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Abstract: We initiate the study of the complexity of arithmetic circuits with division
gates over non-commuting variables. Such circuits and formulae compute non-commutative
rational functions, which, despite their name, can no longer be expressed as ratios of
polynomials. We prove some lower and upper bounds, completeness and simulation results,
as follows.

If X is an n×n matrix consisting of n2 distinct mutually non-commuting variables, we
show that:

(i). X−1 can be computed by a circuit of polynomial size.

(ii). Every formula computing some entry of X−1 must have size at least 2Ω(n).

We also show that matrix inverse is complete in the following sense:

(i). Assume that a non-commutative rational function f can be computed by a formula of
size s. Then there exists an invertible 2s×2s-matrix A whose entries are variables or
field elements such that f is an entry of A−1.

A conference version of this paper appeared in ITCS 2014 [25].
∗The research leading to these results has received funding from the European Research Council under the European Union’s

Seventh Framework Program (FP7/2007-2013) / ERC grant agreement no. 339691. The Institute of Mathematics is supported
by RVO:67985840.

†This research was partially supported by NSF grant CCF-1412958.

ACM Classification: F.1.1, F.2.m

AMS Classification: 68Q17, 68W30

Key words and phrases: arithmetic circuits, non-commutative rational function, skew field

© 2015 Pavel Hrubeš and Avi Wigderson
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(ii). If f is a non-commutative polynomial computed by a formula without inverse gates
then A can be taken as an upper triangular matrix with field elements on the diagonal.

We show how divisions can be eliminated from non-commutative circuits and formulae
which compute polynomials, and we address the non-commutative version of the “rational
function identity testing” problem. As it happens, the complexity of both of these procedures
depends on a single open problem in invariant theory.

1 Introduction

Arithmetic circuit complexity studies the computation of polynomials and rational functions using the
basic operations addition, multiplication, and division. It is chiefly interested in commutative polynomials
or rational functions, defined over a set of multiplicatively commuting variables (see the survey [46],
or the book [7]). The dominant computational models are the arithmetic circuit and its weakening,
the arithmetic formula. The main open problem is to present an explicit polynomial which cannot be
computed by a circuit—or a formula—of polynomial size.

The complexity of computing polynomials (not allowing division) in non-commuting variables has
also been considered, for example, in [39, 27]. This was motivated partly by an apparent lack of progress
in proving lower bounds in the commutative setting, partly by an interest in computations in matrix
algebras.1 And indeed, we do have nontrivial lower bounds in this setting. Most notably, Nisan [39]
has proved thirty years ago that any arithmetic formula computing the non-commutative determinant or
permanent must have an exponential size, and also gave an exponential separation between the power of
circuits and formulae in this model. Despite much effort, a similar lower bound for non-commutative
arithmetic circuits has not been achieved—indeed, the best known lower bounds for non-commutative
circuits are as weak as the commutative ones.

In this paper, we take the study of non-commutative computation one step further and consider
the complexity of non-commutative circuits which contain division (equivalently, inverse) gates. Such
a circuit computes a “non-commutative rational function”—a far more complicated object than its
commutative counterpart. Traditionally, arithmetic circuit complexity focuses on the computation of
polynomials, with rational functions receiving minor attention. This is mainly because any commutative
rational function can be expressed as a pair of polynomials f g−1. Even on the computational level,
commutative rational functions do not substantially differ from polynomials—apart from the omnipresent
threat of dividing by zero. In contrast, the structure of non-commutative rational functions is far more
complex, giving rise to a host of new phenomena. It is not difficult to see that x−1 + y−1 or xy−1x can
no longer be expressed as f g−1 (or g−1 f ), if x,y do not commute. More importantly, non-commutative
rational functions may require nested inverses, as in (u+ xy−1z)−1. Indeed, any number of inverse
operations, and nested inverse operations, may be needed to represent a rational function. Moreover, there
is no “canonical” representation of non-commutative rational functions. Despite these facts, or rather
thanks to them, non-commutative rational functions possess quite a lot of structure. They form a skew

1Observe that Strassen’s (and all subsequent) fast matrix multiplication algorithms necessarily work over non-commuting
matrix entries.
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field2 which is equipped with invariants not present in the standard commutative field of fractions. Our
main hope is that this additional structure may be useful for proving lower bounds, even for polynomials.
We make initial steps in this direction.

Non-commutative rational functions arise naturally in a variety of settings, beyond the abstract
mathematical fields of non-commutative algebra and geometry.3 One area is linear system theory and
control theory, where the order of actions clearly matters, and the dynamics is often given by a rational
function and its iterates. The paper [32] surveys some of this work, and also demonstrates situations
where results in the commutative case were proven by “lifting” them to the non-commutative setting.
Another area is formal language theory, where regular expressions and formal series play an analogous
role. Indeed, these two areas are tightly connected, and the book [4] surveys some of the connections
between the algebraic and linguistic settings (and more).

Note that non-commutative rational functions can often be more natural than non-commutative
polynomials. For example, the determinant as a non-commutative polynomial has no longer any relevance
to solving linear equations or a geometrical interpretation. In [22], it was argued that the correct analogy of
the commutative determinant is the quasideterminant, which is a set of non-commutative rational functions
sharing and extending many of the useful and beautiful properties of the commutative determinant. This
development has important consequences in a variety of mathematical areas. The inverse of a matrix is
probably the best example of a notion that makes perfect sense in the non-commutative setting, as a set
of rational functions (and indeed the quasi-determinant of a matrix may be naturally defined from the
entries of its inverse). Matrix inverse further plays a key role in one definition, due to Cohn [8], of the
universal skew field of non-commutative rational functions.

Matrix inverse turns out to be central from a computational perspective. In this paper we will focus
on the complexity of computing the inverse X−1 of an n×n matrix X consisting of n2 non-commuting
variables. We show that X−1 can be computed by a polynomial size circuit, but on the other hand, every
formula computing an entry of X−1 must have an exponential size. This provides a non-trivial example4

of an exponential gap between circuit and formula size—a counterpart of the above mentioned result
of Nisan. We also prove the following completeness result: if a rational function f can be computed
by a formula of size s then f can be expressed as an entry of A−1, where A is a 2s×2s-matrix whose
entries are variables or field elements. This is an analog of Valiant’s [49] theorem on completeness of
determinant in the commutative, division-free, setting.

To see the origins of the lower bounds, let us return to examples of rational expressions. We note
that the expression (x+ xy−1x)−1, which has nested inversions, can be simplified by Hua’s identity to
an equivalent expression without nesting: x−1− (x+ y)−1. On the other hand, in the somewhat similar
expression (u+ xy−1z)−1, the nested inversion cannot be eliminated. This new phenomenon of nested
inversion provides a new invariant not present in the commutative setting—the height of a rational
function. The height is the minimum number of nested inversions in a formula computing this rational
function. For a long time, it was not even clear that the height is unbounded, and it was a major result of
C. Reutenauer [43] that it in fact is. Indeed, his result is much more precise and informative: any entry of

2A. k. a. “associative division algebra”—a field in which multiplication is not necessarily commutative.
3One of the best examples is the fact that the fundamental theorem of projective geometry follows rather simply from the

fact that the following rational expression, (x+ xy−1x)−1 +(x+ y)−1− x−1, is identically zero: this is called Hua’s identity.
4The trivial example would be x2n

.
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PAVEL HRUBEŠ AND AVI WIGDERSON

the inverse of the generic n×n matrix X requires n nested inversions, namely has height n.

Our lower bound on formula size of matrix inverse is obtained by showing that a formula of size
s can compute a function of height at most logarithmic in s. This is obtained via a general balancing
procedure of formulae, which is a bit more involved than the usual one due to the non-commutativity
and presence of inversion gates. Combined with Reutenauer’s theorem, this implies that the inverse of
an n×n matrix cannot be computed by a formula smaller than 2Ω(n). In circuit complexity, one keeps
searching for properties that would imply that a function is hard to compute. For a polynomial f , there
are not many such invariants at hand: for example, the degree or the number of variables, which both
provide only very limited hardness results, and the more sophisticated rank of the partial derivative matrix
used in Nisan’s lower bound. In the context of non-commutative rational functions, we can now see that
the inverse height is a new non-trivial invariant which can be successfully applied to obtain hardness
results. Other non-trivial invariants are known in this setting, and it is quite possible that some of them
can shed light on more classical problems of arithmetic circuit complexity.

We also prove a different characterization of the inverse height. We show that in a circuit, one never
needs to use more inversion gates than the inversion height of the rational function computed, without
significantly increasing the circuit size. Thus, e. g., the expression x−1

1 + x−1
2 + · · ·+ x−1

n can be computed
using only one inverse gate by an O(n)-sized circuit, and n× n matrix inverse can be computed by a
polynomial size circuit with exactly n inverse gates.

We also consider the question of eliminating division from circuits or formulae whose output is
a polynomial. Again, in the commutative setting this can be done with little overhead, as shown by
Strassen [48]. His idea was to replace an inverse gate with an infinite power series expansion, and
eventually truncate it according to the degree of the output polynomial. In the non-commutative setting,
this approach faces a significant obstacle. In order to express f−1 as a power series, we need a point
where f is non-zero, and so Strassen’s argument hinges on the fact that a non-zero rational function does
not vanish on some substitution from the underlying field (at least when the field is infinite). In contrast,
assume that a non-commutative computation inverts the polynomial xy− yx. It is not identically zero,
but vanishes on all inputs from any base field. A natural idea, which we indeed employ, is to evaluate
the circuit on matrices instead of field elements. Extending relevant notions appropriately (namely,
polynomials and power series with matrix coefficients), we can implement Strassen’s idea and eliminate
divisions, with the exception of one caveat—we don’t know the size of matrices needed! As it turns
out, it is a basic open problem, arising in non-commutative algebra as well as in commutative algebraic
geometry, to determine a bound on the minimum size of matrices on which a nonzero rational expression
does not vanish (resp., is invertible). Thus, our result is conditional: the simulation is polynomial in the
size of the given circuit and in the size of the smallest dimension of matrices on which the given circuit
can be correctly evaluated. Finally, we will see that this problem is also related to the question of deciding
whether a rational expression computes the zero function. In the case of formulae, the “rational identity
testing” problem can be decided by an efficient randomized algorithm, provided that the above matrix
dimension is small.
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Organization

In Section 2 we formally define our computational models, arithmetic circuits and formulae over non-
commuting variables with division gates. We define rational functions, the skew field they live in and
the notion of inverse height. Then we formally state our main results. In Section 3 we prove the circuit
size upper bound on matrix inverse, and in Section 4 the formula size lower bound for it, via a general
result about balancing formulae with division gates. In Section 5 we show that circuits require only as
many inverse gates as the height, via an efficient simulation reducing the number of inverse gates to this
bare minimum. In Section 6 we present several completeness results, most notably of matrix inverse for
formulae. In Section 7 we define the identity testing problems for non-commutative polynomials and
rational functions and discuss their complexities. In Section 8 we explain how to eliminate divisions
when computing polynomials. In Section 9 we discuss some future directions and open problems. In
Appendix A, we discuss a connection between the open problems and invariant theory.

