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DISSIPATIVE MEASURE VALUED SOLUTIONS FOR GENERAL
CONSERVATION LAWS

PIOTR GWIAZDA, ONDŘEJ KREML AND AGNIESZKAŚWIERCZEWSKA-GWIAZDA

ABSTRACT. In the last years measure-valued solutions started to be considered as a rel-
evant notion of solutions if they satisfy the so-called measure-valued – strong uniqueness
principle. This means that they coincide with a strong solution emanating from the same
initial data if this strong solution exists. This property has been examined for many sys-
tems of mathematical physics, including incompressible and compressible Euler system,
compressible Navier-Stokes system et al. and there are also some results concerning gen-
eral hyperbolic systems. Our goal is to provide a unified framework for general systems,
that would cover the most interesting cases of systems, and most importantly, we give ex-
amples of equations, for which the aspect of measure-valued – strong uniqueness has not
been considered before, like incompressible magentohydrodynamics and shallow water
magnetohydrodynamics.

1. INTRODUCTION

The recent work of Brenier, De Lellis and Székelyhidi [4] significantly ennobled measu-
re-valued solutions of systems of fluid dynamics, as well as hyperbolic systems in general.
They postulated a new principle surprisingly stating that measure-valued solutions, which
were expected to be non-unique to a large extent, become unique once we know that a
strong solution emanating from the same initial data exists. In this case both solutions
coincide on the time interval of existence of the strong solution. What they calledweak-
strong uniqueness for measure-valued solutionsis now usually calledmeasure-valued-
strong uniqueness, ormv-strong uniquenessfor short. We favour the latter term, as it
seems more adequate. The analysis in the case of incompressible Euler system is com-
plete, as DiPerna and Majda had shown in [14] existence of measure-valued solutions to
the incompressible Euler system exactly in the class which, per the result of Brenier et al.,
possesses the property of mv-strong uniqueness.

Careful analysis of the incompressible Euler system allowed the authors of [4] to con-
jecture that an analogue property of mv-strong uniqueness could hold in a more general
setting. They had in fact initiated the studies on mv-strong uniqueness for general hyper-
bolic systems. Following this path, we also direct our interest to a hyperbolic system of
the form

∂tA(u)+∂αFα(u) = 0 (1.1)
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with an initial conditionu(0) = u0. Hereu : [0,T]×Td → X, whereX ⊂ Rn is an open
convex set and byX we mean the closure ofX. Moreover,A,Fα : X → Rn, α = 1, ...,d,
we use the Einstein summation convention and we denoteQ = [0,T]×Td, whereTd is a
d−dimensional torus.

In [4] the authors studied system (1.1) withA(u)≡ u, however their result holds in a
class where no existence result is available (and seems impossible to be proven). This lim-
itation is not particular only for such general systems, but persists even in special cases,
including e.g. compressible Euler system, polyconvex elastodynamics or hyperbolic mag-
netohydrodynamics. The solution is in the form of a classical Young measure only (even
satisfying a technical assumption that the first moment of this measure is inL∞(Q)), not a
triple consisting of a classical Young measure and concentration and concentration angle
measures.

In parallel Demoulini et al. [12] proved a corresponding result on mv-strong unique-
ness for the system of polyconvex elastodynamics. And again the authors attempted to
formulate a more general result for hyperbolic systems. Here the possibility of a con-
centration measure is allowed in the entropy inequality, not in the weak formulation of
the system itself. This approach covers, among others, the case initially considered by
the authors, i.e. the system of polyconvex elastodynamics. For this system the mv-strong
uniqueness result is in the class coinciding with the class in which one shows existence
of solutions. However, this level of generality is still not sufficient to cover the case of
abstract hyperbolic system, as well as e.g. Euler equations, where concentration measure
appears also in the weak formulation.

Therefore there is still a need to dispose of assumptions that solutions satisfy any a pri-
ori bounds, and in particular, that a solution consists only of a classical Young measure.
We find it of great importance to include possibilities of concentration measures appearing
in all termsA(u), the fluxFα(u) and an entropy function. A result on mv-strong unique-
ness shall be deemed complete whenever the class of measure-valued solutions agrees
with the class of an existence result.

Finally, we give a couple of examples of systems, for which the general result statement
gives an original result of mv-strong uniqueness property, namely a system of shallow
water magnetohydrodynamics described in Section 2 and incompressible magnetohydro-
dynamics described in Section 5. Surely the list of new applications is not complete.

1.1. Hypothesis. Throughout the paper we will assume the following conditions hold.

(H1) There exists an open setX ⊂ Rn such that the mappingA : X → Rn is aC2 map
onX, continuous onX and satisfies

∇A(u) is nonsingular∀u∈ X. (1.2)

(H2) The system (1.1) is endowed with a companion law

∂tη(u)+∂αqα(u) = 0 (1.3)

with an entropyη : X→R+ which is aC2 map onX, continuous onX and satisfies
η(u)≥ 0 and

lim
|u|→∞

η(u) = ∞. (1.4)
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This yields the existence of a smooth functionG : X → Rn such that

∇η = G·∇A (1.5)

∇qα = G·∇Fα , α = 1, ...,d. (1.6)

The conditions (1.5)-(1.6) are equivalent to

∇GT∇A = ∇AT∇G (1.7)

∇GT∇Fα = ∇FT
α ∇G, α = 1, ...,d. (1.8)

(H3) The symmetric matrix

∇2
η(u)−G(u)·∇2A(u) (1.9)

is positive definite for allu∈ X.
(H4) The vectorA(u) and the fluxesFα(u) are bounded by the entropy, i.e.

|A(u)| ≤Cη(u) (1.10)

|Fα(u)| ≤Cη(u), α = 1, ...,d. (1.11)

(H5) Defining for a strong solutionU taking values in a compact subset ofX the relative
entropy

η(u|U) := η(u)−η(U)−∇η(U) ·∇A(U)−1(A(u)−A(U)) (1.12)

= η(u)−η(U)−G(U) · (A(u)−A(U))

and defining the relative flux as

Fα(u|U) := Fα(u)−Fα(U)−∇Fα(U)∇A(U)−1(A(u)−A(U)) (1.13)

for α = 1, ...,d we assume it holds

|Fα(u|U)| ≤Cη(u|U). (1.14)

Remark 1.1. Observe that in the above definitions the relative fluxFα(·|U) and relative
entropyη(·|U) are continuous functions inX. This follows directly from the continuity
of Fα(·) andη(·). Note that there is an asymmetry, the relative functions are well defined
for u∈ X, but forU ∈ X.

Remark 1.2. Note that if instead of (H4) we assume that

lim
|u|→∞

|A(u)|
η(u)

= 0, |Fα(u)| ≤C(1+η(u)), α = 1, ...,d, (1.15)

then (H5) follows directly from (1.15), see Lemma A.1 in the appendix.

An analogue lemma under more restrictive assumptions

lim
|u|→∞

|A(u)|
η(u)

= lim
|u|→∞

|Fα(u)|
η(u)

= 0, (1.16)

was proved in [7, Lemma A.1]. Note however that (1.16) is not satisfied e.g. by com-
pressible Euler equations. Any concentration in termsA andFα are not present due to
assumption (1.16), which is a stronger requirement than (H4) assumed in the present pa-
per. This however allowed the authors to omit the general representation of concentrations
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introduced in [14] and [1], because the concentration effect is considered just for the en-
tropy, which is a non-negative scalar function. Thus one can provide a simple derivation
of weak limit as a Young measure and a concentration measure. Under slightly differ-
ent assumptions on the entropy and in the same formulation as currently considered, i.e.,
A(u) is not necessarily an identity, as in the aforementioned results, the issue of measure-
valued-strong uniqueness was considered in [7].

In the spirit of these results, the issue of mv-strong uniqueness was considered for var-
ious systems, including compressible Euler system and Savage-Hutter system describing
granular media in [21], compressible Navier-Stokes in [17] and complete compressible
Euler system in [5]. An overview of these results is provided in [10,32]. At this moment
it is worth mentioning that the result of Březina and Feireisl [5] does not fit in any of
the presented frameworks for general hyperbolic systems, including also the framework
presented in the current paper. Contrary to the other cases, they consider the full thermo-
mechanical system. Thus a new element here is an appearance of the physical entropy.
The system consisting of conservation of mass and conservation of momentum is not a
closed system, as the pressure depends on the energy. To complete the system additional
equation for the energy is considered. Then the role of an entropyη should overtake a
physical entropy, not as it was in the case of isentropic compressible Euler (as the system
for the variablesρ,v), whenη was the energy (kinetic and potential). In the setting of
Březina and Feireisl the entropy inequality does not carry information that would allow to
bound the fluxFα(u). We claim that appearance of thermal energy in the system results
that the system does not fit into the approach initiated by Brenier et al.

