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Euler Equations

We consider the compressible isentropic Euler system
∂tρ+ divx(ρv) = 0
∂t(ρv) + divx (ρv ⊗ v) +∇x [p(ρ)] = 0
ρ(·, 0) = ρ0

v(·, 0) = v0 .

(1)

Unknowns:

ρ(x , t) ... density

v(x , t) ... velocity

The pressure p(ρ) is given.
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Properties

Weak solutions nonunique ⇒ Admissibility criteria ⇒ Entropy
conditions

Existence of entropy weak solutions in general in multi-D not
known

What is correct notion of solution still unclear (ill-posedness
results of entropy weak solutions by Chiodaroli, De Lellis and
K.)

Measure-valued solutions (MVS) introduced by DiPerna for
general systems of conservation laws

Existence of MVS for compressible Euler by Neustupa

MVS criticized for being too weak, on the other hand may be
useful in the weak-strong uniqueness results (Feireisl,
Gwiazda, Świerczewska-Gwiazda, Wiedemann)

Numerical schemes may not converge to entropy solutions,
MVS are suggested instead (Fjordholm, Käppeli, Mishra,
Tadmor)
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Incompressible Euler system

Theorem 1 (Székelyhidi, Wiedemann, 2012)

Any measure-valued solution to the incompressible Euler system
can be approximated by a sequence of weak solutions

This means that MVS are not substantially weaker than weak
solutions, i.e. weak solutions are too weak.

What is the situation in the compressible case?
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Young measures

For simplicity we work only with bounded measure-valued solutions
- we ignore the effects of concentrations and avoid using
generalized Young measures.
Young measure: map ν ∈ L∞w (Ω;M1(Rd)) ... assigns to almost
every point x ∈ Ω a probability measure νx ∈M1(Rd) on the
phase space Rd .
Denote 〈νx , f 〉 :=

∫
Rd f (z)dνx(z) ... the expectation of f with

respect to the probability measure νx .
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Measure valued solutions

In our context the domain takes the form [0,T ]× Ω and the phase
space (we work in 3D) is R+ × R3.
Denote the state variables by ξ ∈ R+ × R3 and introduce

ξ = [ξ0, ξ
′] = [ξ0, ξ1, ξ2, ξ3] ∈ R+ × R3

〈νt,x , ξ0〉 = ρ

〈νt,x ,
√
ξ0ξ
′〉 = ρv

〈νt,x , ξ′ ⊗ ξ′〉 = ρv ⊗ v

〈νt,x , p(ξ0)〉 = p(ρ).

In such a way ξ0 is the state of the density ρ and ξ′ is the state of√
ρv
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Measure valued solutions II

Definition 2 (Measure-valued solution)

A measure-valued solution to the compressible Euler equations (1)
is a Young measure νt,x on R+ ×R3 with parameters in [0,T ]×Ω
which satisfies the Euler equations in an average sense, i.e.∫ T

0

∫
Ω
∂tψρ+∇xψ · ρvdxdt +

∫
Ω
ψ(0, x)ρ0(x)dx = 0

∫ T

0

∫
Ω
∂tϕ · ρv +∇xϕ : ρv ⊗ v + div xϕp(ρ)dxdt

+

∫
Ω
ϕ(0, x) · ρ0(x)v0(x)dx = 0

for all ψ ∈ C∞c ([0,T )× Ω) and all ϕ ∈ C∞c ([0,T )× Ω;R3).
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Some remarks

Every weak solution defines naturally an atomic measure
valued solution νt,x := δρ(t,x),

√
ρv(t,x).

We say that sequence {zn} generates the Young measure ν if
for all bounded Carathéodory functions f : Ω̃× Rd → R

lim
n→∞

∫
Ω̃
f (y , zn(y))ϕ(y)dy =

∫
Ω̃
〈νy , f (y , ·)〉ϕ(y)dy

for all ϕ ∈ L1(Ω̃).

