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Abstract

We propose a simple model for a two phase flow with a diffuse interface. The model
couples the compressible Navier—Stokes system governing the evolution of the fluid density
and the velocity field with the Allen—-Cahn equation for the order parameter. We show that
the model is thermodynamically consistent, in particular a variant of the relative energy
inequality holds. As a corollary, we show the weak-strong uniqueness principle, meaning any
weak solution coincides with the strong solution emanating from the same initial data on
the life span of the latter. Such a result plays a crucial role in the analysis of the associated
numerical schemes. Finally we perform the low Mach number limit obtaining the standard
incompressible model.
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1 Introduction

We propose a diffuse interface model describing the motion of a binary mixture of compressible,
viscous and macroscopically immiscible fluids occupying a bounded domain Q C RN, N = 1,2, 3.
The state of the system at a given time ¢ € [0, 7] and a spatial position = € € is described by
means of the three field variables: the mass density ¢ = o(t,x), the macroscopic fluid velocity
u = u(t,z), and the order parameter ¢ = c¢(t,x), see the survey by Anderson, McFadden, and
Wheeler [2]. The fundamental quantity is the free energy density of the mixture

1
Etee(0, ¢, Vy0) = 55(9)|V16|2 + of (0, ¢). (1.1)

Lowengrub and Truskinowski [15] propose a model, where §(p) = o and the time evolution of
the order parameter c is described by the Cahn—Hilliard equation. A similar approach has been
adopted by Blesgen [3], where the Allen—Cahn equation is used.

Anderson et al. [2] proposed a slightly different approach corresponding to §(¢) = 1 in (1.1).
Such a hypothesis gives rise to a model that is mathematically tractable, see [1], [8]. In this present
paper, we proposed a variant of Blesgen’s approach [3] adapted to the ansatz 6 = 1. Specifically,
we consider the following system of equations:

o + div,(pu) = 0, (1.2)



1
Oi(ou) + div,(ou ® u) + V,p(o, ¢) = div,S(V,u) — div, <ch ® Ve — i\vxcﬁﬂ) , (1.3)

Oc+u-Vyee=Agc— Q%. (1.4)

The viscous stress tensor S is given by the standard Newton’s rheological law,
2
S(Veu) =v (qut +Viu-— Ndiwuﬂ) + Adiv ul, v > 0,

while the pressure p = p(p, ¢) is derived from the free energy,

plo.c) = 92%2’0)'
The problem is supplemented by the no—slip boundary condition for the velocity,
ulsn =0, (1.5)
and the Dirichlet boundary conditions for the order parameter,
cloa = ¢ (1.6)
Multiplying the momentum equation (1.3) by u, the Allen—Cahn equation (1.4) by the ex-

pression —A,c + g%, adding the results and integrating over €2, we obtain the total energy

balance:

d 1 1
— —olul* + =|V.cl* + of (0,¢)| dx+ / S(Vzu) : Vyu do —|—/ Agc—p
at Jo |2 2 o 0

x = 0.
(1.7)
Note that the total energy in (1.7) corresponds to Anderson et al. [2] ansatz, while the dis-
sipation potential agrees with that of Blesgen [3] modulo a multiplicative factor 1/p in the term
depending on the order parameter. Besides its thermodynamics compatibility, the model (1.2-1.4)
features significant mathematical properties, among which is the weak—strong uniqueness principle
discussed in detail in the present paper. We show that a weak solution coincides with the strong
one emanating from the same initial data as long as the strong solution exists. Such a property can
facilitate enormously the numerical analysis as illustrated in [7]. In spite of the abundant amount
of literature for the weak-strong uniqueness principle for various problems in fluid mechanics (see
for example Wiedemann [16]), much less seems to be known for the problem in question. To
the best of our knowledge, there is only one result concerning the weak-strong uniqueness for the
Navier-Stokes-Allen-Cahn model under the incompressibility assumption, see HoSsek and Macha
[11]. Our approach is based on a variant of the relative energy inequality that proves to be a
versatile tool for identifying the asymptotic behavior of solutions. As a corollary, we perform the
incompressible limit justifying the model studied in [11].

