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THE ROBIN PROBLEM FOR THE BRINKMAN SYSTEM
AND FOR THE DARCY-FORCHHEIMER-BRINKMAN SYSTEM

DAGMAR MEDKOVAT

ABSTRACT. In this paper we study the Neumann problem and the Robin prob-
lem for the Darcy-Forchheimer-Brinkman system in W1:9(Q,R™) x L(Q) for
a bounded domain 2 C R™ with Lipschitz boundary. First we study the Neu-
mann problem and the Robin problem for the Brinkman system by the integral
equation method. If 2 C R™ is a bounded domain with Lipschitz boundary
and 2 < m < 3, then we prove the unique solvability of the Neumann problem
and the Robin problem for the Brinkman system in W4(Q,R™) x L1(Q),
where 3/2 < ¢ < 3. Then we get results for the Darcy-Forchheimer-Brinkman
system from the results for the Brinkman system using the fixed point theo-
rem. If Q@ C R™ is a bounded domain with Lipschitz boundary, 2 < m < 3,
3/2 < q < 3, then we prove the existence of a solution of the Neumann prob-
lem and the Robin problem for the Darcy-Forchheimer-Brinkman system in
Whe(Q,R™) x L1(Q) for small given data.

1. INTRODUCTION

Boundary value problems for the Darcy-Forchheimer-Brinkman system
(1.1) Vp—Au+du+ajulu+fu-Vju=£f, V-u=0 inQ

have been extensively studied lately. This system describes flows through porous
media saturated with viscous incompressible fluids, where the inertia of such fluid is
not negligible. The constants A\, ., 3 > 0 are determined by the physical properties
of such a porous medium. (For further details we refer the reader to the book [21,
p. 17] and the references therein.)

T. Grosan, M. Kohr and W. L. Wendland studied in [7] the Dirichlet problem for
the Darcy-Forchheimer-Brinkman system (1.1) with f = 0 in W12(Q,R™) x L?(Q),
where Q0 C R™ is a bounded domain with connected Lipschitz boundary and m = 2
or m = 3. R. Gutt and T. Grosan studied in [8] the Dirichlet problem for the Darcy-
Forchheimer-Brinkman system (1.1) with f = 0 in W*2(Q,R™) x W*=12(Q), where
1<s<3/2,QCR™is abounded domain with connected Lipschitz boundary and
m = 2 or m = 3. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in
[13] the Dirichlet problem for the Darcy-Forchheimer-Brinkman system (1.1) with
£f=0,8=0in W*2(Q,R™) x W*~12(Q), where 1 < s < 3/2, Q2 C R™ is a bounded
domain with connected Lipschitz boundary and 2 < m < 4. The author studied
in [18] a bounded solutions of the Dirichlet problem for the Darcy-Forchheimer-
Brinkman system (1.1) with 8 = 0 on a bounded domain  C R™ with Ljapunov
boundary. M. Kohr, M. Lanza de Cristoforis, W. L. Wendland studied in [12] the
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Robin problem for the Darcy-Forchheimer-Brinkman system (1.1) with 8 = 0 in the
space H*(Q,R™) x H*~1(Q), where 1 < s < 3/2, 2 C R™ is a bounded domain with
connected Lipschitz boundary and m € {2,3}. M. Kohr, M. Lanza de Cristoforis,
W. L. Wendland studied in [12] the mixed Dirichlet-Robin problem for the Darcy-
Forchheimer-Brinkman system (1.1) with 8 = 0 in H3/2(Q,R3) x H'/2(Q), where
Q) C R? is a bounded creased domain with connected Lipschitz boundary. M. Kohr,
M. Lanza de Cristoforis, W. L. Wendland studied in [12] the problem of Navier’s
type for the Darcy-Forchheimer-Brinkman system (1.1) with 3 = 0 in H*(Q, R?) x
L?(Q)), where Q C R3 is a bounded domain with connected Lipschitz boundary. M.
Kohr, M. Lanza de Cristoforis, S. E. Mikhailov, W. L. Wendland studied in [10]
the transmission problem, where the Darcy-Forchheimer-Brinkman system is given
in a bounded domain Q, C R? with connected Lipschitz boundary and the Stokes
system is given on its complementary domain €2_. Solutions are from H!(£24) x
L2(Q4), where HY(Q) = {u € L (Q,R);0;u; € L*(Q),(1 + |x[*)"Y%uj(x) €
L2(Q)}.

In this paper we study the Neumann problem and the Robin problem for the
Darcy-Forchheimer-Brinkman system in Wh4(Q,R™) x L?(Q) for a bounded do-
main ) C R™ with Lipschitz boundary. First we study the Neumann problem and
the Robin problem for the Brinkman system by the integral equation method. If
Q C R™ is a bounded domain with Lipschitz boundary and 2 < m < 3, then we
prove the unique solvability of the Neumann problem and the Robin problem for the
Brinkman system in W14(£, R™) x L9(Q), where 3/2 < ¢ < 3. Then we get results
for the Darcy-Forchheimer-Brinkman system from the results for the Brinkman sys-
tem using the fixed point theorem. If 2 C R™ is a bounded domain with Lipschitz
boundary, 2 < m < 3, 3/2 < ¢ < 3, then we prove the existence of a solution of the
Neumann problem and the Robin problem for the Darcy-Forchheimer-Brinkman
system in WH4(Q, R™) x LI(Q) for small given data.

2. FUNCTION SPACES

First we remember definitions of several function spaces.

Let @ C R™ be an open set. We denote by C°(€2) the space of infinitely
differentiable functions with compact support in 2. If kK € Ny, 1 < ¢ < 0o we define
the Sobolev space W*4(Q) := {f € L1(Q);0%f € LI(Q) for |a|] < m} endowed
with the norm

[ullwr.a@) = Z [0%ul[ L4 (0)-
la|<k
(Clearly W%4(Q) = L9(Q).) If s = k+ X, 0 < XA < 1, denote W*4(Q) = {u €
WHE(Q); ||lullwsa(q) < 0o} where

1/q

|0%u(x) — 0%u(y)|?
iy = [y + 32 [ e )
lel=k %0

Denote by W#?(Q) the closure of C2°(€) in WH?(Q).

