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FREE SEQUENCES IN P (ω)/fin

DAVID CHODOUNSKÝ, VERA FISCHER, AND JAN GREBÍK

Abstract. We investigate maximal free sequences in the Boolean
algebra P (ω)/fin, as defined by D. Monk in [Mon11]. We provide
some information on the general structure of these objects and we are
particularly interested in the minimal cardinality of a free sequence,
a cardinal characteristic of the continuum denoted f. Answering a ques-
tion of Monk, we demonstrate the consistency of ω1 = i= f< u=ω2.
In fact, this consistency is demonstrated in the model of S. Shelah
for i < u [She92]. Our paper provides a streamlined and mostly self
contained presentation of this construction.

1. Introduction

The paper uses the following convention: For an element a of a Boolean
algebra B we denote a0 the complement of a, occasionally we also use
a1 to denote a. This convention is used even for subsets of ω which are
considered as elements of the Boolean algebra P (ω).

Free sequences in Boolean algebras were explicitly defined by Donald
Monk in [Mon11].

Definition 1. Sequence A= 〈 aα p α � γ 〉 of elements of a Boolean alge-
bra of ordinal length γ is a free sequence if the family

�

a1
α
p α < β

	

∪
�

a0
α
p β ≤ α < γ

	

is centered for each β ≤ γ.

The concept of free sequences comes from an analogous notion in
topological spaces. A sequence of points 〈 xα p α < γ 〉 in a topological space
is a free sequence if the topological closure of 〈 xα p α < β 〉 is disjoint from
the topological closure of 〈 xα p β ≤ α < γ 〉 for each β ≤ γ. These objects
were first consider by A. Arhangel’skĭı in [Arh69] who introduced this
concept in order to solve a famous problem of Alexandroff and Urysohn
about the bound on cardinality of first countable compact spaces. In the
topological context, the most important consideration seems to be the
maximal possible size of a free sequence, this gives rise to a cardinal
invariant of a topological space closely related to the tightness of the
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space, see e.g. [Bel86, Tod93], and existence of π-bases with additional
combinatorial properties [Gor10].
S. Todorčević defined an algebraic version of the topological notion

of a free sequence in [Tod90] and demonstrated that the algebraic for-
mulation is often more convenient than the original topological concept
(see also [Tod99]). For compact zero-dimensional topological spaces the
algebraic definition of Todorčević coincides via the Stone duality with
the notion of a free sequence in a Boolean algebra as defined by Monk.
Nevertheless, the notion of a free sequence in a Boolean algebra is not
precisely dual to the notion of a free sequence of points in a topological
space, see the discussion in [Mon11].
A free sequence 〈 aα p α � γ 〉 is maximal if it is maximal with respect

to end-extension, i.e. there exist no aγ such that 〈 aα p α � γ 〉á



aγ
�

is
also a free sequence. Monk was primarily interested in the spectrum
of possible cardinalities of maximal free sequences in Boolean algebras.
Most notably, for a Boolean algebra B he defined f(B) to be the cardi-
nal min{ |A| p A is a maximal free sequence in B }. Monk investigated the
relation of this cardinal with other cardinal characteristics of Boolean
algebras. Let us remark at this point that the relation of the cardinal
spectrum of possible cardinalities of maximal free sequences of a given
Boolean algebra with the ordinal spectrum of the actual ordinal lengths
of maximal free sequences is quite unclear. Even the question whether
f(B) is realized by a maximal free sequence of ordinal length exactly f(B)
is in general quite non-trivial.
One of the main problems stated in [Mon11] was the relation of f(B)

and the ultrafilter number u(B); the minimal size of an ultrafilter base
in B. One of the instances of this problem was solved by K. Selker [Sel15]
who used forcing to demonstrate that the existence of a Boolean algebra
B such that ω= f(B)< u(B) =ω1 is consistent with ZFC+CH.
The present paper is solely interested in free sequences in the Boolean

algebra P (ω)/fin. We make several observations on free sequences and
the relation of the free sequence number with other cardinal characteristics
of the continuum. Most notably, we prove that the free sequence number
is strictly smaller than the ultrafilter number u in the model for i< u of
Shelah [She92]. As the paper of Shelah is considered to be somewhat
cryptic, we opted for providing a streamlined, complete and mostly self
contained presentation of the forcing construction from [She92]. All the
core ingredients of this construction are originally due to Shelah. Our
contribution, apart of the presentation, is the argument concerning free
sequences and the free sequence number f. Reader interested only in
Shelah’s construction may skip Section 2 and other parts of this paper
which are concerned with free sequences.
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2. Basic considerations

We will start with exploring basic facts about possible incarnations
of maximal free sequences in P (ω)/fin.¹ We define the free sequence
number f to be the minimal cardinality of a maximal free sequence
in P (ω)/fin, i.e. f = f(P (ω)/fin). For a given free sequence A =
〈 aα �P (ω) p α < γ 〉 we denote the set of admissible intersections as

comb(A) =

�

⋂

α�Γ
aα ∩

⋂

α�∆
a0
α
p Γ ,∆ � [γ]<ω, Γ <∆

�

.

We will also consider the filter generated by a free sequence, this is just
the filter the free sequence generates as a centered subset of P (ω)/fin.

The free sequence number is closely related to other well known cardi-
nal characteristics of the continuum. Let us give a brief overview of the
relevant definitions.

Let U be a non-principal ultrafilter on ω. The character χ(U ) of U is
the minimal cardinality of a base ofU , the π-character πχ(U ) is the min-
imal cardinality of aπ-base² ofU . The ultrafilter number u is the cardinal
min{χ(U ) pU is a non-principal ultrafilter on ω }, the reaping number
r is the cardinal min{πχ(U ) pU is a non-principal ultrafilter on ω }. We
opted for a nonstandard definition of the reaping number as it is more
suitable for our purposes.

