

INSTITUTE OF MATHEMATICS

THE CZECH ACADEMY OF SCIENCES

Ultrafilter extensions of asymptotic density

Jan Grebík

Preprint No. 38-2018 PRAHA 2018

ULTRAFILTER EXTENSIONS OF ASYMPTOTIC DENSITY

JAN GREBÍK¹

ABSTRACT. We characterize for which ultrafilters on ω is the ultrafilter extension of the asymptotic density on natural numbers σ -additive on the quotient boolean algebra $\mathcal{P}(\omega)/d_{\mathcal{U}}$ or satisfies similar additive condition on $\mathcal{P}(\omega)$ /fin. These notions were defined in [2] under the name AP (null) and AP (*). We also present a characterization of a P- and semiselective ultrafilters using the ultraproduct of σ -additive measures.

This paper is based on the author's Bachelor thesis that was supervised by Bohuslav Balcar and defended in 2014. We investigate additive properties of measures on $\mathcal{P}(\omega)$ that are extensions of asymptotic density as defined in [2]. More concretely in Section 2 we give a necessary and sufficient combinatorial condition for an ultrafilter \mathcal{U} on ω for the extension of asymptotic density given by \mathcal{U} to satisfy AP (null) or AP (*). In Section 3 we characterize P- and semiselective ultrafilters by a relations between some ideals in an ultraproduct of measures.

We note that since 2014 there has been made some progress in similar direction of density measures and additivity properties (see [4]).

1. INTRODUCTION

Let B be a boolean algebra and $m: B \to [0, 1]$. We say that m is

- monotone if $m(a) \le m(b)$ whenever $a \le b \in B$,
- strictly positive if m(a) = 0 implies that a = 0,
- a measure if m is monotone, m(1) = 1 and $m(\bigvee_{i < n} a_i) = \sum_{i < n} m(a_i)$ for every finite antichain $\{a_i\}_{i < n} \subseteq B$,
- σ -additive if m is a measure and $m\left(\bigvee_{i<\omega}a_i\right) = \sum_{i<\omega}m\left(a_i\right)$ for every antichain $\{a_i\}_{i<\omega} \subseteq B$.

If m is a measure on B, then define $\mathcal{N}(m) = \{a \in B : m(a) = 0\}$. The quotient boolean algebra $B/\mathcal{N}(m)$ carries a unique strictly positive measure that is naturally derived from m. We will abuse the notation and write B/m for the quotient algebra, m for the unique induced measure on B/m and [a] for the equivalence class of $a \in B$. The following theorem is in fact a corollary of a stronger statement from [5] but this version is sufficient for our purposes. Recall that a boolean algebra B is σ -complete if every countable subset of B has a supremum in B.

Theorem 1.1 (Smith–Tarski [5]). Let m be a measure on a σ -complete boolean algebra B. Then B/m is a c.c.c. complete boolean algebra.

The author was supported by the GACR project 17-33849L and RVO: 67985840.

We use ω for the set of natural numbers. We write *n* for the set $\{0, 1, ..., n-1\}$ and [r, s] for the set $\{n \in \omega : r \leq n \leq s\}$ where $r, s \in \mathbb{R}$. Recall that a set $A \subset \omega$ has an asymptotic density if

$$\lim_{n \to \infty} \frac{|A \cap n|}{n}$$

exists, and in that case we denote the value of the limit as d(A). We say that a measure m on $\mathcal{P}(\omega)$ is a *density* if it extends the asymptotic density, i.e. m(A) = d(A) for every $A \subseteq \omega$ for which the asymptotic density exists. Note that a density m cannot be σ -additive on $\mathcal{P}(\omega)$ because it has the value 0 on each atom. Since the algebra $\mathcal{P}(\omega)/m$ is σ -complete by Theorem 1.1, it is natural to ask whether the density m is σ -additive on $\mathcal{P}(\omega)/m$. This question was considered in [2] where the authors define two additive properties for measures on $\mathcal{P}(\omega)$.

Definition 1.2. [2] A measure m on $\mathcal{P}(\omega)$ satisfies AP (null) if for every inclusion increasing sequence $\{A_n\}_{n < \omega}$ of subsets of ω there is $B \subseteq \omega$ such that

- $\lim_{n\to\infty} m(A_n) = m(B),$
- $m(A_n \setminus B) = 0$ for every $n < \omega$.

If we can moreover find such B that also satisfies

• $|A_n \setminus B| < \omega$ for every $n < \omega$,

then we say that m satisfies AP(*).

One can easily check that \boldsymbol{AP} (null) is equivalent with the σ -additivity of m on $\mathcal{P}(\omega)/m$. It is known (see [2]) that there are densities that satisfy \boldsymbol{AP} (null) but there are also densities that fail to have \boldsymbol{AP} (null). The question about \boldsymbol{AP} (*) is more complicated since there is a model of ZFC in which no density satisfies \boldsymbol{AP} (*). On the other hand it is also consistent that densities satisfying \boldsymbol{AP} (*) do exist, for example the existence of a P-ultrafilter is sufficient.

Definition 1.3. Let \mathcal{U} be an ultrafilter on ω . Define

$$d_{\mathcal{U}}(A) = \mathcal{U} - \lim \frac{|A \cap n|}{n}$$

for every $A \subseteq \omega$.