If X is a Banach space we denote by X’ its dual space. If 0 < s < oo, denote
W=54(Q) := [W*7(Q))', where ¢/ = ¢/(q — 1).

Denote by D~14(€2) the set of distributions u on 2 such that 9; € W~14(Q) for
j=1,...,m.
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If @ C V C Q then we denote by L (V) the space of all measurable functions
u on €2 such that u € L9(w) for each bounded open set w with @ C V.

If Q C R™ is an open set with compact Lipschitz boundary, 0 < s < 1,1 < ¢ <
oo, denote W*9(92) = {u € LI(9); ||ullws.q(a0) < oo} where

1/q

|u(x) — u(y)|?
[ullwsagon) = |l gao0) + / x — yr-iras 40
XN

Further, W=549(8Q) := [W*4 (8Q)], where ¢’ = ¢/(q —1).
We denote C°(; R™) := {(v1,...,0m);v; € C°(Q2)}. Similarly for other spaces
of functions.

Lemma 2.1. Let Q C R™ be a domain, i.e. an open connected set. If 1 < q < oo
then D=14(Q) C L (). Choose a bounded non-empty domain w such thatw C .

loc

Then D=%9(Q) is a Banach space equipped with the norm
(2.1) [ull p-1.9(0) = llullLa(w) + Vullw-1.4(0)-
Different choices of w give equivalent norms.

Proof. Let u € D~19(Q). According to [24, Proposition 1.1.1]
(2.2) (Vu,®) =0 V® €CX(Q,R™),V-&=0.

Let w C © be a bounded domain with Lipschitz boundary such that @w C Q. Since
u satisfies (2.2), [22, Lemma 2.1.1] gives that there exists p € L9(w) such that
Vp = Vu in w. Since V(u—p) = 0in w, u— p is constant in w. Hence u € L{ ().

Let w be a bounded non-empty domain such that w C Q. Let w, be a Cauchy
sequence with respect to the norm (2.1). Then (u,, Vu,) is a Cauchy sequence in
Li(w) x W=h4(Q) x -+ x W=L9(Q). So, (upn, Vu,) — (fo, f1,--+, fm) in LY(w) X
W=ba(Q) x -+ x W=H49(Q). Clearly, 8;fo = f; in w in the sense of distributions
for j=1,...,m. Define f = (f1,..., fm). Since u, satisfy (2.2), we get

(2.3) (£,8) =0 Y& cC®(QR™),V & =0.

According to [24, Proposition I.1.1] there exists a distribution w in Q such that
Vu = f. Since V(u — fp) = 0 in w, u — fp is constant. We can suppose that
u = fp in w. Let G be a bounded domain with Lipschitz boundary such that
wC G CGC Q. Since f satisfies (2.3), [22, Lemma 2.1.1] gives that there exists
p € L1(G) such that Vp = Vu in G. Since V(u —p) =0 in G, u — p is constant in
G. Thus u € D~14(Q) and u,, — u in D=H9(Q).

Let w, G be bounded non-empty domains such that G C w C w C Q. If u €
D~14(Q) then

lull ey + IVullw-19) < llullpaw) + [[Vullw-1.a).
[31, Chapter II, §5, Corollary] gives that there exist a positive constant C' such that
[ull Loy + Vullw 1) < C [l[ullLaay + [IVullw-1.a@)] Vu e DH(Q).
O
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3. FORMULATION OF THE PROBLEM

Suppose first that & C R™ is a bounded domain with Lipschitz boundary, and
(u,p) € C?>([R™) x C1(Q) is a classical solution of the Robin problem for the
Brinkman system

(3.1a) Vp—Au+u=f in Q V-u=0 inQ,
(3.1b) T(u,p)n+hu=g on 09},
where

. A 1
T(u,p) =2Vu—pl, Vu= §[Vu + (Vu)T]
and 7 is the identity matrix. If ® € C2°(R™,R™), then the Green formula gives

/f-<I> dx+/ g -®do= /[zﬁuv@—p(v-@)jum.u] dx+/ hu- & do.
Q a9 Q o0
(Compare [29, p. 14].) This formula motivates definition of a weak solution of the
Robin problem for the Brinkman system.

Let © C R™ be an open set with compact Lipschitz boundary, h € L*(92),

1<q<oo,q =q/lg—1),F e [WH! (Q,R™)]". We say that (u,p) € W9(Q,R™)x

L (Q) is a weak solution of the Robin problem for the Brinkman system

(3.2a) Vp—Au+Aiu=F in Q V-u=0 1§,

(3.2b) T(u,p)n+hu=F on 02

if V-u=01inQ and

(3.3) <F,<I*>2/[2@u-@¢’—p(v-{>)+/\§>-u} dx+ [ hu-® do
Q o0

for all ® € C(R™,R™). If h = 0 we say about the Neumann problem for the
Brinkman system.

If Q is bounded then p € L?(Q) and the density of C2°(R™, R™) in W4 (R™, R™)
gives that (3.3) holds for all ® € W14 (R™ R™).

If F is supported on the boundary then (u,p) is a weak solution of the problem
(3.1) withf=0and g =F.

If (u,p) € WH(Q,R™) x L _(Q) then (3.3) holds for all ® € C2°(2,R™) if and
only if (u,p) is a solution of (3.2a) in the sense of distributions.