The relative entropy method, which is fundamental for mv-strong uniqueness results,
appears to be useful for other areas such as stability studies, asymptotic limits and dimen-
sion reduction problems (e.g. [7], [20], [18], [3], [6]). Not only the systems describing
phenomena of mathematical physics fall into these applications. Also results on problems
arising from biology, cf. [26], [25], [27], [22], can serve as examples. The framework
is known in this context as General Relative Entropy (GRE) and applies for showing as-
ymptotic convergence of solutions to steady-state solutions. Finally we would like to
underline how these results on measure-valued solutions in fluid mechanics affected cer-
tain numerical experiments, cf. [19].

1.2. Dissipative measure-valued solutions.Our interest is directed to the measure-valued-
strong uniqueness principle for dissipative measure-valued solutions. We start with the
motivation for our definition of measure valued solutions.

Assume we have at hand a sequence of solutionsun solving some approximating prob-
lem

∂tA(un)+∂αFα(un) = Pn (1.17)

together with appropriate approximating entropy equation

∂tη(un)+∂αqα(un) = Qn (1.18)
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with Pn,Qn → 0 in appropriate topologies. Natural a priori bound for such problem is
derived through the entropy equation (1.18) and yields

‖η(un)‖L∞(0,T,L1(Td)) ≤C. (1.19)

Due to our assumption (H4), see (1.10), we have the sameL∞(0,T,L1(Td)) bound for
quantitiesA(un) andFα(un). Therefore due to Lemma A.2 and Remark A.3 we are able
to desintegrate concentration measures related to each of these quantities as follows

mf (dxdt) = mt
f (dx)⊗dt. (1.20)

Before defining solutions let us shortly describe the notation. ByP
(
X
)

we mean
the set of probability measures onX, L∞

weak

(
(0,T)×Td;P

(
X
))

stands for the space
of weakly-star essentially bounded measurable maps with values inP

(
X
)
. We mean

by M ([0,T]×Td) the space of measures on[0,T]×Td andM +([0,T]×Td) refers to
positive measures.

Definition 1.3. We say that(ν ,mA,mFα
,mη), α = 1, ...,d, is a dissipative measure-

valued solution of system(1.1) with initial data (ν0,·,m0
A,m0

η) if {νt,x}(t,x)∈(0,T)×Td, ν ∈
L∞

weak

(
(0,T)×Td;P

(
X
))

is a parameterized measure and together with concentration
measures mA ∈ (M ([0,T]×Td))n, mFα

∈ (M ([0,T]×Td))n×n satisfy∫
Q
〈νt,x,A(λ )〉 ·∂tϕdxdt+

∫
Q

∂tϕ ·mA(dxdt)+
∫

Q
〈νt,x,Fα(λ )〉 ·∂αϕdxdt

+
∫

Q
∂αϕ ·mFα

(dxdt)+
∫

Td
〈ν0,x,A(λ )〉 ·ϕ(0)dx+

∫
Td

ϕ(0)·m0
A(dx) = 0

(1.21)

for all ϕ ∈C∞
c (Q)n. Moreover, the total entropy balance holds for allζ ∈C∞

c ([0,T))∫
Q
〈νt,x,η(λ )〉ζ ′(t)dxdt+

∫
Q

ζ
′(t)mη(dxdt)+

∫
Td
〈ν0,x,η(λ )〉ζ (0)dx

+
∫

Td
ζ (0)m0

η(dx)≥ 0
(1.22)

with a dissipation measure mη ∈M +([0,T]×Td).

Throughout our paper we always assume that there exists a generating sequence of ap-
proximate solutions to the system (1.1). Therefore we introduce the following definition.

Definition 1.4. We say that the dissipative measure-valued solution(ν ,mA,mFα
,mη),

α = 1, ...,d, of system(1.1) is generated by a sequence of approximate solutions if there
exists sequences un, Pn and Qn such that(1.17)-(1.18)hold in the sense of distributions,
Pn and Qn converge to zero in distributions and

f (un(t,x))dxdt
∗
⇀ 〈νt,x, f (λ )〉dxdt+mf

hold for f = A,Fα andη .

Our main theorem reads as follows.
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Theorem 1.5. Assumethat hypothesis (H1)-(H5) hold. Let(ν ,mA,mFα
,mη), α = 1, ...,d,

be a dissipative measure-valued solution to(1.1) generated by a sequence of approx-
imate solutions. Let U∈ W1,∞(Q) be a strong solution to(1.1) with the same initial
data u0 ∈ L1(Rd), thusν0,x = δu0(x), m0

A = m0
η = 0. Thenνt,x = δU(t,x) a.e. in Q and

mA = mFα
= mη = 0.

One of the key ingredients in the proof of Theorem 1.5 is the following proposition
stating relations between different concentration measures.

Proposition 1.6. Assume that the hypothesis (H1)-(H5) hold. Let(ν ,mA,mFα
,mη),

α = 1, ...,d, be a dissipative measure-valued solution to(1.1)generated by a sequence of
approximate solutions. Let U∈W1,∞(Q) be a strong solution to(1.1). Then the dissipa-
tive measure valued solution(ν ,mA,mFα

,mη) has the following properties:

(i) The concentration measure of the relative entropyη(u|U) is equal to

mη −mA ·G(U)

and

mη −mA ·G(U)≥ 0. (1.23)

(ii) The concentration measure of the relative flux Fα(u|U) is equal to

mFα
−∇Fα(U)∇A(U)−1mA

and it is bounded by the concentration measure of the relative entropy, i.e.

|mFα
−∇Fα(U)∇A(U)−1mA| ≤C(mη −mA ·G(U)). (1.24)

1.3. Historical perspective. Measure-valued solutions, despite being a relatively weak
notion of solutions, play an important role in modern analysis of nonlinear systems of par-
tial differential equations. The basic concept behind this approach is to embed the prob-
lem into a wider space. Instead of considering sequences solving approximate problems,
which are some measurable functions, one passes to the level of parametrized measures.
The benefit of this idea is passing from a nonlinear problem to a linear one. The essence of
the proof of existence of such solutions becomes a matter of appropriate estimates rather
than subtle weak sequential stability arguments. There is of course a cost to be paid –
the result of a limit is only a weak object represented by aYoung measure, namely by a
parametrized family of measures.

This framework begun with a celebrated paper of Young [33], see also [2] for a sum-
mary of the concept of Young measures. Later, Tartar [31] and DiPerna [13] applied
this approach to define measure-valued solutions to scalar conservation laws and, as a
bystep in the proof of existence of entropy weak solutions, showed uniqueness of entropy
measure-valued solutions (we mean by that solutions satisfying in addition a variant of
entropy inequality for measures).

The next breakthrough is due to DiPerna and Majda who directed their attention to the
incompressible Euler system. Here, sequences of approximate solutions may not only
oscillate, but also concentrate. Thus the original Young measure, capable of handling os-
cillations only, was insufficient to fully characterize weak limits of such sequences. An
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extension togeneralized Young measures(or DiPerna-Majda measures) was later pro-
posed, see [14] and also [1] for some refinements. A measure-valued solution was then
defined not only as a Young measure, but a triple describing oscillations, concentrations
and concentration angle. Since this framework transfers to other systems and to general
case as well we provide the full details in Section 3.2.

We direct our interest to measure-valued solutions to hyperbolic conservation laws.
Unlike in the scalar case, for systems of conservation laws we cannot show uniqueness
of entropy measure-valued solutions. The main obstacle to formulate analogous result is
that, in most cases, we are equipped with only one entropy-entropy flux pair, contrary
to a rich family of entropies available in the scalar case. Even more, the corresponding
relative entropy inequality lacks appropriate symmetry.

