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Abstract

We propose a conservative scheme for a high-dimensional Fokker-Planck
equation that arises in the dynamics of infinitely extensible polymer molecules.
This leads to a challenging problem of unbounded domain. Our scheme
combines the Lagrange-Galerkin method and the Hermite spectral method
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serves the discrete mass. Combining it with a stabilized Lagrange-Galerkin
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1 Introduction

The Fokker-Planck equation was firstly used to describe the Brownian motion of
particles. It arises in different fields of physics, biology, chemistry and mathematics
such as plasma physics, astrophysics, laser arrays, electronic circuity, neurophysics,
population dynamics, pattern formation and also marketing, cf. [12,27]. We are
interested in its application in polymeric fluids and particle beams, see, e.g., [2,6,
9,26].

In particular, we study the behaviour of infinitely extensible polymer molecules,
not interacting with each other, that are suspended in a solvent. The distribution of
the polymers is described by a high-dimensional nonlinear Fokker-Planck equation
for the probability density function that is defined both in the bounded physical
space  C R? and in the infinite configuration space ® := R? d = 2,3. More
precisely, the probability density function v = ¥(t,x,R) : [0,7] x 2 x ® — R
satisfies

oy

o T Vet — el = V- (Vou-RY) + Vi - (ERY) + xAgp. (1)

Here the constant € > 0 stands for the centre-of-mass diffusion coefficient, the
velocity of the solvent u and the real functions &, x defined in [0,7] x € are
given. It is worth mentioning that the functions &£, x and the parameter ¢ are
inversely proportional to the relaxation time (or Weissenberg number), which is a
well-known concept in the rheology of polymeric fluids. We refer to [4,13,26] for
more details. Note that

/ v(t,x,R)dR =1, V(t,x) € [0,T] x Q. (2)
D

The equation is equipped with the decay/boundary and initial conditions,

0
Y|R|=00 = 0, 8%|8Q =0, (3)

¥(0) = ¥°, (4)

where 1) : 2 X ® — R is a suitable initial value. Note that throughout the paper
we might omit the dependence of functions on the variables ¢,x, R when there is
no confusion.

The numerical solution of the Fokker-Planck equation confined to a single (con-
figuration) space, that is either finite or infinite, has been already widely studied,
see, e.g., [11,22,30]. On the other hand, in 7,15, 16, 18,32] the authors proposed
numerical schemes for equation (1) considered both in the physical and the con-
figuration space, however, restricted to the finite spaces only. To the best of our
knowledge there is no numerical scheme for the high-dimensional Fokker-Planck
equation in the case of infinite configuration space and finite physical space. The
main aim of this paper is to propose such a scheme that is based on the Lagrange-
Galerkin method and the Hermite spectral method. Another goal is to combine



this scheme with a stabilized Lagrange-Galerkin method for the Navier-Stokes
equations in order to simulate some viscoelastic polymeric fluid flows.

The rest of the paper is organized as follows. In Section 2 we describe a space
splitting technique and numerical methods. In the next section we propose the
numerical scheme and prove that it is, at the discrete level, mass preserving with
respect to the probability density function . Moreover, we validate the scheme
by some numerical examples. In Section 4 we extend it to a multiscale solver for
the Navier-Stokes-Fokker-Planck system.

2 Numerical method

Since the Fokker-Planck equation (1) involves both the configuration space (R €
D = RY) and the physical space (x € Q C R?), it is convenient to decompose it
into two parts accordingly. For the approximation of the Fokker-Planck equation in
the configuration space we adopt the Hermite spectral method, which is naturally
designed for an unbounded domain, cf. [11]. To solve the equation in the physical
space we use the Lagrange-Galerkin method.

Firstly, we discretize the time interval [0,7] into Ny equidistant parts, and
denote by t" = nAt for n € {0,1,--- , Nr} the current time step, and by At = NLT
the fixed time increment.

2.1 Space splitting

Following the idea of Lozinski and Chauviere [7] or Knezevic and Siili [15] we
consider the space splitting method defined below.