Theorem 2 ([BS91]). The reaping number r as defined above is equal to
the minimal cardinality of a family R ⊂ [ω]ω such that for each x ⊂ ω
there is r �R such that r ⊂∗ x or r ∩ x =∗ ;.

We also need a variant of the ultrafilter number, let u∗ be the cardinal
min{χ(U ) pU is a non-principal ultrafilter such that χ(U ) = πχ(U ) }.
The existence of an ultrafilter satisfying χ(U ) = πχ(U ) is unclear in
general, if no such ultrafilter exists, we declare u∗ to be the continuum c.
Bell and Kunen [BK81] proved that there is always an ultrafilter U such
that πχ(U ) = cof c, therefore the following question is open only in case
the continuum is a singular cardinal.

Question 3. Does ZFC imply the existence of an ultrafilter U such that
χ(U ) = πχ(U )?

Observation 4. r≤ u≤ u∗. If r= u, then u∗ = u.

We say that X ⊂ [ω]ω is an independent system if for every function
f : X → 2 is the family

�

a f (a) p a �X
	

centered. An independent system
is maximal if it is maximal with respect to inclusion. The independence

¹We will not formally distinguish between the elements of the Boolean algebra
P (ω)/fin and their representatives in P (ω). We write a ⊂∗ b when br a is finite.

²B ⊂ [ω]ω is a π-base of U if there exists some B � B , B ⊂∗ U for each U � U .
A π-baseB is a base of U if moreoverB ⊂U .
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number i is the minimal cardinality of a maximal independent system.
Although the definitions of a maximal independent system and a maxi-
mal free sequence are somewhat similar, we know very little about the
relations between these objects and the relation between the cardinal
characteristics i and f.
A strictly ⊂∗-decreasing sequence in [ω]ω is always a free sequence.

Maximal such decreasing sequences (with respect to end-extension) are
called towers, the smallest cardinality of a tower is the tower number t.
A tower does not need to be a maximal free sequence. On the other
hand if a free sequence generates an ultrafilter, then it is maximal. This
observation allows us to deduce that there are maximal free sequences of
ordinal length ω1 in the Miller model as it contains such towers which
generate ultrafilters [Mil84]. In particular, the Miller model demonstrates
the consistency of ω1 = u= f< i= c=ω2.

Question 5. Is i< f consistent with ZFC?

The first part of the following proposition is already in [Mon11].

Proposition 6. r≤ f≤ u∗

Proof. First assume that A is a free sequence of size smaller than r. Let
U be a non-principal ultrafilter extending A, comb(A) is not a π-base of
U as it is of size < r. Choose a �U such that a0 ∩ c is infinite for each
c � comb(A). Now Aá 〈 a 〉 is a free sequence and the first inequality is
proved.
Assuming u∗ < c, let {uα p α < u∗ } be a base of an ultrafilter U such

that πχ(U ) = χ(U ). Using induction on α we can define a free sequence
〈 aα p α < u∗ 〉. Start with a0 = u0. If Aβ = 〈 aα p α < β 〉 is defined, use
�

�comb
�

Aβ
��

�< πχ(U ) to find bβ �U such that b0 ∩ c is infinite for each
c � comb

�

Aβ
�

. Let aβ = bβ ∩ uβ , notice that Aβ
á



aβ
�

is a free sequence.
Finally, the constructed free sequence is a base of the ultrafilter U and
hence it is maximal.

Corollary 7. If r= u, then f= u= r.

Question 8. Is r< f consistent with ZFC? What about u< f?

The natural candidate for a model satisfying r < f is the model con-
structed in [GS90]. Corollary 7 presents a substantial obstacle when
constructing a model where u < f. In such model would necessarily
r< u< f hold, and this cannot be achieved using the usual technique of
countable support forcing iteration.

The next proposition generalizes a property of decreasing sequences to
arbitrary free sequences.

Proposition 9. Let A= 〈 aα p α < γ 〉 be a free sequence and cfγ=ω. Then
the free sequence A does not generate an ultrafilter.
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Proof. Let 〈γi p i �ω 〉 be a sequence of ordinals cofinal in γ. For i � ω
choose an ultrafilter Ui extending the centered family { aα p α < γi } ∪
�

a0
α
p γi ≤ α < γ

	

. If U is an ultrafilter extending A, then 〈Ui p i �ω 〉 is
a sequence in the Stone space converging to U , a contradiction.

In fact, the same argument can be used to prove to following, presum-
ably well known, fact.

Observation 10. Let X be an independent system and f : X → 2 any
function. Then X f =

�

a f (a) p a �X
	

does not generate an ultrafilter.

Proof. If X is infinite, then X f can be ordered with an order type of
cofinality ω, and then use Proposition 9.

The maximal free sequences constructed so far generate ultrafilters.
The next proposition shows an elementary example demonstrating that
this does not need to be case for a general free sequence.

Proposition 11. For any given maximal free sequence there exists a maximal
free sequence of the same cardinality which does not generate an ultrafilter.