The paper is organized as follows. In Section 2, we collect the preliminary material and state
the weak—strong uniqueness principle. As pointed out above, our approach is based on a variant
of the relative energy approach introduced in Section 3. In Section 4, we complete the proof of the
weak—strong uniqueness principle. Finally, in Section 5, we identify the incompressible limit.

0f(0.0)]*
dc 1 d



2 Main results

To avoid technicalities, we consider the free energy in a simplified form

Fiee = 5|Vecl? + Fofe) + Fu(0),
yielding the pressure
p(o;¢) = pe(0) = Fe(c), pe(o) = oFi(0) — Fe(o) .
Accordingly, the Allen-Cahn equation (1.4) reduces to
e +u-V,e=Ac— Fic),

and the total energy balance reads

d
at o

+/S(qu) : Vzu dx+/ [Ayc— F(¢))] dz=0.
Q Q

1 1
el + 5V + o)+ F)] o

In addition, we suppose that

pe € C[0,00) N C*(0, 00),
pe(e) > 0 for 0 >0, liminfp,(0) > 0, pe(0) < c(1+ Fe(e)) for all 0 >0,
0—00

and
F.e C*(R), F.(c) >0 for all ¢ € (—o0,—¢]U[¢,00), ¢ > 0.

(2.4)

(2.5)

(2.6)

Note that hypothesis (2.5) is satisfied for the iconic example of isentropic pressure p(p) = ag”?,

a >0, v > 1, while F,. can be the double well potential F, = (¢* — 1)2.

In view of (2.6) we may apply the standard maximum principle to equation (2.3) to deduce

—K <c(t,x) < K forany z € Q, t >0,

where K can be determined in terms of b., ¢, and the norm of the initial data.

2.1 Weak solutions

Let the initial data,
Q(Oa ) = 0o, QU(O, ) = (Qu>07 6(07 ) = Cp,

be given in the class

00 > 0 a.a. in €, /

Q ©o

[(ou)of? 12 %0 _
+ Fe(00)| dx < oo, cg € WH=(2) N L¥(Q), colaa = co-

(2.7)

(2.8)

(2.9)



Definition 2.1. We shall say that the trio o, u, ¢ is a dissipative weak solution to the problem
(1.2-1.6), (2.8) in the space-time cylinder (0,7") x 2 if:

e the functions [o, u, c] belong to the class
0, F.(0) € L>=(0,T; L' (), 0> 0a.a. in (0,T) x €,
u e L*(0,T; Wy (; RY)),
c € L0, T; WH2(Q)) N L*(0, T; W*2(Q)) N L=((0,T) x Q), clag = cs;

t=1 T
{/ 0P dx} —/ /[QatQO—i-Qu-VmSO] do dt (2.10)
Q =0 0 Q

holds for any 7 > 0 and any test function ¢ € C([0, T] x Q);

e the integral identity

e the integral identity

t=1 T
{/ ou - dx} = / / [oudip + pou@u: Vo + pe(o)divyp] dzdt
Q t=0 0 Q

—/ /S(un) : Ve dadt

0_Js ) (2.11)
+/ / <ch®ch— —\ch|2]l> : Va drdt

o Ja 2

+/ /Fc(c)divxgo dz dt
0o Ja

holds for any 7 > 0 and any test function ¢ € C1([0,T] x Q; RY), ¢|oq = 0;
e the Allen—Cahn equation
dye+u-Vye=Ac— Flc)
is satisfied a.a. in (0,77) x €,
c(0,-) = co, clan = c;

e the energy inequality

UQ BQ|U|2 + %\Vzcﬁ 4 F(o) + Fc(c)] dx]

t=1

t=

. ) 0 (2.12)
+ /S(Vmu) :V,u da:dt—i—/ / [Ayc— Fl(e)]? dzdt <0
o Ja o Ja
holds for 7 > 0.

To the best of our knowledge, the problem of existence of weak solution for the particular
system (1.2-1.6), supplemented with suitable initial conditions, has not yet been treated in the
available literature. However, the methods developed in [1] and [8] can be easily modified to yield
the desired global existence result in the class of weak solutions specified above.
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2.2 Weak—strong uniqueness

We are ready to state the first result of the present paper.