Definition 1. (Space splitting)
Firstly, we fix a point in the physical space x € Q and solve the first part of (1)
in the configuration space 9,
¢* B wn o n * *
In the second step we fix the point in the configuration space R € ® and solve the
rest of (1) in the physical space §2,
77Z)n—i—l o w*

Ve u' - Vot — A" =0, x€e . (6)

2.2 Lagrange-Galerkin method

In what follows we briefly explain the Lagrange-Galerkin method which was used
in [24] for the Navier-Stokes equations. It employs the following first-order ap-
proximation of the material derivative Dg/Dt of a function ¢ : [0, 7] x Q@ — R,

(t" %) = (% + (u-Vw)g) (1) = L2 TIE) o, )

Dg
Dt



where X : Q — R? is a mapping defined by X;(w, At)(x) := x — w(x)At. Note
that for w € W, >°(Q)¢ and the time increment satisfying At < 1/||w||1 00, it holds
that X (w, At)(Q) = Q, see [24,28, Proposition 1].

The symbol o means the composition of functions, (¢" 'oX)(x) := ¢" (X (x))
with ¢"(x) := g¢(t",x). Approximation (7) following the trajectory of particles
backward in time has appeared as a powerful tool for numerical solution of equa-
tions describing fluid motion, see, e.g., [10,19-21, 28|.

Let Q be a polygonal domain, 7;, a triangulation of Q) := UKeTh K, hk the
diameter of element K € 7T, h := maxge7, hix the maximum element size, and
V), the set of all vertices x; in 7. We consider a regular family of subdivisions
{Th}nio satisfying the inverse assumption [8]. We consider a conforming finite
element approximation of the probability density function satisfying the part of
the Fokker-Planck equation (6) corresponding to the physical space. To this end
we define the following finite element spaces

X i={v, € CU Q)" vulk € PHE)", VK € Tp}, m>1, W, := X},

where P!(K) is the polynomial space of linear functions on element K. For more
details on the Lagrange-Galerkin method we refer the reader to [23-25,33] and the
references therein.

2.3 Hermite spectral method for an unbounded domain

In order to deal with the problem of the infinite configuration space we consider
a spectral method based on the weighted Hermite polynomials, that have already
been used to derive numerical methods for problems on unbounded domains, see,
for instance, [11,31].
Before we derive the spectral method, let us introduce the definition and useful
properties of the Weighted Hermite polynomial [22]. 1t is defined for r € R as
~ We 2,.2

Hp(r) = \/WHm(ozr), Wa(r) :=e*", a>0, m>0, (8)

where the Hermite polynomial of degree m is given by

Hp(r) == (=1)"e” 0™ (), r € R. (9)

The weighted Hermite polynomials are orthogonal with respect to the weight w,,

V7,
a

/R ﬁm(r)ﬁn(r)wa(r) = mns (10)

Omn being the Kronecker delta. Moreover, they satisfy the following properties
that shall be used for the derivation of the configuration space solver (16) below.



Namely,

1~ /
m+ Hm+1 Hm 1 (11&)

%ﬁm(r) = —av/2(m + 1) Hypyr (1), (11b)
P n(r) = /G 00§ D Holr) — (m o+ DEn(r), (11c)
(1) = 20220+ 1)+ 2) ol (11d)

Another useful feature of this function is
H,,(r) — 0 as r — o0. (12)

We refer the reader to, e.g., [11,30,34] and the references therein for the definition
and an overview of the properties of the weighted Hermite polynomials.
We shall use the following quadrature rule for integrals in R.

