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ULTRAFILTER EXTENSIONS OF ASYMPTOTIC DENSITY

JAN GREBÍK1

Abstract. We characterize for which ultrafilters on ω is the ultrafilter extension of the as-
ymptotic density on natural numbers σ-additive on the quotient boolean algebra P (ω) /dU
or satisfies similar additive condition on P (ω) /fin. These notions were defined in [2] un-
der the name AP (null) and AP (*). We also present a characterization of a P - and
semiselective ultrafilters using the ultraproduct of σ-additive measures.

This paper is based on the author’s Bachelor thesis that was supervised by Bohuslav
Balcar and defended in 2014. We investigate additive properties of measures on P (ω) that
are extensions of asymptotic density as defined in [2]. More concretely in Section 2 we
give a necessary and sufficient combinatorial condition for an ultrafilter U on ω for the
extension of asymptotic density given by U to satisfy AP (null) or AP (*). In Section 3
we characterize P - and semiselective ultrafilters by a relations between some ideals in an
ultraproduct of measures.

We note that since 2014 there has been made some progress in similar direction of density
measures and additivity properties (see [4]).

1. Introduction

Let B be a boolean algebra and m : B → [0, 1]. We say that m is

• monotone if m (a) ≤ m (b) whenever a ≤ b ∈ B,
• strictly positive if m (a) = 0 implies that a = 0,
• a measure if m is monotone, m (1) = 1 and m

(∨
i<n ai

)
=
∑

i<nm (ai) for every
finite antichain {ai}i<n ⊆ B,

• σ-additive if m is a measure and m
(∨

i<ω ai
)

=
∑

i<ωm (ai) for every antichain
{ai}i<ω ⊆ B.

If m is a measure on B, then define N (m) = {a ∈ B : m (a) = 0}. The quotient boolean
algebra B/N (m) carries a unique strictly positive measure that is naturally derived from
m. We will abuse the notation and write B/m for the quotient algebra, m for the unique
induced measure on B/m and [a] for the equivalence class of a ∈ B. The following theorem
is in fact a corollary of a stronger statement from [5] but this version is sufficient for our
purposes. Recall that a boolean algebra B is σ-complete if every countable subset of B
has a supremum in B.

Theorem 1.1 (Smith–Tarski [5]). Let m be a measure on a σ-complete boolean algebra B.
Then B/m is a c.c.c. complete boolean algebra.

The author was supported by the GACR project 17-33849L and RVO: 67985840.
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2 GREBÍK

We use ω for the set of natural numbers. We write n for the set {0, 1, ...., n− 1} and [r, s]
for the set {n ∈ ω : r ≤ n ≤ s} where r, s ∈ R. Recall that a set A ⊂ ω has an asymptotic
density if

lim
n→∞

|A ∩ n|
n

exists, and in that case we denote the value of the limit as d (A). We say that a measure m
on P (ω) is a density if it extends the asymptotic density, i.e. m (A) = d (A) for every A ⊆ ω
for which the asymptotic density exists. Note that a density m cannot be σ-additive on
P (ω) because it has the value 0 on each atom. Since the algebra P (ω) /m is σ-complete
by Theorem 1.1, it is natural to ask whether the density m is σ-additive on P (ω) /m.
This question was considered in [2] where the authors define two additive properties for
measures on P (ω).

Definition 1.2. [2] A measure m on P (ω) satisfies AP (null) if for every inclusion in-
creasing sequence {An}n<ω of subsets of ω there is B ⊆ ω such that

• limn→∞m (An) = m (B),
• m (An \B) = 0 for every n < ω.

If we can moreover find such B that also satisfies

• |An \B| < ω for every n < ω,

then we say that m satisfies AP (*).

One can easily check that AP (null) is equivalent with the σ-additivity of m on P (ω) /m.
It is known (see [2]) that there are densities that satisfy AP (null) but there are also
densities that fail to have AP (null). The question about AP (*) is more complicated
since there is a model of ZFC in which no density satisfies AP (*). On the other hand it
is also consistent that densities satisfying AP (*) do exist, for example the existence of a
P -ultrafilter is sufficient.