Theorem 2.2. Let Q C RN, N = 1,2, 3 be a bounded Lipschitz domain. Let [p,u, c] be a dissipative
weak solution of the problem (1.2-1.6), (2.8) in (0,T) x § in the sense specified in Definition 2.1.
Suppose that the same problem admits a classical solution [r, U, C], r > 0 defined on the same time

interval.
Then
=r,u=U, ¢c=C1in (0,T) x Q.

The rest of the paper is devoted to the proof of Theorem 2.2. Without loss of generality,
replacing ¢ ~ ¢ — ¢,, C' = C — ¢, we suppose hereafter that

C’aQ = C’ag =0. (2.13)

One can anticipate the existence of classical solution for the problem on a short time interval.
This kind of results were obtained by Kotschote [12]. In space dimension one, the results of
existence of strong solutions are global in time, see Chen and Guo [4].

2.3 Low Mach number

Our second result considers the incompressible limit. The target system is the same as in [11]:

div,U =0,
oU+U -V, U+ V,II=vA,U-div,(V.C @ V,C), (2.14)
,C+U- -V, C=A,C—F.[C),

with the boundary conditions
UIaQ = 0, C|aQ = 0. (2.15)

To facilitate the analysis, we suppose that the initial data
U(0,-) =U,, C(0,-) =Ch

as well as the spatial domain are sufficiently regular for the problem to admit a smooth solution
defined on a time interval (0,7"). The existence of global regular solutions for the incompressible
Navier-Stokes-Allen-Cahn model can be seen as a special case of the model considered by Lin and
Liu [14], while for the context of incompressible Navier-Stokes-Cahn-Hilliard model, we refer the
interested reader to the work of Gal and Grasselli [9] and to the references within. The viscous
limit of the incompressible Navier-Stokes-Allen-Cahn model towards the Euler-Allen-Cahn model
is considered by Zhao, Guo and Huang in [17].



The primitive system is derived from (1.2), (1.3), (2.3), where the elastic pressure is scaled as
1
2D (0):

0o + div,(ou) = 0,
1 1
9;(ou) + div,(ou @ u) + 8—2pr(g) dt = div,S(V,u) — div, (ch ® Ve — §|ch|2> + V.F.(c),

de+u-Vou=A.c— Flc),
(2.16)

with the boundary conditions
u|aQ = 0, C|8Q = 0. (217)

Accordingly, the weak formulation is specified in Definition 2.1 with the obvious modification
applied to p..
Our goal is to show the following result.

Theorem 2.3. Let Q@ C RN, N = 2,3 be a bounded smooth domain. Suppose that the problem
(2.14), (2.15) admits a smooth solution [U,C|, with the initial data [Uy, Cy], on a time interval
[0,T]. Let the initial data for the problem (2.16), (2.17) be well prepared, specifically,

0. = oo =142l [ d) a0
Q

u(0,-) = e, 052 = 0 in L¥(Q), ug. — Uy in LA RY),
c(0,-) = co. € L NWy*(Q), [lcocllimie) S 1, coe = Co in Wy ()

as € — 0. Let [p:,u., c:]e~0 be dissipative weak solutions of the problem (2.16), (2.17) emanating
from the initial data [0 <, Wo ¢, cc| such that

ezl zoe0.r)xe) S 1.
Then
0-(t,:) = 1 in Ll(Q), u.(t,-) = U(t,-) in L2(Q; RN), ce(t,-) = C(t,-) in W1’2(Q)

uniformly for t € [0,T].

3 Relative energy inequality

Motivated by [6], we introduce a relative energy functional associated to (1.2-1.4) and derive a
variant of the relative energy inequality. The origin of this method can be traced back to the
pioneering work of Dafermos [5], see also Germain [10] or Leger and Vasseur [13] for more recent
applications.



3.1 Relative energy

Let r, » > 0, U, and C be arbitrary continuously differentiable functions. We define the relative
energy as

& (g,u,c ‘r,U, C)
1 1
= / [§Q|u - U+ §|ch ~V.C*+ F.(0) = Fi(r)(o—7) — F.(r)| da.
Q

Note that .