Remark that if Q@ C R™ is a bounded domain with Lipschitz boundary and
(u,p) € C2(Q;R™) x CH(R) is a classical solution of the problem (3.1), then (u, p)
is a weak solution of the problem (3.2) with

<F,'I>>::/f-<1>dx—|—/ g-® do.
Q o0

4. BRINKMAN SYSTEM IN R™

Lemma 4.1. For t € (0,00) define Lip(x) = p(tx) for ¢ € CZ(R™). More
generally, for a distribution f we define
(Lifyp) = (it L)
Suppose that
(4.1) Vp—Au+iu=f, V.-u=0 in R™
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in the sense of distributions. Define p :=t 'L;p, 0 :=t 2L,u, f:= L,f. Then
(4.2) Vi—Au+t? a=f, V-u=0.
Proof. If p € C*(R™), u € C°(R™,R™) then easy calculation yields (4.2). If u, p

are distributions we can choose pi, € C3°(R™), uy, € C°(R™,R™) such that py — p,
u; — u in the sense of distributions. Now we get (4.2) by the limit process. O

Proposition 4.2. Let A € (0,00), 1 < ¢ < oo, f € W~L4(R™ R™). Then there
ezists a solution (u,p) € WHI(R™ R™)x L{ (R™) of (4.1). A velocity u is unique,
a pressure p is unique up to an additive constant. Moreover, p € D~1L4(R™) and

(4.3) ||uHW1,q(R1n) + Cienlé ||p + CHD*LQ(R"") S C”f”W*I’Q(Rm)

where C' depends only on m, A\, ¢ and a choice of w in (2.1).

Proof. If A = 1 then there exists a solution (u,p) € Wh4(R™,R™) x LI (R™) of

(4.1) by [30, Theorem 5.5] and [5, Lemma IV.1.1]. Lemma 4.1 gives that there exists
a solution (u,p) € WH4(R™ R™) x LL _(R™) of (4.1) for arbitrary A € (0,00). Let
(a,p) € WHe(R™,R™) x L _(R™) be another solution of (4.1). Then uj—a;, p—p,
are polynomials by [13, Proposition 5.1]. Since u; — @; € W4(R™), we infer that

uj —U; =0. Thus V(p —p) =0 by (4.1). This forces that p — p is constant. Since
9jp = Auj — \uj + f; € WH4R™), we infer p € D~14(R™).
Define

Q(u,p) = /Q pdx.

Then (u,p) — (Vp — Au+ Au, @Qp) is a bounded linear operator from the Banach
space Whe(R™ R™) x D~L4(R™) to W=L4(R™ R™), where WL14(R™ R™) :=
{u e WhHe(R™ R™);V -u = 0}. Since it is one-to-one and onto, it is an isomor-
phism. This gives the estimate (4.3). O

5. FUNDAMENTAL SOLUTION OF THE BRINKMAN SYSTEM

Let A > 0. Then there exists a unique fundamental solution E* = (El)}), Q=
(Q;‘) of the Brinkman system

(5.1) —Au+Au+Vp=0, Vu=0

in R™ such that E*(x) = o(|z|), @*(z) = o(|z]) as |#| — oo. Remember that for
i,7 € {1,...,m} we have

(5.2) — AE} + AE) + 0,Q) = 6;;60, O1E}; +...0mE; =0,

(5.3) —AE} 1 +AEN 1 +0:Qn 1 =0, O1E}, 1+ OmEp iy = 6o
Clearly,
(5.4) EN—x) = B’ (x), QN—x)=—-Q(x).
If j e{1,...,m} then
1 z;
A A
Q] (Jf) = Ej,m+1(x) = EW)

x o _ [ do(@) + (Mwm) Infa] m=2,
U1 = { do(7) + (Mwm)(m = 2)"Ha~™, m > 2,
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where wy, is the area of the unit sphere in R™. (See [29, p. 60].) The expressions of
E* can be found in the book [29, Chapter 2]. We omit them for the sake of brevity.
For A = 0 we obtain the fundamental solution of the Stokes system. If 7,5 €

{1,...,m}, the components of E? are given by
1 0i 5 TiT;
5.5 E)(z) = o o >3
(55) e e e Aol
1 1 TiTp
0 _ ik _

(56) Ez](CC) = 47T{6” lnm +|£L'|2}7 m—2,
(see, e.g., [29, p. 16]).

If ¢, 7 < m then

A _ oA
(57) Eij - Eji7
A 0 _

(5.8) |E7 (x) — Ej(x)] = OQ1)  as [z — 0
by [29, p. 66] and
(5.9) \VE%(I) - VEZO](x)| =0(|z]*™™) as|z| —0

by [18, Lemma 4.1].
Ifi,7 <m and A > 0, then

(5.10) 0“E;j(x) = O(|a:|7m7|a‘), |z| — o0

for each multiindex «a. (See [14, Lemma 3.1].)

6. VOLUME POTENTIAL

We denote Q(z) = (Q%(x), ..., Q?n(:g)) = (Q)(x),...,Q) (). By E* we denote
the matrix of the type m x m, where E}}(x) = E}(x) for i, < m.

Proposition 6.1. Let 0 < A < 00, 1 < ¢ < o0, s € R, Then f — EX * £,
f € C(R™,R™), can be extended by a unique way as a bounded linear operator
from WS4(R™ R™) to W5+24(R™ R™).

Proof. C°(R™,R™) is a dense subset of W*4(R™ R™) by [25, §2.3.3], [20, §2.12,
Theorem| and [1, Theorem 4.2.2]. This gives a uniqueness.

Suppose first that s = —1. If f € C°(R™,R™), then u := E* «f, p := Q x f
is a solution of (4.1). According to Proposition 4.2 there exists a solution (u,p) €
Wha(R™ R™) x L] (R™) of (4.1) such that

loc
[allwra@m) < Cillfllw-1.am)

with Cy independent of f. [18, Proposition 5.1] gives that u; — @; are polynomials.
Since u € LI({|x[ > r}) for sufficiently large r by (5.10), we infer that u = a.
Therefore B : f — E* £, £ € C°(R™,R™), can be extended as a bounded linear
operator B : W=L4(R™ R™) — WhL(R™ R™).

Let now k € Ng. Then W 4(R™) — W~L4(R™) by [26, §2.3.3, Remark 4]. In
particular, there exists a constant Cs such that

(6.1) €[l —1.0mmy < o] Lagrm).-
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Iffe Wk4(R™ R™) and « is a multi-index with |a| < k + 1, then d*E* « f =
A % 0°f and therefore
Ho"'O‘E"\ * fHWL’I(R’") < C’1||8af||W71,q(Rm).
This, (6.1) and 9; : LY(R™) — W~ 14(R™) bounded yield that
B: WFIR™ R™) — WkF2R™ R™)
is bounded.
Let now k€ Ny, 0< 8 <1, s=k—14+6. Then
(WL IR, WEI(™))g = WHI(R™),
(W]H—l’q(Rm), Wk+2,q(Rm))0’q _ Ws+2,q(Rm)
where (, )g,q denotes the real interpolation. (See [3, Theorem 6.4.5].) Thus B :
We4(R™ R™) — WsT2:4(R™ R™) is bounded by [23, Lemma 22.3].