Any sequence of functions bounded in Lp(Ω) (for any p ≥ 1)
generates, up to a subsequence, some Young measure
[Fundamental theorem of Young measures].
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Subsolutions

In order to formulate our first Theorem we need to define
subsolutions. As usual we take the linearized system

∂tρ+ div xm = 0

∂tm + div xU +∇xq = 0,
(2)

associated to the compressible Euler system. Here, as usual,
U ∈ S3

0 is a symmetric trace-free 3× 3 matrix which replaces the
traceless part of the matrix ρv ⊗ v = m⊗m

ρ .
Weak solutions to (2) are functions (ρ,m,U, q) which satisfy (2)
in the sense of distributions.
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Measure valued subsolutions

We use the following notation:

[ζ0, ζ
′,Z, ζ̃] ∈ R+ × R3 × S3

0 × R+

〈µt,x , ζ0〉 = ρ

〈µt,x , ζ ′〉 = m

〈µt,x ,Z〉 = U

〈µt,x , ζ̃〉 = q
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Measure values subsolutions II

Definition 3 (Measure valued subsolution)

A measure-valued solution to the linear system is a Young measure
µt,x on R+ × R3 × S3

0 × R+ with parameters in [0,T ]× Ω which
satisfies the linear system (2) in an average sense, i.e.∫ T

0

∫
Ω
∂tψρ+∇xψ ·mdxdt +

∫
Ω
ψ(0, x)ρ0(x)dx = 0

∫ T

0

∫
Ω
∂tϕ ·m +∇xϕ : U + div xϕqdxdt

+

∫
Ω
ϕ(0, x) ·m0(x)dx = 0

for all ψ ∈ C∞c ([0,T )× Ω) and all ϕ ∈ C∞c ([0,T )× Ω;R3).
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Lift

Similarly, as are subsolutions connected to solutions as functions,
we need a procedure to connect measure valued solutions and
subsolutions.

Definition 4 (Lift)

Let νt,x be a measure valued solution to the Euler equations.
Denote Q : R+ × R3 7→ R+ × R3 × S3

0 × R+

Q(ξ) := (ξ0,
√
ξ0ξ
′, ξ′ ⊗ ξ′ − 1

3

∣∣ξ′∣∣2 I, p(ξ0) +
1

3

∣∣ξ′∣∣2).

We define the lifted measure ν̃t,x as

〈ν̃t,x , f 〉 := 〈νt,x , f ◦ Q〉

for f ∈ C0(R+ × R3 × S3
0 × R+) and a.e. (t, x).
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Tartar framework

The linear system (2) fits into the so-called A-free framework for
linear partial differential constraints, introduced by Tartar. Consider
a general linear system of l differential equations in RN written as

Az :=
N∑
i=1

A(i) ∂z

∂xi
= 0, (3)

where A(i) (i = 1, ...,N) are l × d matrices and z : RN → Rd is a
vector-valued function.
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Constant rank property

Next, we define the l × d matrix

A(w) :=
N∑
i=1

wiA
(i)

for w ∈ RN .

Definition 5 (Constant rank)

We say that A has the constant rank property if there exists r ∈ N
such that

rankA(w) = r

for all w ∈ SN−1.
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A-Quasiconvexity

Definition 6 (A-Quasiconvexity)

A function f : Rd → R is said to be A-quasiconvex if

f (z) ≤
∫

(0,1)N
f (z + w(x))dx (4)

for all z ∈ Rd and all w ∈ C∞per ((0, 1)N ;Rd) such that Aw = 0 and∫
(0,1)N w(x)dx = 0.

Finally recall that a sequence {zn} is called p-equiintegrable if the
sequence {|zn|p} is equiintegrable in the usual sense.
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Theorem of Fonseca and Müller

Theorem 7

Let 1 ≤ p <∞ and let {νx}x∈Ω be a weakly measurable family of
probability measures on Rd . Let A have the constant rank
property. There exists a p-equi-integrable sequence {zn} in
Lp(Ω;Rd) that generates the Young measure ν and satisfies
Azn = 0 in Ω if and only if the following conditions hold:

(i) there exists z ∈ Lp(Ω;Rd) such that Az = 0 and
z(x) = 〈νx , id〉 a.e. x ∈ Ω;

(ii)
∫

Ω

∫
Rd |w |p dνx(w)dx <∞;

(iii) for a.e. x ∈ Ω and all A-quasiconvex functions g that satisfy
|g(w)| ≤ C (1 + |w |p) for some C > 0 and all w ∈ Rd one has

〈νx , g〉 ≥ g(〈νx , id〉). (5)
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Necessary condition