S(g,u,c ‘r,U,C’) :ZIj

Jj=1
where

1 1
I :/ [—Q\U\2+Fe(g) - —\ch]ﬂ dz,
012 2
1 2 /
ILy= | o|5|UF = Fi(r)| du,
Q 2
13:—/gu-U dzx, ]4:—/V$C-VIC dx,

Q Q

= [ [§IV.CP 45| des ni) = Flodr - £.0)

We remark that in contrast with its counterpart in [6], the relative energy does not include all
terms corresponding to the associated energy functional

1 1
/ {—Q|u|2 + = |Vacl* + F.(o) + Fc(c)} dz.
012 2
On the other hand, by virtue of the Poincaré inequality,

€<Q,u,c

r,U,C’) > cp/ lc — C* dx whenever (¢ — O)|sq = 0. (3.1)
Q

3.2 Relative energy inequality

Our next goal is to compute the expression

t=T1

[5 <Q,11,C ’r,U,C)] ,

t=0

provided [p, u, c] is a weak solution of the system (1.2-1.4), and [r, U, C] are smooth functions,
r >0, U|3Q =0, (C— C)‘ag =0.



3.2.1 Energy inequality

As the weak solution satisfies the energy inequality (2.12)7 we get

- [ i ] ][]
// (V,u) Vu+u}dx—[/Fc()dx]:;.

Here and in what follows we set

(3.2)

pi=Azc— Flc). (3.3)
Moreover, we deduce from the Allen—-Cahn equation that
e +u-Vee=p, OF.(c)=—u-V,F.(c)+ pF.(c)

Consequently, we get

- |:/QFC(C) dx} = / /at ) dedt = / / (e)divyu + pFl(c)] dxdt

Thus, going back to (3.2), we may infer that

(1] 0+/ / (Veu) 1 V u+u dedt < — / / (e)diveu+ pFl(c)] dzdt. (3.4)

3.2.2 Equation of continuity

Using the weak formulation (2.10) of the equation of continuity with

1
= §’U|2 — F(r)

J]t=r // U AU — 8,F(r ))] dz dt
+/ / ou- U~VxU—VxFé(r))} de dt

Thus, summing up (3.4), (3.5), we deduce

[1+12 // (V,u) Vu+u]daz
// c)div,u+ pF.(c)] dzdt

+/ / 0U-0,U+ pu-U -V, U] dzdt— / / [0OLF.(r) + ou- V,F.(r)] dxdt.
0 Jo o Jo
(3.6)

we obtain



3.2.3 Momentum equation

Plugging ¢o = U in the weak formulation (2.11) of the momentum equation we get

[Is]i=g = — / / ou-U+ pu-u-V, U+ p.(p)div,U] dxdt

+

S(V,u) : V,U dxdt

1
(V c® Ve — §]Vzc]2]l> -V, U dzdt
F.(

+

O\;Nc\
:a\»::\s\

c(c)div, U dzdt
and, consequently,

[y + I + I3] i +

N

[S —V,U) + 42| dzdt

/ (c)diveu + Fl(c)p] dxdt
0

—u)-U+pu-(U—-u)-V dx dt

/\
g\o\ﬂg\,

T

|
N N
:>\

(00, F.(r) + ou - V. F.(r dmdt—/ /pe )div, U dzdt

/ /(V c®Vzc— ]V$c|21[> V.U dxdt+/ / c)div, U dzdt.

(3.7)

3.2.4 Allen—Cahn equation

Recalling our convention (2.13) we may use (2.3) to compute

t=1 t=1
[L]=0 = — {/ V.c-V,C dx] = {/ cA,C dx]
Q t=0 Q t=0
:/ /ﬁt(AxC)c d:vdt+/ /AIC@C dx dt
0o Jo 0o Ja
—/ /(Z(AxC)c dxdt—i—/ /AmC[,u—u-Vmc] dz dt.
0o Ja 0o Ja
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Consequently,

[L+1o + I3 + 1)iZ / / (V,u) — V., U) + 4% dedt
/ / (e)divyu + pFl(c)] dzdt
/ / )0 U+ pu- (U—nu)-V, U] dedt

/ / [00,F.(r) + ou - V. F.(r)] da:dt—/ /pe(g)diva dz dt

/ / (V c®Vy, c——\V c|2]I) V.U dxdt+/ / c)div, U dxdt
+/ /@(AIC)C dxdt—l—/ /AxC’[,u—u-Vrc] dx dt.