2 Background and main results

Let F be a (commutative) field and x̄ = x1, . . . ,xn a set of variables. The ring of non-commutative
polynomials in variables x̄ will be denoted F〈x̄〉, and F<( x̄>) denotes the free skew field of non-commutative
rational functions. Two classical approaches to defining this field will be outlined below. For more detail
see for example [9, 31]. The elements of F<( x̄>) are non-commutative rational functions, which we call
simply rational functions.

Non-commutative arithmetic circuits with inverse gates

Non-commutative rational functions will be computed by means of non-commutative arithmetic circuits
with inverse gates, which we call briefly circuits. This is a natural extension of both the notion of a
commutative circuit with division gates, and the notion of a non-commutative circuit without divisions.
We formally define the circuits, and then discuss how they lead to a definition of the free skew field.

A circuit Φ over a field F is a finite directed acyclic graph as follows. Nodes of in-degree zero are
labeled by either a variable or a field element in F. All the other nodes have in-degree one or two. The
gates of in-degree one are labeled by −1 and the gates of in-degree two by either + or ×. The two edges
going into a gate labeled by × are labeled by left and right, to determine the order of multiplication. The
nodes are called input gates, inverse, sum and product gates. The nodes of out-degree zero are output
gates. For nodes v,v1,v2, we write v = v1× v2 to indicate that v is a product gate with the two edges
coming from v1,v2, and similarly for v = v1 + v2 or v = v−1

1 .
The size of a circuit Φ is the number of gates in Φ. Its depth is the length of the longest path in Φ. A

formula is a circuit where every node has out-degree at most one.
For a node v in Φ, we denote Φv as the subcircuit of Φ rooted at v.
A node u in a circuit Φ in variables x1, . . . ,xn is intended to compute a non-commutative rational

function û ∈ F<(x1, . . . ,xn>) . However, the circuit may also contain division by zero, in which case we say
that û is undefined. The exact definition of û ∈ F<(x1, . . . ,xn>) is clear:

(i). If v is an input gate labeled by a (i. e., a is a variable or a field element), let v̂ := a.
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(ii). If v = v1× v2, resp. v = v1 + v2, let v̂ = v̂1 · v̂2, resp. v̂ = v̂1 + v̂2, provided that both v̂1 and v̂2 are
defined.

(iii). If v = u−1, let v̂ := û−1, provided û is defined and û 6= 0.

We say that a circuit Φ is a correct circuit, if û is defined for every node in Φ. A correct circuit Φ

computes a set of non-commutative rational functions Φ̂ = {û1, . . . , ûm}, where u1, . . . ,um are the output
gates of Φ.

The free skew field—a computational definition

One classical definition of the field F<( x̄>) is through the computation of its elements as above, with
equivalence of elements defined through evaluating their circuits on matrix algebras as we outline now.

Let R be a ring whose centre contains the field F (i. e., every element of F commutes with every
element of R). Let Φ be a circuit in variables x1, . . . ,xn with a single output node. Then Φ can be viewed
as computing a partial function Φ̂R : Rn→ R. That is, substitute a1, . . . ,an for the variables x1, . . . ,xn and
evaluate the circuit. Φ̂R(a1, . . . ,an) is undefined if we come across an inverse gate whose input is not
invertible in R. Note that

Φ̂
R(x1, . . . ,xn) = Φ̂

if we interpret x1, . . . ,xn as elements of R = F<(x1, . . . ,xn>) .
Looking at rings of k× k matrices Mk×k(F), we can obtain the following characterization of circuits

and non-commutative rational functions:

Theorem 2.1 (Amitsur, [2], cf. [31]).

(i). Φ is a correct circuit iff the domain of Φ̂R is non-empty for some R = Mk×k(F).

(ii). For correct circuits Φ1,Φ2, Φ̂1 = Φ̂2 iff Φ̂R
1 and Φ̂R

2 agree on the intersection of their domains, for
every R = Mk×k(F).

In fact, those conditions can be used to define the skew field F<(x1, . . . ,xn>) . It can be constructed as
the set of all correct circuits modulo the equivalence class induced by (ii).

Matrix inverse (and the quasi-determinant)

Let A∈Matn×n(R) be an n×n matrix whose entries are elements of a unital ring R. Then A−1 ∈Matn×n(R)
is the n×n matrix such that

A ·A−1 = A−1 ·A = In ,

where In is the identity matrix. The inverse A−1 does not always exists, but if it does, it is unique. We
will be specifically interested in the inverse of the n×n generic matrix Xn ∈Matn×n(F<( x̄>)), which is the
matrix Xn = (xi j)i, j∈[n] consisting of n2 distinct variables.

Matrix inverse is a very close cousin of the quasi-determinant. In two influential papers, Gelfand and
Retakh [22, 23] defined a non-commutative analog to the determinant, called quasi-determinant, which
they argued to be the appropriate generalization of that fundamental polynomial. Its many beautiful
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properties and applications are surveyed in [21]. The quasi-determinant of a generic matrix is actually a
set of n2 rational functions, which can be simply defined from the entries of the matrix inverse. Indeed, the
(i, j) quasi-determinant of X is simply the inverse of the (i, j) entry of X−1. Thus, essentially everything
we say about matrix inverse holds for the quasi-determinant as well.

That X−1
n exists can be directly proved by induction on n, as in our construction in Section 3. However,

one can also invoke an interesting theorem due to Cohn. Let R be a ring. A matrix A ∈Matn×n(R) is
called full in R if it cannot be written as A = B ·C with B ∈Matn×k(R), C ∈Matk×n(R) and k < n.

Theorem 2.2 (Cohn, [9]). Let A ∈Matn×n(F〈x̄〉) be a matrix of non-commutative polynomials. Then A
is invertible in the skew field F<( x̄>) if and only if it is full in F〈x̄〉. Moreover, if A is not full and its entries
are polynomials of degree ≤ 1, then the entries of the factors B,C are without loss of generality degree
≤ 1 as well.

This characterization of invertible matrices was then used by Cohn to give an alternative construction
of the free field: we can identify an element of F<( x̄>) with an element of A−1 for some full A∈Mn×n(F〈x̄〉).
This is another indication of the key role matrix inverse has in the study of non-commutative rational
functions. Note that in the commutative polynomial ring, there exist matrices which are both full and
singular (e. g., (7.2) in Section 7.1).

The height of a rational function

An important characteristic of a rational function is the number of nested inverse operations necessary to
express it. For a circuit Φ, we define the height of Φ as the maximum number k such that there exists
a path in Φ which contains k inverse gates. For example, the formula xy−1 + zx−1y2 has height 1 and
(1+xy−1x)−1 has height 2. For a rational function f , the height of f is the smallest height of some circuit
computing f (in this definition, one may equivalently consider formulae). Naturally, the depth of a circuit
computing f must be at least the height of f .

In the commutative setting, every rational function can be written as f g−1 for some polynomials f ,g
and so has height at most 1. In the non-commutative setting, there exist rational functions of an arbitrary
height. This is in itself a remarkable and non-trivial fact. However, we will use a stronger statement:

Theorem 2.3 (Reutenauer, [43]). The height of any entry of the generic inverse matrix X−1
n is n.

In Section 5, we will give a different characterization of the inverse height of f : in Corollary 5.3, we
point out that a rational function of height k can be computed by a circuit which altogether uses only k
inverses. Hence the height of f can also be defined as the smallest number of inverse gates needed to
compute f by means of a circuit.

Main results

We shall prove the following two theorems about the complexity of matrix inverse (recall that Xn is a
matrix of n2 distinct variables):

Theorem 2.4. X−1
n can be computed by a circuit of size polynomial5 in n.

5In fact, we show that X−1
n can be computed by a circuit of size O(nω ), where 2 ≤ ω < 3 is the exponent of matrix

multiplication.
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Theorem 2.5. Every formula computing some entry of X−1
n has size 2Ω(n).

Theorem 2.4 is an explicit construction. Theorem 2.5 is obtained by showing that a formula of size s
can be balanced to obtain an equivalent formula of depth O(logs). This entails that if f can be computed
by a formula of size s, then f has height at most logarithmic in s. This gives Theorem 2.5 by Theorem 2.3.

Theorems 2.4 and 2.5 can be strengthened as follows:

(i). X−1
n can be computed by a polynomial size circuit which contains only n inverse gates (cf. Proposi-

tion 5.2).

(ii). Every formula computing some entry of X−1
n has 2Ω(n) inverse gates (cf. Corollary 4.4).

In his seminal paper [49], Valiant has shown that an arithmetic formula can be expressed as the
determinant of a linear size matrix whose entries are variables or field elements. This result considers
commutative formulae without inverse gates. That commutativity is not essential was later shown in [26].
Here, we show that a similar relationship holds between non-commutative arithmetic formulae and the
matrix inverse:

Theorem 2.6. Assume that a rational function f can be computed by a formula Φ of size s. Then there
exists s′ ≤ 2s and an invertible s′× s′-matrix AΦ whose entries are variables or field elements such that f
is an entry of A−1

Φ
.

This is proved in Section 6. There, we also discuss some variants of the theorem. Namely, if f is
computed without the use of inverse gates then A can be taken upper triangular, and we point out the
connection with the non-commutative determinant.

We present several other results about the number of inverse gates in non-commutative circuits -
how to minimize them when computing rational functions, and how to eliminate them when computing
polynomials. More specifically:

• If f can be computed by a circuit of size s and height k, then f can be computed by a circuit of size
O(s(k+1)) which contains k inverse gates.

In other words, if f can be computed by a circuit which contains at most k inverses on any directed
path, it can be computed by a circuit with k inverse gates in total, with only a small increase in circuit
size. (Proposition 5.2 in Section 5).

• Let f ∈ F〈x̄〉 be a polynomial of degree d which is computable by a circuit with divisions of size s.
Assume that there exist matrices a1, . . . ,an ∈ R = Matm×m(F) such that Φ̂R(a1, . . . ,an) is defined.
Then f can be computed by a division-free circuit of size O(sd3m3).

This is an analogy of the elimination of division gates from commutative circuits. However, we do
not know how large can the parameter m = m(s,d) be for the worst such circuit, and hence we do not
know whether our construction is polynomial in s and d. (See Section 8).

A version of this parameter appears again in Section 7 in connection with the rational identity testing
problem.
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• For a correct formula Φ of size s, one can decide whether Φ̂ = 0 by a randomized algorithm which
runs in time polynomial in s ·w(s).

Here, w(s) is defined as the smallest k so that every correct formula of size s can be correctly evaluated
on some p× p matrices with p≤ k. The algorithm can proceed simply by evaluating Φ at random p× p
matrices, for every p≤ w(s). Via the completeness theorem above, we also consider a different version
of the problem: given an s× s matrix A with linear functions as entries, decide whether A is invertible in
the free skew field. Again, we obtain a probabilistic algorithm running in time sw̃(s), where w̃(s) is a
related parameter. We note that in the recent paper [29], Ivanyos, Qiao and Subrahmanyam designed a
deterministic algorithm for this problem with similar parameters.

An upper bound on w(s) (and w̃(s)) can be obtained by solving the following basic problem in
invariant theory. This is also the most important open problem our work suggests, and we conclude this
section by stating it. In a slightly different formulation, it is presented in Section 9 as Problem 9.4 (that
the formulations are equivalent follows from Proposition 7.3), and is also discussed in Section 7.1. F can
be any field, but it is especially interesting for algebraically closed fields, and specifically for the complex
numbers.

