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ULTRAFILTER EXTENSIONS OF ASYMPTOTIC DENSITY
JAN GREBIK!

ABSTRACT. We characterize for which ultrafilters on w is the ultrafilter extension of the as-
ymptotic density on natural numbers o-additive on the quotient boolean algebra P (w) /dy
or satisfies similar additive condition on P (w) /fin. These notions were defined in [2] un-
der the name AP (null) and AP (*). We also present a characterization of a P- and
semiselective ultrafilters using the ultraproduct of o-additive measures.

This paper is based on the author’s Bachelor thesis that was supervised by Bohuslav
Balcar and defended in 2014. We investigate additive properties of measures on P (w) that
are extensions of asymptotic density as defined in [2]. More concretely in Section 2 we
give a necessary and sufficient combinatorial condition for an ultrafilter & on w for the
extension of asymptotic density given by U to satisfy AP (null) or AP (*). In Section 3
we characterize P- and semiselective ultrafilters by a relations between some ideals in an
ultraproduct of measures.

We note that since 2014 there has been made some progress in similar direction of density
measures and additivity properties (see [4]).

1. INTRODUCTION

Let B be a boolean algebra and m : B — [0, 1]. We say that m is

e monotone if m(a) < m (b) whenever a <b € B,
e strictly positive if m (a) = 0 implies that a = 0,
e a measure if m is monotone, m (1) = 1 and m (V,., a;) = >_,_,,m (a;) for every
finite antichain {a;},_, € B,
e o-additive if m is a measure and m (\/,_ ;) = >
{a’i}i<w - B.
If m is a measure on B, then define N'(m) = {a € B : m(a) = 0}. The quotient boolean
algebra B/N (m) carries a unique strictly positive measure that is naturally derived from
m. We will abuse the notation and write B/m for the quotient algebra, m for the unique
induced measure on B/m and [a] for the equivalence class of a € B. The following theorem
is in fact a corollary of a stronger statement from [5] but this version is sufficient for our
purposes. Recall that a boolean algebra B is o-complete if every countable subset of B
has a supremum in B.

i< (a;) for every antichain

Theorem 1.1 (Smith-Tarski [5]). Let m be a measure on a o-complete boolean algebra B.
Then B/m is a c.c.c. complete boolean algebra.

The author was supported by the GACR, project 17-33849L. and RVO: 67985840.
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We use w for the set of natural numbers. We write n for the set {0, 1,....,n — 1} and [r, s]
for the set {n € w:r <n < s} where r,;s € R. Recall that a set A C w has an asymptotic
density if

. |Ann|

lim

n—oo n
exists, and in that case we denote the value of the limit as d (A). We say that a measure m
on P (w) is a density if it extends the asymptotic density, i.e. m (A) = d (A) for every A C w
for which the asymptotic density exists. Note that a density m cannot be g-additive on
P (w) because it has the value 0 on each atom. Since the algebra P (w) /m is o-complete
by Theorem 1.1, it is natural to ask whether the density m is o-additive on P (w) /m.
This question was considered in [2] where the authors define two additive properties for
measures on P (w).

Definition 1.2. [2] A measure m on P (w) satisfies AP (null) if for every inclusion in-
creasing sequence { Ay}, ., of subsets of w there is B C w such that

e lim, ...m(A,) =m(B),
e m(A,\ B) =0 for every n < w.

If we can moreover find such B that also satisfies
o |[A,\ B| <w for everyn < w,

then we say that m satisfies AP (*).

One can easily check that AP (null) is equivalent with the o-additivity of m on P (w) /m.
It is known (see [2]) that there are densities that satisfy AP (null) but there are also
densities that fail to have AP (null). The question about AP (*) is more complicated
since there is a model of ZFC in which no density satisfies AP (*). On the other hand it
is also consistent that densities satisfying AP (*) do exist, for example the existence of a
P-ultrafilter is sufficient.

Definition 1.3. Let U be an ultrafilter on w. Define

|ANn|
n

for every A C w.

We call densities of the form dp, ultrafilter densities. All examples presented in [2] are in
fact ultrafilter densities. The aim of this paper is to give a complete combinatorial char-
acterization of ultrafilters for which the ultrafilter densities satisfy AP (null) or AP (*).
Let us state here the case of AP (null) and postpone the more technical case of AP (*)
until the end of Section 2.