0o Jo 0o Jo

3.2.5 Conclusion

Adding the remaining integral I5 to (3.8), we obtain the relative energy inequality in the form:
[5 (g, c,u ‘r, C,U ]:; + /OT/Q [S(qu) :(Veu—V,U) + u2] dx dt
/ / c)divyu + pF.(c)] dadt
—i—/o /Q )- U+ pu-(U—u)-V, U] dedt

/ [00,F.(r) 4+ ou - V. F.(r)] dxdt— / /pe )div, U dxdt (3.9)
o Ja

//(V c®V, c——|Vmc|2]I) Vdedt—i—// c)div, U dxdt
0

//@AC’)cdxle—/ /AC’ —u-V, dxdt
K

d ( IV.C|? + pe(r )) dz dt

We recall that (3.9) holds for any trio of continuous differentiable test functions,

re CH[0,T] x Q), r>0, Ue CY[0,T] x Q; RY)), Ulpa =0, C,V,.C,A,C € C'[0,T] x Q).

11



4 Weak—strong uniqueness

Our plan to prove Theorem 2.2 is to consider the strong solution [r, U, C] as test functions in (3.9)

and to apply a Gronwall type argument. We proceed in several steps.

4.1 Convective term in the equation of continuity

We write
/ / )0 U+ pu-(U—u)- -V, U] dedt
/ / ) U+ o(U—-u)U-V,U] dadt
0o Jo
—l—//g U)-(U—-u)-V,U dedt
Q
J,

<[ [
+01/0 5<Q,c,u

where the symbol ¢;, i = 1,... denotes a generic positive constant.
Consequently, relation (3.9) reduces to

[5 (g, cu ‘7", C, U)EZO + /0/Q [S(Vmu)  (Vou— V,U) +;ﬂ] do
< —/OT/Q [Fe(c)divyu+ pF.(c)] dadt

ﬁlf‘Q

r,C, U) dt,

r

[00,F.(r) + ou -V, F.(r)] dxdt —/ /pe(g)diva dx dt

J,
[
_/0 /Q(vxc@v c——\ch\ZH) V.U dxdt+/ / ¢)div, U dzdt
J,
!

Oy(AC)e dxdt +/ / AClp—u-Vye dedt
0o Ja

1 T
8, <§|Vx0|2—|—p6(7“)) dxdt+cl/ €<g,c,u‘r,C’,U> at
0

12

—)- (v FuA(C) = Vape(r) — Vo.CALC + divxS(VIU)ﬂ d dt

[Q(U ) (Vx Fo(C) = Vape(r) — VaCALC + divxS(VxU)ﬂ dzdt

(4.1)



Now, we rewrite
/ / 20— w)- (V.E(C) ~ Vapolr) = VaOALC + div,S(V,U))] dds
o JaltT
- / / [(9 - 1) (U—u)- (VxFC(C) — Vpe(r) — V.OALC + divxS(VIU)ﬂ d dt
o Jat\T
+ / / (U—u)- <V$FC(C) —Vape(r) — vaAxo) d dt
0 Q
+ / / S(V,U) : (qu—VIU> do dt
0 Q
Moreover, similarly to [6], we show that

/OT /Q [(§ - 1) (U-u)- (Vch(C) V() — V.OAC + divxS(VxU)ﬂ da dt

T ; (12)
1
< cz/ £ (g, cu (r, C, U> dt + 5/ /(S(qu) —S(V,U)): (Vou—V,U) dzdt.
0 0o Jo
To see (4.2) we first record the Korn—Poincaré inequality (see e.g. [?])
/ lu— U dz < ckp/ (S(Vzu) —S(V,U)): (Vou—V,U) dz. (4.3)
Q Q

Next, following [6], we introduce a cut—off function ¥ € C2°(0, c0),
) 1
0< U<, \Ileln[cs,g],
where ¢ is chosen so small that

1 _
,2—5] for all (¢,x) € [0,T] x €.