Let now s < —1. Denote ¢/ = ¢/(g—1). Since B : W=5=24' (R™) — W54 (R™)
is bounded, we infer that B’ : W*4(R™,R™) — W*t>4(R™,R™) is bounded. Since
EX—x) = E*x) by (5.4) and E;; = Ej;; by (5.7), Fubini’s theorem yields that
B'=B. (]

7. BRINKMAN BOUNDARY LAYER POTENTIALS

Let now © C R™ be an open set with compact Lipschitz boundary. If 1 < ¢ < oo
and g € L9(0Q, R™) then the single-layer potential for the Brinkman system Ejg
and its associated pressure potential Qqg are given by

Ejg(z) = EA(:E— y)&(y) do(y),

Qog( /Qx— (y) do(y).

More generally, if g = (g1,...,9m), where g; are distributions supported on 0Q
then we define

Remark that (E}g, Qog) is a solution of the Brinkman system (5.1) in the set
R™ \ 09.
Denote

K3 (.2) = ~To(B(w ). Q(x — )0 (=)
where
T(u.p) = 29u—pl, Yu=3[Vu+ (Vu)

is the stress tensor corresponding to a velocity u and a pressure p. Now we define
a double layer potential. For ¥ € L7(0€2,R™) define in R™ \ 92

(7.1) /KQ z,y)¥(y) do(y),
and the corresponding pressure by

(7.2) (W) (x) = / I (x, y) ®(y) do(y).
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If m > 2 then

1 2m(y —x)-n(y) | 20%(y) | |x—y"
A o B . 7 Q
HQ(x7y) - Wm { (y X) |y—X|m+2 + |y—X|m A m—2 n (y) )

where w,, is the surface of the unit sphere. If m = 2 then

1 Aly —x)-n%(y) = 2n%(y) 1 Q
HAx,y:{—y—x + —A{In n(y),.
alboy) = or (O =0T Py e =y W
Remark that DJW® € C®(R™ \ 9Q,R™), TI)¥ € C®(R™ \ 9Q,R!) and VII{¥ —
ADJY + ADJ® =0, V- DJ¥ =0 in R™ \ 9N.

Define

where B(x;¢) = {y e R™; |x —y| < e}.
Lemma 7.1. Let Q@ C R™ be an open set with compact Lipschitz boundary, A > 0,

1<g<oo,0<s<1. Then Kq  is a bounded linear operator on W*1(9Q, R™)
and its adjoint operator K, , is a bounded linear operator on W—=4/(a=D(9Q,R™).

(See [11, Lemma 3.1].)

Lemma 7.2. Let Q C R™ be a bounded open set with Lipschitz boundary, A > 0,
1< g<oo, 0<s <1 Ifs # 2 suppose moreover that s # 1 — 1/q. Then
D}y : W90, R™) — WsH/a4(Q R™) is a bounded linear operator. If ® €
W=4(9Q, R™) then 3@ + Ko a® is the trace of Dy®.

(See [11, Lemma 3.1].)

Proposition 7.3. Let Q C R™ be an open set with compact Lipschitz boundary,
A>0,1<qg<o0, —1<s<0. Then E} : W9(9Q,R™) — WeHlHl/a.q(R™) js
bounded.

Proof. Put ¢ = q/(q¢—1). Then
stq(aQ, Rm) o [Wl/q’—s,q’ (Rm7 Rm)]l _ Ws_l/q/’q(Rm7 Rm)

by [9, Chapter VI, Theorem 1] and [19, Theorem 3.18]. Since s—1/¢'+2 = s+1+1/q,
Proposition 6.1 gives the proposition. O
Lemma 7.4. Let Q C R™ be an open set with compact Lipschitz boundary, 1 <
q < oo, ® c WH1(9Q,R™), A > 0. Denote by EAP® the restricition of EY® onto
0. Then EJ® is the trace of E{®. If h € L>®(09), then (u,p) := (E}®, Qq®)
is a solution of the Robin problem (3.1) with £ =0 and g = %fb — ng\‘I) + hEHP
Moreover, £ : W=1/94(9Q,R™) — W=1/94(9Q,R™) is a bounded operator.

(See [11, Lemma 3.1].)

Proposition 7.5. Let Q C R™ be an open set with compact Lipschitz boundary,
1l<g<oo, A>0,0<s < 1. Suppose that one from the following conditions is
fulfilled:

(1) q=2.

(2) 0N is of class C*.

(8) 2<m <3 and3/2<q<3.
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Then %I + Ko, are Fredholm operators with index 0 in Wi=Ya9(9Q; R™) and in
W2(0Q; R™), and %I + Kéz,,\ in W=H99(9Q; R™) are Fredholm operators with
indez 0.

Proof. Denote ¢’ = q/(qg—1). If 9Q is of class C' then Kq ¢ is a compact operator on
W=104(9Q; R™) and on W=1/44" (9Q; R™) by [16, p. 232]. Therefore K is a
compact operator on [W1=1/4-4 (§Q; R™)] = W—1/29(9Q; R™). Hence il + Koy
are Fredholm operators with index 0 in W!=1/%9(9Q;R™), and 17 + Kgq are
Fredholm operators with index 0 in W~1/94(9Q; R™).

%I + Kq, are Fredholm operators with index 0 in Wl_l/q’q(aﬂ;Rm) and in
W*2(0Q; R™), and %I + K are Fredholm operators with index 0 in the space
W=1/4:9(9Q; R™) in the other cases by [20, Theorem 10.5.3].

Kq x — Kq, is a compact operator in Wi=1a9(9Q; R™) and in W*2(9Q; R™),
K{ 5 — KQ  is a compact operator in W—1/44(9€; R™) by [11, Theorem 3.1]. This
gives the proposition. O

8. INTEGRAL REPRESENTATION

The following lemma is well known for classical solutions of the Neumann prob-
lem for the Brinkman system.

