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Žitná 25, CZ-115 67 Praha 1, Czech Republic

2Department of Mathematics, Würzburg University
Emil-Fischer-Str. 40, 97074 Würzburg, Germany

Abstract: The question of well- and ill-posedness of entropy admissible solutions to the multi-
dimensional systems of conservation laws has been studied recently in the case of isentropic Euler
equations. In this context special initial data were considered, namely the 1D Riemann problem
which is extended trivially to a second space dimension. It was shown that there exist infinitely
many bounded entropy admissible weak solutions to such a 2D Riemann problem for isentropic
Euler equations, if the initial data give rise to a 1D self-similar solution containing a shock. In
this work we study such a 2D Riemann problem for the full Euler system in two space dimensions
and prove the existence of infinitely many bounded entropy admissible weak solutions in the case
that the Riemann initial data give rise to the 1D self-similar solution consisting of two shocks and
possibly a contact discontinuity.
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1 Introduction

In this paper we consider the full compressible Euler system in the whole two-dimensional space,
i.e.

∂t%+ divx(%v) = 0,

∂t(%v) + divx(%v ⊗ v) +∇xp = 0,

∂t

(
1

2
%|v|2 + % e(%, p)

)
+ divx

[(
1

2
%|v|2 + % e(%, p) + p

)
v

]
= 0,

(1.1)

where the density % = %(t,x) ∈ R+, the pressure p = p(t,x) ∈ R+ and the velocity v = v(t,x) ∈ R2

are unknown functions of the time t ∈ [0,∞) and the position x = (x1, x2) ∈ R2.
Furthermore we consider an ideal gas, i.e.

e(%, p) = cv
p

%
,

where cv > 0 is a constant called the specific heat at constant volume. We recall that from a
physical point of view cv = f

2 , where f is the number of degrees of freedom.
The system of equations (1.1) is complemented with the initial condition

(%,v, p)(0,x) = (%0,v0, p0)(x) in R2. (1.2)

Further, we supplement the equations (1.1) with the entropy condition

∂t

(
% s(%, p)

)
+ divx

(
% s(%, p)v

)
≥ 0, (1.3)

where s(%, p) is the entropy. For the ideal gas we have

s(%, p) = log
( pcv

%cv+1

)
.

By admissible weak solution - we will also use the term weak entropy solution - we mean a triple of
L∞-functions (%,v, p) that fulfill (1.1)-(1.3) in the sense of distributions, see Section 3 for precise
definitions.

In this paper we consider Riemann initial data

(%0,v0, p0)(x) :=

{
(%−,v−, p−) if x2 < 0
(%+,v+, p+) if x2 > 0

, (1.4)

where %± ∈ R+, v± ∈ R2 and p± ∈ R+ are constants. We write v = (v1, v2)T for the components
of the velocity v. Throughout this paper we additionally assume v−,1 = v+,1 = 0, where v±,1 are
the first components of the velocities v±.
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Following the groundbreaking results of De Lellis and Székelyhidi [8, 9] concerning ill-posedness
of the incompressible Euler equations, the question of well- and ill-posedness of admissible weak so-
lutions to the isentropic compressible Euler equations was raised. In fact, De Lellis and Székelyhidi
themselves showed in [9] the existence of initial data (%0,v0) ∈ L∞(R2) for which there exist in-
finitely many admissible weak solutions (such initial data is called wild initial data). In the context
of hyperbolic conservation laws this result in particular shows that the notion of admissible weak
solution, i.e. solution satisfying the system of conservation laws and an inequality arising from
the companion law, is probably not suitable for the problem in the case of more than one space
dimension.

This result was further improved by Chiodaroli [3] and Feireisl [10] who showed that the ill-
posedness is related to the irregularity of the velocity field, proving that there exist wild initial
data (%0,v0) with %0 ∈ C1(R2). Finally, De Lellis, Chiodaroli and Kreml [4] showed the existence
of Lipschitz wild initial data. The method of the proof was motivated by the observation of
Székelyhidi [17] that for the incompressible Euler system, vortex sheet initial data are wild. Hence,
the authors in [4] studied the Riemann problem for the isentropic Euler system and found an
example of Riemann initial data allowing for existence of infinitely many admissible weak solutions
while being generated by a backwards rarefaction wave (i.e. a compression wave).

Since the Riemann problem is a basic building block in the theory of one-dimensional systems
of conservation laws, it was only natural to study its properties in multi-dimensional case further.
In fact, Chen and Chen [2] already proved that if the solution to the Riemann problem consists
only of rarefaction waves, such solution is unique in the class of multi-dimensional admissible weak
solutions. The same was later proved also in [12].

On the non-uniqueness side, Chiodaroli and Kreml [5] proved that whenever the Riemann
initial data give rise to the self-similar solution consisting of two shocks, there exist also infinitely
many other bounded admissible weak solutions. Moreover they also showed that the self-similar
solution may not be entropy rate admissible, meaning that some of the other solutions constructed
may produce more total entropy. The study of the Riemann problem for the isentropic Euler
system continued with results of Chiodaroli and Kreml [6] and Klingenberg and Markfelder [14]
who independently showed ill-posedness in the case of Riemann initial data giving rise to the
self-similar solution consisting of one rarefaction wave and one shock. More precisely in [6] the
authors need a certain smallness condition for the initial data, whereas the result in [14] covers all
cases of such Riemann initial data and also solves the case of Riemann initial data giving rise to
self-similar solution consisting of a single shock.

Finally, Březina, Chiodaroli and Kreml [1] showed that the above mentioned results of ill-
posedness of admissible weak solutions hold also in the presence of a contact discontinuity in the
self-similar solution arising from the multidimensionality of the problem. However, the question,
whether a single contact discontinuity is a unique admissible weak solution to the isentropic Euler
system or not, is still an open problem; it is worth mentioning that this is actually a direct analog
of the vortex sheet initial data considered by Székelyhidi in [17].

In view of results for the isentropic system a natural question arises, whether these results can
be transferred to the case of full Euler equations. It was shown by Chen and Chen in [2] that
uniqueness of rarefaction waves actually holds also for the full system, see also [13]. On the non-
uniqueness side, we note the result of Markfelder and Klingenberg [15], who showed that for the
isentropic system there exist infinitely many solutions conserving the energy. This however can be
viewed as a proof of existence of infinitely many solutions to the full system with a proper choice
of cv; all these solutions also conserve the entropy. In addition to that we want to mention the
result by Feireisl et al. [11], who proved existence of wild initial data for the full Euler equations.
Their solutions conserve the entropy and have piecewise constant density and pressure. In this
paper we prove non-uniqueness of admissible weak solutions for a larger class of Riemann initial
data, namely for initial data that give rise to self-similar solution consisting of two shocks and
possibly a contact discontinuity.

The paper is structured as follows. In Section 2 we recall some results for the one-dimensional
Riemann problem for the full Euler system and present a condition on the initial states (%±,v±, p±)
such that the self-similar solution consists of two shocks and possibly a contact discontinuity. In
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Section 3 we present our two main results, Theorem 3.5 and Theorem 3.6. In Section 4 we provide
the technical tools used in the proof, in particular we present a key lemma relating the existence
of infinitely many admissible weak solutions to the existence of a single so-called admissible fan
subsolution. Finally, in Sections 6 and 5 we present proofs of our two main results.

2 The 1D Riemann solution

The initial data (1.2) of the problem we study are one-dimensional, we have (%0,v0, p0)(x2) only
with no dependence on the x1 variable. Therefore it is reasonable to search for solutions which
share this property, i.e. for solutions satisfying (%,v, p)(t,x) = (%,v, p)(t, x2). Moreover since we
assume v−,1 = v+,1 = 0, we search for solutions with the property v1(t,x) ≡ 0.

Hence we obtain the 1D Riemann problem

∂t%+ ∂2(%v2) = 0,

∂t(%v2) + ∂2

(
%(v2)2 + p

)
= 0,

∂t

(
1

2
%(v2)2 + % e(%, p)

)
+ ∂2

[(
1

2
%(v2)2 + % e(%, p) + p

)
v2

]
= 0,

(2.1)

for the unknown functions (%, v2, p)(t, x2) with initial data

(%, v2, p)(0, x2) = (%0, v0
2 , p

0)(x2) :=

{
(%−, v−,2, p−) if x2 < 0
(%+, v+,2, p+) if x2 > 0

. (2.2)

The problem (2.1)-(2.2) is a model example of a one-dimensional Riemann problem for a
system of conservation laws and has been studied extensively by several authors, e.g. by Smoller
[16, Chapter 18 §B]. It is well known that this problem admits a self-similar solution (i.e. solution
consisting of functions of a single variable x2

t ) belonging to the class of BV functions. This
solution to (2.1)-(2.2) is unique in the class of BV self-similar functions and consists of three waves
connected by constant states, where the first wave is either an admissible shock or a rarefaction
wave, the second wave is a contact discontinuity and the third wave is again either an admissible
shock or a rarefaction wave. In the rest of this paper we will call this solution the 1D Riemann
solution. Table 1 shows all the possibilities of the structure of the 1D Riemann solution.

1-wave 2-wave 3-wave 1-wave 2-wave 3-wave

- - - - contact -

- - shock - contact shock

- - rarefaction - contact rarefaction

shock - - shock contact -

shock - shock shock contact shock

shock - rarefaction shock contact rarefaction

rarefaction - - rarefaction contact -

rarefaction - shock rarefaction contact shock

rarefaction - rarefaction rarefaction contact rarefaction

Table 1: All the 18 possibilities of the structure of the 1D Riemann solution

It is easy to observe that the 1D Riemann solution is an admissible weak solution to the original
2D problem (1.1)-(1.2).