Moreover, for h € L'((0,T) x Q), we set

r(t,x) € [20

h = hess + hresa hess = \Ij(g)ha hres = (1 - \I’(Q))h
In view of (2.2) and (2.5), one has F! (o) = p.(0)/o, the function is F, is strictly convex and
Fe(o) = Fi(r)(o—7) = Fu(r) 2 (0 = 7)ess + (1 + 0)res (4.4)

Consequently

E(Q,u,c

U U7 C) Z / ([u - U]zss + [Q - T](Qass + Lres + Qres) dz. (45>
Q

13



Finally, we can write

/OT /Q [(f - 1) (U—u) (Vch(C) — Vope(r) — V,OA,C + divxS(VxU))} dz dt

5/ /|Q—7’\ |U —u| dzdt
/ /| ess| |U_u| dxdt+/ /| re5| |U—11| dx dt.

Here, observing that

H - ]essl |U—U|—\/ _Tess\/|U_u|essﬂ

in view of (4.5)
/| ess’ ‘U_u‘ d$<g<Q,UC‘T,U,C>.

On the other hand, since gess < \/0ess/0

/ /| Tles| |U —u| dadt
Sc(é)/ /1res+Qres+Q|u—U|2 dxdt+5/ /|u—U|2 dz dt
0 Q 0 Q

for any 6 > 0. Combining (4.3) and (4.5) we obtain the desired estimate (4.2).
Summarizing the above we rewrite inequality (4.1) in the form

[5 <Q, c,u )r, C,U / / —S(V,U)) : (V,u—V,U) + p?| dedt

\

/ c)divyu+ pF.(c)] dadt

/ U-u) v F(C)—Vzpe(r)—V;ECAwC) da dt
/ [00,F((r) + ou -V F/(r)] dzdt— / /pe )div, U dz dt
0
-
+
0
+
0

\g\\

e}

(V c®V, c——|V c|2]1) V.U dxdt—i—/ / ¢)div, U dxdt

0 (AC)e dxdt+/ /AIC [ —u- V] dedt
0o Ja

S— 55—

1 T
O (§|V:pC’|2 +pe(7”)> d:l:dt—l—CQ/ E (g, c,u ’r, C, U) dt
0

14



4.2 Elastic pressure

Next, following step by step the arguments of [6] (Section 4.2), we deduce that:

/ / [00,F(r) + ou -V, F!(r)] dzdt— / / pe(0)div, U dz
—/ /(U—u)-Vmpe(r) dxdt+/ /&pe(r) dz dt
0 Q

< 2/ / ~S(V, U)):(ku—vxuwﬂ dxdt+c3/0T5(g,c,u

r,CU) dt
Accordingly, relation (4.7) reduces to

[5 (g, cou lr, C,U / / ~S(V,U)) : (Vou — V,U) + /f] de dt

/ / (e)diveu+ pFl(c)] dadt

+/ /(U—u)- VxFC(C)—VmCA$O> d dt

/ /( €@ Ve — |Vmc|2]l) V.U dxdt+/ / c)div,U dzdt
+/ /@(A:pC)c d:z:dt+/ /AxC w—u-Vy dxdt
0 Q 0 Q

T 1 T
+/ /at—|vwc*|2 dxdt+02/ 5<Q,c,u r,C,U) dt
0o Jo 2 0

4.3 Terms containing the gradient of order parameter

We write

/ /at(AxC)c dxdt—/ /(‘ZC’A,EC dz dt
0o Jo 0o Ja

—/ /U-VxCAxC dxdt—i—/ /[AIC’—FC'(C)]AQCC dz dt,
0 Jo 0 Jo

T 1 T T
/ /@—]VZCP dx dt :/ /VxC' -0, V,C dxdt = —/ /AxC’ﬁtC dx
0 Q 2 0 Q 0 Q

= / / U-V,CA,C dzdt — / / [A,C — F/(O)] A,C dzdt
0 Q 0 Q

and
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Regrouping terms containing the gradient of C' we obtain