• Find an upper bound on the smallest k = k(s), such that for all Q1, . . . ,Qn ∈Mats×s(F) if6
∑

n
i=1 Qi⊗

ai is invertible for some m ∈N and a1, . . . ,an ∈Matm×m(F) then ∑
n
i=1 Qi⊗ai is invertible for some

a1,a2, . . . ,an ∈Matp×p(F) with p≤ k.

In other words, we want to find k such that det(∑n
i=1 Qi⊗ai) does not identically vanish on (≤ k)×(≤

k) matrices. Note that the vanishing of the determinant is invariant to acting on the sequence Qi with left
and right multiplication by any two invertible matrices—this provides the connection to invariant theory.
This connection is further discussed in Appendix A.

3 A polynomial-size circuit for matrix inverse

In this section, we show that X−1
n can be computed by a polynomial size circuit, thus proving Theorem 2.4.

The algorithm is implicit in Strassen’s paper [47].

The construction of X−1

Let X = Xn = (xi j)i, j∈[n] be a matrix consisting of n2 distinct variables. We define the matrix X−1

recursively. If n = 1, let X−1 := (x−1
11 ). If n > 1, divide X into blocks as

X =

(
a1 a2
a3 a4

)
, (3.1)

where a1,a4 are square matrices of dimensions p× p and (n− p)× (n− p), respectively, and a2,a3 are
in general rectangular matrices of dimension p× (n− p) and (n− p)× p, respectively. (Later, we will
choose p as roughly n/2.) Assume we have already constructed the matrix a−1

1 . Let

z := a4−a3a−1
1 a2 ,

6⊗ is the Kronecker product.
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and

X−1 :=
(

a−1
1 (I +a2z−1a3a−1

1 ) −a−1
1 a2z−1

−z−1a3a−1
1 z−1

)
. (3.2)

Here, we should argue that z−1 exists, which is however apparent from the fact that z = a4 if we set a3 = 0
and a4 is invertible.

Correctness

We must show that X−1, as constructed above, indeed satisfies X ·X−1 = I and X−1 ·X = I. For n = 1, we
have x11 · x−1

11 = x−1
11 · x11 = 1. Otherwise let n > 1 and let X be as in (3.1). Using some rearrangements

and the definition of z, we obtain

X ·X−1 =

(
a1 a2
a3 a4

)(
a−1

1 (I +a2z−1a3a−1
1 ) −a−1

1 a2z−1

−z−1a3a−1
1 z−1

)
=

(
I +a2z−1a3a−1

1 −a2z−1a3a−1
1 −a2z−1 +a2z−1

a3a−1
1 +(a3a−1

1 a2−a4)z−1a3a−1
1 (a4−a3a−1

1 a2)z−1

)
=

(
I 0
a3a−1

1 − zz−1a3a−1
1 zz−1

)
=

(
I 0
0 I

)
.

The proof of X−1 ·X = I is constructed in a similar fashion.

Complexity

Assume first that n is a power of two. Then X in (3.1) can be partitioned into four matrices of dimensions
n/2×n/2. This shows that in order to compute the inverse of an n×n matrix, it is sufficient to compute
the inverse of two n/2×n/2 matrices (a1 and z), and add or multiply a constant number of n/2×n/2
matrices. Let M(n) be the size of a smallest circuit which computes the product of two matrices and C(n)
the size of a smallest circuit computing X−1

n . Then we obtain

C(n)≤ 2C(n/2)+ c1M(n/2)+ c2n2 ,

for some constants c1,c2. If M(n) = O(nω), with 2≤ ω , this implies that C(n) = O(nω).
If n is not a power of two, at each step partition X as evenly as possible, i. e., set p := dn/2e. This

gives that C(n)≤C(2k), where k is the smallest integer such that 2k ≥ n. Since 2k ≤ 2n, this amounts to
a loss of at most a constant factor.

Moreover, it is easy to see that the constructed circuit has height n.

4 Matrix inverse has exponential formula size

In this section, we prove Theorem 2.5. For this purpose, we show that a formula of size s can be balanced
to obtain an equivalent formula of depth O(logs). Both the statement and its proof are analogous to the
commutative version given by Brent in [6]. On the other hand, the fact that this statement does hold for
non-commutative rational functions is in itself slightly surprising.
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Proposition 4.1. Assume that a non-commutative rational function f can be computed by a formula of
size s. Then f can be computed by a formula of depth O(logs).

This immediately implies:

Corollary 4.2. If f can be computed by a formula of size s then f has height O(logs).

This, together with Theorem 2.3, implies Theorem 2.5.

Let us first prove Proposition 4.1:

Proof of Proposition 4.1. The proof is almost identical to Brent’s commutative version. Hence we just
outline the argument and point out the peculiarities arising in the non-commutative setting.

The idea is to simultaneously prove the following two statements by induction on s. Let Φ be a
correct formula of size s then, for sufficiently large s and suitable constants c1,c2 > 0, the following hold:

(i). Φ̂ can be computed by a formula of depth c1 logs,

(ii). if z is a variable occurring at most once in Φ then

Φ̂ = (Az+B)(Cz+D)−1 ,

where A,B,C,D are non-commutative rational functions which do not depend on z and each is
computable by a formula of depth ≤ c2 logs. Moreover, CΨ̂+D 6= 0 for any Ψ such that Φ(z/Ψ)
is correct.

Here Φ(z/Ψ) means that Ψ is substituted for z in Φ. Furthermore, for a node v in Φ, Φv will stand for the
subformula of Φ with the output v and Φv:=z is the formula obtained by replacing Φv in Φ by the variable
z.

On the inductive step, (i) is obtained roughly as follows. Find a node v in Φ such that both Φv and
Φv:=z are small (of size at most 2s/3). Apply part (i) of the inductive assumption to bound the depth of
Φ̂v. Apply (ii) to write Φ̂v:=z = (Az+B)(Cz+D)−1, with A,B,C,D having small depth, which altogether
gives a small depth formula for Φ̂ = (AΦ̂v +B)(CΦ̂v +D)−1. To prove (ii), find an appropriate node v on
the path between z and the output of Φ. (An “appropriate v” is a node v such that Φv:=z1 is small and Φu1

is small, where either v = u−1
1 , v = u1 +u2, v = u1×u2, or v = u2×u1, where u2 does not depend on z.)

Use the inductive assumptions to write

Φ̂v:=z1 = (A1z1 +B1)(C1z1 +D1)
−1 ,

Φ̂v = (A2z+B2)(C2z+D2)
−1 ,

and compose these expressions to obtain (ii).
The main point that needs to be checked is that the representation

f = (Az+B)(Cz+D)−1 (4.1)

is well-behaved in the non-commutative setting. If A,B,C,D do not depend on z, we will say that f in
(4.1) has z-normal form. It is not immediately clear that if Φ is as in (ii), then Φ̂ has a z-normal form
(even if we require nothing about the complexity of A,B,C,D).
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To see this, assume that z appears at most once in Φ. Let d be the length of the shortest path from z to
the root of Φ and proceed by induction on d. (Hence, d = 0 if Φ = z and we set d :=−1 if z does not
appear in Φ.) If d ≤ 1, we must convert the following

A , z , z−1 , z+A , A · z , z ·A ,

with A not depending on z, to a z-normal form. This is clear, perhaps with the exception of z ·A. If A 6= 0,
this can be written as zA = z(A−1)−1 = (1z+0)(0z+A−1)−1; if A = 0 then z ·A = (0z+0)(0z+1)−1. If
d > 1, it is enough to show that normal forms can be composed in the following sense. If

f = (A1z1 +B1)(C1z1 +D1)
−1 ,

z1 = (A2z+B2)(C2z+D2)
−1 ,

then
f = (Az+B)(Cz+D)−1 ,

where A = A1A2 +B1C2, B = A1B2 +B1D2, C = C1A2 +D1C2 and D = C1B2 +D1D2. To see this, let
h1 := A2z+B2 and h2 :=C2z+D2 so that z1 = h1h−1

2 . Then

f = (A1h1h−1
2 +B1)(C1h1h−1

2 +D1)
−1

= (A1h1 +B1h2)h−1
2 ((C1h1 +D1h2)h−1

2 )−1

= (A1h1 +B1h2)h−1
2 h2(C1h1 +D1h2)

−1

= (A1h1 +B1h2)(C1h1 +D1h2)
−1 ,

and substitute for h1,h2.
This shows that Φ̂ indeed has a z-normal form. Furthermore, the outlined compositionality of z-normal

forms is quite sufficient to reconstruct Brent’s proof.

Let us note that the proof of Proposition 4.1 does not rely on the fact that the formula computes an
element of a free skew field, and the proposition can be generalized as follows (recall the definition of Φ̂R

from Section 2):

Proposition 4.3. Let F be a field and R a skew field whose centre contains F. Assume that Ψ(x1, . . . ,xn)
is a formula of size s and Ψ̂R(a1, . . . ,an) is defined for given a1, . . . ,an ∈ R. Then there exists a formula
Φ(x1, . . . ,xn) of depth O(logs) such that

Φ̂
R(a1, . . . ,an) = Ψ̂

R(a1, . . . ,an) .

This, together with Lemma 4.5 below, implies that Corollary 4.2 can be rephrased in terms of the
number of inverse gates only:

Corollary 4.4. Assume that f can be computed by a formula with k inverse gates. Then f has height
O(logk).

Consequently, any formula computing an entry of X−1
n must have an exponential number of inverse

gates. Corollary 4.4 follows from the following lemma, where we apply Proposition 4.3 to the formula
Ψ(z1, . . . ,zm).
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Lemma 4.5. Assume that a rational function f ∈ R = F<( x̄>) can be computed by a formula with k inverse
gates. Then there exists a formula Ψ(z1, . . . ,zm) such that

(i). Ψ has size O(k),

(ii). f = Ψ̂R(h1, . . . ,hm) for some polynomials h1, . . . ,hm ∈ F〈x̄〉.

Proof. Let us call a gate u in a formula Φ trivial if Φu does not contain any inverse gate. Let us call u
maximal if it is trivial and for every trivial v 6= u, u is not a gate in Φv.

Assume that f can be computed by a formula with k inverse gates. It is sufficient to show that f can
be computed by a formula Φ with m = O(k) maximal gates. For let u1, . . . ,um be the maximal gates in Φ.
Introduce new variables z1, . . . ,zm, and let Ψ be the formula obtained by replacing every ui by zi in Φ.
Clearly, f = Ψ̂R(h1, . . . ,hm), where hi is the polynomial computed by Φui . Moreover, Ψ is a formula with
m leaves. If we assume that Ψ does not contain redundant inverse gates (u−1)−1, then Ψ has size O(m).

To construct a formula with O(k) maximal gates computing f , assume that k > 0. First, show that any
formula with k inverses can be transformed to an equivalent formula Φ with k inverses such that every
maximal gate u occurs in Φ in one of the following contexts:

(i). u−1,

(ii). u× v−1×u′ or u′× v−1×u, where u′ is itself maximal,

(iii). v1× v2 +u, where v1× v2 is non-trivial.