In this paper we will focus on the cases, where the 1D Riemann solution contains two admissible
shocks and possibly a contact discontinuity. Therefore we recall the following proposition stating
conditions for the initial data under which such 1D Riemann solution emerges.
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Proposition 2.1. Assume that either

• p− ≤ p+ and v+,2 − v−,2 < −(p+ − p−)
√

2 cv
%−(p−+(2cv+1)p+) or

• p+ ≤ p− and v+,2 − v−,2 < −(p− − p+)
√

2 cv
%+(p++(2cv+1)p−) .

Then the 1D Riemann solution to problem (2.1)-(2.2) consists of a 1-shock, possibly a 2-contact
discontinuity and a 3-shock. The intermediate states (%M−,vM , pM ) and (%M+,vM , pM ) are given
by

• pM is the unique solution of

−
√

2 cv

(
pM − p−√

%−(p− + (2cv + 1)pM )
+

pM − p+√
%+(p+ + (2cv + 1)pM )

)
= v+,2 − v−,2;

• vM,2 = v−,2 −
√

2 cv
pM−p−√

%−(p−+(2cv+1)pM )
;

• %M− = %−
p−+(2cv+1)pM
pM+(2cv+1)p−

;

• %M+ = %+
p++(2cv+1)pM
pM+(2cv+1)p+

;

and the following properties hold.

• If %M− = %M+ then the 2-contact discontinuity does not appear.

• pM > max{p−, p+}, %M− > %− and %M+ > %+.

• The shock speeds denoted by σ−, σ+ satisfy σ±(%± − %M±) = %±v±,2 − %M±vM,2.

• The speed of the contact discontinuity is given by vM,2.

For the proof of Proposition 2.1 we refer to [16]. More details about self-similar solutions to
1D systems of conservation laws can be also found in [7].

3 Main results

In this section we state the definition of solutions to the problem (1.1)-(1.2) and our main results.

Definition 3.1. Let (%0,v0, p0) ∈ L∞(R2). The triplet (ρ,v, p) ∈ L∞((0,∞)×R2;R+×R2×R+)
is called a weak solution of (1.1)-(1.2) if the following system of identities is satisfied∫ ∞

0

∫
R2

(
%∂tψ + %v · ∇xψ

)
dx dt+

∫
R2

%0(x)ψ(0,x) dx = 0 (3.1)

for all test functions ψ ∈ C∞c ([0,∞)× R2),∫ ∞
0

∫
R2

(
%v · ∂tϕ + (%v ⊗ v) : ∇xϕ + pdivxϕ

)
dx dt+

∫
R2

%0(x)v0(x) ·ϕ(0,x) dx = 0 (3.2)

for all test functions ϕ ∈ C∞c ([0,∞)× R2;R2),∫ ∞
0

∫
R2

[(
1

2
% |v|2 + % e(%, p)

)
· ∂tφ+

(
1

2
% |v|2 + % e(%, p) + p

)
v · ∇xφ

]
dx dt

+

∫
R2

(
1

2
%0(x)

∣∣v0(x)
∣∣2 + %0(x)e(%0(x), p0(x))

)
φ(0,x) dx = 0

(3.3)

for all test functions φ ∈ C∞c ([0,∞)× R2).
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Definition 3.2. Let (%0,v0, p0) ∈ L∞(R2). A weak solution of (1.1)-(1.2) is called admissible (or
weak entropy solution), if the following inequality is satisfied for all non-negative test functions
ϕ ∈ C∞c ([0,∞)× R2;R+

0 ):∫ ∞
0

∫
R2

(
% s(%, p)∂tϕ+ % s(%, p)v · ∇xϕ

)
dx dt+

∫
R2

%0(x)s(%0(x), p0(x))ϕ(0,x) dx ≤ 0. (3.4)

The solutions which we are going to construct will have a special structure, partially motivated
by the structure of the 1D Riemann solution. Therefore we introduce first the notion of N -fan
partition (N = 1, 2) and then N -fan solutions.

Definition 3.3. Let N ∈ {1, 2} and µ0 < µ1 (µ0 < µ1 < µ2) real numbers. An N -fan partition
of (0,∞)× R2 is a set of N + 2 open sets Ω−,Ω1,Ω+ (Ω−,Ω1,Ω2,Ω+) of the form

Ω− = {(t,x) : t > 0 and x2 < µ0 t};
Ωi = {(t,x) : t > 0 and µi−1 t < x2 < µi t};
Ω+ = {(t,x) : t > 0 and x2 > µN t}.

Definition 3.4. An admissible weak solution (%,v, p) of the full Euler system (1.1)-(1.2) with
Riemann initial data (1.4) is called an N -fan solution, if there exists N ∈ {1, 2} and an N -fan
partition of (0,∞)× R2 such that

• (%, p) are constant on each set Ω−,Ωi, Ω+ of the N -fan partition;

• |v|2 is constant on each set Ω−,Ωi, Ω+ of the N -fan partition;

• (%,v, p) = (%±,v±, p±) on the sets Ω±.

See also Fig. 1.

t

x2

(%,v, p)

= (%−,v−, p−)

(%,v, p)

= (%+,v+, p+)

(%, p) = (%1, p1)

= const.

(a) 1-fan solution

t

x2

(%,v, p)

= (%−,v−, p−)

(%,v, p)

= (%+,v+, p+)

(%, p) = (%1, p1)

= const.

(%, p) = (%2, p2)

= const.

(b) 2-fan solution

Figure 1: Structure of an N -fan solution. On the leftmost and rightmost sets (i. e. on Ω±), the
solution coincides with the initial states. On each set in the middle (Ωi, i ∈ {1, N}), the density
% and pressure p are constant, whereas the velocity v does not need to be constant.

Now we are ready to state our main theorems.

Theorem 3.5. Let cv >
1
2 and let the Riemann initial data (1.4) be such that the 1D Riemann

solution consists either

• of a 1-shock and a 3-shock or

• of a 1-shock, a 2-contact discontinuity and a 3-shock.

Then there exist infinitely many admissible weak solutions to (1.1)-(1.4). These solutions are all
2-fan solutions.
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Theorem 3.6. Let cv > 0. Let %±, p± > 0 and V ∈ R be given.

(i) If %− < %+ or %− = %+ and p− > p+ let v−,2 = V . Then there exists U = U(%±, p±, V ) such
that for all v+,2 < U there exist infinitely many admissible weak solutions to (1.1)-(1.4).
These solutions are all 1-fan solutions.

(ii) If %− > %+ or %− = %+ and p− < p+ let v+,2 = V . Then there exists U = U(%±, p±, V ) such
that for all v−,2 > U there exist infinitely many admissible weak solutions to (1.1)-(1.4).
These solutions are all 1-fan solutions.

Remark 3.7. Theorem 3.5 is the most general result presented here, covering all the cases of
Riemann initial data giving rise to the self-similar solution containing two shocks. Solutions
constructed in the proof of this Theorem are all 2-fan solutions. It might be of interest that at
least if the difference between the velocities v−,2 and v+,2 is large enough, one can construct also
another type of solutions, namely 1-fan solutions, this is stated in Theorem 3.6. We emphasize
that the set of initial data in Theorem 3.6 is a strict subset of the set of initial data in Theorem
3.5. Finally, we refer the reader to Remark 6.7 for the reason why Theorem 3.6 does not cover
the case %− = %+ and p− = p+.

Remark 3.8. Note that the general Theorem 3.5 requires the specific heat at constant volume
coefficient cv to be strictly larger than 1

2 , whereas the results of Theorem 3.6 hold for all positive
cv.

4 Existence of infinitely many admissible weak solutions

The content of this section shows the method to prove non-uniqueness of admissible weak solutions.
As in the isentropic case (see [4] and following works) the idea is to work with a so called admissible
fan subsolution - here a quintuple of piecewise constant functions satisfying certain system of
partial differential equations. Then, Theorem 4.2 tells us that the existence of such an admissible
fan subsolution implies existence of infinitely many weak entropy solutions to (1.1)-(1.4).

In what follows we denote by S2×2
0 the space of symmetric traceless 2×2 matrices and I denotes

the 2× 2 identity matrix.

Definition 4.1. An admissible N -fan subsolution to the Euler system (1.1)-(1.3) with Riemann
initial data (1.4) is a quintuple (%,v, U, C, p) : (0,∞) × R2 → (R+ × R2 × S2×2

0 × R+ × R+) of
piecewise constant functions, which satisfies the following properties:

1. There exists an N -fan partition Ω−,Ω1,Ω+ (or Ω−,Ω1,Ω2,Ω+) of (0,∞) × R2 and for
i ∈ {1, N} there exist constants %i ∈ R+, vi ∈ R2, Ui ∈ S2×2

0 , Ci ∈ R+ and pi ∈ R+, such
that

(%,v, U, C, p) =
∑

i∈{−,+}

(
%i , vi , vi ⊗ vi −

|vi|2

2
I , |vi|2 , pi

)
1Ωi +

N∑
i=1

(%i , vi , Ui , Ci , pi) 1Ωi ,

where %±,v±, p± are the constants given by the initial condition (1.4).

2. For i ∈ {1, N} the following inequality holds in the sense of definiteness:

vi ⊗ vi − Ui <
Ci
2

I.
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3. For all test functions (ψ,ϕ, φ) ∈ C∞c ([0,∞)×R2,R×R2 ×R) the following identities hold:∫ ∞
0

∫
R2

[
% ∂tψ + %v · ∇xψ

]
dx dt+

∫
R2

%0 ψ(0, ·) dx = 0,∫ ∞
0

∫
R2

[
%v · ∂tϕ + %U : ∇xϕ +

(
p+

1

2
%C

)
divxϕ

]
dx dt+

∫
R2

%0 v0 ·ϕ(0, ·) dx = 0,∫ ∞
0

∫
R2

[(
1

2
%C + cv p

)
∂tφ+

(
1

2
%C + (cv + 1) p

)
v · ∇xφ

]
dx dt

+

∫
R2

(
%0 |v0|2

2
+ cv p

0

)
φ(0, ·) dx = 0.