We call densities of the form $d_{\mathcal{U}}$ ultrafilter densities. All examples presented in [2] are in fact ultrafilter densities. The aim of this paper is to give a complete combinatorial characterization of ultrafilters for which the ultrafilter densities satisfy \boldsymbol{AP} (null) or \boldsymbol{AP} (*). Let us state here the case of \boldsymbol{AP} (null) and postpone the more technical case of \boldsymbol{AP} (*) until the end of Section 2.

Definition 1.4. We say that an ultrafilter \mathcal{U} on ω is \times -invariant if for all $U \in \mathcal{U}$ there is $1 < k \in \omega$ such that

$$kU = \bigcup_{n \in U} \left[kn, (k+1)n \right] \in \mathcal{U}.$$

The following is the main result of this paper and Section 2 is devoted to the proof of this statement.

Theorem 1.5. Let \mathcal{U} be an ultrafilter on ω . The following are equivalent

- $d_{\mathcal{U}}$ is σ -additive on $\mathcal{P}(\omega)/d_{\mathcal{U}}$ (i.e. satisfies AP (null)),
- \mathcal{U} is not \times -invariant.

2. Ultrafilter Densities

In this section we present the proof of Theorem 1.5. We start with some general facts about ultrafilters on ω . All ultrafilters considered in this section are non-principal.

Claim 2.1. Let \mathcal{U} be a \times -invariant ultrafilter (see Definition 1.4). Then for every $U \in \mathcal{U}$ there are infinitely many $k < \omega$ such that

$$kU = \bigcup_{n \in U} [kn, (k+1)n] \in \mathcal{U}.$$

Proof. Assume that for a given $U \in \mathcal{U}$ there is some maximal k such that $kU \in \mathcal{U}$. Then there must be some $2 \le l \le \omega$ such that

$$l(kU) = \bigcup_{m \in kU} [lm, (l+1)m] \subseteq \bigcup_{n \in U} [lkn, (l+1)(k+1)n] \in \mathcal{U}.$$

Because \mathcal{U} is an ultrafilter, there must be some $p < \omega$ such that $lk \leq p \leq (l+1)(k+1) - 1$ and $pU \in \mathcal{U}$. Now $2k \leq lk \leq p$ contradicts the maximality of k.

In order to prove our main result we need to investigate which ultrafilters give rise to the same ultrafilter densities.

Definition 2.2. Let \mathcal{U}, \mathcal{V} be ultrafilters. We say that \mathcal{U} is close to \mathcal{V} if for every $U \in \mathcal{U}$ and for every $\epsilon > 0$ there is $V \in \mathcal{V}$ such that

- for all x ∈ U there is y ∈ V such that max { |1 x/y|, |1 y/x| } < ε,
 for all x ∈ V there is y ∈ U such that max { |1 x/y|, |1 y/x| } < ε.

Claim 2.3. Let \mathcal{U}, \mathcal{V} be ultrafilters. Then \mathcal{U} is close to \mathcal{V} if and only if

$$U_{\epsilon} = \left\{ x < \omega : \exists n \in U \, \max\left\{ \left| 1 - \frac{n}{x} \right|, \left| 1 - \frac{x}{n} \right| \right\} < \epsilon \right\} \in \mathcal{V}$$

for every $\epsilon > 0$.

Proposition 2.4. The relation of being close is an equivalence relation on the set of ultrafilters.

Proof. Suppose that \mathcal{U} is close to \mathcal{V} but \mathcal{V} is not close to \mathcal{U} . Then there is $\delta > 0$ and $V \in \mathcal{V}$ such that $V_{\delta} \notin \mathcal{U}$. Therefore $B = \omega \setminus V_{\delta} \in \mathcal{U}$. Then $B_{\delta} \cap V = \emptyset$ because if $x \in B_{\delta} \cap V$, then there exists $y \in B$ such that $\max\left\{\left|1 - \frac{x}{y}\right|, \left|1 - \frac{y}{x}\right|\right\} < \delta$ and also $x \in V$ implies $y \in \omega \setminus B$. Claim 2.3 gives us that $B_{\delta} \cap V = \emptyset \in \mathcal{V}$, a contradiction.

In order to prove that the relation is transitive first notice that

$$U_{\epsilon} = \bigcup_{n \in U} \left[n \left(1 - \epsilon \right), \frac{n}{(1 - \epsilon)} \right].$$

Assume now that \mathcal{U} is close to \mathcal{V} , \mathcal{V} is close to \mathcal{W} and take $U \in \mathcal{U}$. We know that $U_{\epsilon} \in \mathcal{V}$ and $(U_{\epsilon})_{\epsilon} \in \mathcal{W}$ but

$$U_{2\epsilon-\epsilon^2} = \bigcup_{n\in U} \left[n \left(1-\epsilon\right)^2, \frac{n}{\left(1-\epsilon\right)^2} \right] \supseteq \left(U_{\epsilon}\right)_{\epsilon} \in \mathcal{W}.$$

Since $\epsilon > 0$ was arbitrary we see that \mathcal{U} is close to \mathcal{W} .