Definition 1.3. Let U be an ultrafilter on ω. Define

dU (A) = U- lim
|A ∩ n|
n

for every A ⊆ ω.

We call densities of the form dU ultrafilter densities. All examples presented in [2] are in
fact ultrafilter densities. The aim of this paper is to give a complete combinatorial char-
acterization of ultrafilters for which the ultrafilter densities satisfy AP (null) or AP (*).
Let us state here the case of AP (null) and postpone the more technical case of AP (*)
until the end of Section 2.

Definition 1.4. We say that an ultrafilter U on ω is ×-invariant if for all U ∈ U there is
1 < k ∈ ω such that

kU =
⋃
n∈U

[kn, (k + 1)n] ∈ U .
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The following is the main result of this paper and Section 2 is devoted to the proof of
this statement.

Theorem 1.5. Let U be an ultrafilter on ω. The following are equivalent

• dU is σ-additive on P (ω) /dU (i.e. satisfies AP (null)),
• U is not ×-invariant.

2. Ultrafilter Densities

In this section we present the proof of Theorem 1.5. We start with some general facts
about ultrafilters on ω. All ultrafilters considered in this section are non-principal.

Claim 2.1. Let U be a ×-invariant ultrafilter (see Definition 1.4). Then for every U ∈ U
there are infinitely many k < ω such that

kU =
⋃
n∈U

[kn, (k + 1)n] ∈ U .

Proof. Assume that for a given U ∈ U there is some maximal k such that kU ∈ U . Then
there must be some 2 ≤ l < ω such that

l (kU) =
⋃
m∈kU

[lm, (l + 1)m] ⊆
⋃
n∈U

[lkn, (l + 1) (k + 1)n] ∈ U .

Because U is an ultrafilter, there must be some p < ω such that lk ≤ p ≤ (l + 1) (k + 1)−1
and pU ∈ U . Now 2k ≤ lk ≤ p contradicts the maximality of k. �

In order to prove our main result we need to investigate which ultrafilters give rise to
the same ultrafilter densities.

Definition 2.2. Let U ,V be ultrafilters. We say that U is close to V if for every U ∈ U
and for every ε > 0 there is V ∈ V such that

• for all x ∈ U there is y ∈ V such that max
{∣∣∣1− x

y

∣∣∣ , ∣∣1− y
x

∣∣} < ε,

• for all x ∈ V there is y ∈ U such that max
{∣∣∣1− x

y

∣∣∣ , ∣∣1− y
x

∣∣} < ε.

Claim 2.3. Let U ,V be ultrafilters. Then U is close to V if and only if

Uε =
{
x < ω : ∃n ∈ U max

{∣∣∣1− n

x

∣∣∣ , ∣∣∣1− x

n

∣∣∣} < ε
}
∈ V

for every ε > 0.

Proposition 2.4. The relation of being close is an equivalence relation on the set of
ultrafilters.

Proof. Suppose that U is close to V but V is not close to U . Then there is δ > 0 and V ∈ V
such that Vδ 6∈ U . Therefore B = ω \Vδ ∈ U . Then Bδ ∩V = ∅ because if x ∈ Bδ ∩V , then

there exists y ∈ B such that max
{∣∣∣1− x

y

∣∣∣ , ∣∣1− y
x

∣∣} < δ and also x ∈ V implies y ∈ ω \B.

Claim 2.3 gives us that Bδ ∩ V = ∅ ∈ V , a contradiction.
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In order to prove that the relation is transitive first notice that

Uε =
⋃
n∈U

[
n (1− ε) , n

(1− ε)

]
.

Assume now that U is close to V , V is close to W and take U ∈ U . We know that Uε ∈ V
and (Uε)ε ∈ W but

U2ε−ε2 =
⋃
n∈U

[
n (1− ε)2 , n

(1− ε)2

]
⊇ (Uε)ε ∈ W .