4. For every non-negative test function ϕ ∈ C∞c ([0,∞)× R2,R+
0 ) the inequality∫ ∞

0

∫
R2

[
% s(%, p) ∂tϕ+ % s(%, p) v · ∇xϕ

]
dx dt+

∫
R2

%0 s(%0, p0)ϕ(0, ·) dx ≤ 0

is fulfilled.

4.1 Sufficient condition for non-uniqueness

The key tool in the proof of Theorems 3.5 and 3.6 is the following theorem relating existence of
infinitely many admissible N -fan solutions to the existence of a single admissible N -fan subsolution

Theorem 4.2. Let (%±,v±, p±) be such that there exists an admissible N -fan subsolution (%,v, U, C, p)
to the Cauchy problem (1.1)-(1.4). Then there are infinitely many admissible weak N -fan solutions
(%,v, p) to (1.1)-(1.4) with the following properties:

• (%, p) = (%, p),

• v = v± on Ω±,

• |v|2 = Ci a.e. on Ωi, i = 1, N .

The proof of Theorem 4.2 is based on a convex integration technique for the pressureless
incompressible Euler equations which was introduced in seminal works of De Lellis and Székelyhidi
[8, 9] and is summarized in the following Proposition.

Proposition 4.3. Let (ṽ, Ũ) ∈ R2×S2×2
0 and C > 0 such that ṽ⊗ ṽ− Ũ < C

2 I. Furthermore let

Ω ⊂ R × R2 open. Then there exist infinitely many maps (v, U) ∈ L∞(R × R2,R2 × S2×2
0 ) with

the following properties.

1. v and U vanish outside Ω.

2. For all test functions (ψ,ϕ) ∈ C∞c (R× R2,R× R2) it holds that∫∫
Ω

v · ∇xψ dx dt = 0,∫∫
Ω

(v · ∂tϕ + U : ∇xϕ) dx dt = 0.

3. (ṽ + v)⊗ (ṽ + v)− (Ũ + U) = C
2 I is fulfilled almost everywhere in Ω.

For the proof of Proposition 4.3 we refer to [4, Lemma 3.7].
The proof of Theorem 4.2 using Proposition 4.3 is now quite straightforward.
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Proof. Let (%,v, U, C, p) an admissible N -fan subsolution. Furthermore for i = 1, N let (vi, U i) ∈
L∞(R×R2,R2 ×S2×2

0 ) pairs of functions as in Proposition 4.3 with ṽ = vi, Ũ = Ui, C = Ci and

Ω = Ωi. It suffices to prove that (%,v, p) =
(
%,v +

N∑
i=1

vi, p
)

is an admissible weak solution to

(1.1)-(1.4). The fact that it is indeed a N -fan solution is clear.
Let (ψ,ϕ, φ) ∈ C∞c ([0,∞)× R2,R× R2 × R) be test functions. Then we get∫ ∞

0

∫
R2

[
% ∂tψ + %v · ∇xψ

]
dx dt+

∫
R2

%0 ψ(0, ·) dx

=

∫ ∞
0

∫
R2

[
% ∂tψ + %

(
v +

N∑
i=1

vi

)
· ∇xψ

]
dx dt+

∫
R2

%0 ψ(0, ·) dx

=
N∑
i=1

∫∫
Ωi

%i vi · ∇xψ dx dt = 0,

∫ ∞
0

∫
R2

[
%v · ∂tϕ + %v ⊗ v : ∇xϕ + pdivxϕ

]
dx dt+

∫
R2

%0 v0 ·ϕ(0, ·) dx

=

∫ ∞
0

∫
R2

[
%v · ∂tϕ + %U : ∇xϕ +

(
p+

1

2
%C

)
divxϕ

]
dx dt+

∫
R2

%0 v0 ·ϕ(0, ·) dx

+
N∑
i=1

∫∫
Ωi

[
%i vi · ∂tϕ + %i U i : ∇xϕ

]
dx dt = 0,

∫ ∞
0

∫
R2

[(
1

2
%|v|2 + cv p

)
∂tφ+

(
1

2
%|v|2 + (cv + 1) p

)
v · ∇xφ

]
dx dt

+

∫
R2

(
%0 |v0|2

2
+ cv p

0

)
φ(0, ·) dx

=

∫ ∞
0

∫
R2

[(
1

2
%C + cv p

)
∂tφ+

(
1

2
%C + (cv + 1) p

)
v · ∇xφ

]
dx dt

+

∫
R2

(
%0 |v0|2

2
+ cv p

0

)
φ(0, ·) dx +

N∑
i=1

∫∫
Ωi

(
%i
Ci
2

+ (cv + 1) pi

)
vi · ∇xφ dx dt = 0.

For every non-negative test function ϕ ∈ C∞c ([0,∞)× R2,R+
0 ) it holds∫ ∞

0

∫
R2

[
% s(%, p) ∂tϕ+ % s(%, p) v · ∇xϕ

]
dx dt+

∫
R2

%0 s(%0, p0)ϕ(0, ·) dx

=

∫ ∞
0

∫
R2

[
% s(%, p) ∂tϕ+ % s(%, p) v · ∇xϕ

]
dx dt+

∫
R2

%0 s(%0, p0)ϕ(0, ·) dx

+
N∑
i=1

∫∫
Ωi

%i s(%i, pi) vi · ∇xϕdx dt ≤ 0.

4.2 Algebraic equations and inequalities

Since the admissible N -fan subsolution consists of a quintuple of piecewise constant functions
which satisfy a certain set of partial differential equations and inequalities, it is easy to observe
that these differential constraints are equivalent to a system of algebraic equations and inequalities
which arise from the Rankine-Hugoniot conditions on the interfaces between the sets of the N -fan
partition. More precisely we have the following.
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Proposition 4.4. Let %±, p± ∈ R+, v± ∈ R2 be given. The constants µ0, µ1 ∈ R (resp.
µ0, µ1, µ2 ∈ R) and %i, pi ∈ R+,

vi =

(
αi
βi

)
∈ R2, Ui =

(
γi δi
δi −γi

)
∈ S2×2

0 ,

and Ci ∈ R+ (for i = 1, N) define an admissible N -fan subsolution to the Cauchy problem (1.1)-
(1.4) if and only if they fulfill the following algebraic equations and inequalities:

• Order of the speeds:

µ0 < µ1 resp. µ0 < µ1 < µ2 (4.1)

• Rankine Hugoniot conditions on the left interface:

µ0 (%− − %1) = %− v−,2 − %1 β1 (4.2)

µ0 (%− v−,1 − %1 α1) = %− v−,1 v−,2 − %1 δ1 (4.3)

µ0 (%− v−,2 − %1 β1) = %− v
2
−,2 − %1

(
C1

2
− γ1

)
+ p− − p1 (4.4)

µ0

(
1

2
%− |v−|2 + cv p− − %1

C1

2
− cv p1

)
=(

1

2
%− |v−|2 + (cv + 1) p−

)
v−,2 −

(
%1
C1

2
+ (cv + 1) p1

)
β1

(4.5)

• Rankine Hugoniot conditions on the right interface:

µN (%N − %+) = %N βN − %+ v+,2 (4.6)

µN (%N αN − %+ v+,1) = %N δN − %+ v+,1 v+,2 (4.7)

µN (%N βN − %+ v+,2) = %N

(
CN
2
− γN

)
− %+ v

2
+,2 + pN − p+ (4.8)

µN

(
%N

CN
2

+ cv pN −
1

2
%+ |v+|2 − cv p+

)
=(

%N
CN
2

+ (cv + 1) pN

)
βN −

(
1

2
%+ |v+|2 + (cv + 1) p+

)
v+,2

(4.9)

• If N = 2 we additionally have Rankine Hugoniot conditions on the middle interface:

µ1 (%1 − %2) = %1 β1 − %2 β2 (4.10)

µ1 (%1 α1 − %2 α2) = %1 δ1 − %2 δ2 (4.11)

µ1 (%1 β1 − %2 β2) = %1

(
C1

2
− γ1

)
− %2

(
C2

2
− γ2

)
+ p1 − p2 (4.12)

µ1

(
%1
C1

2
+ cv p1 − %2

C2

2
− cv p2

)
=(

%1
C1

2
+ (cv + 1) p1

)
β1 −

(
%2
C2

2
+ (cv + 1) p2

)
β2

(4.13)

• Subsolution conditions for i = 1, N :

Ci − α2
i − β2

i > 0 (4.14)(
Ci
2
− α2

i + γi

)(
Ci
2
− β2

i − γi
)
− (δi − αi βi)2 > 0 (4.15)
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• Admissibility condition on the left interface:

µ0

(
%1 s(%1, p1)− %− s(%−, p−)

)
≤ %1 s(%1, p1)β1 − %− s(%−, p−) v−,2 (4.16)

• Admissibility condition on the right interface:

µN

(
%+ s(%+, p+)− %N s(%N , pN )

)
≤ %+ s(%+, p+) v+,2 − %N s(%N , pN )βN (4.17)

• If N = 2 we additionally have an admissibility condition on the middle interface:

µ1

(
%2 s(%2, p2)− %1 s(%1, p1)

)
≤ %2 s(%2, p2)β2 − %1 s(%1, p1)β1 (4.18)

Proof. There is really nothing to prove in this proposition, differential constraints for piecewise
constant functions translate to Rankine-Hugoniot conditions in a standard way and the subsolution
conditions (4.14)-(4.15) state that the matrix Ci

2 I− vi ⊗ vi + Ui is positive definite, which holds
if and only if its trace and its determinant are both positive.

As we already mentioned, in order to prove our main theorems, due to Theorem 4.2 it is always
enough to find a single N -fan subsolution. Moreover, we are going to make a special ansatz for
the subsolutions. Recall that we assume throughout this paper that v−,1 = v+,1 = 0. We will look
for N -fan subsolutions satisfying

αi = 0 & δi = αiβi = 0, (4.19)

i = 1, N . One can easily check that this choice implies that equations (4.3), (4.7) and (4.11) are
trivially satisfied. We also note that in the case N = 1 this is in fact a consequence of the set of
Rankine-Hugoniot conditions, for more details see [5, Lemma 4.2].