Theorem 2.1. [30, Theorem 7.3] (Hermite-Gauss quadrature)
Let {r;}Y, be the zeros of Hy1(r), and {w;}X, be the weights given by

2N /T N!

i = , 0<1< N,
YT N Y D HZ () '
Then,
N
/10(7“)6_’“2 dr = Zp(r,;)wi, p € PPNTHR). (13)
R i=0

For the simplicity of notation and better readability let us fix the dimension to
d = 2 hereafter. Note that the method can be analogously derived for d = 3. Let
R := (r1,72) € © = R% We define a grid point R;; := (114,72) with 7y ; and 7y ;
being the roots of the Hermite polynomial Hy (7). Consequently, we can define
the mesh ©y as the set of (N 4 1) x (N + 1) grid points R;;, i.e.,

Dy = {Rij = (ri,re;), 6,0 =01, Ny Hyyi(r1;) = Hyga(r2;) = 0}- (14

To solve the equation (5) we use the spectral method based on the weighted Her-
mite polynomials introduced above. To this end we define the spaces Py :=
span {H,,(r)}N_,, and P} := Py ® Py. We seck an approximate solution 4, x €
W, ® P% in the form

N N
Ury(x,R) = Z > @ (x) Hy(r1)H(ra), V1", n=0,..., Nr. (15)

Remark 1. The property (12) together with the spectral decomposition (15) di-
rectly imply that the decay boundary condition V||rj~ec = 0 is satisfied at the
discrete level.



3 Conservative scheme

In what follows we derive the numerical scheme for the Fokker-Planck equation (1).

Configuration space solver We insert (15) into equation (5), multiply it with
the test function f[z(rl)lflk(m)wa(rl)wa(rg), and integrate over the configuration
space ©. After employing the orthogonality (10) and the properties (11) of the
weighted Hermite polynomials we obtain the following finite difference scheme:

x*  _ gn—1
¢zk At(rbzk’ (Xz) — L(¢:k(xl>>7 X, €V, z,k=0,...,N, (16)

where

L(¢.k) := ¢z—2,k(2052x —An)ve(z = 1)+ ¢ o1 (— A — A21)\/%
+ ¢t o1 (—A)V2(k+1) + ¢z,k72<2a2x — Axp)Vk(k —1) (17)
+ ¢ p(—Anz — Agk) + G -1 (= A1)V (2 + 1)k,

and A;; := —0ju; + £06;;. Note that ¢, = 0 if any of 2, k is less than 0 or greater
than N.

Physical space solver We insert (15) into (6), multiply it with the test function
ﬁz(7"1)I{Ik(rg)wa(rl)wa(rg)goh, and integrate over both the configuration space ®
and the physical domain (2. Consequently, using the Lagrange-Galerkin method
introduced in Subsection 2.2 we derive an equation for the unknowns ¢7,. It reads

e~ 0% 0 Xa(u"Th At)
At

,g0h> +5(Vw¢fjk,vmg0h) =0, zk=0,...,N. (18)

Combining the above derived solvers (16) and (18) we propose the scheme.

Definition 2. (Scheme for the Fokker-Planck equation)
Let u be sufficiently smooth such that X,(Q) = Q. We seek {¢%}2T, € W), satis-

Jying

(X)) — o (%)
At

=L(¢%(x;)) forz,k=0,...,Nand a fired x; € Vy,
(19a)

) @h) + s(ngbZk, vm@h) =0 in fOT’ ﬁxed Z, k?
(19b)

¢o — P2 0 Xa(u" !, At)
At

for any test function @, € Wy. Consequently, the approximate solution {wh N}n | €
Wy, x P% is computed from ¢.1.(x;) by

U v (%35 Ryj) ZZqﬁzk x;) H,(r1,)Hy(r2,),  forx; € V), and Ry € Dy.

z=0 k=0



The initial values ¢%, (x;) for all x; € V}, are computed from 1°(x, R) through

z

the spectral decomposition (15).

Remark 2. The scheme (19) has no requirements on the time increment At.
Indeed, the Lagrange-Galerkin method in (18) has no limitation on the time step
due to the discretization of material derivative along the trajectory curve. The
Hermite spectral method (16) neither needs a CFL condition as it is implicit.

3.1 Conservation of mass

The Hermite spectral method allows us to show the discrete counterpart of the
conservation of mass which is one of the important features of numerical schemes.

Theorem 3.1. (Discrete conservation of mass)

Let ¥y y € W), x P% be the solution of the scheme (19). Let the initial probability
density function be such that ¥(0,x, R) = ¢°(R).