Since ε > 0 was arbitrary we see that U is close to W . �

Once we have established Proposition 2.4 we can write that a pair of ultrafilters U ,V is
close since the relation U is close to V is symmetric. Note also that U ,V are close if and
only if

〈{Uε : U ∈ U , ε > 0}〉 = 〈{Vε : V ∈ V , ε > 0}〉 ,
where 〈A〉 denotes the filter generated by A ⊆ P (ω).

Theorem 2.5. Let U ,V be close ultrafilters. Then dU = dV and U is ×-invariant if and
only if V is ×-invariant.

Proof. Let A ⊆ ω and ε > 0 be given. Find a set U ∈ U such that∣∣∣∣dU (A)− |A ∩ n|
n

∣∣∣∣ < ε

holds for every n ∈ U . Since U ,V are close, we have that Uε ∈ V . Let x ∈ Uε and n ∈ U
such that max

{∣∣1− n
x

∣∣ , ∣∣1− x
n

∣∣} < ε. We have∣∣∣∣dU (A)− |A ∩ x|
x

∣∣∣∣ ≤ ∣∣∣∣dU (A)− |A ∩ n|
n

∣∣∣∣+

∣∣∣∣ |A ∩ n|n
− |A ∩ x|

x

∣∣∣∣ < 3ε

because if for example n ≤ x, then∣∣∣∣ |A ∩ n|n
− |A ∩ x|

x

∣∣∣∣ ≤ |A ∩ n|n

∣∣∣1− n

x

∣∣∣+
x− n
x

< ε+ ε < 2ε.

We may conclude that dV (A) = dU (A).
Next suppose that U is ×-invariant and let V ∈ V be given. We know from Claim 2.3

that V 1
4

=
{
y : ∃n ∈ V max

{∣∣∣1− n
y

∣∣∣ , ∣∣1− y
n

∣∣} < 1
4

}
∈ U . Therefore using Claim 2.1

there exists 4 ≤ k < ω such that kVε ∈ U . We show that there are δ > 0 and 3 ≤ b < ω
such that

(kVε)δ ⊆
⋃
n∈V

[2n, bn] .

Once we have this the proof is finished because (kVε)δ ∈ V . We describe how to find δ and
3 ≤ b < ω. By a simple computation it follows that

Vε =
⋃
n∈V

[
n

(
1− 1

4

)
,

n(
1− 1

4

)] ,
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therefore

(kVε)δ =
⋃
n∈V

[
kn

(
1− 1

4

)
(1− δ) , (k + 1)n(

1− 1
4

)
(1− δ)

]
.

We see that if we choose δ < 1
3

and b ≥ (k+1)

(1− 1
4)(1−δ)

, we have the desired conclusion. �

Next we show that close to any given ultrafilter there is a thin ultrafilter. Recall that
an ultrafilter V is thin if

inf
V ∈V

{
lim sup
n→∞

FV (n)

FV (n+ 1)

}
= 0,

where FA (n) is the n-th element of A, i.e. FA is the enumerating function of A. Note that
an ultrafilter V is thin if and only if there is a set V ∈ V such that

lim sup
n→∞

FV (n)

FV (n+ 1)
< 1.

Denote In = [2n, 2n+1) for every n < ω.

Proposition 2.6. Let U be an ultrafilter. For every ε, δ > 0 there is a set U ∈ U such that
for every x < y ∈ U

x

y
< ε or

x

y
> 1− δ.

Proof. Let α : ω → {0, 1}. Inductively define intervals Iα�kn for k ∈ ω as

• Iα�0n := In,
• for 0 < k ≤ n if α (k − 1) = 0 put Iα�kn to be the left half of the interval Iα�k−1n ,
• for 0 < k ≤ n if α (k − 1) = 1 put Iα�kn to be the right half of the interval Iα�k−1n ,
• for k > n put Iα�kn := Iα�nn .

There exists αU : ω → {0, 1} such that for every k ∈ ω⋃
n∈ω

IαU �kn ∈ U .