Lemma 8.1. Let Q) C R™ be a bounded open set with Lipschitz boundary. Let \ >
0,1<g<oo, f=0,gecW Y90, R™), h=0. If (u,p) € WH4(Q,R™)x LI(Q)
is a solution of the Neumann problem (3.1) then

A A _ [ ux), xeQ,
(8.1) Dgu(x) + Eqg(x) = { 0. X Q.

A _ p(x)a X € Qa
(52) ux) + Quetd) = { P %55
Proof. If x €  then (8.1), (8.2) are an easy consequence of the Green formula.
(See the proof of the lemma for classical solutions of the Robin problem in [29].)

Let now x € . Put w := Q\ B(x;r). Define g = T'(u,p)n* on dw \ 092. Then

(83) Diu(x) + Ejg(x) =0, TZu(x) + Qug(x) = 0.
[29, p. 60] gives
(84) D u(%) = B 8(%) = u(x),  Mpyu(x) = Qpiin8(x) = p(x).
Adding (8.3) and (8.4) we obtain (8.1), (8.2). O

9. ROBIN PROBLEM FOR THE BRINKMAN SYSTEM

First we study the problem (3.1) with f = 0 and g € W9 19(9Q, R™). Let
2 C R™ be a bounded domain with Lipschitz boundary. Let G(1),...,G(k) be
all bounded components of R™ \ Q. Fix open balls B(j) such that B(j) C G(j).
Choose ¥; € W (9G(5),R™) such that

(9.1) / ¥, -n do # 0.
9G()
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Define ¥, = 0 on 9N\ 9G(j). If ® € W4~ 14(9Q,R™) we define the modified
Brinkman single layer potential by

k
(9.2) E3® :=Ey®+ ) (®,%;)Dy;n"0),
j=1
k .
(9.3) Q3P == Qa® + > (&, W)} ;n"V).

J=1

(If HS2 is connected then E3® = EA®, Q}® = Q3®.) Proposition 7.3 and Lemma
7.4 give that (Eéq), Qf-}(I)) is a solution of the Robin problem (3.1) if and only if
767,L<I> = g where
1 k , ,
Ton® = 3% - Ko ® + Z(‘I’, W)T(DynP 9 Ty nPD)n® + hEg®.
j=1
Lemma 9.1. Let Q) C R™ be a bounded domain with Lipschitz boundary, 1 < q <
00, A >0, h € L>®(09Q). Suppose that one from the following conditions is fulfilled:
a) g=2.
b) 09 is of class Ct.
¢) 2<m<3and3/2<q<3.
Let (u,p) € WH4(Q,R™) x LI(Q) be a weak solution of (3.2).
(1) If g =2 then

(9.4) (F,u) :/[2\@u|2+A|u|2] dx+/ h|u|?do.
Q oN

(2) Ifh>0 and F =0 thenu =0, p=0.

Proof. Suppose first that ¢ = 2. The definition of the weak solution of the Robin
problem and the density of C2°(€2, R™) in W12(Q,R™) give (9.4).
Let now A > 0 and F = 0. Since T'(u,p)n*’ = —hu, Lemma 8.1 gives

(9.5) u=DJu— Ej(hu), p=THu— Qq(hu) in Q.
For the trace of u we obtain from Lemma 7.2 and Lemma 7.4

1
u= §u+ Ko u— & hu  on 9Q.

Hence Hu = 0, where Hv = %v — Kqoav + EXhv. The operator %I — Kq, is a
Fredholm operator with index 0 in W!'=1/%4(Q,R™), in W'=1/¢2(Q,R™) and in
W1/22(Q,R™) by Proposition 7.5. The operator v EAhv is a compact operator
in W-Yo9(Q,R™), in W=1/42(Q,R™) and in W/22(Q,R™) by [ 1, Lemma 3.1].
So, H is a Fredholm operator with index 0 in W'=1/¢4(Q, R™), in W'~-1/¢2(Q,R™)
and in W1/22(Q,R™). [17, Lemma 9] gives that u € W1/22(9Q; R™). According
to [11, Lemma 3.1] one has Dju € WH2(Q; R™), TIju € L%(Q). The representation
(9.5), Proposition 7.3 and [1 1, Lemma 3.1] give that (u,p) € W12(Q,R™) x L(Q).
Thus

0= <F,u>:/[|©u|2+A\u\2] dx+/ hu2do.
Q o0
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Hence u = 0. Since Vp = Au — Au = 0, there exists a constant ¢ such that
p = 0. So, (u,p) is a classical solution of the Robin problem (3.1). So, 0 =
T(u,p)n® 4+ hu = —cn®’. Hence ¢ = 0. O

Theorem 9.2. Let Q C R™ be a bounded domain with Lipschitz boundary, 1 <
qg<oo, A\>0, he L*0N), h>0. Suppose that one from the following conditions
is fulfilled:

(1) q=2.
(2) 0N is of class C*.
(8) 2<m <3 and 3/2<q<3.

Then Té"h is an isomorphism in W=/ 99(9Q; R™). If g € WY 99(9Q; R™) then

(9.6) (u,p) := (ES(TS,h)ilg,Q?z(ﬁé,h)ilg)
is a unique solution in WH4(Q R™) x LY(Q) of the Robin problem (3.1) with f = 0.
Moreover,
(9.7) ||u||W1»q(Q,Rm) + HPHLQ(Q) < C||g||wfl/q,q(asz;Rm)
where a constant C does not depend on g.
Proof. £ : W=Y4(9Q,R™) — W=1/24(9Q, R™) — L4(9Q,R™) by Lemma 7.4.
LI(0Q,R™) — W~1/949(9Q, R™) compactly by [28, Theorem 1.97], [27, §2.5.7,
Proposition] and [25, §2.3.2, Proposition 2]. Thus 73, — [5] — K¢, ] is a compact
operator in W~1/%4(9Q; R™). Since %I — Kg  is a Fredholm operator with index
0 in W—1/949(9Q; R™) by Proposition 7.5, we infer that Té‘ﬁ is a Fredholm operator
with index 0 in W~1/94(9Q; R™).