/ /u— V.CA,C dxdt—/ /( LRV, c——\chP]I) V.U dxdt
—/ /U-VxC'Axc dxdt—/ /u-VchIC dxdt—l—/ /U-VxC'AxC’ dx dt
0o Ja 0o Ja 0o Ja
:/ /u~VmC'AxC dxdt—i—/ /U-Vchxc dz dt
0o Jo 0o Ja
—/ /U-VxC’Axc dzdt—/ /u-chAIC dz dt
0o Ja 0o Ja

_ /0 /Q ALC(VoC = Vo) - (u—U) dzdt + /O/QU (Vo0 = Vo) (AC — Age) dadt
_ /OT/QAQCC(VIO Vo) (u—U) dzdt
_ /OT/vaU : {vx(c )@ VL(C—¢) - %m(o _ c)|211] dz dt
Consequently, we deduce from (4.8) that
[5 <g, ¢u )r, C, U / / ~S(V,U)) : (Vou — V,U) + 2| dedt

/ / (e)divau + pFl(e)] ddt + / / div, (u — U)EL(C) dzdt

/ / o)div, U da dt (4.9)

+/ /[chAmC’—AmcFC'(C’)] dxdt—l—/ /AwC',u dz dt

0 Q 0 Q

- / / [A,CALC — A,CF/(C)] dadt+ ¢y / 5(g,c,u ‘r, C,U) dt
0 Q 0

Finally, in view of (3.3),

/ / 12 dadt = / / AP~ F()Ave — pF()] deds:
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whence, after a simple manipulation,

[5 (Q,c,u r C,U / / —S(V,U)) : (Vou — V,U) | dedt

+/ /\Axc—AxCIQ dz dt
o Ja

< [ [ ae (U= w (B - RO drar
/OT/Q[Ax(C —¢)(Fl(c) — Fi(C))] dzdt+cy /OTE (g, c,u ‘7’, C, U) dt

Thus, applying the Poincaré inequality (3.1), we obtain the desired conclusion

(o)) < [ (2o

whence Gronwall’s lemma completes the proof of Theorem 2.2.

(4.10)

r.C, U) dt:

5 Incompressible limit

Our ultimate goal is to prove Theorem 2.3. To begin, observe that [o., u., c.| satisfy a modified
version of the energy inequality, namely

t=1

{/ {1 lu® + |V | + 1 (F (0:) — F/(1)(0- — 1) — Fe(l))_f_Fc(C)} dx}

// (V,u) Vudxdt+//Ac F'(0)]? dzdt <e,

Indeed thanks to our hypotheses concerning the initial data

/Q(@s( ) —1) dx:/ﬂgo’a dz = 0.

In particular, the family [o., u., ¢:|c~0 admits the energy bounds uniformly for e — 0.
Similarly to the proof of weak strong uniqueness, we use r = 1, U, and C' as test functions in
the relative energy inequality. Denoting

= (5.)

1 1 1 )
&@mmhuﬁ:/[ym—w%in—mm%;ﬂ&@—nm@—u—nm>dx
Q
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we obtain

g&‘ (QE’ C&) uE

OU // (Vou.) : (Vou, — VU)+M6] da dt
/ / L(co)divpu, + pFl(c.)] dadt

+ (U—-u.) -0,U+ pu. - (U—u.)- -V, U] dedt

(5.2)

[0:
(Vece @ Vyce) : V.U dadt

/Q
J
J

/ at%yvmcﬁ dzdt + O(e),

)

T
pa

+

r

O (ALC)e. dxdt + / / A,C (e —u. - Ve drdt
0o Ja

o)

+

Nc\o\c\

fe}

where
pe = Ayee — Fi(c.).

Now, similarly to Section 4.1 we may rewrite the convective term and use the fact that U
satisfies (2.14) obtaining

£ (0scue |C,U

- / / [(S(qua) —S(V,U)) : (Vou. — V,U) + 42| dedt
0 Q
/ / Fo(c)divou, + peFl(c)] dedt
Q
/(U —u.) - (—=V, Il —div,(V,C ® V,C) dxdt
e (5.3)
/ (Vice @ Vyce) : V.U dadt
/&ACCE d:cdt+/ /AC’ e — U - V| daedt

/ /& V.C|? dxdt—i—cl/ E. (ga,cg,u6
0

Using strict convexity of the function F,, we deduce from the energy inequality that

C,U) dt + O(e).