This is easily proved by induction on k. If k = 1, we are supposed to compute f by a formula of the
form u1× v−1×u2 +u3, where v,u1,u2,u3 do not contain inverse gates.

Finally, let us argue that Φ contains O(k) maximal gates. For every inverse gate, there are at most
3 maximal gates corresponding to the conditions (i) and (ii). This also means that the number of non-
trivial product gates v1× v2 in Ψ is O(k) and so there are O(k) maximal gates corresponding to the
condition (iii).

5 Height versus the number of inverse gates

Recall that the height of a circuit is the maximum number of inverse gates along some directed path in
the circuit. Here we show that a circuit of height k can be transformed to an equivalent circuit which
altogether uses only k inverse gates. This means that the height of f can be equivalently defined as the
smallest number of inverse gates needed to compute f by a circuit.

This is based on the observation that x−1
1 , . . . ,x−1

n can be simultaneously computed using one inverse
gate only:

Lemma 5.1. The rational functions x−1
1 , . . . ,x−1

n can be simultaneously computed by a circuit of size
O(n) which contains only one inverse gate.

Proof. Let z := x1x2 · · ·xn. As z−1 = x−1
n x−1

n−1 · · ·x
−1
1 , we have for every j ∈ {1, . . . ,n}

x−1
j = (x j+1x j+2 · · ·xn)z−1(x1x2 · · ·x j−1) .
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Hence x−1
1 , . . . ,x−1

n can all be computed using just the inverse z−1. To see that this gives a linear size circuit,
it is sufficient to construct a linear size circuit simultaneously computing the polynomials fi = xixi+1 · · ·xn

and gi = x1x2 · · ·xi, for i ∈ {1, . . . ,n}. This is clear because fi = xi fi+1 and gi+1 = gixi+1.

Proposition 5.2. Assume that a rational function f can be computed by a circuit of size s and height k.
Then f can be computed by a circuit of size O(s(k+1)) which contains k inverse gates.

Proof. Assume that Φ is a circuit of size s, inverse height k, which computes f . We construct the new
circuit by induction on k. If k = 0, the statement is trivial, and so assume that k > 0. Let u−1

1 , . . . ,u−1
n

be the inverse gates in Φ such that Φui does not contain any inverse gate. By the previous lemma, the
rational functions computed by u−1

1 , . . . ,u−1
n can be computed by a circuit Ψ of size c · s which contains

only one inverse gate. Let Φ′ be the circuit obtained from Φ by replacing the gate u−1
i by a fresh variable

zi, for every i ∈ {1, . . . ,n}. The circuit Φ′ has inverse height k−1 and size ≤ s, and so we can construct
an equivalent circuit of size csk with only k−1 division gates. Feeding the outputs of Ψ into the circuit
Φ′, we obtain a circuit computing f which has k inverse gates and size csk+ cs = cs(k+1).

Corollary 5.3. The following are equivalent:

(i). f has inverse height ≤ k,

(ii). f can be computed by a circuit with ≤ k inverse gates.

As follows from Corollary 4.4, the proposition or its corollary do not hold for formulae. Moreover,
every formula computing x−1

1 + · · ·+ x−1
n must contain a linear number of inverse gates (cf. Corollary 6.2

and Proposition 7.7.7 of [8]).

6 Formula completeness of matrix inverse

Here we prove Theorem 2.6. Our construction of matrices from formulae is similar to Malcolmson’s
approach for the construction of the skew field [35]. After this proof, we proceed in the following
subsections to discuss the special case of formulae without inverse gates, in which the computation
produces a non-commutative polynomial, and compare with the commutative case.

Proof of Theorem 2.6. The matrix A is constructed by induction on s. We retain the property that f is the
entry in the upper-right corner of A−1. This entry will be denoted RA−1.

Let A,B be invertible matrices of dimension p× p and q×q. For k ∈ {p,q}, let uk, resp. vk, be the
1× k vector whose first, resp. last, component is 1 and the others are zero. Furthermore, let at be the first
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column of A. The key observation are the following equalities (the unspecified entries are zero):

RA−1 ·RB−1 = R

(
A −vt

p ·uq

B

)−1

, (6.1)

RA−1 +RB−1 = R

 A at ·uq −vt
p

B vt
q
1

−1

, (6.2)

(RA−1)−1 = R

(
vt

p A
0 −up

)−1

if RA−1 6= 0. (6.3)

To prove (6.1) and (6.2), note that(
a1 a2
0 a4

)−1

=

(
a−1

1 −a−1
1 a2a−1

4
0 a−1

4

)
,

whenever the right hand side makes sense. This follows from (3.2), noting that (3.2) holds whenever X is
a matrix such that the right hand side makes sense. This gives

R

(
A −vt

puq

B

)−1

= R

(
A−1 A−1vt

puqB−1

B−1

)
= R(A−1vt

puqB−1) = (RA−1)(RB−1) .

Similarly, one can verify that the entry in the upper-right corner of the matrix in (6.2) is the first entry of
the p×1-vector

w = A−1vt
p +A−1atuqB−1vt

q = A−1vt
p +ut

puqB−1vt
q = A−1vt

p +(RB−1)ut
p ,

where we used that A−1at = ut
p. The first entry of w is therefore RA−1 +RB−1.

To prove (6.3), apply (3.2), with a1 = A and a4 = 0, to show that the entry in lower-right corner of(
A vt

p
−up 0

)−1

is (upA−1vt
p)
−1 = (RA−1)−1. We have(

vt
p A

0 −up

)−1

=

((
A vt

p
−up 0

)(
I

1

))−1

=

(
1

I

)(
A vt

p
−up 0

)−1

,

and so R

(
vt

p A
0 −up

)
= (RA−1)−1.
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Equipped with (6.1)-(6.3), the statement of the theorem is directly proved by induction. If s = 1, f is
either a variable or a field element and we have

f = R

(
1 f
0 −1

)−1

.

If s> 1, consider the output node of the size-s formula computing f and apply (6.1)-(6.3) accordingly.

The matrix AΦ can be written as Q0 +x1Q1 + · · ·+xnQn, where Q0 is a matrix in F and Q1, . . .Qn are
0,1-matrices. In general, if A is a matrix of the form

Q0 + x1Q1 + · · ·+ xnQn with Q0, . . . ,Qn ∈Mats′×s′(F) ,

R is a ring with R⊇ F, and a1, . . . ,an ∈ R, we define

A(a1, . . . ,an) := Q0 +a1Q1 + · · ·+anQn ;

it is a matrix in Mats′×s′(R). Theorem 2.6 can be generalized in the following manner:

Proposition 6.1. Let F be a field and R a ring whose centre contains F. Assume that Φ(x1, . . . ,xn) is
a formula of size s and a1, . . . ,an ∈ R are such that Φ̂R(a1, . . . ,an) is defined. Then AΦ(a1, . . . ,an) is
invertible in Ms′×s′(R), and Φ̂R(a1, . . . ,an) is an entry in A−1

Φ
.

The proof is almost identical to that of Theorem 2.6. The only difference is that we do not assume
that R is a skew field, and we must check that the constructed matrix A is indeed invertible. This follows
from the assumption that Φ̂R(a1, . . . ,an) is defined.

By means of Lemma 4.5, Proposition 6.1 implies:

Corollary 6.2. Assume that a rational function f can be computed by a formula with k inverses. Then
there exists an O(k)×O(k) invertible matrix A whose entries are polynomials such that f is an entry of
A−1.

The matrix inverse representation of rational functions will be directly used in the next section, on the
rational identity testing problem. Before that we take a detour to discuss the special case of formulae
without inverse gates.

6.1 Triangular matrices

As remarked in the “Main results” section, commutatively or not, the determinant is complete for formulae
without inverse gates. That is, a polynomial f can be written as f = det(A), where A is a matrix of
variables or field elements whose dimension is linear in the formula size of f . One difference between
the commutative and non-commutative settings is the following: the commutative determinant can be
computed by a formula of size nO(logn), but non-commutatively, it requires a formula of exponential size
(see [39]). However, let us remark here that this gulf is by no means necessary. Inspecting the construction
presented in [26], one can see that it uses only matrices A of a specific form, and one can show that the
determinant of such matrices can be computed by a non-commutative formula of quasipolynomial size.
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Let us first see what happens with our construction in Theorem 2.6, if we assume that f is a non-
commutative polynomial computed by a formula without inverse gates. The constructed matrix A is then
upper triangular with field elements on the diagonal. We summarize the properties of such matrices in the
following proposition:

Proposition 6.3.

(i). Let A be an n×n-upper triangular matrix whose entries are variables or field elements such that A
has non-zero field elements on the diagonal. Then the entries of A−1 are polynomials. Moreover,
every entry can be computed by a formula without inverse gates of size nO(logn).

(ii). Assume that a polynomial f can be computed by a formula without inverse gates of size s. Then
there exists a 2s×2s-upper triangular matrix A whose entries are variables or field elements, A
has 1 or −1 on the diagonal, and f is the entry in the upper-right corner of A−1.

Proof. (i) Without loss of generality assume that A has the constant 1 on the diagonal, and write A = I−J,
where J is an upper triangular matrix with zeros on the diagonal. This implies that Jn = 0 and therefore

A−1 = (I− J)−1 = I + J+ J2 + · · ·+ Jn−1 .

In general, if B is n×n matrix then every entry of Bk can be computed by a formula of size nO(logk). This
means that A−1 has formula size nO(logn).

(ii) Inspect the construction in the proof of Theorem 2.6. The equation (6.3) is never applied since f
is computed without inverse gates. Equations (6.1) and (6.2) convert upper-triangular matrices A,B to an
upper triangular matrix.

One may wonder whether Proposition 6.3 can be improved to show that A−1 can be computed by
a polynomial size formula, if A is upper triangular. However, this problem is—up to a polynomial—
equivalent to the problem of computing the product A1A2 · · ·Ak of n×n matrices A1, . . . ,Ak. We have
seen one half of this statement in the proof of Proposition 6.3: in order to compute A−1, it is sufficient
to compute J,J2, . . . ,Jn−1. Conversely, suppose that we want to compute the product of n×n matrices
A1A2 · · ·Ak. Let A be the ((k+1)n)× ((k+1)n)–matrix

A :=


I −A1

I −A2
. . .

I −Ak
I

 . (6.4)

One can check that the n×n-block in the upper right corner of A−1 equals A1A2 · · ·Ak. This means that
the inverse of an upper triangular matrix has a polynomial size formula iff the iterated matrix product can
be computed by a polynomial size formula, which is believed to be unlikely.

This observation can be used to strengthen Proposition 6.3 to apply to algebraic branching programs
instead of formulae. An algebraic branching program, ABP, is a directed acyclic graph without multiple
edges and with exactly one source and one sink such that every edge is labeled by a (not necessarily
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homogeneous) linear function ∑i aixi +b. An ABP computes a polynomial which is the sum, over all
paths from the source to the sink, of products of the linear functions on that path. We are considering
non-commutative computation, and the order of multiplication is taken from the source to the sink. The
size of an ABP is the number of vertices.