Definition 1.4. We say that an ultrafilter U on w is X-invariant if for all U € U there is
1 < k € w such that
kU = | J [kn, (k+1)n] € U.

nelU
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The following is the main result of this paper and Section 2 is devoted to the proof of
this statement.

Theorem 1.5. Let U be an ultrafilter on w. The following are equivalent

o dy is o-additive on P (w) /dy (i.e. satisfies AP (null)),
e U is not x-invariant.

2. ULTRAFILTER DENSITIES

In this section we present the proof of Theorem 1.5. We start with some general facts
about ultrafilters on w. All ultrafilters considered in this section are non-principal.

Claim 2.1. Let U be a x-invariant ultrafilter (see Definition 1.4). Then for every U € U
there are infinitely many k < w such that

kU = U [kn, (k+1)n] e U.

Proof. Assume that for a given U € U there is some maximal k such that kU € U. Then
there must be some 2 <[ < w such that

LkU) = | [tm, (14 1)m] C | [tkn, (14 1) (k + 1)n] € U.

mekU nel
Because U is an ultrafilter, there must be some p < w such that [k <p < (I+1)(k+1)—1
and pU € U. Now 2k < [k < p contradicts the maximality of k. O

In order to prove our main result we need to investigate which ultrafilters give rise to
the same ultrafilter densities.

Definition 2.2. Let U,V be ultrafilters. We say that U is close to V if for every U € U
and for every e > 0 there is V €V such that

o for all x € U there is y € V' such that max{‘l —5

,|1—%} < €.

-y} <e
)

e for all x € V there isy € U such that max{‘l —5

Claim 2.3. Let U,V be ultrafilters. Then U is close to V if and only if
Uez{x<w:5|n€U max{‘l—E

T

1—£}<6}€V

n

)
for every e > 0.

Proposition 2.4. The relation of being close is an equivalence relation on the set of
ultrafilters.

Proof. Suppose that U is close to V but V is not close to . Then thereisd > 0and V €V
such that V5 € U. Therefore B =w\ Vs € U. Then BsNV = () because if x € BsNV, then
there exists y € B such that max{‘l — % 11— %{} < 0 and also x € V implies y € w\ B.

Claim 2.3 gives us that B; NV = () € V, a contradiction.
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In order to prove that the relation is transitive first notice that

v.=J [n(l—e),ﬁ}.

nelU
Assume now that i is close to V, V is close to W and take U € U. We know that U, € V
and (Uc), € W but

U26—52 = U |:77, (1 - 6)2 s L2:| 2 (U€)e ew.
nelU (1 B 6)
Since € > 0 was arbitrary we see that U is close to W. U

Once we have established Proposition 2.4 we can write that a pair of ultrafilters U,V is
close since the relation U is close to V' is symmetric. Note also that U,V are close if and
only if

{U.:Uel, e>0})={Ve: VeV e>0}),
where (A) denotes the filter generated by A C P (w).
Theorem 2.5. Let U,V be close ultrafilters. Then dy = dy, and U is X-invariant if and
only if V is X -invariant.
Proof. Let A C w and € > 0 be given. Find a set U € U such that
|ANn|
n

<€

dy (A)

holds for every n € U. Since U,V are close, we have that U. € V. Let x € U. and n € U
such that max{‘l — %| 11— %|} < €. We have

|AN x| |ANn|
x n

dy (A) — < |dy (A) ;“ﬂ < 3e

‘|Aﬂn| A
_l’_ J—
n

because if for example n < z, then
|[Ann|  [ANx|
n x

We may conclude that dy (A) = dy (A).
Next suppose that U is x-invariant and let V' € V be given. We know from Claim 2.3

that Vi = {y:EInE V max{‘l—%‘,ﬂ—%‘} < %} € U. Therefore using Claim 2.1

there exists 4 < k < w such that £V, € . We show that there are d > 0 and 3 < b < w
such that

|ANn| nl xr—n
< ‘1——’—1— <e+e<2e
n T T

(kVo)s € | [2n.bn].

neV
Once we have this the proof is finished because (kV;)s € V. We describe how to find § and
3 < b < w. By a simple computation it follows that

=Y ()
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therefore

B 1 (k+1)n
kVa)s = U [k‘n<1—1) (1—5)><1_;)(1_5)]-

nev 4
(k+1)
(1-1)(1-9)

Next we show that close to any given ultrafilter there is a thin ultrafilter. Recall that
an ultrafilter V is thin if

We see that if we choose § < % and b > , we have the desired conclusion. O

. . Fy (n)
f <1 — =
Vey { P E (nt 1) } 0
where F4 (n) is the n-th element of A, i.e. F)4 is the enumerating function of A. Note that
an ultrafilter V is thin if and only if there is a set V' € V such that

n—oo FV (TL ‘I’ 1)

Denote I,, = [27,2"*1) for every n < w.