0:(t,-) = 1 in L'(Q) uniformly in ¢ € [0, T],

and
u. — u weakly in L?(0, T; WH(Q; RY)).

Similarly, writing

Pl = \/@\/@um

18



we deduce that p.u. is an equi—integrable sequence converging weakly to u. Passing to the limit
in the equation of continuity, we get
div,u = 0.

Consequently, relation (5.3) yields

& (o:eeme €U

[ 60900 =590 (90 = 9.0) 4] o

— /,uaFC’(cE) dz dt
0 Jo

/
+ /0 /Q (w. — U) - div, (V.C ® V,0) dedt
_// (Voo @ Vae.) : V,U dedt
S

O (ALC)ee dxdt—i—/ /AC e — U - Vye| dadt

/ /&g |V.C|? d:pdt—I—cl/ E. (Qe,cg,ua
0

At this stage, the rest of the proof is exactly the same as in Section 4.3.

(J,U> dt + O(e).

Acknowledgements

This work was supported by mobility project TAMB17FR of collaboration between France and
Czech Republic.

References

[1] H. Abels and E. Feireisl. On a diffuse interface model for a two-phase flow of compressible
viscous fluids. Indiana Univ. Math. J., 57(2):659-698, 2008.

[2] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid
mechanics. In Annual review of fluid mechanics, Vol. 30, volume 30 of Annu. Rev. Fluid
Mech., pages 139-165. Annual Reviews, Palo Alto, CA, 1998.

[3] T. Blesgen. A generalization of the Navier-Stokes equations to two-phase flow. J. Phys. D
Appl. Phys., 32:1119-1123, 1999.

[4] M. Chen and X. Guo. Global large solutions for a coupled compressible Navier-Stokes/Allen-
Cahn system with initial vacuum. Nonlinear Anal. Real World Appl., 37, 350-373, 2017.

[5] C.M. Dafermos. The second law of thermodynamics and stability. Arch. Rational Mech. Anal.,
70:167-179, 1979.

19



[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

E. Feireisl, Bum Ja Jin, and A. Novotny. Relative entropies, suitable weak solutions, and
weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech.,
14:712-730, 2012.

E. Feireisl and M. Lukacova-Medvidov4. Convergence of a mixed finite element finite vol-
ume scheme for the isentropic Navier—Stokes system via dissipative measure-valued solutions.
Foundations of Computational Mathematics, 18:703-730, 2018.

E. Feireisl, H. Petzeltova, E. Rocca, and G. Schimperna. Analysis of a phase-field model for
two-phase compressible fluids. Math. Models Methods Appl. Sci., 20(7):1129-1160, 2010.

H. Gajewski and J. A. Griepentrog. A descent method for the free energy of multicomponent
systems. Discr. Cont. Dyn. Syst., 15:505-528, 2006.

P. Germain. Weak-strong uniqueness for the isentropic compressible Navier-Stokes system. J.
Math. Fluid Mech., 13(1):137-146, 2011.

R. Hosek and V. Méacha. Weak-strong uniqueness for Navier-Stokes/Allen-Cahn system.
arXw:1711.04488.

M. Kotschote. Strong solutions of the Navier-Stokes equations for a compressible fluid of
Allen-Cahn type. Arch. Ration. Mech. Anal., 206, 489-514, 2012.

N. Leger and A. Vasseur. Relative entropy and the stability of shocks and contact discontinu-
ities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal.,
201(1):271-302, 2011.

F.-H. Lin and C. Liu. Nonparabolic dissipative systems modeling the flow of liquid crystals.
Comm. Pure Appl. Math., 48, 501-537, 1995.

J. Lowengrub and L. Truskinovsky. Quasi-incompressible Cahn-Hilliard fluids and topological
transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1978):2617-2654, 1998.

E. Wiedemann Weak-strong uniqueness in fluid dynamics. arXiv:1705.04220.

L. Zhao, B. Guo, and H. Huang. Vanishing viscosity limit for a coupled Navier-Stokes/Allen-
Cahn system. J. Math. Anal. Appl., 384, 232245, 2012.

20


http://www.tcpdf.org