Proof. We can assume that ω= X ∪ Y for X , Y infinite disjoint, and there
aremaximal free sequences A= 〈 aα ⊂ X p α � γ 〉 and B = 〈 bα ⊂ Y p α � γ 〉
in P (X ) and P (Y ) respectively. For 〈α, i 〉 � γ× 2 let cα,i = aα ∪ bα+i.
Considering the lexicographical order on γ× 2 we get a sequence C =



cα,i p 〈α, i 〉 � γ× 2
�

. This sequence does not generate an ultrafilter as
both X and Y are positive with respect to the filter the sequence generates.
We claim that C is a maximal free sequence on ω. Checking that C is
a free sequence is straightforward. To verify the maximality, take any
z ⊂ω. If z is not positive with respect to both the filters generated by A
and B, then Cá〈 z 〉 is not centered. Assume z is positive with respect to
the filter generated by A. As A is maximal, there are Γ < ∆ � [γ]ω such
that { aα p α � Γ } ∪

�

a0
α
p α �∆

	

∪
�

z0 ∩ X
	

has only finite intersection.
We may moreover suppose that there is α � Γ such that α+ 1 �∆. As the
intersection of { cα p α � Γ × 2 } ∪

�

c0
α
p α �∆× 2

	

is a subset of X , it has
only finite intersection with z0 and C cannot be end-extended by z. The
reasoning when z is positive with respect to B is analogous.

Regarding the proof Proposition 11, if the free sequences A and B
generate ultrafilters, we can use similar construction, defining a free
sequence C = 〈 cα = aα ∪ bα p α � γ 〉á〈X 〉. This way we get an example
of a maximal free sequence such that the order type of C is not a limit
ordinal.

3. Towards i= f< u

The rest of the paper is focused on proving that f < u is consistent
with ZFC. The model where this holds is the model for i < u due to
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Shelah [She92]. As the original paper is not easy to digest, we opted to
include the proof. Our original contribution here is only the proof that
i= f in this model.

Let us start with reviewing some basic terminology and folklore knowl-
edge. An ideal on ω is a set I ⊂ P (ω), such that if I , J � I and A⊂ I ,
then A � I and I ∪ J � I . The ideal I is proper if ω � I . All ideals
considered here will be proper ideals on ω containing all finite subsets of
ω. A filter will generally be a dual of such ideal. for an ideal I we denote
the dual filter as I ∗. We say that K is a co-filter if P (ω)rK is a filter.
For a filter base H ⊂ P (ω) we denote 〈H 〉 the filter generated by

H , i.e. F � 〈H 〉 iff H ⊂∗ F for some H �H . We use the same notation
for co-filters generated by a co-filter base, the intended meaning of the
notation should be always apparent from the context. We will need a
folklore classification of filters. For A⊆ωwe denote εA : ω→ A the unique
increasing surjection, and εF �ωω the function εF : n 7→ εF(n+1)−εF(n).
FilterF is non-meager if the family {εF p F �F } is unbounded in (ωω,<∗

). Filter F is rare³ if the family {εF p F �F } is dominating. Filter F is a
P-filter if for each C � [F ]ω there exists F �F such that F ⊂∗ X for each
X � C .
We will use the following standard diagonal properties of these filters.

Fact 12. Filter F is a non-meager P-filter if and only if for each sequence
{ Fn �F p n �ω } there exist F � F such that F r n ⊂ Fn for infinitely
many n �ω.

Notice that the condition in the preceding fact can be equivalently
formulated as “F r (n+ 1) ⊂ Fn for infinitely many n � F .”

Fact 13. Filter F is a rare P-filter iff F has the diagonal property, i.e. for
each { Fn �F p n �ω } there exists F � F such that F r (n+ 1) ⊆ Fn for
each n � F .

Forcing notion P is bounding if for every generic extension V [G] and
each f � ωω ∩ V [G] there is g � ωω ∩ V [G] such that f ≤ g. Forcing P
has the Sacks property if for each f �ωω ∩ V [G] there exists a sequence
{Gn p |Gn| ≤ 2n, n �ω } � V such that f (n) � Gn for each n � ω. Every
forcing with the Sacks property is bounding. Every rare or non-meager
filter generates a filer with the same property in every generic extension
via a bounding forcing. Every P-filter generates a P-filter in a generic
extension via a proper forcing.
We will use the standard notation for the Cohen poset, the set Cκ =

{h: κ→ 2 p |h|<ω } ordered by reverse inclusion. If κ = ω, we write
just C. Set D ⊂ Cκ is dense if for each h � Cκ exists g � D, g ⊃ h. For
dense sets C , D ⊂ Cκ we say that C refines D if for each h � C exists g � D

³Rare filters are also called Q-filters. We opted for the original terminology of Choquet.
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such that g ⊆ h. If W is an extension of a model set theory V , we say
that W is Cohen-preserving if for each dense D ⊂ C, D �W exists C � V
which refines D. We say that a forcing is Cohen-preserving if every generic
extension via this forcing is Cohen-preserving. Although this property of
forcing notions is considered in the literature, e.g. [BJ95, 6.3.C], there
does not seem to be a unified terminology.
The following proposition is implicitly proved in [Mil81]. We learned

both the proposition and the proof from O. Guzmán. We reproduce the
proof for the sake of completeness.

Proposition 14. If a forcing notion has the Sacks property, then it is Cohen-
preserving.

Proof. Suppose that V [G] is a generic extension via a forcing which has
the Sacks property, let D � V [G] be an open dense subset of C. We will
without loss of generality work with 2<ω instead of C. As the extension
is bounding, there is f : ω→ ω in V such that for each t � 2n there is
s � 2 f (n) such that tás � D. Fix a dense subset { tn p n �ω } of 2<ω in V
such that |tn|= n.