For simplicity of notation, we will use in the rest of the paper notation v± in place of v±,2 and
similarly vM instead of vM,2.

5 Proof of Theorem 3.5

5.1 Reduction to special case

We recall that the proof of Theorem 3.5 is finished as soon as we find a single admissible 2-fan
subsolution. Since the structure of the 2-fan subsolution is similar to the 1D Riemann solution
to the problem, we will look for the 2-fan subsolution as a suitable small perturbation of the 1D
Riemann solution.

Moreover, we claim that we can make the following choice without loss of generality.

Proposition 5.1. Let the assumption of Theorem 3.5 hold and assume furthermore that vM = 0,
where vM is the second component of the velocity of the 1D Riemann solution (see Proposition
2.1). Then there exist infinitely many admissible weak 2-fan solutions to the Riemann problem
(1.1)-(1.4).

Proposition 5.1 implies Theorem 3.5 using the Galilean invariance of the Euler equations.
Indeed, if we consider new initial data as follows:

(%0,new,v0,new, p0,new) := (%0,v0 − (0, vM )T , p0). (5.1)

the 1D Riemann solution to the problem (1.1)-(1.3) with (5.1) will fulfill vnew
M = 0. We apply

Proposition 5.1 and find infinitely many admissible weak 2-fan solutions (%,v, p) to the Riemann
problem with initial data (5.1). Then, again by Galilean invariance, (%,v+(0, vM )T , p) are admis-
sible weak 2-fan solutions to the Riemann problem with original initial data (1.4), and the proof
of Theorem 3.5 is finished.

What remains now is to prove Proposition 5.1.
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5.2 Proof of Proposition 5.1

Let the assumptions of Proposition 5.1 be true. As we mentioned above, we will look for an admis-
sible 2-fan subsolution as a suitable perturbation of the 1D Riemann solution. This perturbation
will be quantified by a small parameter ε > 0.

For convenience we define functions A,B,D : R→ R by

A(ε) := %−(%M− + ε)(%M+ − ε− %+)− %+(%M+ − ε)(%M− + ε− %−);

B(ε) := %−%+(%M− + ε)(%M+ − ε)
(
v− − v+

)2 − (p− − p+) A(ε);

D(ε) := v−%−(%M− + ε)(%M+ − ε− %+)− v+%+(%M+ − ε)(%M− + ε− %−).

First of all we want to show some properties of the functions A and B. It is easy to deduce
from Proposition 2.1 and the assumption vM = 0, that

v− =
√

2 cv
pM − p−√

%−(p− + (2cv + 1)pM )
, (5.2)

v+ = −
√

2 cv
pM − p+√

%+(p+ + (2cv + 1)pM )
. (5.3)

Since pM > max{p−, p+}, we have v+ < 0 < v−. Furthermore we obtain from Proposition 2.1
and (5.2), (5.3) that

%M− − %−
%−%M−

=
2cv(pM − p−)

%−(p− + (2cv + 1)pM )
=

(
v−
)2

pM − p−
,

%M+ − %+

%+%M+
=

2cv(pM − p+)

%+(p+ + (2cv + 1)pM )
=

(
v+

)2
pM − p+

.

This leads to (
v−
)2

+ (p− − p+)
%M− − %−
%−%M−

=
(
v−
)2 pM − p+

pM − p−
,

(
v+

)2 − (p− − p+)
%M+ − %+

%+%M+
=
(
v+

)2 pM − p−
pM − p+

,

and finally

B(0) =

= %−%+%M−%M+

(
v− − v+

)2 − (p− − p+)
(
%−%M−

(
%M+ − %+

)
− %+%M+

(
%M− − %−

))
= %−%+%M−%M+

[(
v−
)2

+ (p− − p+)
%M− − %−
%−%M−

+
(
v+

)2 − (p− − p+)
%M+ − %+

%+%M+
− 2v−v+

]
= %−%+%M−%M+

[(
v−
)2 pM − p+

pM − p−
+
(
v+

)2 pM − p−
pM − p+

− 2v−v+

]
> 0.

Now, by continuity of the function B, there exists an εmax,1 > 0 such that B(ε) > 0 for all
ε ∈ (0, εmax,1]. Because %M+ > %+, there exists εmax,2 > 0 such that %M+ − ε − %+ > 0 for all
ε ∈ (0, εmax,2].

Next we want to show that there is an εmax,3 > 0 such that A(ε) 6= 0 for all ε ∈ (0, εmax,3]. To
this end, let us first assume, that A(0) 6= 0. Then, by continuity of the function A, there exists
such an εmax,3 > 0. Now consider the case where A(0) = 0. Then we obtain

A(ε) = %−(%M− + ε)(%M+ − ε− %+)− %+(%M+ − ε)(%M− + ε− %−)

= ε2(%+ − %−)− ε
(
2%−%+ + (%− − %+)(%M− − %M+)

)
+A(0)︸︷︷︸

=0

= ε
(
(%+ − %−)ε− 2%−%+ − (%− − %+)(%M− − %M+)

)
,
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which has at most two zeros: If %− = %+ then

A(ε) = 0 ⇐⇒ ε = 0;

and if %− 6= %+ then

A(ε) = 0 ⇐⇒ ε = 0 or ε =
2%−%+ + (%− − %+)(%M− − %M+)

%+ − %−
.

Hence there exists εmax,3 > 0 such that A(ε) 6= 0 for all ε ∈ (0, εmax,3].
We set εmax := min{εmax,1, εmax,2, εmax,3} and then we have

A(ε) 6= 0, %M+ − ε− %+ > 0,

B(ε) > 0, %M− + ε− %− > 0,
(5.4)

for all ε ∈ (0, εmax].

5.2.1 Shock speeds

Next we define the functions µ0, µ1, µ2 : (0, εmax]→ R by

µ0(ε) :=
1

A(ε)

[
D(ε) + %−%+(%M+ − ε)(v− − v+)−

√(
%M− + ε

)2 %M+ − ε− %+

%M− + ε− %−
B(ε)

]
;

µ1(ε) :=
1

A(ε)

[
D(ε)−

√
(%M− + ε− %−)(%M+ − ε− %+) B(ε)

]
;

µ2(ε) :=
1

A(ε)

[
D(ε) + %−%+(%M− + ε)(v− − v+)−

√
(%M+ − ε)2

%M− + ε− %−
%M+ − ε− %+

B(ε)

]
.

Note first that the functions µ0, µ1, µ2 are well-defined because of (5.4). We claim that these
functions define perturbations of the shock speeds σ−, vM and σ+ of the 1D Riemann solution.
More precisely we have

Proposition 5.2. It holds that

lim
ε→0

µ0(ε) = σ−, lim
ε→0

µ1(ε) = vM , lim
ε→0

µ2(ε) = σ+.

Proof. We start with the Rankine-Hugoniot conditions for the 1D Riemann solution

σ− (%− − %M−) = %− v− − %M− vM ; (5.5)

σ− (%− v− − %M− vM ) = %− v
2
− − %M− v2

M + p− − pM ; (5.6)

σ+ (%M+ − %+) = %M+ vM − %+ v+; (5.7)

σ+ (%M+ vM − %+ v+) = %M+ v
2
M − %+ v

2
+ + pM − p+ (5.8)

and we obtain by eliminating σ−, σ+ and pM that

(%M+ − %+)
(
%− v− − %M− vM

)2
+ (%− − %M−)

(
%M+ vM − %+ v+

)2
=
(
%− v

2
− − %+ v

2
+ −

(
vM
)2

(%M− − %M+) + p− − p+

)
(%M+ − %+)(%− − %M−).

In order to solve this equation for vM , we write it as follows

A(0)
(
vM
)2 − 2D(0) vM + E = 0, (5.9)

where the constant

E := (p− − p+)(%M− − %−)(%M+ − %+) +
(
v−
)2
%−%M−(%M+ − %+)−

(
v+

)2
%+%M+(%M− − %−)
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only depends on the initial states. Now we have to consider two cases, namely A(0) = 0 and
A(0) 6= 0.

Let us start with A(0) = 0. Then we easily deduce that

D(0) = %−%M−(%M+ − %+)
(
v− − v+

)
,

which does not vanish because v+ < 0 < v− and %M+ > %+. Hence we get from (5.9), that

vM =
E

2D(0)
. (5.10)

Next we want to compute lim
ε→0

µ1(ε) and compare it with (5.10). Keeping in mind that we are

considering the case A(0) = 0, we get

D(0)−
√

(%M− − %−)(%M+ − %+) B(0)

=
(
v− − v+

)
%−%M−(%M+ − %+)−

√
(%M− − %−)(%M+ − %+)%−%+%M−%M+

(
v− − v+

)2
=
(
v− − v+

)
%−%M−(%M+ − %+)−

√
(%M+ − %+)2(%+)2(%M+)2

(
v− − v+

)2
= 0.

Hence we can apply L’Hospital’s rule. We obtain

lim
ε→0

A′(ε) = lim
ε→0

(
%−(%M+ − ε− %+)− %−(%M− + ε)− %+(%M+ − ε) + %+(%M− + ε− %−)

)
= −2%−%+ − (%− − %+)(%M− − %M+).

A short calculation shows that this is non-zero: From A(0) = 0 we can deduce that

%− − %+

%−%+
=
%M− − %M+

%M−%M+
.

This means that %− − %+ and %M− − %M+ have the same sign, which implies (%− − %+)(%M− −
%M+) ≥ 0. Since %−%+ > 0, we have A′(0) < 0, in particular A′(0) 6= 0

Furthermore a long but straightforward computation yields

lim
ε→0

[
D(ε)−

√
(%M− + ε− %−)(%M+ − ε− %+) B(ε)

]′
=
A′(0) E

2D(0)
.