For most systems of mathematical physics it is well known that even weak solutions
may fail to be unique. Only some conditional uniqueness can be claimed.This conditional
uniqueness property had been studied for many systems of fluid mechanics. First, in
their classical papers, Prodi [28] and Serrin [30] had shown that a weak solution to the
incompressible Navier-Stokes equations is unique and coincides with the strong solution,
provided such a strong solution is known to exist. For conservation laws a conditional
uniqueness of weak solutions was established firstly by Dafermos in [8]. This is somehow
an extension of the result on uniqueness of strong solutions (cf. [24]), asserting that they
are unique not only in the class of strong solutions, but also in the wider class of entropy
weak solutions. This property became known asweak-strong uniqueness.

It was discovered, rather surprising, that the class of entropy weak solutions in the
above can be widened to the class of measure-valued solutions which satisfy some kind of
entropy inequality. One can ask -Is it to the benefit?After all, measure-valued solutions
seem a very weak notion and, admittedly, carry hardly any information about the physical
problem. Nevertheless, measure-valued solutions, intimately related to Young measures,
prove to be a powerful tool in the analysis of nonlinear PDEs.

Numerous results on mv-strong uniqueness for various systems have already been de-
scribed at the beginning of the introduction, as well as some of the results which concern
a general hyperbolic case.

2. APPLICATIONS

In this section we provide a short list of applications of the general theory presented
above. The first impression is that the general framework cannot cover e.g. incompress-
ible Euler system. In Section 5 we show that a slight refinement allows to include not
only incompressible Euler system, but also incompressible magnetohydrodynamics.

2.1. Compressible Euler system.The compressible Euler system is the following sys-
tem of equations

∂tρ +divx(ρv) = 0 (2.1)

∂t(ρv)+divx(ρv⊗v)+∇xp(ρ) = 0, (2.2)

for an unknown vector fieldv: Q→Rn and scalarρ : Q→R. The pressurep(ρ) is a given
function and if p′(ρ) > 0, the resulting system is a hyperbolic system of conservation
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laws. The associated entropy is given by

η(ρ,v) =
1
2

ρ|v|2 +P(ρ), (2.3)

here the pressure potentialP(ρ) is related to the original pressurep(ρ) through

P(ρ) = ρ

∫
ρ

1

p(r)
r2 dr. (2.4)

We assume the pressure satisfies the following assumptions

p∈C[0,∞)∩C2(0,∞), p(0) = 0, p′(ρ) > 0 for ρ > 0, (2.5)

and

liminf
ρ→∞

p′(ρ) > 0, liminf
ρ→∞

P(ρ)
p(ρ)

> 0. (2.6)

Since the quantityρ represents the physical density, we want it to be nonnegative, hence
X = (0,∞)×Rn andX = [0,∞)×Rn.

We will show that the system satisfies the assumptions of Theorem 1.5 and fits into the
presented framework. We choose the variableu to beu= (u1,u2) = (ρ,

√
ρv),u1∈ [0,∞),

u2 ∈ Rn. Note that we have some freedom in choosing the variables, however keeping
in mind thatA and Fα need to be continuously extendable fromX to X. Our choice
of variables is convenient for further estimates. Note however that ifu = (ρ,m) with
m= ρv, then the second component of the fluxFα having then the formm⊗m

ρ
does not

extend continuously toX. Nevertheless, in the chosen variablesu = (u1,u2) = (ρ,
√

ρv)
we have (denoting byIn then×n identity matrix)

A(u) =
(

u1√
u1u2

)
, F(u) = (F1, . . . ,Fn)(u) =

( √
u1u2

u2⊗u2 + p(u1)In

)
. (2.7)

The entropy in these variables has a form

η(u) =
1
2
|u2|2 +P(u1). (2.8)

Obviously hypothesis (H1) and (H2) are satisfied with

G(u) =

(
P′(u1)− 1

2u1
|u2|2

u2√
u1

)
(2.9)

and the matrix∇2η(u)−G(u)·∇2A(u) is equal to(
P′′(u1)+ 1

4
|u2|2
u2

1
−1

2
u2
u1

−1
2

u2
u1

In

)
(2.10)

and is positive definite, hence (H3) is satisfied. Instead of checking hypothesis (H4)-(H5)
we will check that (1.15) holds, see Remark 1.1.

We want to show that
|A(u)|
η(u)

→ 0 (2.11)

as|u| →∞. Observe firstly that

P(ρ)≥ ρ logρ (2.12)
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for everyρ ≥ 0. Consider the convex functionsM1(ρ) := ρ2
√

log(ρ +1) andM2(ρ) :=
ρ2. It holds that

∀λ > 0 lim
ρ→∞

M2(λρ)
M1(ρ)

= 0, (2.13)

indeed, asρ → 0

λ 2ρ2

ρ2
√

log(ρ +1)
=

λ 2√
log(ρ +1)

→ 0. (2.14)

This is equivalent to saying that the functionM1 is essentially stronger thanM2 (for the
definition and the facts used in the sequel see Appendix B). Define the Fenchel conjugate
to M asM∗(ξ ) := supρ(ξ ·ρ −M(ρ)). Then the corresponding relation for the conjugate
functions reads asM∗

2 is essentially stronger thanM∗
1 and asM∗

2(ξ ) = ξ 2, then in particular

lim
ξ→∞

M∗
1(ξ )

M∗
2(ξ )

= lim
ξ→∞

M∗
1(ξ )
ξ 2 = 0. (2.15)

The term
√

u1u2 is estimated with help of Fenchel-Young inequality as follows

|
√

u1u2| ≤M1(
√

u1)+M∗
1(|u2|).

This allows us to estimate

|A(u)|
η(u)

=
u1 + |√u1u2|

1
2|u2|2 +P(u1)

≤ u1

P(u1)
+

M1(
√

u1)
P(u1)

+
M∗

1(|u2|)
1
2|u2|2

. (2.16)

Taking into account (2.12) and (2.15) allows to conclude the above converges to zero
as|u| →∞. Moreover

|F(u)|
η(u)

≤
|√u1u2|+ |u2|2 + p(u1)

1
2|u2|2 +P(u1)

≤
1
2u1 + 1

2|u2|2 + |u2|2 + p(u1)
1
2|u2|2 +P(u1)

(2.17)

thus the fraction is bounded and (1.15) is satisfied.

Remark 2.1. In the casep(ρ) = ρ the pressure potential is given byP(ρ) = ρ logρ.
In order to make the entropyη(ρ,v) a nonnegative function, we have to add a proper
constant, in this case the constant ise−1, so we have

η(ρ,v) =
1
2

ρ|v|2 +ρ logρ +e−1.

Then the rest of the arguments follow the same lines.

Remark 2.2. Notice that condition (2.11) provides that the concentration measure re-
lated to a sequence(A(un)) will not appear. This can be immediately concluded from
Proposition 3.3, which we prove later. Indeed, since (2.11) provides that

lim
|u|→∞

|A(u)| ≤C lim
|u|→∞

η(u)

for anyC > 0, thus due to the Proposition 3.3|mA| ≤Cmη also for anyC > 0 and hence
mA ≡ 0.
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2.2. Shallow water magnetohydrodynamics.Consider the following system of equa-
tions of shallow water magnetohydrodynamics

∂th+divx(hv) =0, (2.18)

∂t(hv)+divx(hv⊗v−hb⊗b)+∇x(gh2/2) = 0, (2.19)

∂t(hb)+divx(hb⊗v−hv⊗b)+vdivx(hb) =0, (2.20)

whereg> 0 is the gravity constant,h: Q→R+ is the thickness of the fluid,v: Q→R2 is
the velocity,b: Q→ R2 is the magnetic field. Note that once initially divx(h0b0) is zero,
then divx(hb) vanishes for all times due to the transport equation for the magnetic field.
Thus we can omit this term in further analysis.

We choose the variablesu = (u1,u2,u3) = (h,
√

hv,
√

hb), thus

A(u) =

 u1√
u1u2√
u1u3

 , F(u) = (F1,F2)(u) =


√

u1u2

u2⊗u2−u3⊗u3 + gu2
1

2 I2
u3⊗u2−u2⊗u3


(2.21)

and the entropy

η(u) =
1
2
|u2|2 +

1
2
|u3|2 +

1
2

gu2
1. (2.22)

We observe that

G(u) =

 gu1− 1
2u1

(|u2|2 + |u3|2)
u2√
u1

u3√
u1

 (2.23)

and

∇2
η(u)−G(u)·∇2A(u) =

 g+ |u2|2+|u3|2
4u2

1
−1

2
u2
u1

−1
2

u3
u1

−1
2

u2
u1

I2 0
−1

2
u3
u1

0 I2

 (2.24)

and thus (H1)-(H3) are satisfied.
The appropriate estimates providing that (1.15) is satisfied follow the same lines as for

compressible Euler system, the additional terms do not require any new effort.