In V [G] define a function h: ω→ [2<ω]<ω such that |h(n)|= n+ 1 for
each n �ω. The function is defined in the following way. Given n �ω let
rn(0) = n. When rn(i) for i ≤ n+ 1 is defined, choose si � 2 f (rn(i)) such
that xási � D for each x � 2rn(i) and let rn(i+1) = rn(i)+ f (rn(i)). Finally
let h(n) =




si p i ≤ n
�

. As the extension has the Sacks property, there
is a sequence




H(n) ⊂ [2<ω]n+1 p n �ω
�

in V , such that |H(n)| = n+ 1
and h(n) � H(n) for each n � ω. We denote H(n) = 〈Sk(n) p k ≤ n 〉 and
Sk(n) =




si
k(n) p i ≤ n

�

. We may assume that
�

�si
k(n)

�

� = f (rn(i)) for each
k, i ≤ n, n �ω.
Finally let zn = tn

ás0
0(n)
ás1

1(n)
á. . .ásn

n(n). The set C = { zn p n �ω } � V
is obviously dense, and C ⊂ D because for each n �ω there is k such that
sk

k(n) � h(n).

Since the posets Cκ are c.c.c., being Cohen-preserving already guaran-
tees an analogous property for these posets as well.

Lemma 15. Let P be a proper Cohen-preserving forcing, G a generic filter
on P. For each κ and each dense D ⊂ Cκ in V [G], there exists C � V
refining D.

Proof. Since Cκ is c.c.c. there is a countable set a � V [G], a ⊂ κ, and a
countable dense D′ ⊆ D, D′ ⊂ Ca. Since P is proper, there exist a countable
b � V such that a ⊂ b, i.e. D′ ⊂ Cb. As P is Cohen-preserving, there exists
C � Cb ∩ V refining D′, hence also refining D.
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4. The forcing notion

We will say that E = { ek ⊂ω p k �ω } is a partition if ek ∩ e j = ;
for k 6= j. We will usually deal with infinite partitions and we always
assume min ek < min e j for k < j. We denote dom E =

⋃

E. Partition
D = { dk p k �ω } is coarser than E if each element of D is a union of
elements of E. If I is an ideal on ω, we say that E is an I -partition if
ek � I for each k �ω and dom E � I ∗.
For the purpose of this paper a tree T is an initial subtree of the tree

of finite 0-1 sequences (2<ω,⊆) with no maximal elements (leaves). For
t � T we denote T[t] the subtree consisting of all nodes of T compatible
with t. For n � ω we denote by T (n) the set of all nodes t � T such that
|t| = n (i.e. the nodes from the n-th level). A node t � T is a branching
node of T if both tá0 � T and tá1 � T . We say that the n-th level is a
branching level if each element of T (n) is a branching node. We say that
a tree is uniformly branching if each branching node is an element of a
branching level.
Given a tree T we say that the level m depends on a level n if for

n ≤ m, n is a branching level, and for each s, t � T (m+1) is s(m) + s(n) =
t(m) + t(n)mod 2. We call such levels m dependent levels, levels which
are not dependent are independent. Note that for a given dependent level
m there is a unique n such that m depends on n, and each branching
level depends on itself. We say that a level is independent if it does not
depend on any level. To each uniformly branching tree T we assign
a partition of ω denoted ET =

�

eT
k p k �ω

	

such that if m and n are
dependent levels, then m and n are in the same element of ET iff m and n
depend on the same level, and dom ET is exactly the set of all dependent
levels. The superscripts will occasionally be omitted if clear from the
context. Let I be an ideal on ω, we say that a uniformly branching
tree T is I -suitable if ET is an I -partition. The poset of I -suitable trees
ordered by inclusion will be denoted QI . Note that for S < T � QI
dependent levels of T can in general be independent levels of S, and
independent levels of T can become dependent levels in S. Thus S < T
does not necessarily imply that ES is coarser than ET , on the other hand
ES� dom ET =

�

eS
k ∩ dom ET p k �ω

	

is coarser than ET .
This poset is sometimes called the party forcing.⁴ This version of the

forcing is slightly different than the one used in [She92], the conditions
of the poset used by Shelah did explicitly remember the partitions ET .
Nevertheless, our version of the poset works in the same way. This type
of forcing was also recently used by Guzmán [GG] to prove that the
homogeneity number hm can be consistently smaller than u.

⁴Organizing a party in the Hilbert hotel is a difficult task, guests may or may not like
their lesser colleagues.
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For T � QI and a partial function f : ω→ 2 we denote by Tf the largest
subtree of T with the property that if k � dom f , n � eT

k , n is a branching
level of T (i.e. n = min eT

k ), and t � T (n), then tá i � Tf only if f (k) = i.
Note that f being finite is a sufficient condition guaranteeing Tf � QI .

The forcing will be used to destroy a given ultrafilter, when we use the
dual ideal as a parameter, the generic real will witness that the ultrafilter
does not generate an ultrafilter in the generic extension.

Lemma 16. Let I be a proper ideal on ω and let G be a QI -generic filter.
Then r =

⋃⋂

G � 2ω and r � 〈I 〉 ∪ 〈I ∗ 〉.

Proof. The first part of the lemma is immediate since I extends the
Fréchet ideal. Let T � QI be a condition and I � I . Pick any integer
n � dom ET r I , hence n � eT

k for some k �ω. Put fi : { k } → 2, fi : k 7→ i
for i � 2. For both i � 2 the conditions Tfi

� QI decide whether n � r, and
they do so in opposite ways. That is at least one of them forces that r 6⊂ I .
The argument for r � 〈I ∗ 〉 is analogous.

Let a ⊂ω. Suppose that S < T are conditions in QI such that for each
k � a, if n is the splitting level of T in eT

k , then n is also a splitting level of
S (i.e. a-th splitting levels are preserved). We will denote this relation by
S <a T .