Hence by L’Hospital’s rule we obtain lim
ε→0

µ1(ε) = E
2D(0) and recalling (5.10), we deduce lim

ε→0
µ1(ε) =

vM .
Let us now consider the case A(0) 6= 0. Then we obtain from (5.9) that

vM =
1

A(0)

[
D(0)±

√
D(0)2 −A(0) E

]
.

The correct sign in the equation above is “−” because1 vM = 0 and D(0) > 0, which easily follows
from v+ < 0 < v−. Furthermore it is simple to check that

D(0)2 −A(0) E = (%M− − %−)(%M+ − %+) B(0).

Then it is easy to conclude µ1(0) = vM .
To finish the proof of Proposition 5.2 we have to show that lim

ε→0
µ1(ε) = vM implies that

lim
ε→0

µ0(ε) = σ− and lim
ε→0

µ2(ε) = σ+. It is straightforward to deduce that

µ0(ε) = v− +
%M− + ε

%M− + ε− %−
(
µ1(ε)− v−

)
;

µ2(ε) = v+ +
%M+ − ε

%M+ − ε− %+

(
µ1(ε)− v+

)
.

1Alternatively, this can be verified by considering the admissibility criterion.
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On the other hand we get from (5.5) and (5.7), that

σ− = v− +
%M−

%M− − %−
(
vM − v−

)
; σ+ = v+ +

%M+

%M+ − %+

(
vM − v+

)
.

Hence we easily deduce lim
ε→0

µ0(ε) = σ− and lim
ε→0

µ2(ε) = σ+.

Because of σ− < vM < σ+ and the continuity of the functions µ0, µ1, µ2, we may assume that
µ0(ε) < µ1(ε) < µ2(ε) for all ε ∈ (0, εmax]. If this is not the case we redefine εmax to be a bit
smaller that the smallest positive value of ε for which µ0(ε) < µ1(ε) < µ2(ε) is violated.

5.2.2 Constants Ci and γi

In order to proceed further we need to introduce a second positive parameter δ > 0. We define
the functions C1, C2, γ1, γ2 : (0, εmax]× (0, pM ) by

C1(ε, δ) :=
2

(%M− + ε)
(
µ0(ε)− µ1(ε)

)[− µ0(ε)
(
cv(pM − δ − p−)− 1

2
%−|v−|2

)
+ µ1(ε)(cv + 1)(pM − δ)−

(1

2
%−|v−|2 + (cv + 1)p−

)
v−

]
;

C2(ε, δ) :=
2

(%M+ − ε)
(
µ2(ε)− µ1(ε)

)[− µ2(ε)
(
cv(pM − δ − p+)− 1

2
%+|v+|2

)
+ µ1(ε)(cv + 1)(pM − δ)−

(1

2
%+|v+|2 + (cv + 1)p+

)
v+

]
;

γ1(ε, δ) :=
1

(%M− + ε)

[
(%M− + ε)

C1(ε, δ)

2
− %−v2

− + pM − δ − p− − µ0(ε)
(
(%M− + ε)µ1(ε)− %−v−

)]
;

γ2(ε, δ) :=
1

(%M+ − ε)

[
(%M+ − ε)

C2(ε, δ)

2
− %+v

2
+ + pM − δ − p+ − µ2(ε)

(
(%M+ − ε)µ1(ε)− %+v+

)]
.

Note that these functions are well-defined because of the arguments above. More precisely, it holds
that µ0(ε)− µ1(ε) 6= 0 and µ2(ε)− µ1(ε) 6= 0 for all ε ∈ (0, εmax].

Proposition 5.3. It holds that

lim
(ε,δ)→0

C1(ε, δ) =
(
vM
)2

; lim
(ε,δ)→0

γ1(ε, δ) = −
(
vM
)2

2
;

lim
(ε,δ)→0

C2(ε, δ) =
(
vM
)2

; lim
(ε,δ)→0

γ2(ε, δ) = −
(
vM
)2

2
.

Proof. To prove this, we need the Rankine Hugoniot conditions of the 1D Riemann solution in the
energy equation

σ−

(
1

2
%− |v−|2 + cv p− −

1

2
%M− |vM |2 − cv pM

)
=

(
1

2
%− |v−|2 + (cv + 1) p−

)
v− −

(
1

2
%M− |vM |2 + (cv + 1) pM

)
vM ;

(5.11)

σ+

(
1

2
%M+ |vM |2 + cv pM −

1

2
%+ |v+|2 − cv p+

)
=

(
1

2
%M+ |vM |2 + (cv + 1) pM

)
vM −

(
1

2
%+ |v+|2 + (cv + 1) p+

)
v+.

(5.12)
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We obtain that lim
(ε,δ)→0

C1(ε, δ) =
(
vM
)2

and lim
(ε,δ)→0

C2(ε, δ) =
(
vM
)2

by using Proposition 5.2

and (5.11), (5.12).

The fact that lim
(ε,δ)→0

γ1(ε, δ) = − (vM )2

2 and lim
(ε,δ)→0

γ2(ε, δ) = − (vM )2

2 can be shown analogously

by using the Rankine Hugoniot conditions (5.6), (5.8).

We continue the proof of the Proposition 5.1 by observing that the perturbations defined above
indeed help to define an admissible 2-fan subsolution.

Proposition 5.4. If there exists (ε, δ) ∈ (0, εmax] × (0, pM ) such that the following inequalities
are fulfilled, then there exists an admissible 2-fan subsolution to the Cauchy problem (1.1)-(1.4).

• Order of the speeds:
µ0(ε) < µ1(ε) < µ2(ε) (5.13)

• Subsolution conditions:

C1(ε, δ)− µ1(ε)2 > 0 (5.14)

C2(ε, δ)− µ1(ε)2 > 0 (5.15)(
C1(ε, δ)

2
+ γ1(ε, δ)

)(
C1(ε, δ)

2
− µ1(ε)2 − γ1(ε, δ)

)
> 0 (5.16)(

C2(ε, δ)

2
+ γ2(ε, δ)

)(
C2(ε, δ)

2
− µ1(ε)2 − γ2(ε, δ)

)
> 0 (5.17)

• Admissibility condition on the left interface:

µ0(ε)
(

(%M− + ε) s(%M− + ε, pM − δ)− %− s(%−, p−)
)

≤ (%M− + ε) s(%M− + ε, pM − δ)µ1(ε)− %− s(%−, p−) v−
(5.18)

• Admissibility condition on the right interface:

µ2(ε)
(
%+ s(%+, p+)− (%M+ − ε) s(%M+ − ε, pM − δ)

)
≤ %+ s(%+, p+) v+ − (%M+ − ε) s(%M+ − ε, pM − δ)µ1(ε)

(5.19)

Proof. Let there be (ε, δ) ∈ (0, εmax]× (0, pM ) such that (5.13)-(5.19) hold. In order to show that
there exists an admissible 2-fan subsolution, we use Proposition 4.4, i.e. we define the constants
appearing in Proposition 4.4 as follows:

µ0 := µ0(ε); µ1 := µ1(ε); µ2 := µ2(ε);

%1 := %M− + ε; %2 := %M+ − ε;

v1 := v2 :=

(
0

µ1(ε)

)
; p1 := p2 := pM − δ;

U1 :=

(
γ1(ε, δ) 0

0 −γ1(ε, δ)

)
; U2 :=

(
γ2(ε, δ) 0

0 −γ2(ε, δ)

)
;

C1 := C1(ε, δ); C2 := C2(ε, δ).

It is a matter of straightforward calculation to check that with this choice (4.1)-(4.17) hold.
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5.2.3 Subsolution and admissibility inequalities

In order to finish the proof of Proposition 5.1, we have to find (ε, δ) ∈ (0, εmax]× (0, pM ) such that
the conditions (5.13)-(5.19) are satisfied.

We start with noting that we already have (5.13) fulfilled for all ε ∈ (0, εmax].
Let us now investigate the subsolution conditions (5.14)-(5.17). We start with the terms in the

first parenthesis in (5.16)-(5.17). We obtain by using that δ ∈ (0, pM )

C1(ε, δ)

2
+ γ1(ε, δ) =

(2cv − 1) δ

%M− + ε
− 2µ1(ε) δ

(%M− + ε)
(
µ0(ε)− µ1(ε)

) +
C1(ε, 0)

2
+ γ1(ε, 0)

≥ (2cv − 1) δ

%M− + ε
− 2|µ1(ε)| pM

(%M− + ε)
∣∣µ0(ε)− µ1(ε)

∣∣ +
C1(ε, 0)

2
+ γ1(ε, 0)︸ ︷︷ ︸

=:R1(ε)

(5.20)

C2(ε, δ)

2
+ γ2(ε, δ) =

(2cv − 1) δ

%M+ − ε
− 2µ1(ε) δ

(%M+ − ε)
(
µ2(ε)− µ1(ε)

) +
C2(ε, 0)

2
+ γ2(ε, 0)

≥ (2cv − 1) δ

%M+ − ε
− 2|µ1(ε)| pM

(%M+ − ε)
∣∣µ2(ε)− µ1(ε)

∣∣ +
C2(ε, 0)

2
+ γ2(ε, 0)︸ ︷︷ ︸

=:R2(ε)

(5.21)

where Propositions 5.2 and 5.3 together with the fact that vM = 0 imply that

lim
ε→0

R1(ε) = 0; lim
ε→0

R2(ε) = 0.