The uniqueness of a solution of the problem (3.1) in W14(Q,R™) x L%(Q) fol-
lows from Lemma 9.1. Let & € W~Y%9(9Q; R™), Té"ht‘I) = 0. Then (u,p) :=

(BEA®, Q) ®) is a weak solution of the Robin problem (3.1) in W14(Q, R™) x L%(LQ)
with f=0,g=0. So,u=0in Q, p =0 in Q. The trace of u is equal to

k
(9.8) E5® + > (®,%;) Dy ;nV) =0

j=1

by Lemma 7.4. Since V- 3P =0, V - Dg(j)nB(j) = 0in G(i) for j # i, Green’s
formula gives

/ n . E5® do =0, / nQ-Dg(j)nB(j) do=0, j#:.
G (i) 9G(1)
This and (9.8) give
99) @w) [ % Dyn0 do—o,
aG(4)

Using [18, Proposition 7.2] on B(i) and G(4) \ B(7)

/ LB . [nBu) N KB(i),)\nB(l)] do = 0.
OB(i) 2

OB(i) 0G (1)
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Adding
/ nc@ . D}\g(-)nB(i) do = —/ nP® . nBO do £ 0.
G (4) 0B(i)

This and (9.9) give (®, ¥,) = 0. So,
0=(up) = (F3® Q@) = (E3®,Qo®) in Q.

Hence E5® = 0 on JQ by Lemma 7.4. Since Tg’}’h is a Fredholm operator with
index 0 in W~Y%49(9; R™) and in W~1/22(9Q; R™), [17, Lemma 9] gives that
® c W-Y22(9Q; R™). Thus Ej{® € WH2(R™; R™) by Proposition 7.3 and Qo® €
L _(R™) by [20, Theorem 10.5.1]. For a fixed i € {1,...,k} there exist F €
[(W12(G(i); R™)]’ such that (Ed®, Qq®) is a weak solution of the Robin problem
(3.2) in G(i). Since (E)®, Qa®) is a solution of the homogeneous Brinkman system
in G(i), we infer that F is supported on dG(i). Since E3® = 0 on G (i), Lemma 9.1
gives

0= (F,E0®) :/
G(i)

Hence E}® = 0 in G(i). So,
VQo® = AEJ® — A\E)® =0

in G(#). Therefore there exists a constant ¢; such that Qqa® = ¢; on G(i). Denote
by G(0) the unbounded component of R™ \ . Put h = 0 on R™ \ 9Q. For r > 0
denote w(r) :== G(0) N B(0;7). For a fixed r > 0 there exist F € [W12(w(r); R™)]
such that (E)®, Qq®) is a weak solution of the Robin problem (3.2) in w(r). Since
(E3®, Qo®) is a solution of the homogeneous Brinkman system in w(r), we infer
that F is supported on w(r). Lemma 9.1 gives

w.e)e) - [

w(r)

2|VEN®|? + N Ey® %) dx+/ h|EA®|? do.
8G (i)

2|VEAN®|? + N ES®|?) dx+/ h|Ey®|? do.
Ow(r)

Since h = 0 on dw(r) \ 0N and EJ® = 0 on I, we obtain

/ 2|VEN®|?+ A ES®|?] dx+/ h|EG®|* do = / (Ey®)T(E)®, Qo®)n.
w(r) o0 OB(0;r)

Letting 7 — oo we obtain by (5.10)

/ 2|VEL®|? + A Ey®[?] dx +/ h|ES®|? do = 0.
G(0) o0

Hence E}® = 0 in G(0). So,
VQa® = AE;® — \EJ® =0
in G(0). Therefore there exists a constant ¢y such that Qo® = ¢o on G(0). Since

Qa®(x) — 0 as |x| — oo, we infer that ¢g = 0. Using Lemma 7.4 on © and on
G(i) we infer that (5 — K¢, ,)® =0, (5 + K{, ,)® = —c(i)n on dG(i). So,
1 1
P = (2 - wa\) ® + (2 + Kb’)) ® = —¢(i)n? on 0G(3).

We have proved for ¢ € {1,...,k} that (®,®;) = 0. So, (9.1) gives that ¢(i) = 0.
Hence ® = 0. Since Téﬁ is a Fredholm operator with index 0 in W‘l/q’q(aﬂ,Rm)
and trivial kernel, it is an isomorphism.
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If g € W99(9Q; R™) then (u,p) given by (9.6) is a unique solution in
Wha(Q,R™) x L1(Q) of the Robin problem (3.1) with f = 0. The estimate (9.7) is
a consequence of Proposition 7.3. O

Theorem 9.3. Let Q@ C R™ be a bounded domain with Lipschitz boundary, 1 <
qg<oo,qd =q/(g—1), A >0, h € L>®(0Q), h > 0. Suppose that one from the
following conditions is fulfilled:

(1) q=2.
(2) 0N is of class C'.
(8) 2<m <3 and 3/2<q<3.

IfF e [Wh9' (8Q; R™)] then there exists a unique solution (u,p) € Whe(Q, R™) x
L1(Q) of the Robin problem (3.2). Moreover,

(9.10) [allwro@rm) + [1PlLs@) < ClF o q@mm)y
where a constant C does not depend on F.
Proof. Define (F, ®) := (F, ®) for ¥ € W14 (R™ R™). Then F € W~14(R™ R™)
and
(9.11) w0 @m zmy < 1B gy @,mm)) -
According to Proposition 4.2 there exists (a,p) € WH4(R™,R™) x L] (R™) such
that .
Vp—Aa+ xu=F, V-u=0 inR™
and

(9.12) [l wra@rm) + 1Bl Loy < CLlF|lw-ro@m zm)

where C; does not depend on F. Clearly, there exists G € [W14 (€, R™)])’ such
that (@, p) is a solution of the Robin problem

Vp—Aua+iu=G in V-u=0 in Q,
T(u,p)n+ha=G on 0N.
Moreover,
(9.13) Gyt ey < Ca [illwragozmy + 17l zeco)]

where Cy does not depend on @ and . Since F = F in Q, we infer that F —
G is supported on 9. Using [6, Theorem 1.5.1.2] we deduce that F — G €
(Wi=1/a5d (9 R™)) = W= 1/49(9Q; R™) and
(9.14) IF — Gllw-1/0.000m) < C3l|F — Gl 1.0 (0 mm )
where C3 does not depend on F and G. According to Theorem 9.2 there exists a
solution (@, p) € WH4(R™ R™) x LI (R™) of the problem

Vp—Aa+Aa=0 in €, V-u=0 inQ,

T(a,pjn+ha=F -G on Of).