Let x < y ∈ IαU �kn . Since
∣∣IαU �kn

∣∣ = 2max{n−k,0} we have that

x

y
>

2n

2n +
∣∣∣IαU �kn

∣∣∣ =
2n

2n + 2n−k
= 1− 2n−k

2n + 2n−k
> 1− 1

2k
.

Finally it is enough to observe that for every k < ω and U there is A ⊆ ω such that⋃
n∈A In ∈ U and (A+ j) ∩ A = ∅ for every j < k. If n < m ∈ A, x ∈ In and y ∈ Im, then

x

y
<

2n+1

2m
≤ 2n+1

2n+k
≤ 1

2k+1
.

To finish the proof it is enough to combine the two estimates. �

We use the function αU that was defined in the proof of Proposition 2.6 for the next
definition.
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Definition 2.7. Let U be an ultrafilter on ω. Define the function αU as in the proof of
Proposition 2.6. Let

AU =
⋂
k<ω

⋃
n<ω

IαU �kn .

The ultrafilter G (U) is defined by U ∈ G (U) if⋃
{In : In ∩ U ∩ AU 6= ∅} ∈ U .

Proposition 2.8. Let U be an ultrafilter. Then G (U) is a thin ultrafilter and U , G (U) are
close.

Proof. From the definition it follows that G (U) is a non-principal ultrafilter and we have

lim supn→∞
FAU (n)

FAU (n+1)
< 1. Since AU ∈ G (U), it follows that G (U) is thin.

Let ε > 0 and V ∈ G (U) be given. We may assume that V ⊆ AU . Find k < ω such that

max
{∣∣∣1− x

y

∣∣∣ , ∣∣1− y
x

∣∣} < ε for every n < ω and every x, y ∈ Iα�kn . Then

Vε ⊇ U =
⋃{

Iα�kn : V ∩ Iα�kn 6= ∅
}
∈ U .

�

Corollary 2.9. Let U be an ultrafilter. Then dU = dG(U) and U is ×-invariant if and only
if G (U) is ×-invariant.

The last ingredient needed for the proof of Theorem 1.5 is the ultraproduct of measures.
Let us define for a non-principal ultrafilter U a measure mU on the set

∏
n∈ω P (n) by

putting

mU (f) = U - lim
n→∞

|f (n)|
n

,

i.e. we are taking the measure ultraproduct of the sequence (P (n))n<ω where each P (n)
is endowed with the normalized counting measure. Next we consider the embedding
e : P (ω) →

∏
n∈ω P (n) defined for A ⊆ ω as e (A) (n) = A ∩ n. Immediately from the

definitions we have mU (e (A)) = dU (A). Therefore the embedding e lifts to the quotients,
i.e.

e : P (ω) /dU →
∏
n∈ω

P (n) /mU .

It is well-known that the measure mU on
∏

n∈ω P (n) /mU is σ-additive (see [3]).

Proposition 2.10. Let U be a thin ultrafilter. Then the density dU is σ-additive if and
only if the embedding e is isomorphism.

Proof. Let f ∈
∏

n∈ω P (n) and ε > 0 be given. We show that there is A ⊆ ω such that
|mU (e (A)4f)| < ε. Because U is thin, there is U ∈ U such that

FU (n)

FU (n+ 1)
< ε.
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We define
A :=

⋃
n<ω

([
FU(n), FU(n+1)

]
∩ f (FU (n+ 1))

)
.

We have for every n < ω that∣∣∣∣ |(e (A) (FU (n+ 1)))4f (FU (n+ 1))|
FU (n+ 1)

∣∣∣∣ ≤ FU (n)

FU (n+ 1)
< ε.

This implies that e (P (ω) /dU) is dense in
∏

n∈ω P (n) /mU , therefore dU is σ-additive if
and only if e is surjective. �

We are now ready to prove our main result.