2.3. Polyconvex elasticity. In this section we consider thesystem of elasticity

∂ 2y
∂ t2 = ∇ ·S(∇y), (2.25)

wherey : Q×R+ →R3 stands for the motion,F = ∇y,v= ∂ty, andSstands for the Piola-
Kirchoff stress tensor obtained as the gradient of a stored energy function,S= ∂W

∂F . Here
we assume thatW is polyconvex, that isW(F) = G(Φ(F)) whereG : M3×3×M3×3×
R→ [0,∞) is a strictly convex function andΦ(F) = (F,cofF,detF) ∈M3×3×M3×3×R
stands for the vector of null-Lagrangians:F, the cofactor matrix cofF and the determinant
detF. It is observed in [9] and [12] that this system can be embedded into the following
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symmetrizable hyperbolic system in a new dependent variableΞ = (F,Z,w) taking values
in M3×3×M3×3×R

∂vi

∂ t
=

∂

∂xα

(
∂G
∂ΞA(Ξ)

∂ΦA

∂Fiα
(F)
)

,

∂ΞA

∂ t
=

∂

∂xα

(
∂ΦA

∂Fiα
(F)vi

)
.

(2.26)

This system admits the following entropy-entropy flux pair

η(v,F,Z,w) =
1
2
|v|2 +G(F,Z,w),

qα = vi
∂G
∂ΞA(Ξ)

∂ΦA

∂Fiα
(F).

(2.27)

A strong solution to (2.25) is a functiony∈W2,∞. It automatically satisfies

∂tη(y)+∂αqα(y) = 0. (2.28)

Under the following additional growth assumptions on the functionG:

(A1) G∈C3(M3×3×M3×3×R; [0,∞)) is a strictly convex function satisfying for some
C > 0 the boundD2G≥C > 0,

(A2) G(F,Z,w)≥ c1(|F|p + |Z|q + |w|r +1)−c2 wherep∈ (4,∞), q,r ∈ [2,∞),
(A3) G(F,Z,w)≤ c(|F |p + |Z|q + |w|r +1),
(A4) |∂FG|+ |∂ZG|

p
p−1 + |∂wG|

p
p−2 ≤ o(1)(|F|p+ |Z|q+ |w|r +1) whereo(1)→ 0 as

|Ξ| → ∞,

an existence of dissipative measure-valued solutions as well as a weak-strong uniqueness
result are proven, cf. [11,12]. According to the discussion in the Introduction it is enough
to show that conditions (1.16) are satisfied and thus (H5) follows.

A(u) =
(

v
F

)
, Fα(u) =

(
∂G
∂F (Ξ) ∂F

∂Fα

∂F
∂Fα

v

)
.

By condition (A2) we conclude that

lim
|u|→∞

|A(u)|
η(u)

= 0. (2.29)

The combination of conditions (A2) and (A4) provides that

lim
|u|→∞

|Fα(u)|
η(u)

= 0. (2.30)

For the discussion on the remaining assumptions (H1)-(H3) we refer the reader to [7].

3. RELATIONS BETWEEN CONCENTRATION MEASURES

Our aim in this section is to prove Proposition 1.6. We provide two proofs, the first
one works with the Radon-Nikodym derivatives of measures, whereas the second one re-
lates our concept of dissipative measure valued solutions to the framework of generalized
Young measures and is in its core based on the slicing lemma for products of measures.
In particular, in the second proof we have to assume that the modified recession functions
(for definition see below) exist for nonlinear functions appearing in our problem.
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3.1. Radon-Nikodym derivatives of concentration measures.Let us assume that we
have a sequence of functionsun(x) : Y→X, hereY is an underlying physical space, in the
applicationsY = [0,T]×Td, andX ⊂ RN.

We recall the definition of the concentration measure related to a nonnegative nonlinear
function f : Y×X →R+. The concentration measuremf is a nonnegative Radon measure
such that

〈mf ,χ〉 := lim
k→∞

lim
n→∞

∫
Y∩{ f≥k}

f (y,un(y))χ(y)dy

for all χ ∈Cc(Y), χ ≥ 0.
Let h : Y×X → R+ be a nonnegative function satisfying

h(y,u)≤C f(y,u)

for all y∈Y and allu∈ X. Then it is easy to observe that

{y;C f(y,u(y))≥ k} ⊃ {y;h(y,u(y))≥ k}

and therefore

〈mh,χ〉 ≤ lim
k→∞

lim
n→∞

∫
Y∩{ f≥k}

h(y,un(y))χ(y)dy.

If g(y,u) is not a nonnegative function, we can split it into its positive and negative part

g(y,u) = g+(y,u)−g−(y,u),

and

|g(y,u)|= g+(y,u)+g−(y,u),

where bothg+ andg− are nonnegative. Thus we have

|〈mg,χ〉|= |〈mg+,χ〉−〈mg−,χ〉| ≤ 〈mg+,χ〉+ 〈mg−,χ〉= 〈m|g|,χ〉. (3.1)

Finally, just using the same argument componentwise and using as a norm for vectors in
RN the l∞ norm, we get the same for vector-valued functionsg and thus vector-valued
concentration measuresmg. In particular if we assume

|g(y,u)| ≤C f(y,u)

for a nonnegative functionf and a vector-valued functiong, we end up with

|〈mg,χ〉| ≤ lim
k→∞

lim
n→∞

∫
Y∩{ f≥k}

|g(y,un(y))|χ(y)dy.

Next, we recall the concept of the Radon-Nikodym derivative of measures. Letµ1 and
µ2 be nonnegative Radon measures such thatµ2 << µ1. Then there exists a function
Dµ1µ2(x) ∈ L∞(µ1) called a Radon-Nikodym derivative ofµ2 with respect toµ1 such that

µ2(A) =
∫

A
Dµ1µ2(x)dµ1(x). (3.2)

Moreover one can characterize the Radon-Nikodym derivative as follows (see e.g. [16])

Dµ1µ2(x) = lim
ε→0+

µ2(B(x,ε))
µ1(B(x,ε))

(3.3)
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for µ1−a.e.x. HereB(x, r) denotes as usual the ball with centerx and radiusr.
The definition of the Radon-Nikodym derivative can be extended using the Hahn-

Jordan theorem to signed measures and then componentwise to vector valued signed mea-
sures.

First, let us define the continuous extension of a characteristic function of the ball of
radiusε > 0 as follows: Letκε : R+ → R+ be defined as follows

κε(x) = 1 for x∈ (0,ε) (3.4)

κε(x) = 2− x
ε

for x∈ (ε,2ε) (3.5)

κε(x) = 0 for x∈ (2ε,+∞). (3.6)

Fix x∈Y and defineχx,ε : Y → R+ asχx,ε(y) := κε(|y−x|).

Proposition 3.1. Let µ1 and µ2 be nonnegative Radon measures such thatµ2 << µ1.
Then it holds

Dµ1µ2(x) = lim
ε→0+

〈µ2,χx,ε〉
〈µ1,χx,ε〉

. (3.7)

In order to prove Proposition 3.1 we need two elementary observations. Firstly it is a
matter of a simple computation to check that

χx,ε(y) =
1
ε

∫ 2ε

ε

χB(x,s)(y)ds.

Secondly we need the following lemma.

Lemma 3.2. Let a,b be nonnegative functions and let

lim
ε→0+

a(ε)
b(ε)

= M.

Then

lim
ε→0+

∫ 2ε

ε
a(s)ds∫ 2ε

ε
b(s)ds

= M. (3.8)

Proof. Directly from the assumption of the lemma we have

lim
ε→0+

sup
s∈(ε,2ε)

a(s)
b(s)

= M.

This yields that for everyδ > 0 there existsεδ > 0 such that for allε < εδ and alls∈
(ε,2ε) it holds

(M−δ )b(s)≤ a(s)≤ (M +δ )b(s).