Then, for anyn € {1,..., Ny}, it holds that

[ iR = [ iR
° D

The proof of Theorem 3.1 comes after two preliminary lemmas.

Lemma 3.2.

Let the assumptions of Theorem 3.1 be satisfied. Then, ¢§,(x) is constant for all
x € Q and any time t", n € {1,..., Nr}.

Proof. The proof is done by induction for n.

e By the assumption of the lemma the coefficients ¢%, are independent of x.
In particular, ¢, is constant in Q.

o Assume ¢f; '(x) = ¢fy ' is a constant function in €. Then equation (19a)
with (17) directly yields ¢, (x;) = ¢y ' (x:) = ¢po - By the Lax-Milgram the-
orem [17], equation (19b) has a unique solution ¢, for any z,k € {0,..., N}.
We know that for z = k = 0 the constant ¢g, is the solution, since ¢j,0 X7 =
Bo- Thus ¢p(x) = ¢y = ¢y '+ This concludes the proof.

O
We now recall another useful property of the weighted Hermite polynomials.
Lemma 3.3. [22, Lemma 4] )
For the weighted Hermite polynomial H,,(r) it holds that

/ H,,(r)dr =0, for any m > 1.
R



Proof of Theorem 3.1. The conservation of mass at the discrete level is a direct
consequence of Lemmas 3.2 and 3.3. Indeed, we have

Awwmm:ézwwwwmmmzém%mmWM1

z,k=0

:/@¢8oﬁo(r1)ﬁo(7’2)dR:/© Z qﬁgkﬁz(rl)ﬁk(rQ)dR

z,k=0
:/meMR
3]

which concludes the proof. ]

3.2 Numerical experiments

We present three numerical experiments in order to demonstrate the performance
of the proposed scheme, and to validate the conservation of mass as stated in The-
orem 3.1. To this end we take the initial value independent of x. More precisely,

we set ¥°(x, R) = M(R), where the Maxwellian reads

1 2
M(R) = —e IRI/2, 20
(R) = 5-e (20)
Some discussions and suggestions on how to choose the weight o can be found
in [11,22]. We have set a = 0.5 in all the tests. In Experiments 1 and 2 below we
test two periodic flows in the physical domain = [0, 1]2.

Experiment 1 We consider a shear flow with the velocity field u = (z5,0)” and
e=¢&=x=1 Weset At = 0.05 and N = 21. Figure 1 shows the evolution of
the probability density function towards the steady state.

Experiment 2 We set u = (z3(1 — 25),0)7, £ = x = 1, and ¢ = 0.01. The
discretization parameters are chosen as h = 1/64, At = 0.1 and N = 21. Figure 2
shows the distribution of ¥ in configuration space at different physical space points
at time ¢ = 10.

Experiment 3 To provide a quantitative study of the numerical accuracy we
now consider an extensional flow with V,u = diag{x, —«}. In this case the exact
steady-state solution of the Fokker-Planck equation is explicitly given by

wref(R) — CMCRTVIUR,

where ¢ is a normalization constant. We set £ = xy = 1 and the extension rate
x = 0.5. The numerical errors of the probability density function ey := ¥, xy — Uret
in L*(®)-norm and L*(®)-norm are listed in Table 1 with a fixed time step
At = 0.05. We can clearly observe the experimental convergence of the solution

8



6.1e-07 1.6e-01

4.9e-08 1.6e-01

(c) t=0.5

3.2e-08 1.4e-01 6.1e-08 1.4e-01

(e) t=2

Figure 1: Experiment 1: time evolution of ¢/ towards the steady state

1.5e-01 1.0e-06 1.6e-01 1.5e-01

(a) x =(0.75,0) (b) x = (0.75,0.5) (¢) x =(0.75,1)

Figure 2: Experiment 2: distribution of ¢ in configuration space

with increasing polynomial degree N, and thus with an increasing number of the

grid points R;; in ® . Figure 3 depicts the time evolution of ¢ towards the steady
state . for N = 40.