Proof of Theorem 1.5. Assume first that U is thin and not ×-invariant. We show that e is
onto. Let f ∈

∏
n∈ω P (n). We find A ⊆ ω such that |mU (e (A)4f)| = 0. Let U ∈ U such

that for every 3 ≤ k < ω is

Uk =

(
ω \

⋃
n∈U

[2n, kn]

)
∩ U ∈ U

and FU (n)
FU (n+1)

< 1
2
. Define

A =
⋃
n<ω

([FU (n) , FU (n+ 1)] ∩ f (FU (n+ 1))) .

Let m ∈ Uk. Choose the largest n ∈ U such that n < m. Then by definition of Uk we have
that n

m
< 1

k
. Note that m ∈ U . Therefore by the definition of A we have the estimate

|e (A) (m)4f (m)|
m

≤ n

m
<

1

k
,

and the claim follows.
Assume on the other hand that U is thin and ×-invariant. There is a decreasing sequence

{Uk}k<ω ⊆ U such that
FUk

(n)

FUk
(n+1)

< 1
2k+1 . Define

Ak =
⋃
n∈Uk

[ n

2k+1
,
n

2k

]
.

We have dU (Ak) < 1
2k

. Assume that there is A ⊆ ω such that dU (Ak \ A) = 0 and

dU (A) < 1
8

for every 3 < k < ω, i.e. A is a candidate for the upper bound of the sequence

{Ak}3<k<ω. Let U =
{
n : |A∩n|

n
≤ 1

8

}
. There must be 16 ≤ l < ω such that

W =
⋃
n∈U

[ln, (l + 1)n] ∈ U .

Consider now the smallest k < ω such that l + 1 < 2k. Define V = Uk ∩W ∈ U . Since for
n ∈ V there is m ∈ U such that lm ≤ n ≤ (l + 1)m < 2km and

[
n

2k+1 ,
n

2k−1

]
⊆ Ak−1 ∪ Ak,

we have
n

2k+1
≤ m

2
, m ≤ n

2k−1
.
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Therefore
[
m
2
,m
]
⊆ Ak−1 ∪ Ak. Since m ∈ U , we must have

|A ∩m|
m

≤ 1

8
,

and therefore ∣∣∣[m
2
,m
]
\ A
∣∣∣ ≤ 3m

8
.

Finally we can conclude that

|((Ak−1 ∪ Ak) \ A) ∩ n|
n

≥ 3m

8n
≥ 3

8 (l + 1)

for n ∈ V . This is a contradiction with the properties of A. We conclude that there is no
upper bound for {Ak}3<k<ω such that its measure is less than 1

8
, consequently dU is not

σ-additive. �

Corollary 2.11 ([2]). Let U be an ultrafilter that contains a thin set, i.e. a set A such that

limn→∞
FA(n)
FA(n+1)

= 0. Then dU satisfies AP (null).

An example of an ultrafilter U such that dU does not satisfy AP (null) was presented in
[2] (the construction is due to Fremlin).

Our aim is now to characterize those ultrafilters U such that dU satisfies AP (*). For
that we need the following observation. Recall that an ultrafilter U is a P -ultrafilter if
every decresaing sequence {Ui}i<ω ⊆ U has a pseudointersection U ∈ U ,

Proposition 2.12 ([2]). Let U be an ultrafilter that contains a thin set. Then dU has
AP (*) if and only if U is a P -ultrafilter.

Claim 2.13. Let U be a thin P -ultrafilter. Then U contains a thin set.

Proof. Let {Uk}k<ω ⊆ U be a decreasing sequence such that
FUk

(n)

FUk
(n+1)

< 1
k

for every k < ω.

Take the pseudointersection U of {Uk}k<ω. Then for every k < ω there is n0 < ω such that
for every n > n0

FU (n)

FU (n+ 1)
<

1

k
�

Proposition 2.14. Let U be an ultrafilter. Then the following are equivalent

• G (U) is a P -ultrafilter,
• dU has AP (*).

Proof. Assume that G (U) is a P -ultrafilter. By the Claim 2.13 it must contain a thin set
and by Proposition 2.13 dU has AP (*).

