - p —M(p)). For functionsy,w: Q — R, such that
JoM(v)dx < 0 and [o M*(w)dx < o the following estimate (called Fenchel-Young in-
equality) holds

vw < M(V) +M*(w). (B.2)

To compareN—functions we will say thaM; is essentially stronger thav, if Mx(v) <
M (av) for all v > vp > 0 for all a > 0 and somesp(a). For the purpose of estimates in
Section 2 we will use the following lemma.
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LemmaB.1. LetM;,M", i=1,2be two complementary pairs of-Nunctions. Then the
following conditions are equivalent.

(i) My is essentially stronger than M
(if) M5 is essentially stronger than ]V

(ii)y VA >0, lim §2%J — 0.

The proof of the above fact follows from simple estimates, see [29, Chapter 2.2., Th. 2]
for detalils.
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