Therefore |R1(ε)| and |R2(ε)| become arbitrary small if we choose ε small. Because of cv >
1
2 ,

there exists ε̃1(δ) ∈ (0, εmax] for each δ ∈ (0, pM ), such that

C1(ε, δ)

2
+ γ1(ε, δ) > 0 &

C2(ε, δ)

2
+ γ2(ε, δ) > 0 (5.22)

hold for all ε ∈ (0, ε̃1(δ)).
Similarly we handle terms in the second parenthesis in inequalities (5.16)-(5.17). We obtain

C1(ε, δ)

2
− µ1(ε)2 − γ1(ε, δ) =

δ

%M− + ε
+
C1(ε, 0)

2
− µ1(ε)2 − γ1(ε, 0)︸ ︷︷ ︸

=:R3(ε)

(5.23)

C2(ε, δ)

2
− µ1(ε)2 − γ2(ε, δ) =

δ

%M+ − ε
+
C2(ε, 0)

2
− µ1(ε)2 − γ2(ε, 0)︸ ︷︷ ︸

=:R4(ε)

. (5.24)

With the same arguments as above, we obtain that for each δ ∈ (0, pM ) there exists ε̃2(δ) ∈
(0, εmax] such that

Ci(ε, δ)

2
− µ1(ε)2 − γi(ε, δ) > 0, i = 1, 2 (5.25)

hold for all ε ∈ (0, ε̃2(δ)).
Combining (5.22) and (5.25) we obtain (5.16) and (5.17) while summing together (5.22) and

(5.25) we obtain (5.14) and (5.15).
To finish the proof we have to show that we can achieve that in addition the admissibility

conditions (5.18) and (5.19) hold. Note that in the limit (ε, δ)→ (0, 0) the admissibility conditions
(5.18) and (5.19) turn into the admissibility conditions of the 1D Riemann solution (according to
Proposition 5.2). Since the latter are fulfilled strictly, we can choose δ > 0 sufficiently small and
also ε ∈ (0,min{ε̃1(δ), ε̃2(δ)}) sufficiently small such that (5.18) and (5.19) hold. This finishes the
proof of Proposition 5.1.
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6 Proof of Theorem 3.6

Unlike in the case of 2-fan solutions as in Theorem 3.5, we cannot use here the 1D Riemann
solution and try to perturb it in a suitable way in order to find a 1-fan subsolution. On the
other hand, since we don’t have the middle interface, the number of equations and inequalities in
Proposition 4.4 is lower than in the case N = 2.

Since i could be only equal to 1 in Proposition 4.4, for simplicity of notation we write α, β, γ,
δ and C instead of α1, β1, γ1, δ1 and C1. We also recall that we set α = 0 and δ = αβ = 0, see
(4.19).

The subsolution conditions (4.14)-(4.15) then simplify to

C − β2 > 0; (6.1)(
C

2
+ γ

)(
C

2
− β2 − γ

)
> 0. (6.2)

It is not difficult to observe (see also [5, Lemma 4.3]) that the necessary condition for (6.1)-(6.2)
to be satisfied is C

2 − γ > β2 which motivates us to introduce instead of C and γ new unknowns

ε1 :=
C

2
− γ − β2; (6.3)

ε2 := C − β2 − ε1. (6.4)

The set of algebraic identities and inequalities from Proposition 4.4 then simplifies into

• Order of the speeds
µ0 < µ1 (6.5)

• Rankine Hugoniot conditions on the left interface:

µ0(%− − %1) = %−v− − %1β (6.6)

µ0(%−v− − %1β) = %−v
2
− − %1(β2 + ε1) + p− − p1 (6.7)

µ0

(
2cvp− + %−v

2
− − 2cvp1 − %1(β2 + ε1 + ε2)

)
=
(
(2cv + 2)p− + %−v

2
−
)
v− −

(
(2cv + 2)p1 + %1(β2 + ε1 + ε2)

)
β ; (6.8)

• Rankine-Hugoniot conditions on the right interface:

µ1(%1 − %+) = %1β − %+v+ (6.9)

µ1(%1β − %+v+) = %1(β2 + ε1)− %+v
2
+ + p1 − p+ (6.10)

µ1

(
2cvp1 + %1(β2 + ε1 + ε2)− 2cvp+ − %+v

2
+

)
=
(
(2cv + 2)p1 + %1(β2 + ε1 + ε2)

)
β −

(
(2cv + 2)p+ + %+v

2
+

)
v+ ; (6.11)

• Subsolution conditions:

ε1 > 0 (6.12)

ε2 > 0 ; (6.13)

• Admissibility conditions

µ0(L− − L1) ≥ L−v− − L1β (6.14)

µ1(L1 − L+) ≥ L1β − L+v+ . (6.15)
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where for simplicity of notation we introduced Li as

Li = %is(%i, pi) = %i log

(
pcvi
%cv+1
i

)
, i = −, 1,+.

We observe that we have 6 equations and 5 inequalities for 7 unknowns µ0, µ1, %1, p1, β, ε1, ε2.
Moreover to these 5 inequalities we have to keep in mind other inequalities which have to be
satisfied, namely %1 > 0 and p1 > 0.

We define the following quantities, functions of the Riemann initial data

R = %− − %+ (6.16)

A = %−v− − %+v+ (6.17)

H = %−v
2
− − %+v

2
+ + p− − p+ (6.18)

u = v− − v+ (6.19)

B = A2 −RH = %−%+u
2 − (%+ − %−)(p+ − p−). (6.20)

Since we have six equations for seven unknowns it is reasonable to choose one unknown as a
parameter and express other unknowns as functions of Riemann initial data and this parameter.
We choose the density in the middle region %1 as a parameter. Note that we may assume B > 0,
this can be achieved by taking u large enough as in the assumptions of Theorem 3.6.

6.1 The case R < 0

6.1.1 Solution to algebraic equations

Recalling that R < 0 means %− < %+ we express µ0 and µ1 from equations (6.6), (6.7), (6.9),
(6.10) as

µ0 =
A

R
− 1

R

√
B
%1 − %+

%1 − %−
(6.21)

µ1 =
A

R
− 1

R

√
B
%1 − %−
%1 − %+

(6.22)

and we observe that µ0 < µ1 if %1 > %+ > %−. In what follows we therefore always assume that
the set of possible values of %1 is %1 ∈ (%+,∞). There exists also another solution µ0, µ1, which
we do not use, see Remark 6.6 at the end of section 6.1.3.

Next we express β in two ways which will be useful later. Using (6.9) and (6.6) respectively
we obtain

β =
%−
%1
v− + µ0

%1 − %−
%1

; (6.23)

β =
%+

%1
v+ + µ1

%1 − %+

%1
. (6.24)

It is technically more difficult to express p1, ε1 and ε2. We start with rewriting (6.10) as

p1 = p+ + %+v
2
+ − %1(β2 + ε1) + µ2

1(%1 − %+). (6.25)

Then, a lengthy yet straightforward computation yields the following equations as a consequence
of (6.8), (6.11)

(β + v−)%1ε1(%− − %1)− %−%1(β − v−)(ε1 + ε2)

= (β − v−) [(%− − %1)(p1 + p−) + 2cv%−p1 − 2cv%1p−] ; (6.26)

−(v+ + β)%1ε1(%1 − %+) + %+%1(v+ − β)(ε1 + ε2)

= (v+ − β) [(%1 − %+)(p1 + p+) + 2cv%1p+ − 2cv%+p1] . (6.27)
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At this point we assume that v+−β and v−−β are nonzero and refer to Lemma 6.1 for proof.
We continue by expressing ε1 + ε2 from (6.27) and plugging this to (6.26). We have

ε1 + ε2 =
1

%1%+
[(%1 − %+)(p1 + p+) + 2cv%1p+ − 2cv%+p1] +

v+ + β

v+ − β
ε1
%1 − %+

%+
(6.28)

and consequently (6.26) becomes(
β + v−
β − v−

%1%+(%− − %1)− v+ + β

v+ − β
%1%−(%1 − %+)

)
ε1

=%+ [(%− − %1)(p1 + p−) + 2cv(%−p1 − %1p−)] + %− [(%1 − %+)(p1 + p+) + 2cv(%1p+ − %+p1)] .
(6.29)

Expressing the right hand side of (6.29) we end up with(
β + v−
β − v−

%1%+(%− − %1)− v+ + β

v+ − β
%1%−(%1 − %+)

)
ε1

=%1p1R+ %+%−(p− − p+) + (2cv + 1)%1(%−p+ − %+p−). (6.30)

Once again it is useful to introduce further notation to simplify resulting expressions. We define

X = %+%−(p− − p+) + (2cv + 1)%1(%−p+ − %+p−) (6.31)

Y =
β + v−
β − v−

%+(%− − %1)− v+ + β

v+ − β
%−(%1 − %+) (6.32)

Z = p+ + %+v
2
+ − %1β

2 + µ2
1(%1 − %+). (6.33)

This way, assuming Y 6= 0 which will be justified in Lemma 6.2, we rewrite (6.30) as

ε1 =
%1p1R+X

%1Y
(6.34)

and plugging this into (6.25) and assuming Y + %1R 6= 0 which will be justified in Lemma 6.2,
too, we get

p1 =
Y Z −X
Y + %1R

, (6.35)

this in turn yields

ε1 =
%1RZ +X

%1(Y + %1R)
(6.36)

and finally ε2 is expressed using (6.28)

ε2 =
1

%1%+
[(%1 − %+)(p1 + p+) + 2cv(%1p+ − %+p1)] +

(
v+ + β

v+ − β
%1 − %+

%+
− 1

)
ε1. (6.37)

6.1.2 Positivity of p1, ε1 and ε2

Before we continue further, we remind the following useful expressions which can be derived from
(6.6) and (6.9)

β − µ0 =
%−
%1

(v− − µ0) (6.38)

v− − β =
%1 − %−
%1

(v− − µ0) (6.39)

µ1 − β =
%+

%1
(µ1 − v+) (6.40)

β − v+ =
%1 − %+

%1
(µ1 − v+) . (6.41)

In particular we observe that the signs of v−− β and β− v+ are the same as v−−µ0 and µ1− v+

respectively.
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Lemma 6.1. For u = v− − v+ sufficiently large it holds

v− − µ0 > 0 & µ1 − v+ > 0. (6.42)

Proof. We have

v− − µ0 = −%+u

R
+

1

R

√(
%−%+u2 − (%+ − %−)(p+ − p−)

)%1 − %+

%1 − %−

=
%+u

|R|
− 1

|R|

√(
%−%+u2 − (%+ − %−)(p+ − p−)

)%1 − %+

%1 − %−
. (6.43)

Now we distinguish two cases. First, if p+ ≥ p−, then we easily observe (recall %+ > %−) that

v− − µ0 >
1

|R|
(%+u−

√
%−%+u) > 0. (6.44)

However if p+ < p− we get

v− − µ0 >
1

|R|
(%+u−

√
%−%+u2 + (%+ − %−)(p− − p+)) (6.45)

and the expression on the right hand side can be made positive assuming u is large enough.
Similarly we proceed with quantity µ+ − v+.