Moreover,
(9.15) [allwra@rm) +11BllLa@) < CallF = Gllw-1/0.0(00,mm)

where C4 does not depend on F and G. Put u := au+ 10, p := p+ p. Then
(u,p) € WHe(Q,R™) x LI(Q) is a solution of the Robin problem (3.2). This
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solution is unique by Theorem 9.2. The estimate (9.10) is a consequence of (9.11),
(9.12), (9.13), (9.14) and (9.15). O

10. ROBIN PROBLEM FOR THE DARCY-FORCHHEIMER-BRINKMAN SYSTEM

In this section we study the Robin problem for the Darcy-Forchheimer-Brinkman
System

(10.1a) Vp—Au+Au+aluju+pu-Viu=G in Q, V-u=0 inQ,

(10.1b) T(u,p)n+hu=G on 0N
in WHa(Q,R™) x L4(Q) for Q bounded. Denote
Ly pu:=ajulu+ f(u-Vu.

We restrict ourselves to such ¢ for which L, gu € L'(Q,R™) N [Wh4 (Q,R™))’ for
ue Whe'(Q,R™) and ¢ = q/(q—1). Ifa, 3 € R', h € L>®(Q), G € [WH4 (Q,R™)]
then (u,p) € WH4(Q,R™) x L4(Q) is a weak solution of the Robin problem for the
Darcy-Forchheimer-Brinkman system (10.1) if V-u =0 in © and

(G,®) = [ {2Vu-V&®—p(V-®)+ & [A\u+aluju+pu-Viu} dx+ [ hu-® do
Q oN

for all ® € C>°(R™,R™) (or equivalently for all ® € W14 (R™ R™)).

Theorem 10.1. Let Q@ C R™ be a bounded domain with Lipschitz boundary, 2
m<3. Letl<qg<oo, ¢ =q/lg—1), A\ >0, a,3 R, heL®0ON), h >
Suppose that one from the following conditions is fulfilled:
(1) 3/2 < q<3.
(2) g=3/2 and m = 2.
(3) ¢g=3/2 and 8 = 0.
(4) OS2 is of class Ct, m =2 and 3 = 0.
(5) OS2 is of class Ct, m =3, 3 =0 and q > 6/5.
(6) O is of class C' and =2 < q.
Then the following hold:
o Lopuc LNQR™) N [WH (QR™)] for all u € WhH' (Q,R™).
e There exist d,¢,C € (0,00) such that the following holds: If

(102) Ge [WLqI(QJRm)]/v HG”[WL‘I/(Q,]R”")}, < 57

then there exists a unique weak solution (u,p) € WH4(Q,R™) x L1(Q) of
the Robin problem for the Darcy-Forchheimer-Brinkman system (10.1) such
that

<
0.

(10.3) [ullwia@rm) <e.
If G,G e WY (,R™)), (u,p), (0,p) € WH(Q,R™) x LI(Q), (10.3),
(10.1), [lallwr.a@rm) <€

(10.4a) Vp—Aa+ M a+ofafi+B@-Via=G in Q  V-a=0 inQ,

(10.4b) T(w,p)n+ha=G on 082,
then
(10.5) |\U||leq(sz,u§m) + ||p||L<1(Q) < CHG”[WLQ’(Q,R"L)]M



ROBIN PROBLEM FOR THE BRINKMAN SYSTEM 15

(10.6) [u = @llwra@pm) + 1P = Blla@) < CIG = Gl (@ zmy -

Proof. According to Lemma 11.2 and Lemma 11.3 there exists a constant C; such
that if u, @ € WhH (Q,R™) then Ly gu € L'(Q,R™) N [WH (Q,R™)] and

(10.7) Lo sulljw .o @zmyy < Crlullfyagmm),

(108) (| g1 — Loty ey < Callt = allw oy [l ooy + 18w
because
Logu—Lyga=calu/(u—a)+Fu-V)(u—a)+a(u —a))a+ g[(u—1a) - V]a.

According to Theorem 9.3 there exists a constant C3 such that for each F €
(W14 (9Q; R™)] there exists a unique solution (u,p) € WH4(Q,R™) x LI(Q) of
the Robin problem (3.2) and

(10.9) lllwsaozm) + Ipllzoc) < CollE oz -

Remark that (u,p) is a solution of (10.1) if (u,p) is a solution of (3.2) with
F =G — Lo su. Put

1 €
= 6= ——.
CTHC ) (Cor 1) 2(Co + 1)

If (u,p), (0, p) € WH9(Q,R™) x L9(Q) are solution of (10.1) and (10.4) with (10.3)
and ||fl||W1,q(Q)Rm) < €, then

[lu—allwra@rm) + [P — Bl < C2llIG = Gllwre @rm))

JFHLa,ﬁu*Laﬂﬁ”[WM'(Q,Rm)]f] < C?[HG*GH[leq/(Q,Rm)]fJFQGC'lHu*ﬁ”leEI(QJR"I)]'

Since 2C1Ca¢ < 1/2 we get subtracting 2¢C1Col[u — Ul|y1,0(,rm) from the both
sides

[u—aflwra@rm) + I = Bllrae) < 202G = Gl (@rm) -
Therefore a solution of (10.1) satisfying (10.3) is unique. Putting p = 0, @ = 0,

G = 0 we obtain (10.5) with C' = 2C,.