Lemma 17. Let T � QI be a condition, x a name for an element of V ,
and n � ω. There exists a condition S <n T such that for each f � n2 the
condition S f decides the value of x .

Proof. Fix enumeration n2 = { fi p i � 2n }, denote T 0 = T , and for i � 2n

repeat the following procedure.
Suppose that T i is defined. Find a condition S i < T i

fi
and yi � V such

that S i � x = yi. Then let T i+1 be the largest subtree of T in QI such
that T i+1

fi
= S i. Note that T i+1 <n T i.

Finally let S = T 2n
. Then S <n T , and every R < S is compatible with

some S i. Thus S and the set Y = { yi p i � 2n } are as required.

Before proving the properness of the forcing QI we introduce a game
with I -partitions PG(I ). Player I starts the game with choosing an I -
partition E0 and then players I and II alternate in building a sequence of
I -partitions. In round n player II plays an I -partition Dn coarser than
En, puts ∆n = dom En r dom Dn, and in the next round player I replies
with an I -partition En+1 coarser than Dn. After ω many rounds player I
wins iff r =

⋃

{∆n p n �ω } � I .

Lemma 18. Player I has no winning strategy in the game PG(I ).

Proof. If player I has a winning strategy, then he also has a winning
strategy, such that moreover

⋂

{dom En p n �ω }= ; (where 〈 En 〉 is the
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sequence of moves of player I). Assuming player I uses this strategy,
player II will play simultaneously two matches of the game PG(I ). He
passes his first move in the first match and then he always imitates the
moves of player I in the other game. This produces results r, r ′ of the two
matches such that r ∪ r ′ = dom E0 � I ∗. Thus in at least one of the two
matches player II won.

Proposition 19. Let I be a maximal ideal. The forcing QI is proper and
has the Sacks property.

Proof. We will prove both statements simultaneously. Let T � QI be a
condition and g a name for a function in ωω. Let θ be large enough and
fix a countable elementary submodel M ≺ H(θ ) such that QI , T, g � M .
Enumerate all QI -names for ordinals in M as {σn p n �ω }. We will
construct a condition Q < T such that for each f � n2, n �ω the condition
Q f decides the value of g(n), and forces σn to be some element of M .
This will prove the proposition.

Two players will play the game PG(I ) in the model M , player I will
attempt to construct the desired condition during the course of the game.
Player I starts by finding a condition T0 < T , T0 � M which decides g(0)
and σ0. His first move in the game is E0 = ET0 , and the reply of player II
is an I -partition D0.

Suppose that in the n-th round of the game, condition Tn was defined
and player II played anI -partition Dn coarser than En =

�

eTn
k p n≤ k �ω

	

�
dom Dn−1. In the next round player I first picks some condition T ′n <n Tn in

M such that e
T ′n
k = eTn

k for k < n−1, e
T ′n
n−1 = eTn

n−1∪∆n, and
¦

e
T ′n
k p k ≥ n

©

=
Dn. Then using Lemma 17 he finds a condition Tn+1 <n T ′n in model M
such that;

• (Tn+1) f decides g(n+ 1) for each f � n+12, and
• (Tn+1) f decides σn+1 for each f � n+12.

Finally player I passes the I -partition En+1 =
�

eTn+1
k p n+ 1≤ k �ω

	

�
dom Dn to player II and awaits his response.
This strategy is not winning for player I, so we can assume that the

game is played so that player II wins, i.e. r =
⋃

{∆n p n �ω } � I ∗ (the
ideal I is maximal).
Once the game is over, define Q =

⋂

{ Tn p n �ω }. Notice that for
eQ

n � EQ is eQ
n ∩ r ⊂ ∆n and r ⊂ dom EQ, thus dom EQ � I ∗, EQ is an

I -partition and Q � QI . Since Q <n Tn for each n � ω, Q is the desired
condition.

Corollary 20. The poset QI is a Cohen-preserving forcing notion.

The proof of Proposition 19 gives us in fact the following.
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Corollary 21. Let T � QI be a condition and X be a name for a subset of
ω. There is a condition S < T such that for each n � ω and f � 2n+1, S f

forces either n � X or n � X .

5. Dense independent systems

LetA ⊂P (ω) be an independent system. Remember that the set of
finite partial functions {h:A → 2 } is denoted CA , and it carries the usual
inclusion order. For each h � CA we put A h =

⋂�

Ah(A) p A � dom h
	

�
[ω]ω. For X ⊆ ω we will say that h � CA reaps X if either A h ⊂∗ X or
A h∩X =∗ ;. If the first optionA h ⊂∗ X occurs, we say that h hits X . The
independent systemA is maximal iff the set {h p h reaps X } is nonempty
for each X ⊆ω.

We say that the independent systemA is dense if the set {h p h reaps X }
is dense in CA for each X ⊆ ω. It is easy to see that every dense inde-
pendent system is maximal. Dense independent systems were originally
introduced in [GS90] and recently studied in [FM18]. For each maximal
independent systemA there exists h � CA such thatA �A h is a dense
independent system, see [GS90, Lemma 6.6, 6.7].
Denote by D the collection of dense subsets of CA . The filter on ω

generated by sets of form F(D) =
⋃�

A h p h � D
	

for some D � D will be
denoted FA . Notice that X � FA iff {h p h hits X } is dense in CA . We
will denote CA =

�

ωrA h p h � CA
	

. The following observation will be
crucial for the preservation of maximality of a given independent system.

Lemma 22. An independent systemA is dense if and only if the co-filter
P (ω)rFA is generated by the set CA .