We recall that Lemma 6.1 justifies the assumptions v+ − β and v− − β nonzero we made in
the process of deriving (6.35) and (6.36).

We continue by analyzing whether one can find %1 such that p1, ε1 and ε2 are all positive. This
part starts with rewriting the expression (6.32) for Y . We have

Y = %+(%1 − %−)
v− + β

v− − β
+ %−(%1 − %+)

β + v+

β − v+

= %1%+
v− + β

v− − µ0
+ %1%−

β + v+

µ1 − v+

= %1%+
v− + µ0

v− − µ0
+ %1%−

µ1 + v+

µ1 − v+
, (6.46)

where the last equality holds although obviously β /∈ {µ0, µ1}. In what follows our strategy is to
express certain quantities as functions of %1 and u while treating %±, p± and v− as data. This way
we obtain

Y = %1R

1 +
2√

B
%2−u

2

%1−%−
%1−%+ − 1

+ 2v−

 1√
B(%1−%+)
%2+(%1−%−)

− u
− 1√

B(%1−%−)
%2−(%1−%+)

− u

 . (6.47)

Lemma 6.2. For u = v− − v+ large enough it holds Y < 0 and Y + %1R < 0 for all %1 > %+.

Proof. To prove Lemma 6.2 we examine the limit of Y as u→∞. First we observe√
B

%2
−u2

%1 − %−
%1 − %+

→

√
%+(%1 − %−)

%−(%1 − %+)
> 1 (6.48)

and therefore the second term in the square brackets of (6.47) is positive. We continue by proving
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that the last term converges to zero. We write

2v−

 1√
B(%1−%+)
%2+(%1−%−)

− u
− 1√

B(%1−%−)
%2−(%1−%+)

− u


=

2v−
u

 1√
B(%1−%+)

u2%2+(%1−%−)
− 1
− 1√

B(%1−%−)
%2−u

2(%1−%+)
− 1


=

2v−
u


√

B(%1−%−)
%2−u

2(%1−%+)
−
√

B(%1−%+)
u2%2+(%1−%−)(√

B(%1−%+)
u2%2+(%1−%−)

− 1
)(√

B(%1−%−)
%2−u

2(%1−%+)
− 1
)
 (6.49)

and observe that both terms in the numerator of the fraction converge to distinct quantities and
the denominator has finite limit as u→∞. Therefore the whole fraction has a finite nonzero limit
and the whole term therefore can be made arbitrarily small by choosing u sufficiently large.

Altogether we have proved that the expression in the square brackets in (6.47) is positive at
least for u sufficiently large and since R < 0 we conclude that Y < 0 for large u. Also we observe
that Y has a finite limit as u→∞. The same two properties obviously hold also for Y + %1R.

Remark 6.3. At this point we emphasize the need to take v− as fixed and by taking u large enough
recover v+. This procedure would not work the other way round, i.e. taking v+ fixed. If we would
consider v+ fixed, the expression (6.47) would become

Y = %1R

1 +
2√

B
%2+u

2

%1−%+
%1−%− − 1

+ 2v+

 1√
B(%1−%+)
%2+(%1−%−)

− u
− 1√

B(%1−%−)
%2−(%1−%+)

− u

 . (6.50)

It is not difficult to figure out that

lim
u→∞

1 +
2√

B
%2+u

2

%1−%+
%1−%− − 1

 < 0, (6.51)

which yields Y positive and this would cause troubles later when studying the sign of ε1.

Now let us turn our attention to expressions X and Z. We recall here the definition (6.31) of
X

X = %+%−(p− − p+) + (2cv + 1)%1(%−p+ − %+p−). (6.52)

We see that X does not depend on u and may be positive or negative depending on values of
%±, p± and %1.

Concerning Z we have from (6.33)

Z = p+ + %+v
2
+ − %1β

2 + µ2
1(%1 − %+)

= p+ +
(%1 − %+)%+

%1
(v+ − µ1)2 (6.53)

and we see that Z is always positive. Moreover we plug in the expression (6.22) to obtain

Z = p+ +
(%1 − %+)%+

%1
(v+ − µ1)2

= p+ +
(%1 − %+)%+

%1R2

(√
B
%1 − %−
%1 − %+

− %−u
)2

= p+ +
(%1 − %+)%+u

2

%1R2

(√(
%−%+ +

R(p+ − p−)

u2

)
%1 − %−
%1 − %+

− %−

)2

. (6.54)
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Observing that the quantity in parenthesis on the last line of (6.54) has finite nonzero limit as
u→∞ we conclude that Z grows as u2.

We are now ready to study the signs of p1 and ε1.

Lemma 6.4. For u = v− − v+ large enough it holds p1 > 0 and ε1 > 0 for all %1 > %+.

Proof. Since we have from (6.35)

p1 =
Y Z −X
Y + %1R

, (6.55)

we easily see that for large u the leading term is Y Z
Y+%1R

which grows like u2, whereas X
Y+%1R

has
a finite limit as u → ∞. Since both Y and Y + %1R are negative at least for large u and Z > 0,
we conclude that p1 > 0 for u large enough.

Similarly we have from (6.36)

ε1 =
%1RZ +X

%1(Y + %1R)
(6.56)

and using similar arguments as above for p1 we see that the term RZ
Y+%1R

grows like u2 and is

positive whereas X
%1(Y+%1R) has finite limit as u→∞ and therefore ε1 > 0 for u large enough.

Next we study the sign of ε2. We have

Lemma 6.5. For

ρ1 >
(2cv + 1)%− + %+

2
+

√
%2

+ + (4c2v − 1)%+%−

2
(6.57)

and u = v− − v+ large enough it holds ε2 > 0.

Proof. We start from (6.37)

ε2 =
1

%1%+
[(%1 − %+)(p1 + p+) + 2cv(%1p+ − %+p1)] + ε1

(
v+ + β

v+ − β
%1 − %+

%+
− 1

)
=
p+((2cv + 1)%1 − %+)

%1%+
+
p1(%1 − (2cv + 1)%+)

%1%+

+ ε1

− %1

%+
+

2%1R

%+

(
%− −

√
B(%1−%−)
u2(%1−%+)

) +
2%1Rv−

%+

(√
B %1−%−
%1−%+ − %−u

)
 . (6.58)

Keeping in mind that both p1 and ε1 grow as u2 we identify the leading terms of ε2 as u→∞.
We have

ε2 =
Y Z

Y + %1R

%1 − (2cv + 1)%+

%1%+
+

RZ

Y + %1R

− %1

%+
+

2%1R

%+

(
%− −

√
B(%1−%−)
u2(%1−%+)

)
+ l.o.t.

=
Z

%+(Y + %1R)

Y (%1 − (2cv + 1)%+)

%1
+R

−%1 +
2%1R

%+

(
%− −

√
B(%1−%−)
u2(%1−%+)

)

+ l.o.t.

=:
Z

%+(Y + %1R)
E + l.o.t., (6.59)

where l.o.t. stands for lower order terms with respect to u2. We know that Z
%+(Y+%1R) is negative

so we continue by studying the remaining part E of the leading term of ε2 and to make ε2 > 0 we
want to show that E < 0.
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Recall that from (6.47)-(6.49) we already know that

lim
u→∞

Y = %1R

1 +
2√

%+(%1−%−)
%−(%1−%+) − 1

 (6.60)

and therefore a straightforward calculation yields

lim
u→∞

E = R

−(2cv + 1)%+ +

(
2%+%1

%−
− 2(2cv + 1)%+

)
1√

%+(%1−%−)
%−(%1−%+) − 1

 (6.61)

Since we have R < 0, we want the term in square parenthesis of (6.61) to be positive. It is not
difficult to show that this can be done by choosing %1 large enough with respect to %±, more
specifically if

%1 >
(2cv + 1)%− + %+

2
+

√
%2

+ + (4c2v − 1)%+%−

2
(6.62)

then limu→∞E < 0.

6.1.3 Admissibility inequalities

Finally we have to check whether the admissibility inequalities (6.14)–(6.15) are satisfied. We
start by plugging the expression (6.23) into (6.14) and we obtain

(v− − µ0)(%−L1 − %1L−) ≥ 0. (6.63)

We already know that v−−µ0 > 0 at least for u large enough, see Lemma 6.1. Therefore we need
to ensure that

%−L1 ≥ %1L−. (6.64)

Using the definition of Li the inequality (6.64) is equivalent to

pcv1

%cv+1
1

≥
pcv−
%cv+1
−

. (6.65)

We proceed similarly with (6.15) where we plug in the expression (6.24) for β to get

(µ1 − v+)(%+L1 − %1L+) ≥ 0. (6.66)

Again by Lemma 6.1 we know that µ1 − v+ > 0 at least for u large enough and thus we need

%+L1 ≥ %1L+, (6.67)

which is equivalent to
pcv1

%cv+1
1

≥
pcv+

%cv+1
+

. (6.68)

Combining (6.65) and (6.68) we end up with

pcv1 ≥ %
cv+1
1 max

{
pcv−
%cv+1
−

,
pcv+

%cv+1
+

}
. (6.69)

However we already know that p1 grows as u2, so regardless of the choice of %1 we can always
ensure that (6.69) is satisfied by choosing u large enough.