Integrating this inequality we immediately get

(M−δ )
∫ 2ε

ε

b(s)ds≤
∫ 2ε

ε

a(s)ds≤ (M +δ )
∫ 2ε

ε

b(s)ds,

which concludes the proof. �
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Using Lemma 3.2 we now prove Proposition 3.1. We have

Dµ1µ2(x) = lim
ε→0+

〈µ2,χB(x,ε)〉
〈µ1,χB(x,ε)〉

(3.9)

= lim
ε→0+

∫ 2ε

ε
〈µ2,χB(x,s)〉ds∫ 2ε

ε
〈µ1,χB(x,s)〉ds

= lim
ε→0+

∫ 2ε

ε

∫
Y χB(x,s)(y)dµ2(y)ds∫ 2ε

ε

∫
Y χB(x,s)(y)dµ1(y)ds

= lim
ε→0+

∫
Y

∫ 2ε

ε
χB(x,s)(y)dsdµ2(y)∫

Y

∫ 2ε

ε
χB(x,s)(y)dsdµ1(y)

= lim
ε→0+

∫
Y χx,ε(y)dµ2(y)∫
Y χx,ε(y)dµ1(y)

.

The following proposition is a generalization of [17, Lemma 2.1], however the proof fol-
lows differently, without using the connection between biting limit and Young measures.

Proposition 3.3. Let f(y,u) be a nonnegative continuous function on Y×X and let
g(y,u) be a vector-valued function, also continuous on Y×X such that

lim
|u|→∞

|g(y,u)| ≤C lim
|u|→∞

f (y,u). (3.10)

Let mf and mg denote the concentration measures related to f and g respectively. Then

|mg| ≤Cmf , (3.11)

i.e. |mg|(A)≤Cmf (A) for any Borel set A⊂Y.

Proof. First we observe that|mg|<< mf as a consequence of (3.10). Then for any Borel
setA⊂Y we have

|mg|(A) =
∫

A
Dmf |mg|dmf ≤ ‖Dmf |mg|‖L∞

mf
(A)mf (A)≤ ‖Dmf |mg|‖L∞

mf
(Y)mf (A).

However we also have

Dmf |mg|(x) = lim
ε→0+

〈|mg|,χx,ε〉
〈mf ,χx,ε〉

(3.12)

≤ lim
ε→0+

limk→+∞ limn→+∞
∫
Y∩{ f≥k} |g(y,un(y))|χx,ε(y)dy

limk→+∞ limn→+∞
∫
Y∩{ f≥k} f (y,un(y))χx,ε(y)dy

≤C.

�

Finally we use Proposition 3.3 withf = η andg = A andg = Fα and then withf =
η(·|U) andg = Fα(·|U) to prove Proposition 1.6.

3.2. Generalized Young measures.Let us recall here the result of [1] characterizing the
weak limits of nonlinear functions applied to maps bounded inLp(Td). Suppose(un)n∈N
is a sequence of maps bounded inLp(Td;Rm). It was proved in [1] that there exists a
subsequence (not relabeled), a parametrized probability measureν ∈ L∞

w(Td;P(Rm)), a
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non-negative measurem∈M +(Td), and a parametrized probability measure on a sphere
ν∞ ∈ L∞

w(Td,m;P(Sm−1)) such that

f (x,un(x))dx
∗
⇀
∫

Rm
f (x,λ )dνx(λ )dx+

∫
Sm−1

f ∞
r (x,β )dν

∞
x (β )m (3.13)

weakly-star in the sense of measures. Here,f : Td×Rm→R is any Carath́eodory function
with well defined and continuous recession functionf ∞

r : Td×Sm−1 → R defined as

f ∞
r (x,β ) := lim

s→∞

f (x,sβ′)
sp . (3.14)

Note that the measureν represents the classical Young measure describing the oscilla-
tions in the sequence, whereas the second term on the right hand side of (3.13) describes
the concentrations.

We can easily observe that this framework does not apply e.g. in the case of isentropic
compressible Euler system with a pressure given byp(ρ) = ργ , with γ 6= 2. Choosing
the variablesβ = (β1,β2) = (ρ,

√
ρv) the flux function has a formf (β ) = (

√
β 1β2,β

γ

1 +
β2⊗β2). Consider an approximate sequenceun = (ρn,

√
ρnvn). An entropy inequality

provides a priori bounds∫
Ω

(
1
2
|
√

ρnvn|2 +
1

γ −1
(ρn)γ

)
dx≤ c. (3.15)

Thus we cannot conclude there exists somep that the sequenceun is uniformly bounded in
Lp. Here the first component is bounded inLγ and the second one inL2. In a consequence
there is no possibility to define a recession function according to formula (3.14).

This example motivates us to claim that in many cases the framework of Alibert and
Bouchitt́e needs a refinement to allow for considering sequences with components of dif-
ferent growth. Following [21] let us take a sequenceun = (vn,wn)k with (vn) bounded in
Lp(Ω;Rl ) and(wn) bounded inLq(Ω;Rm) (1≤ p,q < ∞). Then we define thenonhomo-
geneous unit sphereas follows

Sl+m−1
p,q := {(β1,β2) ∈ Rl+m : |β1|2p + |β2|2q = 1}.

We can characterize the limit as in (3.13) and this is valid for all integrandsf whosep-
q-recession function exists and is continuous onΩ̄×Sl+m−1

p,q . Thep-q-recession function
is defined as

f ∞(x,β1,β2) := lim
s→∞

f (x′,sqβ ′
1,s

pβ ′
2)

spq .

Such an approach however is one of possible frameworks. We could consider more gen-
eral compactifications ofRn than compactification with a sphere.

Since

lim
s→+∞

η(su) = +∞

for all u∈ Sn−1∩X we would like to define modified recession function as follows. Let
f (u) : X→R be a smooth function and letη(u)be an entropy related to hyperbolic system
(1.1). Then the modified recession functionf ∞(u) : Sn−1∩X → R reads as

f ∞(u) = lim
s→+∞

f (su)
η(su)

(3.16)
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for anyu∈ Sn−1∩X.
However, again here such defined function may not necessarily be continuous. Thus

the correct definition should rather have the form

f ∞(u) = lim
s→∞

f (sα1β1, . . . ,sαnβn)
η(sα1β1, . . . ,sαnβn)

(3.17)

with someαi > 0, i = 1, . . . ,n.
Assuming that the modified recession functionsA∞ andF∞

α are properly defined (ac-
cording to the definition from (3.17)) it is easy to observe that the properties (1.10)-(1.11)
from hypothesis (H4) transfer to

|A∞(u)| ≤C (3.18)

|F∞
α (u)| ≤C, α = 1, ...,d. (3.19)

Given a strong solutionU to system (1.1) with values in a compact subset ofX we can also
calculate the modified recession functions for the relative quantitiesη(u|U) andFα(u|U).
We have

η
∞(u|U) = lim

s→+∞

η((sα1u1, . . . ,sαnun)|U)
η(sα1u1, . . . ,sαnun)

= 1−G(U) ·A∞(u) (3.20)

and

F∞
α (u|U) = lim

s→+∞

Fα((sα1u1, . . . ,sαnun)|U)
η(sα1u1, . . . ,sαnun)

= F∞
α (u)−∇Fα(U)∇A(U)−1A∞(u).

(3.21)

Note that since bothη(u|U) and η(u) are nonnegative, also the modified recession
functionη∞(u|U) has the same property, i.e.

η
∞(u|U) = 1−G(U) ·A∞(u)≥ 0 (3.22)

for all u∈ Sn−1∩X. Moreover the upper bound for the relative flux (1.14) is also trans-
fered to the modified recession functions as

|F∞
α (u|U)|= lim

s→+∞

|Fα((sα1u1, . . . ,sαnun)|U)|
η(sα1u1, . . . ,sαnun)

≤C lim
s→+∞

η((sα1u1, . . . ,sαnun)|U)
η(sα1u1, . . . ,sαnun)

= Cη
∞(u|U).

(3.23)

Now we use these bounds for the recession functions to derive the bounds for the con-
centration measures described in Proposition 1.6. We have

η(un|U)dxdt
∗
⇀ 〈νt,x,η(λ |U)〉dxdt+

∫
Sm−1

η
∞(β |U)dν

∞
t,x(β )mη (3.24)

= 〈νt,x,η(λ |U)〉dxdt+mη −G(U) ·
∫

Sm−1
A∞(β )dν

∞
t,x(β )mη

= 〈νt,x,η(λ |U)〉dxdt+mη −G(U) ·mA.