Once we have established Proposition 2.4 we can write that a pair of ultrafilters \mathcal{U}, \mathcal{V} is close since the relation \mathcal{U} is close to \mathcal{V} is symmetric. Note also that \mathcal{U}, \mathcal{V} are close if and only if

$$\langle \{U_{\epsilon} : U \in \mathcal{U}, \epsilon > 0\} \rangle = \langle \{V_{\epsilon} : V \in \mathcal{V}, \epsilon > 0\} \rangle,$$

where $\langle \mathcal{A} \rangle$ denotes the filter generated by $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

Theorem 2.5. Let \mathcal{U}, \mathcal{V} be close ultrafilters. Then $d_{\mathcal{U}} = d_{\mathcal{V}}$ and \mathcal{U} is \times -invariant if and only if \mathcal{V} is \times -invariant.

Proof. Let $A \subseteq \omega$ and $\epsilon > 0$ be given. Find a set $U \in \mathcal{U}$ such that

$$\left| d_{\mathcal{U}}\left(A\right) - \frac{\left|A \cap n\right|}{n} \right| < \epsilon$$

holds for every $n \in U$. Since \mathcal{U}, \mathcal{V} are close, we have that $U_{\epsilon} \in \mathcal{V}$. Let $x \in U_{\epsilon}$ and $n \in U$ such that $\max\left\{\left|1 - \frac{n}{x}\right|, \left|1 - \frac{x}{n}\right|\right\} < \epsilon$. We have

$$\left| d_{\mathcal{U}}(A) - \frac{|A \cap x|}{x} \right| \le \left| d_{\mathcal{U}}(A) - \frac{|A \cap n|}{n} \right| + \left| \frac{|A \cap n|}{n} - \frac{|A \cap x|}{x} \right| < 3\epsilon$$

because if for example $n \leq x$, then

$$\left|\frac{|A \cap n|}{n} - \frac{|A \cap x|}{x}\right| \le \frac{|A \cap n|}{n} \left|1 - \frac{n}{x}\right| + \frac{x - n}{x} < \epsilon + \epsilon < 2\epsilon.$$

We may conclude that $d_{\mathcal{V}}(A) = d_{\mathcal{U}}(A)$.

Next suppose that \mathcal{U} is \times -invariant and let $V \in \mathcal{V}$ be given. We know from Claim 2.3 that $V_{\frac{1}{4}} = \left\{ y : \exists n \in V \max\left\{ \left| 1 - \frac{n}{y} \right|, \left| 1 - \frac{y}{n} \right| \right\} < \frac{1}{4} \right\} \in \mathcal{U}$. Therefore using Claim 2.1 there exists $4 \leq k < \omega$ such that $kV_{\epsilon} \in \mathcal{U}$. We show that there are $\delta > 0$ and $3 \leq b < \omega$ such that

$$(kV_{\epsilon})_{\delta} \subseteq \bigcup_{n \in V} [2n, bn]$$

Once we have this the proof is finished because $(kV_{\epsilon})_{\delta} \in \mathcal{V}$. We describe how to find δ and $3 \leq b < \omega$. By a simple computation it follows that

$$V_{\epsilon} = \bigcup_{n \in V} \left[n \left(1 - \frac{1}{4} \right), \frac{n}{\left(1 - \frac{1}{4} \right)} \right],$$

therefore

$$(kV_{\epsilon})_{\delta} = \bigcup_{n \in V} \left[kn \left(1 - \frac{1}{4} \right) \left(1 - \delta \right), \frac{(k+1)n}{\left(1 - \frac{1}{4} \right) \left(1 - \delta \right)} \right]$$

We see that if we choose $\delta < \frac{1}{3}$ and $b \ge \frac{(k+1)}{(1-\frac{1}{4})(1-\delta)}$, we have the desired conclusion.

Next we show that close to any given ultrafilter there is a thin ultrafilter. Recall that an ultrafilter \mathcal{V} is thin if

$$\inf_{V \in \mathcal{V}} \left\{ \limsup_{n \to \infty} \frac{F_V(n)}{F_V(n+1)} \right\} = 0,$$

where $F_A(n)$ is the *n*-th element of A, i.e. F_A is the enumerating function of A. Note that an ultrafilter \mathcal{V} is thin if and only if there is a set $V \in \mathcal{V}$ such that

$$\limsup_{n \to \infty} \frac{F_V(n)}{F_V(n+1)} < 1$$

Denote $I_n = [2^n, 2^{n+1})$ for every $n < \omega$.

Proposition 2.6. Let \mathcal{U} be an ultrafilter. For every $\epsilon, \delta > 0$ there is a set $U \in \mathcal{U}$ such that for every $x < y \in U$

$$\frac{x}{y} < \epsilon \text{ or } \frac{x}{y} > 1 - \delta$$

Proof. Let $\alpha : \omega \to \{0, 1\}$. Inductively define intervals $I_n^{\alpha \mid k}$ for $k \in \omega$ as

- $I_n^{\alpha \upharpoonright 0} := I_n,$
- for 0 < k ≤ n if α (k − 1) = 0 put I_n^{α|k} to be the left half of the interval I_n^{α|k−1},
 for 0 < k ≤ n if α (k − 1) = 1 put I_n^{α|k} to be the right half of the interval I_n^{α|k−1},

• for
$$k > n$$
 put $I_n^{\alpha \upharpoonright k} := I_n^{\alpha \upharpoonright n}$.