Proof. Suppose thatA is dense and X ⊆ω. If {h p h hits X } is dense in
CA , then X �FA . Otherwise there is h � CA such thatA h ∩ X =∗ ; and
X �CA .
To verify the other implication let X ⊆ ω and h � CA be given, let

X ′ =
�

X ∩A h
�

∪
�

ωrA h
�

. If X ′ � FA , then there is h′ ⊃ h such that
A h′ ⊂∗ X ′, and henceA h′ ⊂∗ X . Otherwise X ′ �CA , there is h′ such that
A h′ ∩ X ′ =∗ ;. Thus h ⊆ h′ andA h′ ∩ X =∗ ;.

The definition of CA is absolute for all models of set theory. The defini-
tion of FA behaves well when considering Cohen-preserving extension.

Lemma 23. Let A � V be an independent system and let W be a Cohen-
preserving extension of V . The filter FAW is generated by FA V .

Proof. Follows immediately from Lemma 15.

Remark 24. Lemmas 22 and 23 imply that to prove that a dense indepen-
dent systemA � V remains dense in a Cohen-preserving extension W , it
is sufficient to demonstrate that in W is P (ω) =




FA V
�

∪ 〈CA 〉.
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Proposition 25. Assume CH. There exists an independent systemA with
the following properties:

(1) A is dense,
(2) FA is a rare P-filter.

We call an independent system satisfying properties (1) and (2) selec-
tive.

Proof. Enumerate the functions inωω as { fα p α �ω1,α limit }, enumerate
maximal antichains in Cω1

as {Hα p α �ω1, 0< α limit } so that Hα ⊂ Cα,
and enumerate all elements ofP (ω)×Cω1

as { 〈Xα, gα 〉 p α �ω1 } so that
gα � Cα.
We proceed by induction, for α <ω1 we will define 〈Aα, Bα p α <ω1 〉

such that Aα ⊂ Bα ⊂∗ Bβ ⊂ ω for α < β , and Āα =



Aβ ∩ Bα p β < α
�

is
an independent system. We writeAα =




Aβ p β < α
�

.
Start with B0 such that f0 < εB0

. If 〈Aα, Bα p α < β 〉 and Bβ are defined,
let Bβ+1 = Bβ and choose any Aβ ⊂ Bβ such that Āβ+1 is an independent
system, this is possible since Āα is countable and hence not maximal.
Moreover, letting Zβ = Ā gα

α
, if it is possible to choose Aβ such that Aβ ∩

Zβ = Xβ ∩ Zβ , do so.⁵
Suppose 〈Aα, Bα p α <ω1 〉 is defined for all α < β , β limit.

Claim. There is Bβ ⊂ ω such that Bβ ⊂∗ Bα for α < β , fβ < εBβ , Bβ ⊂
⋃�

A h p h � Hα
	

, and Āβ is an independent system.

Fix a sequence α(n) converging to β and an enumeration { gi p i �ω }
of all functions in Cβ which extend some element of Hα, with infinite
repetitions, and so that dom hi ⊂ α(i) for each i �ω.
Since the sets Ci =Aβ

gi ∩
⋂�

Bα( j) p j ≤ i
	

are infinite for all i �ω, it
is possible to choose infinite Bβ such that εBβ (i) � Ci and fβ < εBβ . This is
as required since Āβ is an independent system. �

This completes the inductive construction. We constructed an inde-
pendent system A = {Aα p α �ω1 }. To check that it is dense take any



Xβ , gβ
�

�P (ω)×Cω1
. If Aβ was chosen so that Aβ ∩ Zβ = Xβ ∩ Zβ , we

are done. If Aβ was not chosen with this property, there is some g � Cβ ,
gβ ⊂ g such that A g reaps Xβ ∩ Bβ and we are also done, as we can
extend g by declaring g : β 7→ 1 to achieveA g ⊂ Bβ .
The inductive construction ensures that the filter generated by the

decreasing tower T = {Bα p α �ω1 } is a rare P-filter.

Claim. The filter FA is the filter generated by T .

For α � ω1 let D = {h � CA p there is k �ω such that Aα+k � dom h }.
The set D is dense in CA and F(D) ⊂ Bα is witnessing Bα �FA .

⁵We will be slightly abusing the notation, identifying CĀα with Cα etc.
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On the other hand take any dense D ⊂ CA . There is some β � ω1

such that Hβ ⊂ D. Since each element of D is compatible with some
element of Hβ , we have that F(Hβ) ⊂ F(D). The set Bβ was chosen so
that Bβ ⊂ F(Hβ).

Theorem 26. Let A be a selective independent system and let I be a
maximal ideal. If G is a QI -generic filter, thenA is a selective independent
system in V [G].

Proof. The system A remains independent in any extension. Since QI
is Cohen-preserving, Lemma 23 states that in V [G] the filter FA V [G] is
generated by FA V . Thus the filter FA V [G] is a P-filter since QI is proper,
and it is rare since QI has the Sacks property. To show thatA remains
dense in the extension we will use Remark 24.
Let T � QI be a condition and X a name for a subset of ω. Suppose

that no stronger condition forces that X � 〈CA 〉, i.e. for each S < T is
XS = {n �ω p S 6� n � X } � FA . We will show that such T forces that
X � 〈FA 〉. In particular, for given h � CA we find g ⊃ h and Q < T such
that Q �A g ⊂∗ X .