This proves the form of the concentration measure forη(u|U) and also (1.23), since
η∞(β |U) is a nonnegative function,ν∞

t,x is a probability measure (i.e. nonnegative) and
mη is a nonnegative measure.
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Our final aim is to prove (1.24). We start with

Fα(un|U)dxdt
∗
⇀ 〈νt,x,Fα(λ |U)〉dxdt+

∫
Sm−1

F∞
α (β |U)dν

∞
t,x(β )mη (3.25)

= 〈νt,x,Fα(λ |U)〉dxdt

+
∫

Sm−1
F∞

α (β )−∇Fα(U)∇A(U)−1A∞(β )dν
∞
t,x(β )mη

= 〈νt,x,Fα(λ |U)〉dxdt+mFα
−∇Fα(U)∇A(U)−1mA,

which proves the form of the concentration measure for the relative fluxesFα(u|U). Fi-
nally we use (3.23) to argue that

|mFα
−∇Fα(U)∇A(U)−1mA|=

∫
Sm−1

|F∞
α (β |U)|dν

∞
t,x(β )mη (3.26)

≤C
∫

Sm−1
η

∞(β |U)dν
∞
t,x(β )mη = C(mη −G(U) ·mA).

The proof of Proposition 1.6 is complete.

4. RELATIVE ENTROPY INEQUALITY

4.1. Derivation of the relative entropy inequality. We derive the relative entropy in-
equality. We choose in (1.21) a test functionϕ = ζ (t)G(U(t,x)) with ζ ∈ C∞

c ([0,T)).
As U is a strong solution, thus (1.1) is satisfied byU , we multiply it with the same test
function and integrate, finally to subtract it from (1.21) to get∫

Q
ζ
′(t)G(U) · (〈νt,x,A(λ )〉−A(U))dxdt+

∫
Q

ζ
′(t)G(U) ·mA(dxdt)

+
∫

Q
ζ (t)∂αG(U) · (〈νt,x,Fα(λ )〉−Fα(U))dxdt+

∫
Q

ζ (t)∂αG(U) ·mFα
(dxdt)

+
∫

Q
ζ (t)∂tG(U) · (〈νt,x,A(λ )〉−A(U))dxdt+

∫
Q

ζ (t)∂tG(U) ·mA(dxdt)

+
∫

Td
ζ (0)G(U(0))· (〈ν0,x,A(λ )〉−A(U(0)))dx+

∫
Td

ζ (0)G(U(0))·m0
A(dx) = 0.

(4.1)

Following [12] we define the averaged quantities

H (ν ,U) .= 〈ν ,η〉−η(U)−G(U) ·
(
〈ν ,A〉−A(U)

)
, (4.2)

Zα(ν ,U) .= 〈ν ,Fα〉−Fα(U)−∇Fα(U)∇A(U)−1(〈ν ,A〉−A(U)) . (4.3)

Since∂tU =−(∇A(U))−1∇Fα(U)∂αU we observe the following

∂tG(U)·(〈νt,x,A(λ )〉−A(U))+∂αG(U) · (〈νt,x,Fα(λ )〉−Fα(U))

= ∇G(U)∂tU · (〈νt,x,A(λ )〉−A(U))+∇G(U)∂αU · (〈νt,x,Fα(λ )〉−Fα(U))

= ∇G(U)(∇A(U))−1∇Fα(U)∂αU · (〈νt,x,A(λ )〉−A(U))

+∇G(U)∂αU · (〈νt,x,Fα(λ )〉−Fα(U)

=: ∇G(U)∂αU ·Zα(νt,x,U).
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Using the entropy inequality for measure-valued solutions (1.22) we obtain

∫
Q

ζ
′(t)H (ν ,U)+

∫
Q

ζ
′(t)(mη −mA ·G(U))(dxdt)

≥
∫

Q
ζ (t)∇G(U)∂αU ·Zα(ν ,U)

+
∫

Q
ζ (t)(mA ·∇G(U)∂tU +mFα

·∇G(U)∂αU)(dxdt)

−
∫

Td
ζ (0)(〈ν0,x,η〉−η(U(0))− (〈ν0,x,A〉−A(U(0)))·G(U(0))dx

−
∫

Td
ζ (0)(m0

η −m0
A ·G(U(0)))(dx).

(4.4)

Using (1.7)-(1.8) we compute

mA·∇G(U)∂tU +mFα
·∇G(U)∂αU

=−mA ·∇G(U)(∇A(U))−1∇Fα(U)∂αU +mFα
·∇G(U)∂αU

=−mA ·∇A−T∇GT∇Fα∂αU +mFα
·∇G(U)∂αU

=−mA ·∇A−T∇Fα∇G(U)∂αU +mFα
·∇G∂αU

= (−∇Fα(U)∇A(U)−1mA +mFα
) ·∇G(U)∂αU.

(4.5)

In a standard way we chooseζ = ζ n to be a sequence of smooth monotone functions
which approximate the characteristic function of the interval[0,τ] and pass to the limit,
thus (4.4) turns into

∫
Td

H (ν ,U)(τ)dx+
∫

Td
(mτ

η −mτ
A ·G(U(τ)))(dx)≤C(U)

∫
τ

0

∫
Td

max
α

|Zα |dxdt

+
∫

τ

0

∫
Td

(−∇Fα(U)(∇A(U))−1mA +mFα
) ·∇G(U)∂αUdxdt

+
∫

Td
H (ν ,U)(0)dx+

∫
Td

(m0
η −m0

A ·G(U(0)))(dx).

(4.6)

Note that in a same way as in [12] we have

Zα(ν ,U) = 〈ν ,Fα〉−Fα(U)−∇Fα(U)∇A(U)−1(〈ν ,A〉−A(U))

= 〈ν ,Fα(λ |U)〉
≤C1〈ν ,η(λ |U)〉
= C1H (ν ,U).

(4.7)
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Consequently, using (1.24) the estimate which allows us to use the Gronwall inequality
has a form ∫

Td
H (ν ,U)(τ)dx+

∫
Td

(mτ
η −mτ

A ·G(U(τ)))(dx)≤

C

(∫
τ

0

∫
Td

H (ν ,U)dxdt+
∫

τ

0

(∫
Td

(mt
η −mt

A ·G(U(t)))(dx)
)

dt

)
+
∫

Td
〈ν0,x,η(λ |U(0))〉dx+

∫
Td

(m0
η −m0

A ·G(U(0)))(dx).

(4.8)

Thus, ∫
Td

H (ν ,U)(t)dx+
∫

Td
(mt

η −mt
A ·G(U(t)))(dx) (4.9)

≤C

(∫
Td
〈ν0,x,η(λ |U(0))〉dx+

∫
Td

(m0
η −m0

A ·G(U(0)))(dx)
)

ect.

In particular, we observe that ifν0,x = δU(0,x) andm0
η = m0

A = 0, thenνt,x = δU(t,x) a.e.
and

mt
η −G(U(t)) ·mt

A = 0 (4.10)

for almost anyt. Note that at this point it is enough to havem0
η−m0

A ·G(U(0)) =0 to reach
the same conclusion. What remains now is to show that the concentration measuresmη ,
mA andmFα

are all equal to zero. This is done by comparing the definition of the measure
valued solution withνt,x = δU(t,x) which we already know with the fact thatU(t,x) is a
(strong) solution to the system (1.1). Using here also the fact thatm0

A = 0 we obtain∫ T

0

∫
Td

∂tϕ ·mA(dxdt)+
∫ T

0

∫
Td

∂αϕ ·mFα
(dxdt) = 0 (4.11)

for all ϕ ∈C∞
c (Q). This yieldsmA = 0 andmFα

= 0 and thus consequentlymη = 0 due
to (4.10).