There exists $\alpha_{\mathcal{U}}: \omega \to \{0, 1\}$ such that for every $k \in \omega$

$$\bigcup_{n\in\omega}I_n^{\alpha_{\mathcal{U}}\restriction k}\in\mathcal{U}.$$

Let $x < y \in I_n^{\alpha_{\mathcal{U}} \mid k}$. Since $\left| I_n^{\alpha_{\mathcal{U}} \mid k} \right| = 2^{\max\{n-k,0\}}$ we have that

$$\frac{x}{y} > \frac{2^n}{2^n + \left|I_n^{\alpha_{\mathcal{U}} \mid k}\right|} = \frac{2^n}{2^n + 2^{n-k}} = 1 - \frac{2^{n-k}}{2^n + 2^{n-k}} > 1 - \frac{1}{2^k}.$$

Finally it is enough to observe that for every $k < \omega$ and \mathcal{U} there is $A \subseteq \omega$ such that $\bigcup_{n \in A} I_n \in \mathcal{U}$ and $(A+j) \cap A = \emptyset$ for every j < k. If $n < m \in A$, $x \in I_n$ and $y \in I_m$, then

$$\frac{x}{y} < \frac{2^{n+1}}{2^m} \le \frac{2^{n+1}}{2^{n+k}} \le \frac{1}{2^{k+1}}$$

To finish the proof it is enough to combine the two estimates.

We use the function $\alpha_{\mathcal{U}}$ that was defined in the proof of Proposition 2.6 for the next definition.

Definition 2.7. Let \mathcal{U} be an ultrafilter on ω . Define the function $\alpha_{\mathcal{U}}$ as in the proof of Proposition 2.6. Let

$$A_{\mathcal{U}} = \bigcap_{k < \omega} \bigcup_{n < \omega} I_n^{\alpha_{\mathcal{U}} \restriction k}$$

The ultrafilter $G(\mathcal{U})$ is defined by $U \in G(\mathcal{U})$ if

$$\bigcup \{I_n : I_n \cap U \cap A_{\mathcal{U}} \neq \emptyset\} \in \mathcal{U}.$$

Proposition 2.8. Let \mathcal{U} be an ultrafilter. Then $G(\mathcal{U})$ is a thin ultrafilter and $\mathcal{U}, G(\mathcal{U})$ are close.

Proof. From the definition it follows that $G(\mathcal{U})$ is a non-principal ultrafilter and we have $\limsup_{n\to\infty} \frac{F_{A_{\mathcal{U}}}(n)}{F_{A_{\mathcal{U}}}(n+1)} < 1$. Since $A_{\mathcal{U}} \in G(\mathcal{U})$, it follows that $G(\mathcal{U})$ is thin.

Let $\epsilon > 0$ and $V \in G(\mathcal{U})$ be given. We may assume that $V \subseteq A_{\mathcal{U}}$. Find $k < \omega$ such that $\max\left\{\left|1 - \frac{x}{y}\right|, \left|1 - \frac{y}{x}\right|\right\} < \epsilon$ for every $n < \omega$ and every $x, y \in I_n^{\alpha \upharpoonright k}$. Then

$$V_{\epsilon} \supseteq U = \bigcup \left\{ I_n^{\alpha \restriction k} : V \cap I_n^{\alpha \restriction k} \neq \emptyset \right\} \in \mathcal{U}.$$

Corollary 2.9. Let \mathcal{U} be an ultrafilter. Then $d_{\mathcal{U}} = d_{G(\mathcal{U})}$ and \mathcal{U} is \times -invariant if and only if $G(\mathcal{U})$ is \times -invariant.

The last ingredient needed for the proof of Theorem 1.5 is the ultraproduct of measures. Let us define for a non-principal ultrafilter \mathcal{U} a measure $m_{\mathcal{U}}$ on the set $\prod_{n \in \omega} \mathcal{P}(n)$ by putting

$$m_{\mathcal{U}}(f) = \mathcal{U} - \lim_{n \to \infty} \frac{|f(n)|}{n},$$

i.e. we are taking the measure ultraproduct of the sequence $(\mathcal{P}(n))_{n < \omega}$ where each $\mathcal{P}(n)$ is endowed with the normalized counting measure. Next we consider the embedding $e: \mathcal{P}(\omega) \to \prod_{n \in \omega} \mathcal{P}(n)$ defined for $A \subseteq \omega$ as $e(A)(n) = A \cap n$. Immediately from the definitions we have $m_{\mathcal{U}}(e(A)) = d_{\mathcal{U}}(A)$. Therefore the embedding e lifts to the quotients, i.e.

$$e: \mathcal{P}(\omega) / d_{\mathcal{U}} \to \prod_{n \in \omega} \mathcal{P}(n) / m_{\mathcal{U}}.$$

It is well-known that the measure $m_{\mathcal{U}}$ on $\prod_{n \in \omega} \mathcal{P}(n) / m_{\mathcal{U}}$ is σ -additive (see [3]).