Put X := {v e WH(Q,R™); [v|lwrarm) < €}. Fix G satisfying (10.2). For
v € X there exists a unique solution (u¥,p") € WH4(Q,R™) x L(2) of (3.2) with
F = G — L, pv. Remember that (u¥,p") is a solution of (10.1) if and only if
u¥ = v. According to (10.9), (10.7)

0¥ [[wra@rm) < Co [HGH[WL‘I’(Q,R"L)]’ + ||La,ﬁV||[leq/(sz,Rm)]/] < O + CoChé”.
Since Cy6 + CoC1€% < €, we infer u¥ € X. If w € X then

[u¥ —u™|[wra@rm) < C2lLa,gV — La,gWllwe @rm)y < 2€[0" —u™|lwio@rm)
by (10.8). Since 2e < 1, the Fixed point theorem ([4, Satz 1.24]) gives that there

exists v € X such that u¥ = v. So, (u¥,p") is a solution of (10.1) in W4(Q, R™) x
L) satistying |[u¥|[w1.arm) < €
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11. APPENDIX

Lemma 11.1. Let  C R™ be a bounded domain with Lipschitz boundary. Let
s(3) > 5 € No, 1< p,p(1),p(2) < 9, 5(3) — s = m[1/p(3) — 1/], (1) + (2) — 5 >
m[1/p(1)+1/p(2)—1/p] > 0. Then there exists a constant C such that the following
holds: If u € WP (Q) v € W2 P2 (Q) then uwv € WP(Q) and

uvllwer@) < Cllullwsw e @)llvllwse o @)
(See [2, Corollary 6.3].)

Lemma 11.2. Let Q@ C R™ be a bounded domain with Lipschitz boundary, m €
{2,3}. Let 1 < g< o0, ¢ =q/(qg—1). If m = 3 suppose moreover q > 6/5. Then
there exists a constant C such that if u,v € WH4(Q), w,w € WH4(Q,R™) then
wv, |wlv € LYQ) N [Wh4(Q)) and

(11.1) [woll.a ) < Cllullwra@)llvllwae).,
(11.2) | wWlvllwra @ < Clwllwra@rm lvlwia),
(11.3) | [wlv = [Wlvl[wre ) < Clw = Wllwia@rm) [v]wag).-

Proof. Suppose first that m = 2. Since 1-0>0=2(1/¢—1/q),1+1-0> 2/q =
2(1/¢+1/q—1/q), Lemma 11.1 gives that uv € L9(€2) and there exists a constant
(1 such that

(11.4) [uv][La) < Cillullwra@llvlwrag):
Thus uv € [Wh9(Q)]" and Hélder’s inequality forces (11.1). [32, Corollary 2.1.8]
gives |w;| € WH(Q) for j =1,...,m and
I ws] lwrace) = lwillwae)
Thus

m
I Iwlvllza) < DI [wjlvllza) < mCl[wlwra@zmllvlwoq)-
j=1

So, |wlv € [Wh(Q)] and Holder’s inequality forces (11.2). Since
[ 1wl = [Wlvllze@) < | 1w = WlvllLe) < mCillw = Wllwra@mm)lvllwro@

we obtain (11.3) by Holder’s inequality.

Let now m = 3. Suppose first that ¢ > 3/2. Since 1 —0 > 0 = 3(1/q — 1/q),
141-0>3/9g=3(1/g+1/q—1/q), Lemma 11.1 gives that uv € L1(Q) and there
exists a constant C; such that (11.4) holds. Thus uv € [W4 ()]’ and Holder’s
inequality gives (11.1). Let now 6/5 < ¢ < 3/2. Then there exists r € (1,¢) such
that 1+1—-0>3(1/¢+1/¢—1/r) > 0. Since 1 —0 >0 > 3(1/q¢ — 1/r), Lemma
11.1 gives that uv € L™(Q) and there exists a constant C; such that

uvl|Lr@) < Crllullwra@)llvllwa@)-

Put v = r/(r — 1). Since ¢’ > 3, [15, Theorem 5.7.7, Theorem 5.7.8] give that
Wha'(Q) — L™ (). Holder’s inequality gives (11.1). The relations (11.2), (11.3)
we deduce by the same way as in the case m = 2. (I
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Lemma 11.3. Let Q) C R™ be a bounded domain with Lipschitz boundary, m €
{2,3}. Let g:—z <g<oo,q¢ =q/(qg—1). Then there exists a constant C' such that

ifue WH(Q), v e LI(Q) then uwv € LY(Q) N [WH4' (Q)] and
(11.5) uvlliw .o @y < Cllullwra@)l[vllLae)-
Proof. Suppose first that ¢ > m. Since min(1 — 0,0 —0) = 0 = m(1/q¢ — 1/q),
140-0>m/q=m(1/q+1/q —1/q), Lemma 11.1 gives that uv € LI(2) and
there exists a constant C; such that

wvllLace) < Chllullwra@)llvllLa@)-

Thus wv € [W14'(Q)]" and Hélder’s inequality forces (11.5).

Let now g < m. Suppose first that m = 2. Then there exists r € (1, ¢) such that
140-0>2(1/¢+1/qg—1/r) > 0. Since min(1 —0,0—0) =0 > 2(1/q¢—1/r),
Lemma 11.1 gives that uv € L™(£2) and there exists a constant Cy such that

[uvl[rr o) < Chllullwra@)llvlie@)-

Put v = r/(r — 1). Since ¢’ > 2, [15, Theorem 5.7.7, Theorem 5.7.8] give that
Wha' (Q) — L™ (Q). Holder’s inequality gives (11.5).
Suppose now that m = 3. Since 3/2 < ¢’ < 3, [15, Theorem 5.7.7, Theorem

5.7.8] and [32, Corollary 2.1.8] give that there exists a constant Cy such that
[ulls@) < Crllullwra) = Cill |ul lwraa),

||<P||L3q’/<37q/>(§z) < ClH@me’(Q) = C1 ol ||W1sq'(Q) Vi € WH(Q).

Since .
1 3—¢q 1 1 1
— _ - = — —_— = ]_
q - 3¢ T3 q * q
Holder’s inequality yields

‘/ uvp dx
Q
< CIQHUHWL‘?(Q)||U||LQ(Q)||S0||W11L1’(Q)-

(In particular for ¢ = 1 we obtain uwv € L'(€).) Thus uv € [W¢ ()] and (11.5)
holds. O

< /Q lullollol dx < JlullLs@) [0l Lo lell Loar /-0 ()
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