Our first main theorem is as follows

Theorem 8

Suppose the pressure function satisfies cργ ≤ p(ρ) ≤ Cργ for some
γ ≥ 1 and {(ρn, vn)} is a sequence of weak solutions to the
compressible Euler system (1) such that {ρn} is γ-equiintegrable
and {√ρnvn} is 2-equiintegrable. Suppose moreover {(ρn,

√
ρnvn)}

generates a Young measure ν on R+ × R3. Then ν is a
measure-valued solution to the compressible Euler system (1) and
the lifted measure ν̃ on R+ × R3 × S3

0 × R+ satisfies

〈ν̃t,x , g〉 ≥ g(〈ν̃t,x , id〉) (6)

for all AL-quasiconvex functions g .
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Wave analysis

Our final aim is to give an example of a measure valued solution
which cannot be generated by weak solutions. In fact we first
prove a more general statement about A-free rigidity which
generalizes a well known result by Ball and James. Then we use
this result to construct a desired example.
We start with some more definitions.

Onďrej Kreml Measure valued solutions 18/25



Wave cone

Definition 9

Consider a linear differential operator A as in (3). Its wave cone Λ
is defined as the set of all z̄ ∈ Rd \ {0} for which there exists
ξ ∈ RN \ {0} such that

z(x) = h(x · ξ)z̄

satisfies Az = 0 for any choice of profile function h : R→ R.
Equivalently, z̄ ∈ Λ if and only if z̄ 6= 0 and there exists
ξ ∈ RN \ {0} such that A(ξ)z̄ = 0.

The wave cone Λ characterizes the directions of one dimensional
oscillations compatible with (3).
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Reformulation

Observe that

N∑
i=1

A(i) ∂z

∂xi
=

(
N∑
i=1

d∑
k=1

A
(i)
jk

∂zk
∂xi

)
j=1,...,l

=

(
N∑
i=1

∂

∂xi

d∑
k=1

A
(i)
jk zk

)
j=1,...,l

.

Therefore, if we define the l × N-matrix ZA by

(ZA)ji =
d∑

k=1

A
(i)
jk zk , j = 1, . . . , l , i = 1, . . . ,N, (7)

then (3) can be rewritten as

divZA = 0. (8)
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Reformulation II

Moreover, the condition A(ξ)z̄ = 0 from the definition of the wave
cone translates to Z̄Aξ = 0 (where Z̄A is obtained from z̄ via (7)),
so that the following are equivalent:

1 z̄ ∈ Λ;

2 z̄ 6= 0 and rank Z̄A < N.
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Rigidity theorem, part I

Theorem 10

Let Ω ⊂ RN be a domain, A a linear operator of the form (3), and
1 < p <∞. Let moreover zn : Ω→ Rd be a family of functions
with

‖zn‖Lp(Ω;Rd ) ≤ c ,

Azn = 0 in D′(Ω), (9)

and suppose (zn) generates a compactly supported Young measure
νx ∈M1(Rd) such that

supp[νx ] ⊂ {λz̄1 + (1− λ)z̄2, λ ∈ [0, 1]} for a.a. x ∈ Ω (10)

and for some given constant states z̄1, z̄2 ∈ Rd , z̄1 6= z̄2. Suppose
that

z̄2 − z̄1 6∈ Λ.
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Rigidity theorem, part II

Theorem 10 (cont.)

Then
zn → z∞ in Lp(Ω),

which implies that

νx = δz∞(x), z∞(x) ∈ {λz̄1 + (1− λ)z̄2, λ ∈ [0, 1]} for a.a. x ∈ Ω.

More specifically, z∞ is a constant function of the form

z∞ = λz̄1 + (1− λ)z̄2.

for some fixed λ ∈ [0, 1].
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Explicit example

Using the previous Theorem 10 we prove the following

Theorem 11

There exists a measure-valued solution of the compressible Euler
system (1) which is not generated by any sequence of Lp-bounded
weak solutions to (1) (for any choice of p > 1).

Any reasonable sequence of approximate solutions of (1) will
satisfy some uniform energy bound, so that the assumption of
Lp-boundedness will always be met.
As Theorem 10 did not require any equiintegrability, the
statement of Theorem 11 is true even when the potential
generating sequence is allowed to concentrate. I.e. there
exists a generalized measure-valued solution which can not be
generated by a sequence of weak solutions (take the measure
from Theorem 11 as the oscillation part and choose the
concentration part arbitrarily).
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Thank you

Thank you for your attention.
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