We may assume that for each n �ω and f � 2n the condition Tf decides

X ∩ n (use Corollary 21). For n � ω put Xn =
⋂

¦

XT f
p f � 2n

©

� FA .
Note that for each n< k, k � Xn there is a condition Tn(k)<ωr[n,k) T such
that Tn(k) � k � X . The filter FA has the diagonal property, i.e. there is
F �FA such that Fr (n+1) ⊆ Xn for each n � F . Let { kn p n �ω }= F be
the increasing enumeration. The choice of F ensures that for each n �ω
the condition Tkn

(kn+1) is defined.
SinceA is dense, there are g0, g1 ⊃ h such thatA g0 ∪A g1 ⊂∗ F , and

A g0 ∩A g1 = ;. For i � 2 put Q i =
⋂�

Tkn
(kn+1) p kn+1 �A gi

	

. The sets
di =

⋃

{ [kn, kn+1) p kn+1 �A gi } are disjoint for i � 2, therefore for at least
one i � 2 is di =

⋃�

eT
k p k � di

	

� I . For this i is Q i � QI . To check
this, notice that for k � ω, eQ i

k � EQ i is eQ i
k ⊆ e′ ∪ di ∪ (ωr dom ET ) for

some e′ � ET , and also dom ET ⊂ dom EQ i ∪ di, thus dom EQ i � I ∗. Since
Q i < Tkn

(kn+1) for each kn+1 �A gi , and all but finitely many elements of
A gi are of the form kn+1, we have that Q i �A gi ⊂∗ X .

Let A be a dense independent system and let B be a free sequence.
We say that B is a free sequence associated withA if B is a maximal free
sequence and B generates the filter FA .

Theorem 27. Let B be a maximal free sequence associated with a dense
independent system A in a model of set theory V . Let W be a Cohen-
preserving extension of V such thatA remains dense in W . Then B remains
to be a maximal free sequence associated withA in W .

Proof. Lemma 23 states that FA ∩ V generates FA in W so it remains to
show that B is a maximal free sequence in W . Take X ⊂ω in W , we need
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to show that B cannot be end-extended by X . If X �F ∗A , we are done so
suppose this is not the case. SinceA is dense in W , there is h � CA such
thatA h ⊂∗ X . AsA h � V ,A h �F ∗A , and B cannot be end-extended by
A h, there is b � comb(B) such that b ⊂∗A h. Now X 0 ∩ b =∗ ; witnesses
that B cannot be end-extended by X .

Proposition 28. Assume t = c and let T be tower. There is a maximal
decreasing free sequence { aα p α � c } which is cofinal with T .

Proof. Let F be the filter generated by T . If F is an ultrafilter, we are
done. If this is not the case, fix an enumeration {Xα p α � c,α even } of
P (ω)r (F ∪F ∗). We construct the tower { aα p α � c } cofinal in T by
induction. If β < c is even and aα is defined for each α < β , find t � T
such that t ⊂∗ aα and aα r t is infinite for each α < β , and let aβ = t
(choose a0 � T arbitrary). Then find s � T such that (tr s)∩Xβ is infinite
(use the assumptions on T and Xβ) and let aβ+1 = s ∪ (t r Xβ). Notice
that aβ r aβ+1 is an infinite subset of Xβ . Now it is easy to check that the
sequence we defined is a maximal free sequence.

Corollary 29. Assume CH. For every selective independent systemA there
exists free sequence B associated withA .

Theorem 30. It is consistent that ω1 = i= f< u= c=ω2.

Proof. Start in a model of CH and run a countable support iteration of
length ω2 of posets of form QI with the parameter I ranging over all
maximal ideals on ω in all intermediate models. Lemma 16 together with
the usual reflection argument implies that the final generic extension does
not contain any ultrafilter base of size ω1, i.e. u= c=ω2.

Use Proposition 25 to find a selective independent system in the ground-
model. Theorem 26 states that the independent system remains selective
in all successor stages of the iteration and Theorem 32 together with
Remark 24 ensure that it remains selective also in limit stages of the
iteration. Thus the ground-model independent system remains selective
and in particular maximal in the final extension, i = ω1. Finally use
Corollary 29 in the ground-model to find a free sequence associated with
a selective independent system. Theorem 27 states that this free sequence
is still maximal in the final generic extension, f=ω1.

It is worth noting that in the resulting model all the usually considered
cardinal characteristics of the continuum, except of u, are equal to ω1.
For a this was proved by Guzmán [GG].

Appendix: Preservation theorem for the iteration

The forcing iteration argument in Section 5 uses a typical preserva-
tion theorem for countable support forcing iteration, in this instance
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the preservation of a filter–co-filter pair. This theorem follows the usual
pattern described in [She98, Gol93]. However, as specific instances of
preservation theorems are sometimes difficult to derive from the general
statements given in these sources, we decided to provide the proof of the
relevant preservation theorem in this appendix, making the paper more
self-contained.

Let F be a filter on ω. We will use the following game G(F ). Players I
and II alternate for ω many rounds. In the n-th round player I plays
a set Fn � F , and player II responds with an � Fn. Player II wins if
{ an p n �ω } �F . The following is well known.

Fact 31. Player I does not have a winning strategy in the game G(F ) iff
F is a rare P-filter.

Theorem 32. Let F be a P-filter on ω, denote K = P (ω)rF . For δ
limit let Pδ = 〈 Pα,Qα p α < δ 〉 be a countable support iteration of proper
forcing notions such that for each α < δ

Pα �F is a rare filter and 〈F 〉 ∪ 〈K 〉=P (ω) .

Then also Pδ � 〈F 〉 ∪ 〈K 〉=P (ω).