We have showed that for any %1 satisfying (6.57) there exists some u(%1) such that if u > u(%1)
then we can construct a 1-fan subsolution. Then the point (i) of Theorem 3.6 in the case R < 0
is proved by defining

U = U(%±, p±, v−) := v− − inf
ρ1
u(ρ1), (6.70)

where the inf is taken among ρ1 such that (6.57) holds.
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Remark 6.6. There exists also another solution to equations (6.6), (6.7), (6.9), (6.10), namely

µ0 =
A

R
+

1

R

√
B
%1 − %+

%1 − %−
(6.71)

µ1 =
A

R
+

1

R

√
B
%1 − %−
%1 − %+

(6.72)

and here it holds µ0 < µ1 for %1 < %− < %+. However this solution is not convenient to work with,
since it violates Lemma 6.1. More precisely, one of the inequalities (6.42) holds with the opposite
sign. This causes troubles in the analysis of the admissibility inequalities (6.14)–(6.15), because
these then yield one upper bound and one lower bound for p1 instead of two lower bounds. Then
naturally the argument with taking u sufficiently large fails.

6.2 The case R > 0

The proof in the case R > 0 follows the same steps. The expressions (6.21)–(6.22) for µ0, µ1 stay
the same and again we see that µ0 < µ1 if %1 > %− > %+. Since we treat v+ as fixed in this case,
instead of (6.47) we get

Y = %1R

1 +
2√

B
%2+u

2

%1−%+
%1−%− − 1

+ 2v+

 1√
B(%1−%+)
%2+(%1−%−)

− u
− 1√

B(%1−%−)
%2−(%1−%+)

− u

 . (6.73)

Similarly as in the case R < 0 we show that the term in the square brackets is positive at least
for u sufficiently large, so in this case we conclude that Y > 0 and obviously also Y + %1R > 0.
Since nothing changes in terms X and Z, this yields that p1 and ε1 are both positive at least for
u sufficiently large.

The analysis of ε2 changes again with respect to the fact that v+ is now fixed instead of v−.
Instead of (6.58) we obtain

ε2 =
p+((2cv + 1)%1 − %+)

%1%+
+
p1(%1 − (2cv + 1)%+)

%1%+
+ ε1

− %1

%+
+

2%1Rv+

%+

(√
B %1−%−
%1−%+ − %−u

)


(6.74)
and hence

ε2 =
Z

%+(Y + %1R)

(
Y (%1 − (2cv + 1)%+)

%1
− %1R

)
+ l.o.t. =:

Z

%+(Y + %1R)
Ẽ + l.o.t.. (6.75)

Since the limit of Y as u→∞ changes to

lim
u→∞

Y = %1R

1 +
2√

%−(%1−%+)
%+(%1−%−) − 1

 , (6.76)

a direct calculation yields

lim
u→∞

Ẽ = R

−(2cv + 1)%+ +
2%1 − 2(2cv + 1)%+√

%−(%1−%+)
%+(%1−%−) − 1

 . (6.77)

It is not difficult to obtain that limu→∞ Ẽ > 0 if

%1 >
%− + (2cv + 1)%+

2
+

√
%2
− + (4c2v − 1)%+%−

2
(6.78)

and thus choosing such %1 we always find u large enough such that ε2 > 0. Since nothing changes
regarding the admissibility inequalities, we conclude the proof of point (ii) of Theorem 3.6 in the
case R > 0 by the same arguments as in the case of point (i) in the case R < 0.
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6.3 The case R = 0

6.3.1 Solution to algebraic equations

This case has to be treated separately since even the expression for the speeds of interfaces µ0, µ1

(6.21)-(6.22) are considerably different. We have

µ0 =
1

2

(
− %+u

%1 − %+
+
p− − p+

%+u
+ v− + v+

)
(6.79)

µ1 =
1

2

(
%+u

%1 − %+
+
p− − p+

%+u
+ v− + v+

)
(6.80)

and we immediately see that since we examine the case where u > 0 we are forced to assume
%1 > %+ = %− in order to ensure µ0 < µ1.

The relations (6.23)-(6.29) stay the same in the case R = 0, however the expressions for
quantities X and Y simplify a little bit to

X = %2
+(p− − p+) + (2cv + 1)%1%+(p+ − p−) = %+(p+ − p−) ((2cv + 1)%1 − %+) (6.81)

Y = %+(%1 − %+)

(
v− + β

v− − β
+
β + v+

β − v+

)
(6.82)

and consequently we have

ε1 =
X

%1Y
(6.83)

and

p1 = Z − X

Y
, (6.84)

with Z defined as in (6.33). Finally, ε2 is given by (6.37).

6.3.2 Positivity of p1, ε1 and ε2

We claim that Lemma 6.1 holds also in the case R = 0. Indeed, it is even easier here to see that

v− − µ0 =
1

2

(
%1u

%1 − %+
− p− − p+

%+u

)
(6.85)

µ1 − v+ =
1

2

(
%1u

%1 − %+
+
p− − p+

%+u

)
(6.86)

and both expressions on the right hand sides are positive at least for u large enough.
Next, we observe that the sign of X depends on the sign of p+ − p−, namely

signX = sign (p+ − p−) (6.87)

and in particular this shows that this presented construction simply does not work in the case
%− = %+ and p− = p+, because in this case we end up with ε1 = 0. Also, knowing the sign of X
and having in mind the expression (6.83) for ε1 we see that in order to ensure ε1 > 0 we need to
have

signY = signX = sign (p+ − p−). (6.88)

Therefore we study now the sign of Y in a similar manner as in the proof of Lemma 6.2. We
start this part by claiming that the expression (6.46) still holds and can be written as

Y = %1%+

(
v− + µ0

v− − µ0
+
µ1 + v+

µ1 − v+

)
. (6.89)
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Using (6.79), (6.80), keeping v− fixed and expressing v+ = v− − u we end up after a simple
calculation with

Y = 4%1%+

 2v−
%1u

%1−%+ −
(%1−%+)(p−−p+)2

%1%2+u
3

− 1
%1

%1−%+ + p−−p+
%+u2

 . (6.90)

We observe that in the limit u→∞ we get Y → −4%+(%1− %+) < 0. Therefore we conclude that
ε1 > 0 for u large enough if we keep v− fixed and if p− > p+.

Similarly if we keep v+ fixed, express v− = v+ + u we end up instead of (6.90) with

Y = 4%1%+

 2v+

%1u
%1−%+ −

(%1−%+)(p−−p+)2

%1%2+u
3

+
1

%1
%1−%+ −

p−−p+
%+u2

 (6.91)

and in the limit u → ∞ we get Y → 4%+(%1 − %+) > 0. Therefore we conclude that ε1 > 0 for u
large enough if we keep v+ fixed and if p− < p+.

Concerning the sign of p1 we have similarly as in (6.54)

Z =
%1%+u

2

4(%1 − %+)
+
p− + p+

2
+

(%1 − %+)(p− − p+)2

4%1%+u2
, (6.92)

thus we see that Z > 0 and Z ∼ u2 as u→∞. Therefore using (6.84) we conclude p1 > 0.

Remark 6.7. From the considerations above it is also clear why we do not state anything about
the case %− = %+ and p− = p+ in Theorem 3.6. In this case X = 0 and the only way how one
could choose ε1 > 0 and satisfy (6.30) would be to have also Y = 0. However, even if p− = p+ we
observe that Y has nonzero finite limit as u→∞ and hence this construction fails in this case.

We finish this section with the study of the sign of ε2.

Lemma 6.8. For
ρ1 > (2cv + 1)%+ (6.93)

and u = v− − v+ large enough it holds ε2 > 0.

Proof. Recalling (6.37) we have

ε2 =
1

%1%+
[(%1 − %+)(p1 + p+) + 2cv(%1p+ − %+p1)] + ε1

(
v+ + β

v+ − β
%1 − %+

%+
− 1

)
= p1

%1 − (1 + 2cv)%+

%1%+
+ p+

(2cv + 1)%1 − %+

%1%+
+ ε1

(
v+ + β

v+ − β
%1 − %+

%+
− 1

)
. (6.94)

We already know, that p1 grows as u2 as u → ∞. The second term on the right hand side of
(6.94) does not depend on u at all. Concerning the third term, we know that ε1 has a finite
limit as u → ∞ and now we are going to show that the same property holds also for the term(
v++β
v+−β

%1−%+
%+

− 1
)

. Indeed, by a simple calculation using (6.24) we have

v+ + β

v+ − β
%1 − %+

%+
− 1 =

%1

%+

v+ + µ1

v+ − µ1
. (6.95)

Plugging in (6.80) we obtain

%1

%+

v+ + µ1

v+ − µ1
=
%1

%+

(
− 3v+ + v−

%1u
%1−%+ + p−−p+

%+u

− 1

)

=
%1

%+

(
− 4v+ + u

%1u
%1−%+ + p−−p+

%+u

− 1

)
(6.96)

=
%1

%+

(
− 4v− − 3u

%1u
%1−%+ + p−−p+

%+u

− 1

)
(6.97)
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If we assume v− is fixed we see from (6.97) that the expression on the left hand side has a finite
nonzero limit as u→∞, whereas if we assume v+ is fixed, we conclude the same using (6.96).

Altogether we have that the leading term in the expression (6.94) as u→∞ is p1
%1−(1+2cv)%+

%1%+
.

In particular if we assume %1 > (2cv + 1)%+, then ε2 > 0 provided u is taken large enough.

6.3.3 Admissibility inequalities

Nothing changes in the analysis of the admissibility inequalities (6.14)–(6.15) with respect to the
case R 6= 0 and we can follow word by word section 6.1.3, in particular also here when we assume
R = 0 we have

pcv1 ≥ %
cv+1
1 max

{
pcv−
%cv+1
−

,
pcv+

%cv+1
+

}
. (6.98)

and we know that p1 grows as u2, so we can choose u large enough in order to (6.98) to be satisfied.
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