Assume that dU has AP (*). Again by Proposition 2.13 it is enough to show that G (U)
contains a thin set. Fix a decreasing sequence of {Uk}k<ω ⊆ G (U) such that

FUk
(n)

FUk
(n+ 1)

<
1

k + 1
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and define

Ak =
⋃
n∈Uk

[n
2
, n
]
.

One can easily verify that {Ak}k<ω is a decreasing sequence such that limk→∞ dU (Ak) = 1
2
.

By the property AP (*) there is a set A ⊆ ω such that |A \ Ak| < ω and dU (A) = 1
2

(here
we use the property AP (*) for decreasing rather than increasing sequences). Define

U =
{
n ∈ U3 :

[n
2
, n
]
∩ A 6= ∅

}
.

We must show that U ∈ G (U) and U is thin. Assume that U 6∈ G (U). Then U3\U ∈ G (U).
For n ∈ U3 \ U we have

|A ∩ n|
n

≤ 1

4
,

which is a contradiction with dU (A) = 1
2
. To prove that U is thin it is enough to observe

that |A \ Ak| < ω implies |U \ Uk| < ω. �

Definition 2.15. We say that ultrafilter U is close to a P -ultrafilter if for every decreasing
sequence {Uk}k∈N ⊆ U and every ε > 0 there is U ∈ U such that |U \ (Uk)ε| < ω for all
k ∈ N.

Note that the ambiguity in the Definition 2.15 with respect to the Definition 2.2 is
justified by the following claims. It follows that if U is close to a P -ultrafilter, then we can
find a P -ultrafilter V such that U is close to V , in particular we can take V = G (U).

Claim 2.16. Let U be thin and close to a P -ultrafilter. Then U is a P -ultrafilter.

Proof. Let {Uk}k<ω ⊆ U be a decreasing sequence and assume that
FU0

(n)

FU0
(n+1)

< 1
2
. Find a

pseudointersection U of
{

(Uk) 1
4

}
k<ω

. We claim that V = U ∩U0 is a pseudointersection of

{Uk}k<ω. To see this fix k < ω. We know that there is some m such that U \m ⊆ (Uk)ε.

Let x ∈ U0 ∩ (U \m). There is y ∈ (Uk) 1
4

such that max
{∣∣∣1− x

y

∣∣∣ , ∣∣1− y
x

∣∣} < 1
4
. Note

that y ∈ U0 because the sequence is decreasing. From the properties of U0 we have that
x = y. This implies that V \m ⊆ Uk which finishes the proof. �

Claim 2.17. Let U ,V be close ultrafilters. Then U is close to a P -ultrafilter if and only if
V is close to a P -ultrafilter.

Proof. Assume that U ,V are close and U is close to a P -ultrafilter. Let {Vk}k<ω ⊆ V and
ε > 0 are given. Choose δ0, δ1, δ2 > 0 such that 1− ε < (1− δ0) (1− δ1) (1− δ2). Then by
simple computation we have for every A ⊆ ω(

(Aδ0)δ1
)
δ2

=
⋃
n∈A

[
(1− δ0) (1− δ1) (1− δ2)n,

n

(1− δ0) (1− δ1) (1− δ2)

]
⊆

⊆
⋃
n∈A

[
(1− ε)n, n

(1− ε)

]
= Aε.
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Because U ,V are close, we have
{

(Vk)δ0
}
k<ω
⊆ U . By the assumption on U there is a

pseudointersection V of
{(

(Vk)δ0
)
δ1

}
k<ω

. One can easily check that Vδ2 is a pseudointersec-

tion of

{((
(Vk)δ0

)
δ1

)
δ2

}
k<ω

. Since U ,V are close, Vδ2 ∈ V and

{((
(Vk)δ0

)
δ1

)
δ2

}
k<ω

⊆ V .

So Vδ2 is also a pseudointersection of {(Vk)ε}k<ω ⊆ V . �

Theorem 2.18. An ultrafilter U is close to a P -ultrafilter if and only if dU has AP (*).

Proof. Combine Proposition 2.14, Claim 2.16 and Claim 2.17. �

Corollary 2.19. There is a P -ultrafilter if and only if there exists ultrafilter density that
satisfies AP (*).