By 〈F 〉 and 〈K 〉 we denote the upwards, respectively downwards
closure ofF andK in the appropriate models. The assumption for α= 0
states thatF is a rare P-filter in the ground model V . Standard arguments
shows that 〈F 〉 is a P-filter in any generic extension via a proper forcing,
and 〈F 〉 is rare in any generic extension via a bounding forcing.

Proof. If the cofinality of δ is uncountable, no new reals are added at stage
δ of the iteration, and the conclusion of the theorem holds true. Therefore
we will assume that the cofinality of δ is countable, and by passing to a
cofinal sequence of δ, it is sufficient to prove the theorem in case δ =ω.
In the following Gα denotes exclusively generic filters on Pα. We use P to
denote posets Pδ/Gα in the intermediate generic extensions V [Gα]. Let X
be a P-name for a subset of ω. For r � P denote X r = {n �ω p r 6� n � X }.

Lemma 33. LetH be a rare P-filter and p � P a condition. If X r �H for
each r < p, then there exists H �H and a sequence 〈 ri � P p i �ω 〉, r0 = p,
ri+1 < ri such that ri � H ∩ i ⊂ X for each i �ω.

Proof. Put p0 = p and let play the game G(H ) as follows. In the n-th
round player I plays the set X pn

�H , player II responds with some an � X pn
.

Player I then chooses pn+1 � P, pn+1 < rn such that pn+1 � an � X and
proceeds to the next round. Since H is a rare P-filter, this strategy is
not winning for player I. Thus there is a sequence of moves of player II
and conditions 〈 pn p n �ω 〉 such that player II wins the game, i.e. H =
{ an p n �ω } �H . A sequence of conditions 〈 ri p i �ω 〉 such that ri = pan

if an < i ≤ an+1 is as required in the lemma.
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Let p be a condition in Pω. The goal is to find a stronger condition which
forces either X � 〈F 〉 or X � 〈K 〉. In case there exists an intermediate
extension V [Gα], p � Gα and r � P/Gα, r < p/Gα such that X r � 〈F 〉 (in
V [Gα]), then r � X � 〈K 〉 due to the assumption of the theorem, and
there exists a condition in Pω stronger than p forcing the same statement.
Therefore we will assume in the rest of the proof that this is not the case.

For a sufficiently large θ fix a countable elementary submodel N ≺ H(θ )
such that X , p,F , Pω � N . Use Lemma 33 in N forH =F and P = Pω to
get H �F ∩N and a sequence




r0
n � Pω p n �ω

�

� N . Since F is a P-filter,
there exists A∗ �F such that A∗ ⊂ H, and A∗ ⊂∗ F for each F �F ∩ N .

Lemma 34. Let q be a (Pi, N)-master condition, and let 〈 Fn p n �ω 〉 �
N[Gi] be a sequence of elements of F . Then

q � There are infinitely many n �ω such that A∗r n ⊂ Fn.

Proof. Since N[Gi] ≺ H(θ )[Gi] and F generates a non-meager filter in
H(θ )[Gi], there is F � F ∩ N[Gi] such that F r n ⊂ F n for infinitely
many n (Fact 12). Now q � F � N and we can use that A∗ ⊂∗ F .

We will inductively construct a condition q < p such that q � A∗ ⊂ X .
Specifically, we construct two sequences of conditions pi, qi for i �ω with
the following properties;

(1) • pi � Pω,
• pi+1 < pi,
• pi+1� i = pi� i,
• qi � Pi,
• qi+1� i = qi,
• qi < pi� i,
• qi is a (N , Pi)-master condition;

(2) qi � (pi/Gi � A∗ ∩ i ⊂ X ),
(3) qi �

�

There is a sequence



r i
n � Pω/Gi p n �ω

�

� N[Gi],
r i

n < pi/Gi such that r i
n � A∗ ∩ n ⊂ X

�

.

The construction starts with putting p0 = p and let q0 be a trivial condi-
tion (in the trivial forcing P0). Existence of the sequence




r0
n � Pω p n �ω

�

follows from the choice of A∗.
Suppose that pi, qi are defined, work in N[Gi] assuming qi � Gi. For

each n �ω consider a model N[Gi+1] such that r i
n� (i + 1) � Gi+1/Gi. Use

Lemma 33 in N[Gi+1] for 〈F 〉 and r i
n/Gi+1 to get Hn � 〈F 〉 ∩ N[Gi+1]

and a sequence



sn
k � Pω/Gi+1 p k �ω

�

� N[Gi+1] as in the lemma. We
can assume that Hn � F ∩ N[Gi+1], and by strengthening r i

n � { i } to
t i

n � { i } � N[Gi] we can decide Hn to be some Fn � F ∩ N[Gi]. Since
qi is (N , Pi)-master, Lemma 34 implies that there is m > i such that
A∗rm ⊂ Fm.
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Define pi+1 = pi � iá t i
m, and let qi+1 < pi+1 � i + 1 be any (N , Pi+1)-

master condition such that qi+1� i = qi. Property (1) is obviously satisfied.
Property (2) follows from m > i, the inductive hypothesis for r i

m, and
from qi+1

á(pi+1/Gi+1)< qi
á r i

m. To justify (3) notice that qi+1 forces that
the sequence




sm
k p k �ω

�

satisfies the condition required for



r i
n p n �ω

�

;
for y � A∗ ∩m this follows from the inductive hypothesis on r i

m, and for
y � A∗, x ≥ m from the choice of




sm
k p k �ω

�

and A∗rm ⊂ Fm.
Once the inductive construction is done, the condition q =

⋃

{qi p i �ω }
forces that A∗ ⊂ X . The inclusion A∗ ∩ i ⊂ X is guaranteed by property (2)
and q < qi

á(pi/Gi).
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