5. EXTENSION

As one may easily observe unfortunately this general framework will not cover systems
of conservation laws, which may fail to be hyperbolic, typically incompressible inviscid
systems. In the current approach we present a simple extension of the presented frame-
work to cover the case of incompressible fluids, in case of which the assumption that∇A
is a nonsingular matrix is not satisfied. For this reason we distinguish from the flux the
partL (Lagrange multiplier) which is perpendicular to the vectorG(U) (which coincides
with the gradient of the entropy of the strong solution in the caseA = Id). Thus we as-
sume that there exists a subspaceY, such thatG(U) ∈Y andL ∈Y⊥, whereU is a strong
solution to the considered system. Let us then consider a system in the following form

∂tA(u)+∂αFα(u)+L = 0. (5.1)

The fact thatG(U) ∈ Y can help a lot in constructing entropies for the system (5.1).
Therefore we reformulate the hypothesis (H2) as follows.
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(H2’) Thesystem (5.1) is endowed with a companion law

∂tη(u)+∂αqα(u)+Lα ·∂αu = 0 (5.2)

with an entropyη : X → R+, such thatη(u)≥ 0 and

lim
|u|→∞

η(u) = ∞. (5.3)

This means we assume the existence of a smooth functionG : X → Rn such that

∇η = G·∇A (5.4)

and the condition (1.6) is relaxed the following way. We assume that

G·∇Fα = ∇qα +Lα , α = 1, ...,d. (5.5)

with the additional property thatLα ·∂αu = 0 for all u such thatG(u)∈Y.

We need a slight modification of the definition of measure valued solution, namely the
class of test functions will change.

Definition 5.1. We say that(ν ,mA,mFα
,mη), α = 1, ...,d, is a dissipative measure-

valued solution of system(5.1) with initial data (ν0,·,m0
A,m0

η) if {νt,x}(t,x)∈(0,T)×Td, ν ∈
L∞

weak

(
(0,T)×Td;P

(
X
))

is a parameterized measure and together with concentration
measures mA ∈ (M ([0,T]×Td))n, mFα

∈ (M ([0,T]×Td))n×n satisfy∫
Q
〈νt,x,A(λ )〉 ·∂tϕdxdt+

∫
Q

∂tϕ ·mA(dxdt)+
∫

Q
〈νt,x,Fα(λ )〉 ·∂αϕdxdt

+
∫

Q
∂αϕ ·mFα

(dxdt)+
∫

Td
〈ν0,x,A(λ )〉 ·ϕ(0)dx+

∫
Td

ϕ(0)·m0
A(dx) = 0

(5.6)

for all ϕ ∈ (C∞
c (Q)∩Y)n. Moreover, the total entropy balance holds for all nonnegative

ζ ∈C∞
c ([0,T))∫

Q
〈νt,x,η(λ )〉ζ ′(t)dxdt+

∫
Q

ζ
′(t)mη(dxdt)+

∫
Td
〈ν0,x,η(λ )〉ζ (0)dx

+
∫

Td
ζ (0)m0

η(dx)≥ 0
(5.7)

with a dissipation measure mη ∈M +([0,T]×Td).

Then an analogue result on mv-strong uniqueness in this case requires to add the con-
strain on strong solution, which allows to use the vectorG(U) as a test function in a
distributional formulation. Thus accordingly we require that the strong solution is such
thatG(U) belongs to the subspaceY. For this purpose we define a spaceW1,∞

Y (Q) as the
set of all elementsψ, which are inW1,∞(Q) andG(ψ) ∈Y.

Theorem 5.2. Assume that the hypothesis (H1)-(H5) hold with (H2) replaced by (H2’).
Let (ν ,mA,mFα

,mη), α = 1, ...,d, be a dissipative measure-valued solution to(5.1)gen-

erated by a sequence of approximate solutions. Let U∈W1,∞
Y (Q) be a strong solution

to (5.1) with the same initial data u0 ∈ L1(Rd), thusν0,x = δu0(x), m0
A = m0

η = 0. Then
νt,x = δU(t,x) a.e. in Q and mA = mFα

= mη = 0.
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5.1. Examples for the extended case.

5.1.1. Incompressible Euler system.Consider the system

∂tv+divx(v⊗v)+∇xp = 0, (5.8)

divxv = 0, (5.9)

for an unknown vector fieldv: Q→ Rn and scalarp: Q→ R.
In this case we forget in the formulation about the divergence free constrain as this

information will be carried in the definition of the spaceY, namelyu= v, A≡ Id, F(u) =
v⊗ v andL corresponds to the gradient of the pressure. The entropyη = 1

2|v|
2 andG =

∇η = v. We see that the spaceY is the space of divergence free smooth vector fieldsv.
A direct calculation yieldsqα = 1

2vα |v|2 and thereforeLα = 1
2|v|

2eα , whereeα is the
unit vector in theα direction. We easily check thatLα ·∂αu = 1

2|v|
2divxv = 0 if G(u) =

v∈Y.

5.1.2. Incompressible magnetohydrodynamics.Let us consider the system

∂tv+divx(v⊗v−b⊗b)+∇x(p+
1
2
|b|2) = 0 (5.10)

∂tb+divx(v⊗b−b⊗v) = 0, (5.11)

divxv = 0 (5.12)

divxb = 0 (5.13)

for unknown vector functionsv: Q→Rn andb: Q→Rn and an unknown scalar function
p: Q→ R. It is sufficient to require that divxb is equal to zero at the initial time as the
information is then transported. The system describes the motion of an ideal electrically
conducting fluid, see e.g. [23, Chapter VIII].

Hereu = (v,b)T , A≡ Id, L = (∇x(p+ 1
2|b|

2),0)T and

F(v,b) = (F1, ...,Fn)(v,b) =
(

v⊗v−b⊗b
v⊗b−b⊗v

)
.

Similarly as in the previous case,η = 1
2(|v|2+ |b|2) andG= ∇η = u= (v,b)T . The space

Y is the space of divergence free smooth vector fields in the first (velocity) variable, a
common feature in the incompressible problems.

For this system the entropy fluxes areqα = 1
2(|v|2 + |b|2)vα − (v ·b)bα , consequently

we derive that

Lα =
( 1

2(|v|2 + |b|2)eα

−(v·b)eα

)
.

HenceLα ·∂αu = 1
2(|v|2 + |b|2)divxv− (v ·b)divxb and we see that the first term is zero

wheneverG(u) ∈ Y and the second term is zero whenever divxb = 0 at the initial time
t = 0.
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5.1.3. Nonhomogeneous incompressible Euler system.Here we consider the system

∂tρ +divx(ρv) = 0, (5.14)

∂t(ρv)+divx(ρv⊗v)+∇xp = 0, (5.15)

divxv = 0, (5.16)

for an unknown vector fieldv: Q → Rn and scalar fieldsρ : Q → R+ and p: Q → R.
Similarly as in the compressible Euler example 2.1 we choose the state variables to be
u = (u1,u2)T = (ρ,

√
ρv)T . ThenA(u) = (u1,

√
u1u2)T , L = (0,∇xp)T and

F(u) = (F1, . . . ,Fn)(u) =
( √

u1u2

u2⊗u2

)
.

The divergence-free condition (5.16) allows us to choose as the entropy the function

η(u) =
1
2
(|u2|2 +u2

1).

Indeed, in this case we get

G(u) =

(
u1− |u2|2

2u1
u2√
u1

)
and the spaceY will be again the space of smooth functionsu such that the divergence of
the second component ofG(u) is equal to zero, i.e. the space of states with divergence-
free velocities.

The entropy fluxes are nowqα = 1
2(u2

1 + |u2|2) u2α√
u1

and we derive that

Lα(u) =

(
−1

4
√

u1u2α

1
2u3/2

1 eα

)
.

A straightforward computation reveals thatLα · ∂αu = 1
2u2

1divx
u2√
u1

and thus it equals to

zero wheneveru is such thatG(u)∈Y.

5.1.4. Nonhomogeneous incompressible magnetohydrodynamics.We consider the sys-
tem

∂tρ +divx(ρv) = 0, (5.17)

∂t(ρv)+divx(ρv⊗v−b⊗b)+∇x(p+
1
2
|b|2) = 0, (5.18)

∂tb+divx(v⊗b−b⊗v) = 0, (5.19)

divxv = 0, (5.20)

divxb = 0, (5.21)

with unknown vector fieldsv: Q → Rn and b: Q → Rn and scalar fieldsρ : Q → R+
and p: Q→ R. Again if we assume divxb = 0 at the timet = 0, this information gets
transported.

In order to be able to continuously extend the fluxesFα for zero densities, we can
not proceed the same way as in the previous cases. Therefore we now choose the state
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variables to beu = (u1,u2,u3)T = (ρ,v,b)T . ThenA(u) = (u1,u1u2,u3)T , L = (0,∇x(p+
1
2|b|

2,0)T and

F(u) = (F1, . . . ,Fn)(u) =

 u1u2

u1u2⊗u2−u3⊗u3

u2⊗u3−u3⊗u2

 .