Question 2.20. Does the existence of a density that satisfies AP (*) imply the existence
of a P -ultrafilter?

3. Ultraproducts

In the last section we show how certain special properties of ultrafilters may affect prop-
erties of some ideals in the measure ultraproduct. Recall that for a sequence (Bi,mi)i<ω of
σ-complete boolean algebras with measures (not necessarily strictly positive or σ-additive)
and for U an ultrafilter on ω we define the ultraproduct measure mU on

∏
i<ω Bi as

mU (f) = U - limmi (f (i))

for f ∈
∏

i<ω Bi.
There are several natural ideals that one may assign to the product. In order to keep the

presentation as straightforward as possible we make the assumption that (Bi,mi) = (B,m)
for every i < ω where B is a σ-complete boolean algebra with a measure m. Given an
ultrafilter U on ω we define

• NU = {f ∈ Bω : mU (f) = 0},
• Z = {f ∈ Bω : limi<ωm (f (i)) = 0},
• MU = {f ∈ Bω : {i : m (f (i)) = 0} ∈ U},
• IU =

{
f ∈ Bω :

∧
U∈U

∨
i∈U f (i)

}
.

We summarize basic relations between these ideals.

Proposition 3.1. Let (B,m) be a σ-complete boolean algebra with a σ-additive and strictly
positive measure. Then Z,MU ⊆ NU and MU ⊆ IU ⊆ NU .

Proof. The only case that does not follow immediately from the definitions is IU ⊆ NU .
Let f 6∈ NU . Then

inf
U∈U

m

(∨
i∈U

f (i)

)
= c > 0.
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Take a decreasing sequence {Uk}k<ω ⊆ U such that

lim
k→∞

m

(∨
i∈Uk

f (i)

)
= c.

Since the sequence
{∨

i∈Uk
f (i)

}
k<ω

is also decreasing there must be some b ∈ B such

that b ≤
∨
i∈Uk

f (i) for every k < ω and m (b) = c. We show that d ≤
∨
i∈U f (i)

for every U ∈ U , this finishes the proof. Assume that there is some U ∈ U such that
b 6≤

∨
i∈U f (i) = a. Then m (b \ a) = ε > 0 and therefore

lim
k→∞

m

( ∨
i∈Uk∩U

f (i)

)
= c− ε

which is a contradiction. �

Let U be a non-principal ultrafilter on ω. We say that U is

• semi-selective if for every {an}n<ω of positive real numbers such that U - limn→∞ an =
0 there is U ∈ U such that

∑
n∈U an <∞.

Theorem 3.2. Let (B,m) be a σ-complete infinite boolean algebra with a σ-additive strictly
positive measure and U an ultrafilter on ω. Then the following hold

• U is a P -ultrafilter if and only if NU = Z +MU = {f ∨ g : f ∈ Z, g ∈MU},
• U is semi-selective if and only if IU = NU .

Proof. To prove the first claim notice that it is enough for each f ∈ NU find a set U ∈ U
such that limi∈U m (f (i)) = 0. Under the assumption that B is infinite, this is possible if
and only if U is P -ultrafilter.

Let U be a semi-selective ultrafilter and f ∈ NU . Then there is U ∈ U such that∑
i∈U m (f (i)) <∞ and therefore ∧

n<ω

∨
i∈(U\n)

f (i) = 0.

Let U be not semi-selective. There must be a sequence {ai}i<ω of positive real numbers
such that U - lim ai = 0 and for every U ∈ U is

∑
i∈U ai =∞. Take a sequence {bi}i<ω ⊆ B

such that m (bi) = ai and {bi}i<ω is independent (see for example [1]). We have for every
U ∈ U that

m

(
1−

∨
i∈U

f (i)

)
= m

(∧
i∈U

(1− f (i))

)
=
∏
i∈U

m (1− f (i)) = 0.

Therefore
∨
i∈U f (i) = 1 and f ∈ NU \ IU . �
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