Algebraic branching programs can simulate formulae (without inverse gates), and are believed to be
more powerful. This is because the product A1A2 · · ·Ak of n×n matrices can be computed by an ABP of
size O(kn2), but the best known formula has size nO(logk). In fact, algebraic branching programs can be
characterized in terms of matrix product:

Lemma 6.4. Assume that a polynomial f in n variables can be computed by an ABP of size s. Then there
exist k×k matrices A1, . . . ,A2s with k = O(ns2) such that their entries are variables or field elements and
f is the entry in the upper-right corner of the product A1A2 · · ·A2s.

Proof. Let f have n variables and let C be an ABP of size s computing f . First, show that f can be
computed by an ABP B with the following properties:

(i). Every edge is labeled by a variable or a field element.

(ii). B has 2s+1 levels: the vertices can be partitioned into disjoint sets B0,B1, . . .B2s with every edge
going from Bi to Bi+1 , and with B0 and B2s containing only the source and the sink, respectively.

(iii). For every i ∈ {1, . . . ,2s−1}, Bi has size k = O(ns2).

(i) is obtained by taking every edge in C labeled by a1x1+ · · ·+anxn+b and replacing it by n new vertices
and 2n+ 1 edges, labeled by a1,x1, . . . ,an,xn and b respectively. Since C has at most

(s
2

)
edges, the

new ABP has k = O(ns2) vertices. Moreover, since C had depth at most s, the new ABP has depth at
most 2s. The conditions (ii) and (iii) will be guaranteed by adding a copy of every vertex to every level
B1, . . . ,B2s−1, with appropriate labels of edges.

For i ∈ 1, . . . ,2s−1, let vi be the vector of the k polynomials computed by the nodes in Bi and
let v0 := (1,0, . . . ,0) and v2s := (0, . . . ,0, f ). The condition (i) guarantees that we can find, for every
i ∈ {1, . . . ,2s}, a k× k matrix Ai of variables or field elements such that

vi = vi−1Ai .

Hence v2s = v0A1A2 · · ·A2s, which implies that f is the entry in the upper-right corner of A1A2 · · ·A2s.

Proposition 6.5.

(i). Let A be an n×n-upper triangular matrix whose entries are variables or field elements such that
A has non-zero field elements on the diagonal. Then every entry of A−1 can be computed by a
polynomial size ABP.

(ii). Assume that a polynomial f in n variables can be computed by an ABP of size s. Then there exists
a k× k-upper triangular matrix A with k = O(ns3) whose entries are variables or field elements, A
has 1 on the diagonal, and f is the entry in the upper-right corner of A−1.
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Proof. (i) is as in Proposition 6.3, where we note that Jk can be computed by a polynomial-size ABP.
(ii). Let A1, . . . ,A2s be the matrices from the previous lemma. Let

A :=


I A1

I A2
. . .

I A2s

I

 .

be as in (6.4). Then the upper-right block in A−1 is A1 · · ·A2s and hence f is the entry in the upper-right
corner of A−1.

6.2 The determinant of nearly triangular matrices

We now discuss the connection between matrix inverse of triangular matrices and the determinant of
nearly triangular matrices. If Xn = (xi, j)i, j∈[n], let

det(X) = ∑
σ∈Sn

sgn(σ)x1,σ(1) · · ·xn,σ(n) ,

perm(X) = ∑
σ∈Sn

x1,σ(1) · · ·xn,σ(n) .

An n×n-matrix A will be called nearly (upper) triangular, if for every i, j ∈ [n], Ai, j ∈ {1,−1}, if
j = i−1, and Ai, j = 0, if j < i−1. That is, A is upper triangular, except for a string of 1 and −1 below
the main diagonal.

As an application of Propositions 6.3 and 6.5, we obtain:

Proposition 6.6.

(i). Let A be a nearly triangular matrix consisting of variables or field elements. Then det(A) can
be computed by a non-commutative formula of size nO(logn) without inverse gates, and also by a
polynomial size ABP.

(ii). Let f be a polynomial in n variables which is computed by a) a formula of size s without inverse
gates, or b) an ABP of size s. Then f = det(A), where A is a k× k-nearly triangular matrix whose
entries are variables or field elements where a) k = 2s, or b) k = O(ns3).

Proof. To prove (i), extend A to an upper triangular matrix

B =

(
ut A
0 v

)
with u = (1,0, . . . ,0) ,v = (0, . . . ,0,1) .

Let g be the entry in the upper right corner of B−1. By Propositions 6.3 and 6.5, g can be computed
by a quasipolynomial size formula and a polynomial-size ABP. Commutatively, we would be done,
since det(B) is either 1 or −1 and A is the minor of Bn+1,1. Hence g is equal—up to a sign—to det(A).
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Non-commutatively, one must check that the inverse of an upper triangular matrix can indeed be expressed
in terms of determinants of minors. This we leave as an exercise. (Note that in the definition of the
determinant, variables of X are multiplied row by row.)

Similarly, if A is the matrix from Proposition 6.3 or 6.5, such that f is the entry in the upper right
corner of A−1, we can argue that f is—up to a sign—equal to the determinant of the minor of A2s,1, and
this minor is a nearly upper triangular matrix. (The sign can be accounted for by adding an appropriate
row and column.)

A well-known, albeit not well-used, approach to lower-bounds on commutative formula size, is to try
to bound the smallest s such that f = det(A), where A is an s× s matrix of variables or field elements.
The previous proposition shows that we can without loss of generality assume that A is nearly upper
triangular. This restricted problem may perhaps be easier to solve. Also, one could hope to prove a lower
bound even for the determinant itself: to ask what is the smallest s such that det(X) = det(A), where A is
a nearly triangular matrix of variables or field elements.

However, the following shows that the modified problem is different only in the non-commutative
setting:

Corollary 6.7.

(i). Assume that det(Xn) = det(A) or perm(Xn) = det(A), where A is a nearly triangular matrix with
entries variables or field elements, of dimension s× s. Then s≥ 2Ω(n).

(ii). Assuming commutativity of variables, there exists a polynomial-size nearly triangular matrix A of
variables or field elements such that det(Xn) = det(A).

Proof. (i) By [39], both det(Xn) and perm(Xn) require ABP of size 2Ω(n), but det(A) can be computed by
a polynomial-size ABP.

(ii) Commutatively, det(Xn) can be computed by a branching program of a polynomial size, and use
part (ii) of Proposition 6.6.

7 The rational identity testing problem

We will now address the following basic question: how can we decide whether two rational expressions
define the same rational function? This is equivalent to testing whether a single rational expression
defines the zero function. This problem can take several forms, and we will focus on deciding whether a
formula computes the zero function, and refer to this question as the rational identity testing problem. As
we shall see, the complexity of this problem will depend on a natural problem in (commutative) invariant
theory of a simple linear-algebraic flavor, which will appear again in the next section on the elimination
of divisions.

In the commutative setting, the rational identity testing problem can be reduced to the well-known
polynomial identity testing problem, which can be solved quite efficiently by a polynomial time random-
ized algorithm, by means of the Schwarz-Zippel Lemma. The reduction is possible due to the fact that a
commutative rational function can be written as a ratio of two polynomials.
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Given the complex structure of rational expressions, it is not even clear that the rational identity
testing problem is decidable. This was shown by Cohn and Reutenauer in [10]. The algorithm eventually
requires deciding whether a set of (commutative) polynomial equations has a solution, which puts this
problem in PSPACE. We will outline a probabilistic algorithm whose efficiency depends on an extra
parameter w arising from the above mentioned invariant-theory problem, and assuming the bound is
polynomial in s will yield a BPP algorithm for the problem.

The parameter is defined as follows:

• w(s) is the smallest k so that for every correct formula Φ(x1, . . . ,xn) of size s there exists p≤ k and
a1, . . . ,an ∈ R := Matp×p(F̄) such that Φ̂R(a1, . . . ,an) is defined.7

We will sketch a randomized algorithm for rational identity testing which runs in time polynomial in s
and w(s). We will also consider a different version of the parameter. Recall that a linear matrix is of the
form

A = Q0 + x1Q1 + · · ·+ xnQn with Q0, . . . ,Qn ∈Mats×s(F) . (7.1)

The second parameter is defined as:

• w̃(s) is the smallest k so that for every s× s matrix A of the form (7.1) with Q0 = 0, if A is invertible
in F<(x1, . . . ,xn>) then there exists p≤ k and a1, . . . ,an ∈Matp×p(F̄) such that Q1⊗a1+ · · ·Qn⊗an

is invertible in Matsp×sp(F̄).

That both w(s) and w̃(s) are finite essentially follows from Theorem 2.1 part (i). We will prove this
in Section 7.1 where the two parameters are further discussed. Note that the absence of the constant
term Q0 in the definition of w̃ is just cosmetic and, without loss of generality, one can assume n ≤ s2

(cf. Claims 7.5 and 7.8).
Let us first observe that the rational identity problem is essentially equivalent to the following problem:

decide whether a formula Φ is a correct formula. For, in order to see whether Φ is correct, we must only
check that for every inverse gate u−1 in Φ, Φu doesn’t compute the zero function. Conversely, a correct
formula Φ computes the zero function if and only if Φ−1 is not a correct formula. Using the construction
in Theorem 2.6, we can give the following criterion for the correctness of a formula:

Proposition 7.1. Let F be a field and R a ring whose centre contains F. For a formula Φ and a1, . . . ,an ∈R,
the following are equivalent:

(i). Φ̂R(a1, . . . ,an) is defined.

(ii). For every gate u in Φ, AΦu(a1, . . . ,an) is invertible in Mat(R).

Proof. (i)→(ii) follows from Proposition 6.1. To prove the converse, assume that Φ̂R(a1, . . . ,an) is not
defined. Then there exists a gate u−1 in Φ such that Φ̂u(a1, . . . ,an) is defined but b := Φ̂u(a1, . . . ,an)
is not invertible in R. Let A := AΦu(a1, . . . ,an). From Proposition 6.1, we know that A is invertible
and b = RA−1, where we invoke the notation from the proof Theorem 2.6. It is sufficient to show that
B := AΦu−1 (a1, . . . ,an) is not invertible.

7F̄ is the algebraic closure of F.
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From the construction of AΦu−1 , we have

B =

(
vt

p A
0 −up

)
,

and b = upA−1vt
p. Assume that A is a k× k matrix. Then there exist invertible (k+1)× (k+1) matrices

C,D such that

B =C
(

b 0
0 Ik

)
D .

This can be seen from(
vt

p A
0 −up

)
=

(
0 Ik
1 −upA−1

)
·
(

upA−1vt
p 0

0 Ik

)
·
(

1 0
vt

p A

)
.

Hence, if B is invertible then so is (
b 0
0 Ik

)
and b must be invertible. Therefore, B is not invertible.

Specializing to the case R = F<(x1, . . . ,xn>) , we obtain:

Corollary 7.2. Φ is a correct formula iff for every gate u in Φ, AΦu is invertible.

Hence, the problem of deciding whether Φ is a correct formula can be reduced to the problem of
deciding whether a matrix A, whose entries are degree one polynomials, is invertible. The algorithm
in [10] in fact solves this latter problem. The essence of the algorithm is Theorem 2.2. By the second
part of the theorem, A of dimension m×m is invertible iff it cannot be written as B ·C where B,C consist
of degree-one polynomials and have dimensions m× k and k×m, respectively, with k < m. Taking the
coefficients of the polynomials in B,C as unknowns, the problem is expressible in terms of solvability of
a set of (commutative) polynomial equations over F.