Similarly as in the case of nonhomogeneous Euler equations, we can choose as the entropy
the function

η(u) =
1
2
(u2

1 +u1|u2|2 + |u3|2).

and obtain

G(u) =

 u1− 1
2|u2|2

u2

u3

 .

The spaceY will be once again the space of smooth functionsu such that the divergence
of the second component ofG(u) is equal to zero, i.e. the space of states with divergence-
free velocities.

The entropy fluxes areqα = 1
2(u2

1 +u1|u2|2 + |u3|2)u2α −u2 ·u3u3α and consequently

Lα(u) =

 0
1
2(u2

1 + |u3|2)eα

−u2 ·u3eα

 .

In particular we see thatLα · ∂αu = 1
2(u2

1 + |u3|2)divxu2−u2 ·u3divxu3. Similarly as in
the example of incompressible magnetohydrodynamics we conclude thatLα ·∂αu= 0 for
all u such thatG(u)∈Y if we moreover assume that divxb = 0 at the initial timet = 0.

APPENDIX A. AUXILARY FACTS

We include a lemma similar to [7, Lemma A.1], however under weaker assumptions,
see the discussion in Remark 1.2. The proof follows similar lines, however we include it
for reader’s convenience.

Lemma A.1. Let (H1)-(H3) and(1.15)be satisfied. Then for eachα = 1, . . . ,d

Fα(u|U)≤Cη(u|U) (A.1)

for each u∈ X and bounded U.

Proof. Let D⊂ X be a compact set and letDε := {y+α : y∈ D, |α|< ε}. The condition
(H3) does not provide thatη is necessarily convex, nevertheless we can introduce an
entropyH = η ◦A−1 which is already uniformly convex inD. If we define now

H(A(u)|A(U)) := H(A(u))−H(A(U))−∇vH(A(U))(A(u)−A(U)) (A.2)

we immediately observe that

η(u|U) = η(u)−η(U)−G(U)(A(u)−A(U)) = H(A(u)|A(U)) (A.3)
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just due to chain rule and an observation that∇η(u) = ∇vH(A(u))∇A(u). We also intro-
duce a flux in new variables, i.e.,Qα = Fα ◦A−1. Similarly we define the relative flux
of Qα

Qα(A(u)|A(U)) := Qα(A(u))−Qα(A(U))−∇vQα(A(U))(A(u)−A(U)). (A.4)

As ∇Fα(U) = ∇vQ(A(U))∇A(U), thus we observe that

Fα(u|U)= Fα(u)−Fα(U)−∇Fα(U)[∇A(U)]−1(A(u)−A(U))= Qα(A(u)|A(U)).

(A.5)

Step 1.Consider first the caseu∈ Dε ,U ∈ D. Observe that there exists a constantc1 > 0
such that

η(u|U) = H(A(u)|A(U))≥ c1|A(u)−A(U)|2 (A.6)

wherec1 = infy∈Dε
∇2

vH(A(y)), which is positive by the uniform convexity ofH on the
set Im(A(Dε)). Next we estimate the relative flux as follows

|Fα(u|U)|= |Qα(A(u)|A(U))| ≤ sup
y∈Dε

∇2
v(A(y)) |A(u)−A(U)|2 ≤ c2η(u|U).

where the constantc4 includes supy∈Dε
|∇2F(y)| and supy∈Dε

|∇2A(y)|.
Step 2.Let now u ∈ X \Dε andU ∈ D. Observe that sinceU is bounded then there

exist constantsk1,k2 such that

η(u|U) = η(u)−η(U)−G(U)(A(u)−A(U))≥ η(u)−k1−k2|A(u)|. (A.7)

Observe that for anyR> 0

|A(u)| ≤ sup
|y|≤R

|A(y)|+ sup
|y|>R

{
|A(y)|
η(y)

}
η(u) (A.8)

and thus by the first condition of (1.15) and asA is continuous onX we can claim there
exists a constantk3 such that

|A(u)| ≤ k3 +
1

2k2
η(u) (A.9)

and hence

η(u|U)≥ 1
2

η(u)−c5. (A.10)

We further estimate using (1.15)2

|Fα(u|U)|= |Fα(u)−Fα(U)−∇Fα(U)∇A(U)−1(A(u)−A(U))|
≤ |Fα(u)|+K1|A(u)|+K2 ≤ c6(1+η(u)). (A.11)

Observe then that from (A.11) together with (A.10), we conclude

|Fα(u|U)| ≤ c(1+η(u|U)). (A.12)

We shall denote byu∗ ∈ ∂Dε such a vector that there existst∗ ∈ (0,1) such thatu∗ =
(1− t∗)u+ t∗U . Obviously|u∗−U | ≥ ε. Thus since∇A is nonsingular then there exists
ε̃ > 0 such that|A(u∗)−A(U)| ≥ ε̃. Notice that the function

R+ 3 t 7→ H((t(A(u)−A(U))+A(U))|A(U))
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is monotone and henceH(A(u)|A(U)) ≥ H(A(u∗)|A(U)). As we have already shown in
(A.6) we have thatH(A(u∗)|A(U))≥ c1|A(u∗)−A(U)|2, consequently we obtain that

η(u|U) = H(A(u)|A(U))≥ c1ε̃
2.

Thus we conclude (A.1) for allu ∈ X from (A.12). By the continuity ofFα(·|U) and
η(·|U) condition (A.1) holds for allu∈ X. �

For reader’s convenience we recall here the slicing lemma (cf. [15, Theorem 1.5.1]),
which is used for showing desintegration of the concentration measure. Let thenµ be a
finite, nonnegative Radon measure onRn+m and letσ be the canonical projection ofµ

ontoRn, which means thatσ(E)≡ µ(E×Rm) for each Borel setE ⊂ Rn.

Lemma A.2. For σ −a.e point x∈ Rn there exists a Radon probablity measureνx on
Rm, such that

(i) the mapping x7→
∫
Rn f (x,y)dνx(y) is σ−measurable

and
(ii)

∫
Rn+m f (x,y)dµ(x,y) =

∫
Rn (
∫
Rm f (x,y)dνx(y))dσ(x) for each bounded, continu-

ous f .

Remark A.3. Note that in case we consider measures associated to sequences which
are bounded in one of the variables, we can even claim that the corresponding canonical
projection is absolutely continuous with respect to the Lebesgue measure. In the case con-
sidered in the current paper we deal with a domain[0,T]×Td. Considered sequences are
bounded inL∞(0,T;L1(Td)). Then the corresponding concentration measurem admits a
desintegration of the form

m= mt(dx)⊗dt, (A.13)

wheret 7→mt is bounded and weak-star measurable as a map from[0,T] to M +(Td).

APPENDIX B. CONVEX FUNCTIONS

We include here the facts used to show that compressible Euler system satisfies the
assumptions of the main theorem. We consider a convex functionM : R+ → R+, which
is continuous,M(v) = 0 iff v = 0 and

lim
v→0

M(v)
v

= 0, lim
v→∞

M(v)
v

= ∞. (B.1)

A function satisfying the above properties is called anN−function. We define the Fenchel
conjugate toM asM∗(ξ ) := supρ(ξ ·ρ −M(ρ)). For functionsv,w : Ω → R+ such that∫

Ω M(v)dx < ∞ and
∫

Ω M∗(w)dx < ∞ the following estimate (called Fenchel-Young in-
equality) holds

vw≤M(v)+M∗(w). (B.2)

To compareN−functions we will say thatM1 is essentially stronger thanM2 if M2(v)≤
M1(av) for all v≥ v0 ≥ 0 for all a > 0 and somev0(a). For the purpose of estimates in
Section 2 we will use the following lemma.
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Lemma B.1. LetMi ,M∗
i , i = 1,2 be two complementary pairs of N−functions. Then the

following conditions are equivalent.

(i) M1 is essentially stronger than M2;
(ii) M∗

2 is essentially stronger than M∗1;

(iii) ∀λ > 0, lim
v→∞

M2(λv)
M1(v) = 0.

The proof of the above fact follows from simple estimates, see [29, Chapter 2.2., Th. 2]
for details.
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