< 1.

Proposition 2.6. Let U be an ultrafilter. For every e, d > 0 there is a set U € U such that

for everyx <y e U
x x
—<eor —>1-09.
Y )

Proof. Let o : w — {0,1}. Inductively define intervals I2* for k € w as
° [gm =1,,
o for 0 <k <nifa(k—
e for 0 <k <nifa(k
e for k > n put I¢* .=
There exists ay : w — {0, 1} such that for every k € w

1) = 0 put I21* to be the left half of the interval I¢/*=1,
1) = 1 put I2* to be the right half of the interval I¢*=1,

[on

n .

U ™ eu.
new
Let z <y € I°«*. Since ‘Iﬁ“ ”“‘ = 2max{n=h0} we have that
Z > el = el :1—£>1—i.
Yy oon .y [gurk’ 2n + 20—k 2n + 20—k 2k

Finally it is enough to observe that for every £k < w and U there is A C w such that
UneaIn €U and (A+j)NA=0forevery j <k. Ifn<meA zel,andy € I,, then

T 2n+1 2n+1 1

Y < am S on+k S 2k+1'

To finish the proof it is enough to combine the two estimates. U

We use the function oy, that was defined in the proof of Proposition 2.6 for the next
definition.
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Definition 2.7. Let U be an ultrafilter on w. Define the function oy as in the proof of

Proposition 2.6. Let
Ay = U 15
k<w n<w

The ultrafilter G (U) is defined by U € G (U) if
U{]n:lnmUmAu;é@} cu.

Proposition 2.8. Let U be an ultrafilter. Then G (U) is a thin ultrafilter and U, G (U) are
close.

Proof. From the definition it follows that G (i) is a non-principal ultrafilter and we have
lim sup,,_, JAL(’—% < 1. Since Ay € G (U), it follows that G (U) is thin.
U
Let € > 0 and V € G (U) be given. We may assume that V' C Ay. Find k < w such that

max{ 1—-Z
Y

, ‘1 — %’} < e for every n < w and every z,y € I%'*. Then

V.oUu=J{*:vnr*£0} eu.
O

Corollary 2.9. Let U be an ultrafilter. Then dy = dgy and U is x-invariant if and only
if G (U) is x-invariant.

The last ingredient needed for the proof of Theorem 1.5 is the ultraproduct of measures.
Let us define for a non-principal ultrafilter ¢/ a measure my on the set [, . P (n) by

putting
my (f) = U- lim L0l (n)]7

n—o00 n
i.e. we are taking the measure ultraproduct of the sequence (P (n)),_., where each P (n)
is endowed with the normalized counting measure. Next we consider the embedding
e: P(w) = [l,e, P (n) defined for A C w as e(A) (n) = ANn. Immediately from the
definitions we have my, (e (A)) = dy (A). Therefore the embedding e lifts to the quotients,
ie.

e: P(w) /dy — HP(n) Jmy.
new

It is well-known that the measure my on [[ _ P (n) /my is o-additive (see [3]).

new

Proposition 2.10. Let U be a thin ultrafilter. Then the density dy is o-additive if and
only if the embedding e is isomorphism.

Proof. Let f € [[,e, P (n) and € > 0 be given. We show that there is A C w such that
|my (e (A) Af)| < e. Because U is thin, there is U € U such that
Fy (n)

— < €.
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We define
A= U ([FU(n)y FU(n+1)] nf (FU (n + 1))) .

n<w

We have for every n < w that

(e(A) (Fy (n+ V) A (Fy(n+ D) o Fu(n)
< €.
This implies that e (P (w) /dy) is dense in [, ., P (n) /my, therefore dyy is o-additive if
and only if e is surjective. [l

We are now ready to prove our main result.