Proposition 2.10. Let \mathcal{U} be a thin ultrafilter. Then the density $d_{\mathcal{U}}$ is σ -additive if and only if the embedding e is isomorphism.

Proof. Let $f \in \prod_{n \in \omega} \mathcal{P}(n)$ and $\epsilon > 0$ be given. We show that there is $A \subseteq \omega$ such that $|m_{\mathcal{U}}(e(A) \Delta f)| < \epsilon$. Because \mathcal{U} is thin, there is $U \in \mathcal{U}$ such that

$$\frac{F_U\left(n\right)}{F_U\left(n+1\right)} < \epsilon$$

We define

$$A := \bigcup_{n < \omega} \left(\left[F_{U(n)}, F_{U(n+1)} \right] \cap f \left(F_U \left(n + 1 \right) \right) \right)$$

We have for every $n < \omega$ that

$$\left|\frac{\left|\left(e\left(A\right)\left(F_{U}\left(n+1\right)\right)\right) \bigtriangleup f\left(F_{U}\left(n+1\right)\right)\right|}{F_{U}\left(n+1\right)}\right| \le \frac{F_{U}\left(n\right)}{F_{U}\left(n+1\right)} < \epsilon.$$

This implies that $e\left(\mathcal{P}\left(\omega\right)/d_{\mathcal{U}}\right)$ is dense in $\prod_{n\in\omega}\mathcal{P}\left(n\right)/m_{\mathcal{U}}$, therefore $d_{\mathcal{U}}$ is σ -additive if and only if e is surjective.

We are now ready to prove our main result.

Proof of Theorem 1.5. Assume first that \mathcal{U} is thin and not \times -invariant. We show that e is onto. Let $f \in \prod_{n \in \omega} \mathcal{P}(n)$. We find $A \subseteq \omega$ such that $|m_{\mathcal{U}}(e(A) \bigtriangleup f)| = 0$. Let $U \in \mathcal{U}$ such that for every $3 \leq k < \omega$ is

$$U_k = \left(\omega \setminus \bigcup_{n \in U} [2n, kn]\right) \cap U \in \mathcal{U}$$

and $\frac{F_U(n)}{F_U(n+1)} < \frac{1}{2}$. Define

$$A = \bigcup_{n < \omega} \left(\left[F_U(n), F_U(n+1) \right] \cap f\left(F_U(n+1) \right) \right).$$

Let $m \in U_k$. Choose the largest $n \in U$ such that n < m. Then by definition of U_k we have that $\frac{n}{m} < \frac{1}{k}$. Note that $m \in U$. Therefore by the definition of A we have the estimate

$$\frac{\left|e\left(A\right)\left(m\right)\bigtriangleup f\left(m\right)\right|}{m} \le \frac{n}{m} < \frac{1}{k},$$

and the claim follows.

n

Assume on the other hand that \mathcal{U} is thin and \times -invariant. There is a decreasing sequence $\{U_k\}_{k<\omega} \subseteq \mathcal{U}$ such that $\frac{F_{U_k}(n)}{F_{U_k}(n+1)} < \frac{1}{2^{k+1}}$. Define

$$A_k = \bigcup_{n \in U_k} \left[\frac{n}{2^{k+1}}, \frac{n}{2^k} \right].$$

We have $d_{\mathcal{U}}(A_k) < \frac{1}{2^k}$. Assume that there is $A \subseteq \omega$ such that $d_{\mathcal{U}}(A_k \setminus A) = 0$ and $d_{\mathcal{U}}(A) < \frac{1}{8}$ for every $3 < k < \omega$, i.e. A is a candidate for the upper bound of the sequence $\{A_k\}_{3 < k < \omega}$. Let $U = \left\{n : \frac{|A \cap n|}{n} \le \frac{1}{8}\right\}$. There must be $16 \le l < \omega$ such that $W = \bigcup_{n \in U} \left[ln, \left(l+1 \right) n \right] \in \mathcal{U}.$

Consider now the smallest
$$k < \omega$$
 such that $l+1 < 2^k$. Define $V = U_k \cap W \in \mathcal{U}$. Since for $n \in V$ there is $m \in U$ such that $lm \leq n \leq (l+1)m < 2^km$ and $\left[\frac{n}{2^{k+1}}, \frac{n}{2^{k-1}}\right] \subseteq A_{k-1} \cup A_k$, we have

$$\frac{n}{2^{k+1}} \le \frac{m}{2}, \ m \le \frac{n}{2^{k-1}}.$$

Therefore $\left\lfloor \frac{m}{2}, m \right\rfloor \subseteq A_{k-1} \cup A_k$. Since $m \in U$, we must have

$$\frac{|A \cap m|}{m} \le \frac{1}{8},$$

and therefore

$$\left| \left[\frac{m}{2}, m \right] \setminus A \right| \le \frac{3m}{8}.$$

Finally we can conclude that

$$\frac{|((A_{k-1} \cup A_k) \setminus A) \cap n|}{n} \ge \frac{3m}{8n} \ge \frac{3}{8(l+1)}$$

for $n \in V$. This is a contradiction with the properties of A. We conclude that there is no upper bound for $\{A_k\}_{3 < k < \omega}$ such that its measure is less than $\frac{1}{8}$, consequently $d_{\mathcal{U}}$ is not σ -additive.