Conservation of mass In Theorem 3.1 we have shown not only that the scheme
is mass conservative, but also that the discrete mass only depends on the choice



9.9e-08 1.6e-01 4.0e-08 1.5e-01

9.3e-09

(f) steady state

Figure 3: Experiment 3: time evolution of ¢/ towards the steady state

Table 1: Experiment 3: numerical error

N 5 8 10 16 20 30 40
lleyll2@) [3.4e-2 2.1e-2 1.3e-2 3.3e-3 1.3e-3 1.5e-4 1.8e-5
ey || Loo (@) [1.9e-2 7.6e-3 4.8e-3 1.2¢-3 5.0e-4 5.7e-5 8.0e-6

of N. We validate these results experimentally in Figure 4, in which we plot the
time evolution of mass for different values of the Hermite polynomial degree N.

4 Application to viscoelastic polymeric fluids

In the present section we aim to solve the Navier-Stokes-Fokker-Planck system de-
scribing the unsteady motion of viscoelastic fluids with infinitely extensible molecu-
lar chains. To deal with such a challenging problem we propose a multiscale scheme
as a combination of the scheme (19) for the high-dimensional Fokker-Planck equa-
tion with a stabilized Lagrange-Galerkin method for the Navier-Stokes equations.

Let us mention that for a multiscale simulation of some kinetic viscoelastic
models confined to bounded domains, both in the physical and the configuration

10
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---N=20
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Figure 4: Evolution of mass [ ¢y dR

space, we can already find several results in the literature; for instance, [1,7,15,18]
for the most commonly studied FENE model (finitely extensible nonlinear elas-
tic); [14] for the Doi model with rod-like molecules of finite length. However,
the methods developed for bounded domains can not, in general, be efficiently ex-
tended to the case of the infinite configuration space. To the best of our knowledge
there are no available multiscale simulation methods for polymer solutions with
infinitely extensible molecules.

4.1 The Navier-Stokes-Fokker-Planck system

We are interested in the following system of equations

a—u—i—u-Vu:—Vp—l—ZIJV-D(u)%—V-T, V-u=0, (2la)

ot

O Vet~ A = Vi (Vou-R0) + Vi (Re) + xAg (210)
Here the couple (u,p) denotes the velocity and pressure, the symmetric part of
the velocity gradient is given by D(u) := (Vu + (Vu)?)/2, and v stands for the
solvent viscosity. Each polymer molecule is represented by its orientation vector
R that belongs to the configuration space ®. Function ¢ gives the probability of
a dumbbell that it stays between R and (R + dR) in space D, at a physical point
x € Q and time t € [0,T]. The system is equipped with the decay/boundary and
initial conditions,

0
Y||Rj—o00 = 0, a-ﬁbn =0, ugn =0, (21c)

¥(0) =", u(0) =u’, (21d)

where uy and )y are suitable initial values. The elastic stress tensor T is appearing
in (21a) as a forcing term on the right-hand side of the momentum equation due to
the random movement of polymer molecules. It is obtained by means of Kramer’s

11



expression,

sz/@(R@R)@/}(t,X,R) dR —1, (21e)

where 7y is a given function defined in [0, 7] x Q.

Note the above introduced Navier-Stokes-Fokker-Planck system covers a large
class of models including the so-called Hookean model, whose macroscopic closure
has been rigorously proved to be the well-known Oldroyd-B model, see [3]. How-
ever, we would like to emphasize that, in general, there is no rigorous macroscopic
closure of (21b) for non-constant functions y, &, ~.

4.2 Multiscale scheme

In this part we formulate a multiscale scheme for the numerical solution of the
Navier-Stoke-Fokker-Planck system (21) for dilute solutions with infinitely exten-
sible polymer molecules.