However, we will use a different invertibility test:

Proposition 7.3. Let A be as in (7.1). Then A is invertible in Mats×s(F<( x̄>)) iff there exists k ∈ N and
a1, . . . ,an ∈Matk×k(F) such that

Q0⊗ Ik +Q1⊗a1 + · · ·+Qn⊗an

is invertible in Matsk×sk(F).

Proof. If A is invertible, there is A−1 ∈Mats×s(F<( x̄>)) with A ·A−1 = A−1 ·A = Is. The entries of A−1

are rational functions. By Theorem 2.1 part (i), there exist k ∈ N and a1, . . . ,an ∈ R := Matk×k(F̄) such
that every A−1

i, j is defined on a1, . . . ,an. (To obtain a1, . . . ,an which work for every i, j, it is enough to
consider a circuit in which every A−1

i, j is computed by some gate.) Evaluating A−1 at this point gives a
matrix B ∈Mats×s(R) such that

A(a1, . . . ,an) ·B = B ·A(a1, . . . ,an) = Is ,
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and so A(a1, . . . ,an) is invertible in Mats×s(R). It is an s× s-matrix with k× k-matrices as entries, and it
can be identified with the sk× sk-matrix

A(a1, . . . ,an)
′ = Q0⊗ Ik +

n

∑
i=1

Qi⊗ai .

Clearly, A(a1, . . . ,an) is invertible iff A(a1, . . . ,an)
′ is invertible. Hence A(a1, . . . ,an)

′ is invertible.
If A is not invertible then it is not full by Theorem 2.2. Hence A(a1, . . . ,an) is not full in R for every

R = Matk×k(F) and every a1, . . . ,an. Hence A(a1, . . . ,an) and A(a1, . . . ,an)
′ are never invertible.

The quantity w̃ is utilized as follows. Let A be an s× s matrix as in (7.1), and k a parameter. Introduce
nk2 distinct commutative variables yi

p,q, i ∈ {1, . . . ,n}, p,q ∈ {1, . . . ,k}. For every variable xi, consider
the k× k matrix

x?i := (yi
p,q)p,q∈{1,...,k} ,

and let
A(k) := Q0⊗ Ik +Q1⊗ x?1 + · · ·+Qn⊗ x?n .

It is an sk× sk matrix whose entries are commutative (linear) polynomials in the auxiliary variables Y .
Then we obtain the following invertibility test:

Proposition 7.4. Let A be as (7.1). Then A is invertible iff there exists k ≤ w̃(s) such that det(A(k)) 6= 0
(as a polynomial in F[Y ]).

Proof. We first note that the assumption Q0 = 0 in the definition of w̃ is inessential:

Claim 7.5. A is invertible iff there exists k ≤ w̃(s) and a1, . . .an ∈Matk×k(F̄) such that

Q0⊗ Ik +
n

∑
i=1

Qi⊗ai

is invertible.

Proof of Claim 7.5. If Q0⊗ Ik +∑
n
i=1 Qi⊗ai is invertible then A is invertible by Proposition 7.3. Con-

versely, if A is invertible then so is x0Q0 +∑
n
i=1 xiQi, where x0 is a fresh variable. Hence there exist

k≤ w̃(s) and a0, . . . ,an ∈Matk×k(F̄) such that Q0⊗a0 +∑
n
i=1 Qi⊗ai is invertible. Since F̄ is infinite, we

can assume that a0 is invertible and hence Q0⊗ Ik +∑
n
i=1 Qi⊗ (aia−1

0 ) is invertible.

This shows that A is invertible (over the free skew field) iff there exists k ≤ w̃(s) such that A(k) is
invertible (over the field of fractions F(Y )). The matrix A(k) has entries from the commutative ring
F[Y ]⊆ F(Y ) and so it is invertible iff det(A(k)) 6= 0.

Setting m := sw̃(s), each A(k) has dimension at most m×m, and each entry is a linear polynomial in
the commuting variables Y . Hence det(A(k)) is a polynomial of degree at most m, and it can be computed
by a commutative arithmetic circuit of size polynomial in m. This allows to test invertibility of A by a
randomized algorithm running in time polynomial in s and w̃(s). We note that in [29], a deterministic
algorithm was designed which runs in time polynomial in s and a parameter similar to w̃.
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By means of Proposition 7.1, this also gives an algorithm for rational identity testing whose com-
plexity depends on w̃. However, such an algorithm can also be obtained using the parameter w instead.
Proposition 7.1 gives:

Proposition 7.6. For a formula Φ of size s, the following are equivalent:

(i). Φ is a correct formula.

(ii). There exists k ≤ w(s) such that for every gate u in Φ, det(A(k)
Φu
) 6= 0.

By Theorem 2.6, each of the matrices A(k)
Φu

has size at most 2sw(s)×2sw(s) and each entry is again a
linear polynomial in the commuting variables Y . This allows to reduce the non-commutative rational
identity testing problem to s instances of the commutative polynomial identity testing problem.

Non-commutative polynomial identity testing

Let us add some comments about the special case of rational identity testing: decide whether a formula
or a circuit without inverse gates computes the zero polynomial. In [41], Raz and Shpilka show that the
problem can be decided by a polynomial time deterministic algorithm for a formula or even an arithmetic
branching program. For a non-commutative circuit, no such deterministic algorithm is known. In [5],
Bogdanov and Wee show it can be decided by a polynomial time randomized algorithm.

The main point is given by the celebrated Amitsur-Levitzki theorem ([3], discussed in a greater detail
in Section 9): if a polynomial f vanishes on all k× k matrices over an infinite field then f must have
degree at least 2k. Hence, assume that we are given a division free circuit Φ computing a polynomial
f (x1, . . . ,xn) of degree < 2k. To check whether f (x1, . . . ,xn) = 0, it is now sufficient to check whether
f (a1, . . . ,an) = 0 for all k× k matrices a1, . . . ,an, over an infinite field. As above, we can interpret
f (a1, . . . ,an) as a matrix of k2 polynomials in nk2 commuting variables, each of degree < 2k, and hence
reduce the non-commutative identity testing problem to k2 instances of the commutative identity testing.
This yields a polynomial time randomized algorithm, whenever we focus on a class of circuits computing
polynomials of a polynomial degree.

7.1 The two parameters

We now give more details about the parameters w and w̃. We start by showing that they are indeed
well-defined, and that w̃ can be used to upper-bound w.

Proposition 7.7. Both w and w̃ are well-defined non-decreasing functions and w(s)≤ w̃(s2 + s).

Proof. We start by proving that w̃(s) is well-defined (finite) for every s. To see this, we first note the
following:

Claim 7.8. Assume that ∑
n
i=1 xiQi is invertible, where Q1, . . . ,Qn ∈Mats×s(F). Then there exists M ⊆

{1, . . . ,n} with |M| ≤ s2, such that ∑i∈M xiQi is invertible.
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Proof of Claim 7.8. Assume that Qn lies in the linear span of Q1, . . . ,Qn−1, i. e., Qn = ∑
n−1
i=1 ciQi for some

constants c1, . . .cn−1 from F. Proposition 7.3 gives that ∑
n
i=1 Qi⊗ai is invertible in Matks×ks(F) for some

a1, . . . ,an ∈Matk×k(F). We have

n

∑
i=1

Qi⊗ai =
n−1

∑
i=1

Qi⊗ai +

(
n−1

∑
i=1

ciQi

)
⊗an =

n−1

∑
i=1

Qi⊗ (ai + cian) .

Hence, by the same proposition, ∑
n−1
i=1 xiQi is invertible in F<(x1, . . . ,xn−1>) . To conclude, it is enough to

pick M so that {Qi : i ∈M} is a basis of the linear span of Q1, . . . ,Qn.

The claim shows that in the definition of w̃(s) we can assume that n = s2, which we now proceed to do.
Let T be the set of non-invertible linear matrices of the form A = ∑

s2

i=1 xiQi with Q1, . . . ,Qs2 ∈Mats×s(F).
Proposition 7.3 asserts that A ∈ T iff

det

(
s2

∑
i=1

Qi⊗ai

)
= 0

for every k ∈ N and a1, . . . ,as2 ∈ Matk×k(F). We can view A as the s2-tuple of the s× s matrices
Q1, . . . ,Qs2 and T as a subset of Fs4

. Then we see that T is an algebraic set defined by the equations

det

(
s2

∑
i=1

Qi⊗ai

)
= 0 ,

for all possible ai’s. By Hilbert’s basis theorem, a finite subset of the equations is enough to define T .
Switching to the complement of T , this means that there exists k ∈ N such that A is invertible iff there
exists p ≤ k and a1, . . . ,as2 ∈Matp×p(F) such that ∑

s2

i=1 Qi⊗ai is invertible—and w̃(s) is the smallest
such k.

We now prove the inequality w(s) ≤ w̃(s2 + s). Let Φ be a correct formula of size s in variables
x1, . . . ,xn. For a gate v in Φ, let sv be the size of Φv and let AΦv be of dimension kv× kv. Let k := ∑v kv.
It is easy to see that ∑v sv ≤ (s2 + s)/2. Since kv ≤ 2sv (Theorem 2.6), we have that k ≤ s2 + s. Let
A be a k× k-matrix which is block-diagonal with the blocks being the matrices AΦv , for all gates
v. Then A is invertible and of the form Q0 +∑

n
i=1 xiQi with Q0, . . . ,Qn ∈ Matk×k(F). By Claim 7.5,

there exist p≤ w̃(k) and a1, . . . ,an ∈ R := Matp×p(F̄) so that Q0⊗ Ik +∑
n
i=1 Qi⊗ai is invertible. That is,

A(a1, . . . ,an) is invertible in Matk×k(R)—and hence all the blocks AΦv are. This shows that ΦR(a1, . . . ,an)
is defined by Proposition 7.1 and so w(s)≤ w̃(k) = w̃(s2 + s).

This entails that w is well-defined. w̃ is non-decreasing because an invertible matrix A can be enlarged
to a block-diagonal (s+1)× (s+1) invertible matrix A′, the blocks being A and x1. w is non-decreasing
because a correct formula Φ of size s can be modified to a correct formula of size s+1 which contains all
the inverse gates of Φ. (Hint: Φ−1 works whenever Φ̂ 6= 0.)

In [25], w̃ was originally defined with the additional constraint n≤ s on A in (7.1). Here, we have
removed this assumption: Claim 7.8 shows that we can always assume n≤ s2 and hence it is unnecessary
to have an explicit constraint on n.
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Amitsur-Levitzki theorem (cf. Section 9) shows that both w(s) and w̃(s) grow with s. To see that
w(s) exceeds 1 for some s, it is enough to take the formula (xy− yx)−1. Similarly, the following matrix
(borrowed from [19]) shows that w̃(3)≥ 2: 0 x y

−x 0 z
−y −z 0

 . (7.2)

Proposition 7.6 shows that in order to obtain an efficient rational identity testing algorithm, it is
enough to show that w(s) is small. The other parameter w̃ is designed to solve the more general problem
of deciding whether a linear matrix is invertible. We do not have a reason to believe that the inequality in
Proposition 7.7 is even close to being tight. Hence, estimating w in terms of w̃ can turn out to be far too
generous. However, the main appeal of w̃ is the simplicity of its definition. By means of Proposition 7.3,
w̃ can be introduced without any reference to computations or even the skew field: in the definition of w̃,
the assumption “A is invertible over F<( x̄>)” can be replaced by the assumption “∑

n
i=1 Qi⊗ai is invertible

for some m ∈ N and a1, . . . ,an ∈Matm×m(F).” We also note that the suspected gap between w and w̃
disappears if in the definition of w̃, we consider only matrices A which come from a representation of
some formula Φ as in Theorem 2.6—i. e., A = AΦ for some Φ.