Corollary 2.11 ([2]). Let \mathcal{U} be an ultrafilter that contains a thin set, i.e. a set A such that $\lim_{n\to\infty}\frac{F_A(n)}{F_A(n+1)}=0$. Then $d_{\mathcal{U}}$ satisfies AP (null).

An example of an ultrafilter \mathcal{U} such that $d_{\mathcal{U}}$ does not satisfy AP (null) was presented in [2] (the construction is due to Fremlin).

Our aim is now to characterize those ultrafilters \mathcal{U} such that $d_{\mathcal{U}}$ satisfies AP(*). For that we need the following observation. Recall that an ultrafilter \mathcal{U} is a *P*-ultrafilter if every decreasing sequence $\{U_i\}_{i<\omega} \subseteq \mathcal{U}$ has a pseudointersection $U \in \mathcal{U}$,

Proposition 2.12 ([2]). Let \mathcal{U} be an ultrafilter that contains a thin set. Then $d_{\mathcal{U}}$ has $AP(^*)$ if and only if \mathcal{U} is a P-ultrafilter.

Claim 2.13. Let \mathcal{U} be a thin P-ultrafilter. Then \mathcal{U} contains a thin set.

Proof. Let $\{U_k\}_{k<\omega} \subseteq \mathcal{U}$ be a decreasing sequence such that $\frac{F_{U_k}(n)}{F_{U_k}(n+1)} < \frac{1}{k}$ for every $k < \omega$. Take the pseudointersection U of $\{U_k\}_{k<\omega}$. Then for every $k < \omega$ there is $n_0 < \omega$ such that for every $n > n_0$

$$\frac{F_U\left(n\right)}{F_U\left(n+1\right)} < \frac{1}{k}$$

Proposition 2.14. Let \mathcal{U} be an ultrafilter. Then the following are equivalent

- $G(\mathcal{U})$ is a *P*-ultrafilter,
- $d_{\mathcal{U}}$ has $AP(^*)$.

Proof. Assume that $G(\mathcal{U})$ is a *P*-ultrafilter. By the Claim 2.13 it must contain a thin set and by Proposition 2.13 $d_{\mathcal{U}}$ has AP(*).

Assume that $d_{\mathcal{U}}$ has AP(*). Again by Proposition 2.13 it is enough to show that $G(\mathcal{U})$ contains a thin set. Fix a decreasing sequence of $\{U_k\}_{k<\omega} \subseteq G(\mathcal{U})$ such that

$$\frac{F_{U_k}\left(n\right)}{F_{U_k}\left(n+1\right)} < \frac{1}{k+1}$$

8

and define

$$A_k = \bigcup_{n \in U_k} \left[\frac{n}{2}, n\right].$$

One can easily verify that $\{A_k\}_{k<\omega}$ is a decreasing sequence such that $\lim_{k\to\infty} d_{\mathcal{U}}(A_k) = \frac{1}{2}$. By the property AP(*) there is a set $A \subseteq \omega$ such that $|A \setminus A_k| < \omega$ and $d_{\mathcal{U}}(A) = \frac{1}{2}$ (here we use the property AP(*) for decreasing rather than increasing sequences). Define

$$U = \left\{ n \in U_3 : \left[\frac{n}{2}, n\right] \cap A \neq \emptyset \right\}.$$

We must show that $U \in G(\mathcal{U})$ and U is thin. Assume that $U \notin G(\mathcal{U})$. Then $U_3 \setminus U \in G(\mathcal{U})$. For $n \in U_3 \setminus U$ we have

$$\frac{|A \cap n|}{n} \le \frac{1}{4},$$

which is a contradiction with $d_{\mathcal{U}}(A) = \frac{1}{2}$. To prove that U is thin it is enough to observe that $|A \setminus A_k| < \omega$ implies $|U \setminus U_k| < \omega$.

Definition 2.15. We say that ultrafilter \mathcal{U} is close to a *P*-ultrafilter if for every decreasing sequence $\{U_k\}_{k\in\mathbb{N}} \subseteq \mathcal{U}$ and every $\epsilon > 0$ there is $U \in \mathcal{U}$ such that $|U \setminus (U_k)_{\epsilon}| < \omega$ for all $k \in \mathbb{N}$.

Note that the ambiguity in the Definition 2.15 with respect to the Definition 2.2 is justified by the following claims. It follows that if \mathcal{U} is close to a *P*-ultrafilter, then we can find a *P*-ultrafilter \mathcal{V} such that \mathcal{U} is close to \mathcal{V} , in particular we can take $\mathcal{V} = G(\mathcal{U})$.

Claim 2.16. Let \mathcal{U} be thin and close to a *P*-ultrafilter. Then \mathcal{U} is a *P*-ultrafilter.