The Navier-Stokes solver We apply the Lagrange-Galerkin method described
in Subsection 2.2 to the Navier-Stokes equations (21a). We define the following
finite element spaces

Vii=XPNV, Qn:=XNQ,

where V := H}(Q)?, Q := L3(2) are the classical functions spaces, and P'(K) is
the polynomial space of linear functions on element K. It is well-known that the
P! /Plapproximation of the couple (u, p) solving (21a) does not satisfy the inf-sup
condition. Therefore we employ the Brezzi-Pitkardnta pressure stabilization [5] to
obtain

u’ —ulto X u"_l, At
( h h Atl( h ),Vh) +2v (D(u}),D(vy)) — (P}, Vi - Vi)

+ (Ve -uy,qn) + Su(py.an) = (T}, Vyvy), for any (v, qn) € Vi X Qp, (22)

where the pressure stabilization term is given by

Sh(pn: an) =00 Y _ 3 VprVan, Jy > 0.
K

The constant dy is set to 0.05 in all subsequent numerical tests.
We now propose a multiscale scheme as a coupling of two solvers: (22) for the
macroscopic solvent and (19) for the high-dimensional molecular part.

Definition 3. (Multiscale scheme for the Navier-Stokes-Fokker-Planck system)
Assuming X1 (0}~ At)(Q) = Q we seek a solution {uf, pi, o7 30T, C Vi xQpx W,

12



satisfying

* N\ 41 .
2 (%) s (%i) =L(¢k(x;))  forz,k=0,...,Nand a fired x; € Vy,

At
(23a)
( ke Pk © ftl(“z_l’“),s@ (Vb Vo) =0 in Q for fived 2, k,
(23b)
(Mt 20 ) 4 2 (D), D)~ (01 V2w
+(Va-uy, qn) + Su(pnan) = (T, Vavy)  in (23c)

for any test function (vi, qn, pn) € Vi X Qn X Wy, The piecewise linear continuous
approzimation T} is obtained by the interpolation of the discrete values T"(x;) =
T (5 v (xi, Ryz)) that are computed by Kramer’s expression (21e) and the Hermite-
Gauss quadrature, where the approximate solution ¥y n € Wy X P% is computed
analogously as in the scheme (19).

Remark 3. The Lagrange-Galerkin method in our schemes (19) and (23) is
based on the mapping X that follows the particle along the characteristic curve
backward in time. A question of our further study is to prove that the upwind
point Xi(u} ™", At)(x) remains in the domain €, analogously as in [24] for the
case of no-slip boundary condition. However, we can ensure that X;(Q2) C Q
in all numerical experiments without imposing any condition on At. In the case
of periodic boundary condition, we slightly modify the computation of the up-
wind point. For instance, if the flow is periodic in x direction, we first compute
Xi(up At (x) = x —u) ! (x)At. Next, we update the first component X 1(x)
of X1(x) as follows

Xi11(x) if X11(x) € [Ta, 2,
Xii(x) = ¢ X11(x) + (1 — 7a)  if X11(x) < 24,
Xia(x) = (zp —2a)  if Xq11(x) > s,

for any x € Q = [xq, 2] X [Ya, ys].

Remark 4. Due to same reasons as explained in Remark 2 the multiscale scheme
(23) has no requirements on the time step At.

4.3 Numerical experiments

We demonstrate the performance of the multiscale scheme (23) and confirm the
conservation of mass numerically. Similarly as in Subsection 3.2, the initial value
of the probability density is always ¥°(x, R) = M(R), cf. (20).

13



Experiment 4 We consider a driven cavity flow as one of the benchmark prob-
lems for viscoelastic fluids. Motivated by the Peterlin dumbbell theories for dilute
polymer solutions [26] we choose functions £ and x to be dependent on the average
length of polymer molecules that is a macroscopic quantity only, namely the trace
of the conformation tensor

C .- / (R® R)¥(t x, R) dR, (24)

which is a symmetric positive definite tensor characterizing the elastic property
of polymer solutions. In particular, we set ¢ = y = (trC)% Further, v = 1,
e =0, v =0.59 and At = 0.05. The boundary condition for the velocity is set as
u = (1622(1 — 21)%,0)" on the top boundary of the physical domain Q = [0, 1)
and zero otherwise. Figure 5 depicts the contour lines of pressure, the values of
the velocity and the conformation tensor at ¢t = 2.