8 How to eliminate divisions

A classical result of Strassen [48], see also [7] Chapter 7.1, asserts that division gates are not very
helpful when computing commutative polynomials. If a commutative polynomial f of degree k can be
computed by a circuit with divisions of size s then it can be computed by a circuit without divisions of
size O(sk2). (The original argument assumes that the underlying field is infinite. It was noted in [28] that
a similar statement holds over any field.) However, when dealing with non-commutative computations,
the situation seems to be much more complicated. To outline the main issue, assume that we have
computed a polynomial f using only one inverse g−1 for a polynomial g. Commutatively, if g 6= 0 and
F is infinite, there must exist a ∈ Fn such that g(a) 6= 0. We can then rewrite g−1 as a power series
around the point a. Supposing f has degree k, it is enough to truncate the series up to terms of degree k,
obtaining a computation of f without divisions. Non-commutatively, no such substitution from F may
exist. For example, g = xy− yx is a non-zero polynomial which vanishes on every substitution from F.
An obvious remedy is to allow substitutions which are m×m matrices over F, and then to work with
power series in this matrix algebra. In the example xy− yx, it is easy to find 2×2 matrices a,b such that
ab−ba is invertible, and the power series argument yields a satisfactory answer. However, as g gets more
complicated, we must substitute m×m matrices with a larger m. Computations with m×m matrices have
cost roughly m3 and in order to eliminate divisions efficiently, we want m to have polynomial size. The
question now becomes: what is the dimension of matrices we need to make g invertible? We do not know
how to answer this question and state it as Problem 9.3 in Section 9. As opposed to the running example,
we cannot in general assume that g is a polynomial: it may itself contain inverses, and nested inverses.
This makes the bound on m quite challenging; see Section 9 for further discussion. In Proposition 8.3, we
will prove only a conditional result: if a polynomial f is computed by a circuit with divisions Φ such that
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Φ̂ is defined for some matrices of small size, then f can be computed by a small circuit without division
gates.

We now proceed towards proving Proposition 8.3. This requires introducing some definitions as well
as extending definitions from Section 2. Let R be an arbitrary (unital) ring and let x̄ = {x1, . . . ,xn} a set
of variables. R〈x̄〉 will denote the set of polynomials in variables x̄ with coefficients from R. The ring R is
not in general commutative, and the variables do not multiplicatively commute, but we will assume that
variables commute with elements of R. More exactly, a polynomial in R〈x̄〉 is a sum

∑
α

cαα ,

where α ranges over products of variables from x̄ and cα ∈ R, with only finitely many cα ’s being non-zero.
Addition and multiplication are given by

∑
α

cαα +∑
α

c′αα = ∑
α

(cα + c′α)α ,

∑
α

cαα ·∑
α

c′αα = ∑
α,β

(cαc′
β
)(αβ ) .

We will extend R〈x̄〉 to the ring of power-series8 R{x̄}. A power series f ∈ R{x} is an infinite sum

f (0)+ f (1)+ f (2)+ · · · ,

where every f (k) ∈ R〈x̄〉 is a homogeneous polynomial of degree k. Addition and multiplication are
defined in the obvious way:

( f +g)(k) = f (k)+g(k) , ( f ·g)(k) = ∑
i+ j=k

f (i) ·g( j) .

If f (0) = a ∈ R is invertible in R then f is invertible in R{x̄}. Its inverse is given by

f−1 = (a− (a− f ))−1 = a−1(1− (1− f a−1))−1 = a−1
∞

∑
i=0

(1− f a−1)i .

If we denote the partial sum f (0)+ f (1)+ · · ·+ f (k) by f (≤k) this can be written as

( f−1)(≤k) = a−1

(
k

∑
i=0

(1− f (≤k)a−1)i

)(≤k)

. (8.1)

We also need to extend the definition of a circuit so that it can compute power series over R: this
is achieved by taking circuits as introduced in Section 2, but allowing them to use elements of R in the
computation (in the same way elements of the fields were). Such a circuit will be called an R-circuit. All
other notions are generalized in an obvious manner. Mainly, an R-circuit computes an element of R{x̄}:
evaluate the circuit gate-by-gate over R{x̄}. This either produces an element of R{x̄}, or the evaluation
fails due to attempted inversion of a non-invertible elements in R{x̄}.

8This ring is sometimes denoted R〈〈x̄〉〉.
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Lemma 8.1. Assume that f ∈ R{x̄} can be computed by an R-circuit of size s and depth d. Then for
every k ∈ N, f (≤k) ∈ R〈x̄〉 can be computed by an R-circuit without division gates of size O(sk3) and
depth O(d log2 k).

Proof. We divide the proof into two steps.
Step 1. Let Φ be the circuit computing f , and let us fix k. We will construct a division-free circuit Φ′

of size O(sk) and depth O(d logk) computing a polynomial g ∈ R〈x̄〉 such that f (≤k) = g(≤k). Let λ (z)
be the univariate polynomial ∑

k
i=0(1− z)i. Clearly, it can be computed by a division free circuit Λ(z) of

size O(k) and depth O(logk) (actually, even of size O(logk)). For any inverse gate u−1 in Φ, u computes
an invertible element û ∈ R{x̄} and so a := û(0) ∈ R is invertible. Then Φ′ is obtained by simultaneously
replacing every inverse gate u−1 by the circuit a−1Λ(ua−1) and appropriately rewiring the inputs and
outputs.

Since a−1 ∈ R, Φ′ is an R-circuit without divisions, and it computes a polynomial g ∈ R〈x̄〉. That g
satisfies g(≤k) = f (≤k) is easily proved by induction on the size s. Note that for every f1, f2,

( f1 ◦ f2)
(≤k) = ( f (≤k)

1 ◦ f (≤k)
2 )(≤k) ,

where ◦ ∈ {+, ·}, and (8.1) gives ( f−1
1 )(≤k) = a−1(λ ( f (≤k)

1 a−1))(≤k), where a = f (0)1 .
Step 2. Given a division-free Φ′ of size s′ and depth d′ computing a polynomial g, g(≤k) can be com-

puted by a division-free circuit of size O(s′k2) and depth O(d′ logk). This is a standard homogenization
argument.

Altogether we have obtained a circuit of size O(sk3) and depth O(d log2 k) computing f (≤k).

Next, we consider the ring of m×m matrices

R := Matm×m(F) .

We want to interpret a polynomial f ∈ R〈x̄〉 as an m×m matrix f ? whose entries are polynomials in
F〈x̄〉. Let f ∈ R〈x̄〉 be written as f = ∑α cαα , where cα ∈ R and α ranges over products of the variables
x̄. Then f ? ∈Matm×m(F〈x̄〉) is the matrix with

f ?i, j = ∑
α

(cα)i, jα , i, j ∈ {1, . . . ,m} .

Lemma 8.2. Assume that f ∈ R〈x̄〉 can be computed by an R-circuit without divisions of size s and depth
d. Then f ? can be computed by a circuit over F without divisions of size O(sm3) and depth O(d logm).

Proof. Note that ( f1 + f2)
? = f ?1 + f ?2 and ( f1 · f2)

? = f ?1 · f ?2 , where on the right hand side we see a
sum, resp. product, of m×m matrices. This means that a sum and a product gate in an R-circuit can be
simulated by a sum, resp. product, of m×m matrices over F. This gives an increase in size of factor at
most O(m3) and depth by a factor of O(logm).

Proposition 8.3. Let f ∈F〈x̄〉 be a polynomial of degree k which is computable by a circuit Φ of size s and
depth d. Assume that there exist matrices a1, . . . ,an ∈ R = Matm×m(F) such that Φ̂R(a1, . . . ,an) is defined.
Then f can be computed by a circuit without divisions of size O(sk3m3) and depth O(d log2 k logm).
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Proof. F can be embedded into R via the map a ∈ F→ aIm ∈ R. Similarly, each variable xi is mapped to
xiIm. So we can view f as en element of R〈x̄〉 and Φ as an R-circuit. Consider g := f (x1 +a1, . . . ,xn +an)
and the R-circuit Φ′ := Φ(x1 +a1, . . . ,xn +an). The assumption that Φ̂R(a1, . . . ,an) is defined guarantees
that Φ′ is a correct R-circuit computing g ∈ R〈x̄〉 ⊆ R{x̄}. By Lemma 8.1, g(≤k) can be computed by a
division-free R-circuit Φ′′ of size O(sk3) and depth O(d log2 k). Since g has degree k, we have g(≤k) = g
and Ψ′′ computes g. Moreover, f = g(x1−a1, . . . ,xn−an) and so Φ′′(x1−a1, . . . ,xn−an) computes f .
Lemma 8.2 gives that f ? can be computed by a division-free circuit over F of size O(sk3m3) and depth
O(d log2 k logm). But f ? is simply the diagonal matrix with f on the diagonal and the statement of the
proposition follows.

Invoking Proposition 4.1 gives:

Corollary 8.4. Let f ∈ F〈x̄〉 be a polynomial of degree k which is computable by a formula Φ of size s.
Assume that there exist matrices a1, . . . ,an ∈Matm×m(F) such that Φ̂(a1, . . . ,an) is defined. Then f can
be computed by a formula without divisions of size sO(log2 k logm).

Recalling the definition of w(s) from Section 7, the corollary implies that

• if F is algebraically closed then f can be computed by a formula without divisions of size
sO(log2 k logw(s)).

The bounds presented in Proposition 8.3, and Corollary 8.4, are not intended to be optimal. A more
careful calculation would show

• a size upper bound O(sk2 logk ·mω), where ω < 3 is the (hitherto unknown) exponent of matrix
multiplication;

• a depth upper bound O(d logk logm) assuming that F is infinite (owing to savings in Step 2 in the
proof of Lemma 8.1).

9 Open problems

Problem 9.1. Give an explicit polynomial f ∈ F〈x̄〉 which cannot be computed by a polynomial size
formula with divisions.

Nisan’s result [39] gives the solution for formulae without division gates. An obvious approach to
Problem 9.1 is to show that division gates can be eliminated without increasing the formula size too much.
This leads to the following question:

Problem 9.2. Assume that a polynomial f ∈ F〈x̄〉 of degree k can be computed by a circuit Φ with
divisions of size s. Give a non-trivial upper bound on the size of a circuit without divisions computing f .
Similarly for some other complexity measure of f , such as formula size.

A conditional answer to Problem 9.2 was given in Proposition 8.3. There, we constructed a circuit
without divisions computing f under the assumption that there exist matrices of small dimension for
which the original circuit Φ is defined. (That is, matrices in R = Matm×m(F) such that, when we evaluate
Φ in R, we never come across an inverse gate computing a non-invertible matrix.) Hence:
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Problem 9.3. Assume that Φ(x1, . . . ,xn) is a correct circuit of size s. What is the smallest m so that
there exist a1, . . . ,an ∈ R = Matm×m(F) for which ΦR(a1, . . . ,an) is defined? Similarly, for some other
complexity measure, such as formula size.