Proof. Let $\{U_k\}_{k<\omega} \subseteq \mathcal{U}$ be a decreasing sequence and assume that $\frac{F_{U_0}(n)}{F_{U_0}(n+1)} < \frac{1}{2}$. Find a pseudointersection U of $\{(U_k)_{\frac{1}{4}}\}_{k<\omega}$. We claim that $V = U \cap U_0$ is a pseudointersection of $\{U_k\}_{k<\omega}$. To see this fix $k < \omega$. We know that there is some m such that $U \setminus m \subseteq (U_k)_{\epsilon}$. Let $x \in U_0 \cap (U \setminus m)$. There is $y \in (U_k)_{\frac{1}{4}}$ such that $\max\left\{\left|1 - \frac{x}{y}\right|, \left|1 - \frac{y}{x}\right|\right\} < \frac{1}{4}$. Note that $y \in U_0$ because the sequence is decreasing. From the properties of U_0 we have that x = y. This implies that $V \setminus m \subseteq U_k$ which finishes the proof. \Box

Claim 2.17. Let \mathcal{U}, \mathcal{V} be close ultrafilters. Then \mathcal{U} is close to a *P*-ultrafilter if and only if \mathcal{V} is close to a *P*-ultrafilter.

Proof. Assume that \mathcal{U}, \mathcal{V} are close and \mathcal{U} is close to a *P*-ultrafilter. Let $\{V_k\}_{k < \omega} \subseteq \mathcal{V}$ and $\epsilon > 0$ are given. Choose $\delta_0, \delta_1, \delta_2 > 0$ such that $1 - \epsilon < (1 - \delta_0) (1 - \delta_1) (1 - \delta_2)$. Then by simple computation we have for every $A \subseteq \omega$

$$\left(\left(A_{\delta_{0}}\right)_{\delta_{1}} \right)_{\delta_{2}} = \bigcup_{n \in A} \left[\left(1 - \delta_{0}\right) \left(1 - \delta_{1}\right) \left(1 - \delta_{2}\right) n, \frac{n}{\left(1 - \delta_{0}\right) \left(1 - \delta_{1}\right) \left(1 - \delta_{2}\right)} \right] \subseteq \bigcup_{n \in A} \left[\left(1 - \epsilon\right) n, \frac{n}{\left(1 - \epsilon\right)} \right] = A_{\epsilon}.$$

Because \mathcal{U}, \mathcal{V} are close, we have $\{(V_k)_{\delta_0}\}_{k < \omega} \subseteq \mathcal{U}$. By the assumption on \mathcal{U} there is a pseudointersection V of $\left\{ \left((V_k)_{\delta_0} \right)_{\delta_1} \right\}_{k < \omega}$. One can easily check that V_{δ_2} is a pseudointersection of $\left\{\left(\left((V_k)_{\delta_0}\right)_{\delta_1}\right)_{\delta_2}\right\}_{k<\omega}$. Since \mathcal{U}, \mathcal{V} are close, $V_{\delta_2} \in \mathcal{V}$ and $\left\{\left(\left((V_k)_{\delta_0}\right)_{\delta_1}\right)_{\delta_2}\right\}_{k<\omega} \subseteq \mathcal{V}$. So V_{δ_2} is also a pseudointersection of $\{(V_k)_{\epsilon}\}_{k<\omega} \subseteq \mathcal{V}$.

Theorem 2.18. An ultrafilter \mathcal{U} is close to a *P*-ultrafilter if and only if $d_{\mathcal{U}}$ has AP(*).

Proof. Combine Proposition 2.14, Claim 2.16 and Claim 2.17.

Corollary 2.19. There is a P-ultrafilter if and only if there exists ultrafilter density that satisfies AP(*).

Question 2.20. Does the existence of a density that satisfies AP(*) imply the existence of a *P*-ultrafilter?

3. Ultraproducts

In the last section we show how certain special properties of ultrafilters may affect properties of some ideals in the measure ultraproduct. Recall that for a sequence $(B_i, m_i)_{i < \omega}$ of σ -complete boolean algebras with measures (not necessarily strictly positive or σ -additive) and for \mathcal{U} an ultrafilter on ω we define the ultraproduct measure $m_{\mathcal{U}}$ on $\prod_{i < \omega} B_i$ as

$$m_{\mathcal{U}}(f) = \mathcal{U} - \lim m_i (f(i))$$

for $f \in \prod_{i < \omega} B_i$.

There are several natural ideals that one may assign to the product. In order to keep the presentation as straightforward as possible we make the assumption that $(B_i, m_i) = (B, m)$ for every $i < \omega$ where B is a σ -complete boolean algebra with a measure m. Given an ultrafilter \mathcal{U} on ω we define

•
$$\mathcal{N}_{\mathcal{U}} = \{ f \in B^{\omega} : m_{\mathcal{U}}(f) = 0 \},\$$

- $\mathcal{Z} = \{f \in B^{\omega} : \lim_{i < \omega} m(f(i)) = 0\},$ $\mathcal{M}_{\mathcal{U}} = \{f \in B^{\omega} : \{i : m(f(i)) = 0\} \in \mathcal{U}\},$

•
$$\mathcal{I}_{\mathcal{U}} = \{ f \in B^{\omega} : \bigwedge_{U \in \mathcal{U}} \bigvee_{i \in U} f(i) \}.$$

We summarize basic relations between these ideals.