9.8e+00

1.5e+00

Figure 5: Experiment 4: solution at time ¢ = 2

Experiment 5 We now test a periodic plane Poiseulle flow in computational
domain € = [0, 1]%. The initial value for the velocity is u’(x) = (z2(1 — z5), O)T.
In the horizontal direction we set the periodic boundary conditions for u and .
The upper and bottom boundaries are treated as no-slip walls with respect to the

14



velocity. In addition, the homogeneous Neumann boundary condition is adopted
for ¢) on the latter boundaries. We set At = h, the model parameters v = 0.5,
e =0, and x = £ = 7 = 1. This choice covers the well-known Hookean model
and thus allows us to find the explicit form of the conformation tensor from its
macroscopic closure (Oldroyd-B model), i.e.,

1|du; |” 10w,
Chi=1+4-|57—| 1=@+1e™), Co=c-—1-e), Cp=1 (25
11 + 5 |9, ( (2t +1)e ), 12 2(%2( e ), 22 , (25)
see [29, Chapter 4.1] for more details. Figure 6 shows that the numerical solution
matches the analytical values (25), see the relative errors |e,|| := % for

v € {u,C41, C1a,Caa} in Table 2. Moreover, the table also indicates the numerical
error is decreasing with decreasing mesh size h and increasing Hermite polynomial
degree N.

(a) Cu1 (b) Crz

Figure 6: Experiment 5: solution at time t = 1

Table 2: Experiment 5: numerical error at t = 1

1/h N |lleullr2@) lleallmo) llecy 2@ llec llzz@) lleca 2@
16 8| 2.15e-3 1.11le-2 3.17e-2 6.41e-2 2.82e-2
32 12| 5.17e-4  4.33e-3 5.30e-3 1.45e-2 2.64e-3
64 16| 1.30e-4  2.24e-3 2.58e-3 7.85e-3 1.53e-3

Experiment 6 Here we present the performance of the multiscale solver for flow
past cylinder test, a widely studied benchmark problem with complex geometry.
We set v = 1, y = trC and ¢ = (trC)%. The boundary conditions are the same as
in Experiment 5 and the inlet velocity reads u = (;11:102(1 — Xa), O)T. See Figure 7
for the numerical solution for T'=4, At = 0.01,v = 0.59, ¢ = 1.
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0.0e+00 4.9e-01

0.0e+00 1.16+0]

Figure 7: Experiment 6: solution of uy, ug, p, C11, Ci2, Cas (from top to bottom)

Conservation of mass Analogously as in Section 3.2, in Figure 8 we plot the
time evolution of the discrete mass to validate the theoretical results numerically.
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Figure 8: Evolution of mass [ 95 v dR

Conclusion

Inspired by the models of some viscoelastic polymeric fluids with infinitely extensi-
ble molecules we have studied a Navier-Stokes-Fokker-Planck system numerically.
Firstly, in Definition 2, we have proposed the conservative scheme for numerical
solution of the high-dimensional Fokker-Planck equation by splitting it into two
parts: the first part in the bounded physical space was solved by the Lagrange-
Galerkin method, while the second part in the infinite configuration space was
approximated by the Hermite spectral method. Further, combining our scheme
with a stabilized Lagrange-Galerkin method we derived the multiscale scheme for
numerical solution of the full Navier-Stokes-Fokker-Planck system, see Definition 3.

To demonstrate the performance of our solver, we have presented several nu-
merical experiments, from which we could conclude the numerical convergence for
decreasing physical mesh size h and increasing number of grid points in the con-
figuration space N (degree of the Hermite polynomial) as well, see Subsections 3.2
and 4.3. Moreover, in Theorem 3.1 we have theoretically proven that the discrete
mass with respect to the probability density is preserved which has also been con-
firmed by the numerical tests.

To the best of our knowledge, this is the first result on the numerical simula-
tion of the Navier-Stokes-Fokker-Planck system of equations confined to the finite
physical space and the infinite configuration space.
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