As was explained in Section 7, the question is also relevant in the rational identity testing problem: to
decide whether a formula computes the zero rational function. There, we also mentioned a related version
of the question:

Problem 9.4. Find an upper bound on the smallest k = k(s), such that for all Q1, . . . ,Qn ∈Mats×s(F) if
∑

n
i=1 xiQi is invertible in F<(x1, . . . ,xn>) then ∑

n
i=1 Qi⊗ai is invertible for some a1,a2, . . . ,an ∈Matp×p(F)

with p≤ k.

Problems 9.3 and 9.4 are interesting from a purely algebraic perspective. The connection between
them is explained in Section 7.1. Here, let us give a few comments about Problem 9.3. First, such an m
always exists, and can be bounded by a function of s. This follows from Theorem 2.1 (cf. Proposition 7.1).
Second, let us recall the celebrated Amitsur-Levitzki theorem [3]: for every p there exists a non-zero
polynomial fp ∈ F〈x1, . . . ,x2p〉 of degree 2p such that fp vanishes on all p× p matrices. Conversely,
every non-zero polynomial vanishing on all p× p matrices over an infinite field must have degree at least
2p. The converse can be strengthened to show that if 0 6= f ∈ F〈x1, . . . ,xn〉 has degree < 2p, there exist
p× p matrices a1, . . . ,an such that the matrix f (a1, . . . ,an) is invertible—indeed most tuples (a1, . . . ,an)
will satisfy this property. This follows from another theorem of Amitsur (see [44] Theorem 3.2.6 and
Exercise 2.4.2, as well as [34], Proposition 2.4). To apply this to Problem 9.3, suppose that the circuit Φ

in Problem 9.3 contains a gate computing f−1
p , where fp is the Amitsur-Levitzki polynomial of degree

2p. Then m must be at least p+1, which shows that m grows with s. On the other hand, assume that Φ

contains only one inverse gate computing g−1, for some polynomial g of degree k. Then m can be taken
≤ k/2+1. A similar bound can be obtained for any Φ of inverse height one. However, we do not know
how to compose this argument, and what happens for circuits of general height—even the case of circuits
of height two is far from clear. As far as we know, the strongest upper-bound known in Problem 9.4
is k(s) = 2O(s logs). This was obtained in a recent paper [29] by Ivanyos, Qiao and Subrahmanyam,
improving an earlier result of Derksen [12]. These results involve tools from invariant theory, and we
explore this general connection in the Appendix below.

A Appendix: The Invariant Theory angle

In this section, we give the necessary background from Invariant Theory to explain how our main open
problem (Problem 9.4) arises there. We also mention a few other computational complexity questions
which have recently been cast in this language. We will present only, in high level, the fragment of the
theory which is relevant to us. Often, the stated results are known in greater generality. One can find
much more in the books [11, 13, 33]. We stress that in this section all variables commute!

Fix a field F (while problems are interesting in every field, results mostly work for infinite fields
only, and sometimes just for characteristic zero or algebraically closed ones). Let G be a group, and V a
representation of G, namely a vector space on which G acts; for every g,h ∈G and v ∈V we have gv ∈V
and g(hv) = (gh)v. When G acts on V , it also acts on F[V ], the polynomial functions on V , also called
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the coordinate ring of V . We will denote gp the action of a group element g on a polynomial p ∈ F[X ].
In our setting V will have finite dimension (say m), and so F[V ] is simply F[x1,x2, . . . ,xm] = F[X ], the
polynomial ring over F in m variables.

A polynomial p(X) ∈ F[X ] is invariant if it is unchanged by this action, namely for every g ∈ G
we have gp = p. All invariant polynomials clearly form a subring of F[X ], denoted F[X ]G, called the
ring of invariants of this action. Understanding the invariants of group actions is the main subject of
Invariant Theory. In our setting, all these rings will be finitely generated, namely there will be a finite
set of polynomials {q1,q2, . . .qt} in F[X ]G so that for every polynomial p ∈ F[X ]G there is a t-variate
polynomial r over F so that p = r(q1,q2, . . . ,qt). The following example must be familiar to the reader.

Example A.1. Let G = Sm, the symmetric group on m letters, acting on the set of m formal variables
X (and hence the vector space they generate) by simply permuting them. Then the set of invariant
polynomials are simply all symmetric polynomials. As is well known, they are generated in the sense
above by the m elementary symmetric polynomials (namely q1 = ∑i xi,q2 = ∑i< j xix j, . . . ,qm = ∏i xi).
Another generating set of the same size is provided by the sums-of-powers (namely q′1 = ∑i xi,q′2 =

∑i x2
i , . . . ,q

′
m = ∑i xm

i ).

This example demonstrates a nearly perfect understanding of the ring of invariants. The first basic
requirement is a finite set of generators of the ring of invariants. Establishing this for a group action is
often called the “First Fundamental Theorem,” or FFT. The second requirement (naturally called the
“Second Fundamental Theorem,” or SFT, when established) is describing all algebraic relations between
the given generating invariants. In the case of symmetric polynomials above, they are algebraically
independent. Hence, we know FFT and SFT in this example.

Further requirements have to do with the explicitness and constructivity of the given invariants, their
number, as a function of natural parameters like the dimension of the space V , size (when finite) or
“dimension” of the group G. Finally, a more modern request is that the given invariants would be easy
to compute. For the action of the symmetric group above, we are in an “optimal” situation. There are
exactly m generating invariants (the dimension of V ), explicitly given and very easy to compute. Some of
these explicitness and computational notions are formally defined and discussed in [17], section 1.2.

This set of “computational” properties is clearly directly related to the efficiency of solving perhaps
the most basic orbit problem of this setting: given two points u,v ∈V , are they in the same orbit under
the group action? If they are, clearly their evaluation at every invariant is identical (and the converse can
be achieved with a somewhat more general notion of “separating invariants”). Many basic problems in
many mathematical disciplines can be viewed in this way (e. g., Is a given knot unknotted? Can one turn a
polygon into another via (straight) cutting and pasting?). More recently, basic problems of computational
complexity were cast in these terms. Valiant [49] showed that to separate the arithmetic classes VP and
VNP it suffices to show that the permanent polynomial is not a linear projection of a determinant of a not
much larger matrix. While projection is not a group operation, the Geometric Complexity Theory (GCT)
project of Mulmuley and Sohoni (see, e. g., [37, 36] for surveys) describes it in similar terms, namely the
intersection of the orbit closure of varieties defined respectively by permanent and determinant. In this
last motivation the groups acting are linear groups.

Most work and knowledge in Invariant Theory concerns linear groups.9 The first seminal results

9Here, we consider only actions on vector spaces, the real interest of algebraic geometry is their actions on general affine
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came from Hilbert [24], who proved10 the first and second fundamental theorems for the natural actions
of the general and special linear groups, GL(V ) and SL(V ) on a vector space V . Again, a very familiar
very special case, in which knowledge is complete, is the following.

Example A.2. Consider the action of the group SLn(F) on the vector space of n× n matrices in
Matn×n(F), simply by matrix multiplication. Namely, A ∈ SLn acts on M by AM. The entries of
such a generic matrix M may be viewed as m = n2 variables X = {xi j}. In this case all polynomial
invariants are generated by the determinant det(X).

We shall be interested in invariants11 of actions of SLn on d-tuples of n× n matrices. So now
the number of variables is m = dn2. The most well understood is the action of a single copy of SLn

by simultaneous conjugation of the d matrices, and the one we care about the action of two copies,
SLn×SLn, by simultaneous multiplication on the left and right. We define both next and discuss what
is known, but first point out that these are very special cases of the general setting of quivers and their
representations [20] and many of the results generalize to this setting.

Now a typical element of our vector space is a d-tuple of n×n matrices (M1,M2, . . . ,Md) and the
underlying variables X are now the m = dn2 entries. Consider the action of a matrix A ∈ SLn on this
tuple by simultaneous conjugation, namely transforming it to the tuple (A−1M1A,A−1M2A, . . . ,A−1MdA).
Which polynomials in X are invariant under this action? The first and second fundamental theorem were
proved by Procesi, Formanek, Razmyslov, and Donkin [40, 18, 42, 16]. More precisely, the invariants are
generated by traces of products of length at most n2 of the given matrices, namely by the set{

Tr(Mi1Mi2 · · ·Mit ) : t ≤ n2} .
These polynomials are explicit, have small degree and are easily computable. The one possible shortcom-
ing, the exponential size of this set (a serious impediment to, e. g., solving the orbit problem above), was
recently improved to quasi-polynomial by Forbes and Shpilka [17], who “derandomized” a probabilistic
construction of Mulmuley [38]. Furthermore, [17] connects the problem of finding few invariants to
solving the Polynomial Identity Testing problem (in the commutative setting).

Finally, we get to the action we care about. Here a pair of matrices (A,B) ∈ SLn× SLn acts on
(M1,M2, . . . ,Md) to give (AM1B,AM2B, . . . ,AMdB). Note that whether the symbolic matrix of linear
forms z1M1 + z2M2 + · · ·+ zdMd is full12 or not is unchanged by this action, which is the first relationship
to the body of our paper. But in this case we only know an infinite set of generating invariants. They were
determined (for arbitrary quivers) by [14, 45, 15] (and also for this specific left-right action in [1]). The
invariants can be described in several ways. The papers [15, 14] describe them in terms of determinants
of block matrices. Let (X1,X2, . . . ,Xd) be the generic matrices of our variables X . For the left-right action
the invariants are determinants of sums of the matrices Xi⊗Ti for some arbitrary d-tuple of k×k matrices
(T1,T2, . . . ,Td). Namely, this is the set{

det

(
d

∑
i=1

Xi⊗Ti

)
: k ∈ N, Ti ∈Matk×k(F)

}
.

varieties.
10Among many other foundational results—this paper and its 1890 non-constructive predecessor contain in particular the

Nullstellensatz, the finite basis theorem and other cornerstones of commutative algebra and algebraic geometry.
11Often called semi-invariants, to distinguish them from invariants of GLn.
12As in the definition before Theorem 2.2.
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These are precisely the polynomials we care about in the body of this paper, in both the non-
commutative PIT problem, as well as in eliminating divisions from non-commutative circuits. By
Hilbert’s basis theorem, we know that a finite subset of this set generates all invariants, and hence in
particular we can take them to be all invariants of degree below some finite bound (which puts an upper
bound on the dimension k of the auxiliary matrices Ti). Attempts of giving an upper bound on the degree
are surveyed by Derksen in [12], who obtains an upper bound of 2O(n2) on the degree. Recently, the
bound has been improved to 2O(n logn) by Ivanyos, Qiao and Subrahmanyam in [29], see also [30]. Note
that a polynomial upper bound here implies one for Problem 9.4, and vice versa.

Acknowledgement. We thank Susan Durst, Peter Malcolmson and Aidan Schofield for useful refer-
ences, Amir Yehudayoff and Klim Efremenko for comments on an earlier version of the paper.
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