Proposition 3.1. Let (B,m) be a σ -complete boolean algebra with a σ -additive and strictly positive measure. Then $\mathcal{Z}, \mathcal{M}_{\mathcal{U}} \subseteq \mathcal{N}_{\mathcal{U}}$ and $\mathcal{M}_{\mathcal{U}} \subseteq \mathcal{I}_{\mathcal{U}} \subseteq \mathcal{N}_{\mathcal{U}}$.

Proof. The only case that does not follow immediately from the definitions is $\mathcal{I}_{\mathcal{U}} \subseteq \mathcal{N}_{\mathcal{U}}$. Let $f \notin \mathcal{N}_{\mathcal{U}}$. Then

$$\inf_{U \in \mathcal{U}} m\left(\bigvee_{i \in U} f\left(i\right)\right) = c > 0.$$

Take a decreasing sequence $\{U_k\}_{k<\omega} \subseteq \mathcal{U}$ such that

$$\lim_{k \to \infty} m\left(\bigvee_{i \in U_k} f\left(i\right)\right) = c.$$

Since the sequence $\left\{\bigvee_{i\in U_{k}}f(i)\right\}_{k<\omega}$ is also decreasing there must be some $b\in B$ such that $b \leq \bigvee_{i \in U_k} f(i)$ for every $k < \omega$ and m(b) = c. We show that $d \leq \bigvee_{i \in U} f(i)$ for every $U \in \mathcal{U}$, this finishes the proof. Assume that there is some $U \in \mathcal{U}$ such that $b \not\leq \bigvee_{i \in U} f(i) = a$. Then $m(b \setminus a) = \epsilon > 0$ and therefore

$$\lim_{k \to \infty} m\left(\bigvee_{i \in U_k \cap U} f(i)\right) = c - \epsilon$$

which is a contradiction.

Let \mathcal{U} be a non-principal ultrafilter on ω . We say that \mathcal{U} is

• semi-selective if for every $\{a_n\}_{n<\omega}$ of positive real numbers such that \mathcal{U} - $\lim_{n\to\infty} a_n =$ 0 there is $U \in \mathcal{U}$ such that $\sum_{n \in U}^{\infty} a_n < \infty$.

Theorem 3.2. Let (B, m) be a σ -complete infinite boolean algebra with a σ -additive strictly positive measure and \mathcal{U} an ultrafilter on ω . Then the following hold

- U is a P-ultrafilter if and only if N_U = Z + M_U = {f ∨ g : f ∈ Z, g ∈ M_U},
 U is semi-selective if and only if I_U = N_U.

Proof. To prove the first claim notice that it is enough for each $f \in \mathcal{N}_{\mathcal{U}}$ find a set $U \in \mathcal{U}$ such that $\lim_{i \in U} m(f(i)) = 0$. Under the assumption that B is infinite, this is possible if and only if \mathcal{U} is *P*-ultrafilter.

Let \mathcal{U} be a semi-selective ultrafilter and $f \in \mathcal{N}_{\mathcal{U}}$. Then there is $U \in \mathcal{U}$ such that $\sum_{i \in U} m(f(i)) < \infty$ and therefore

$$\bigwedge_{n < \omega} \bigvee_{i \in (U \setminus n)} f(i) = 0.$$

Let \mathcal{U} be not semi-selective. There must be a sequence $\{a_i\}_{i<\omega}$ of positive real numbers such that \mathcal{U} -lim $a_i = 0$ and for every $U \in \mathcal{U}$ is $\sum_{i \in U} a_i = \infty$. Take a sequence $\{b_i\}_{i < \omega} \subseteq B$ such that $m(b_i) = a_i$ and $\{b_i\}_{i < \omega}$ is independent (see for example [1]). We have for every $U \in \mathcal{U}$ that

$$m\left(1-\bigvee_{i\in U}f\left(i\right)\right)=m\left(\bigwedge_{i\in U}\left(1-f\left(i\right)\right)\right)=\prod_{i\in U}m\left(1-f\left(i\right)\right)=0.$$

Therefore $\bigvee_{i \in U} f(i) = 1$ and $f \in \mathcal{N}_{\mathcal{U}} \setminus \mathcal{I}_{\mathcal{U}}$.

11

References

- T. Bartoszynski, H. Judah. Set theory: On the structure of the real line. A. K. Peters Ltd., (1995). ISBN 1-56881-044-X
- [2] A. Blass, R. Frankiewicz, G. Plebanek, C. Ryll-Nardzewski. A Note on Extensions of Asymptotic Density. Proc. Amer. Math. Soc., 129, (2001). 3313–3320.
- [3] D. H. Fremlin. Measure Theory, Volume III: Measure Algebras. Torres-Fremlin., (2002). ISBN 0-9538129-3-6.
- [4] R. Kunisada. Density measures and additive property. Journal of Number Theory. 176, (2017). 184-203.
- [5] E. Smith, A. Tarski. Higher degrees of distributivity and completeness in Boolean algebras. J. Symbolic Logic, Volume 24:1, (1959), 59-60.

¹ INSTITUTE OF MATHEMATICS, ACADEMY OF SCIENCES OF THE CZECH REPUBLIC, ŽITNÁ 609/25, 110 00 PRAHA 1-NOVÉ MĚSTO, CZECH REPUBLIC

E-mail address: grebik@math.cas.cz