Proof of Theorem 1.5. Assume first that U is thin and not x-invariant. We show that e is
onto. Let f €[], ., P (n). We find A C w such that [my (e (A) Af)| = 0. Let U € U such
that for every 3 < k < w is

U = (w\ U [2n,lm]) NnU el

nelU

and FI;‘(Jéi)l) < % Define

A=J (Fv(n), Fy (n+ 1)) N f (Fy (n+1))).
n<w
Let m € Uy. Choose the largest n € U such that n < m. Then by definition of U we have
that ™ < % Note that m € U. Therefore by the definition of A we have the estimate
e(A) m)Afm)| _n 1

<
m ~—m Ok’

and the claim follows.
Assume on the other hand that U is thin and x-invariant. There is a decreasing sequence

{Uk},<., € U such that Fu, (n) 2“1 Define

Fir (n41)
n n
4= U [zkﬂ’?]'

neUy,

We have dyy (Ay) < 5. Assume that there is A C w such that dy (4, \ A) = 0 and

2k
dy (A) < % for every 3 < k < w, i.e. A is a candidate for the upper bound of the sequence

{Ac}spey, Let U= {n : M—Q”' < %} There must be 16 <[ < w such that

W= Jln(+1)n eu.
nelU
Consider now the smallest k < w such that { +1 < 2¥. Define V = U, N W € U. Since for
n € V there is m € U such that Im <n < (I+1)m < 2"m and [Qkﬂ, e 1} C A1 UA,;,
we have n m n

ok+1 = 9 m < ok—1"
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Therefore [%, m} C A;_1UA,. Since m € U, we must have

|[Anm| 1
< o)
m 8
and therefore 5
m m
= <
‘[2 ’m] \A‘ =73
Finally we can conclude that
|((Ak_1UAk)\A)ﬂn| > 3_m > 3
n 8 ~ 8(l+1)

for n € V. This is a contradiction with the properties of A. We conclude that there is no
upper bound for {A},_,_, such that its measure is less than %, consequently d;; is not
o-additive. O

Corollary 2.11 ([2]). LetU be an ultrafilter that contains a thin set, i.e. a set A such that

lim,, o0 Ff?T% = 0. Then dy satisfies AP (null).

An example of an ultrafilter U such that dy; does not satisfy AP (null) was presented in
2] (the construction is due to Fremlin).

Our aim is now to characterize those ultrafilters U such that dy, satisfies AP (*). For
that we need the following observation. Recall that an ultrafilter U is a P-ultrafilter if
every decresaing sequence {U;}, . C U has a pseudointersection U € U,

Proposition 2.12 ([2]). Let U be an ultrafilter that contains a thin set. Then dy has
AP (*) if and only if U is a P-ultrafilter.

Claim 2.13. Let U be a thin P-ultrafilter. Then U contains a thin set.

FUk (TL)
Take the pseudointersection U of {Uy}, . Then for every k < w there is ng < w such that
for every n > ng

Proof. Let {Uy}, ., €U be a decreasing sequence such that < % for every k < w.

FU(’fl) 1
Foint1) &k

Proposition 2.14. Let U be an ultrafilter. Then the following are equivalent

o G (U) is a P-ultrafilter,

e dy has AP (*).
Proof. Assume that G (i) is a P-ultrafilter. By the Claim 2.13 it must contain a thin set
and by Proposition 2.13 d, has AP (*).

Assume that d; has AP (*). Again by Proposition 2.13 it is enough to show that G (i)
contains a thin set. Fix a decreasing sequence of {U},_, € G (U) such that
FUk (n) < 1
Fy,(n+1) k+1
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A = U [g,n}

neUy

and define

One can easily verify that {A;},_ is a decreasing sequence such that limy_,o dyy (Ax) = %

By the property AP (*) there is a set A C w such that |4\ 4;| < w and dy (A) = § (here

we use the property AP (*) for decreasing rather than increasing sequences). Define
U:{neng [gn} mA;é(Z)}.

We must show that U € G ({) and U is thin. Assume that U € G (U). Then U;\U € G (U).
For n € Us \ U we have

|Ann| 1

< R

n 4
which is a contradiction with dy (A) = % To prove that U is thin it is enough to observe
that |A\ Ax| < w implies |U \ Uy| < w. O

Definition 2.15. We say that ultrafilter U is close to a P-ultrafilter if for every decreasing
sequence {Uy}pcny © U and every € > 0 there is U € U such that (U \ (Uy),| < w for all
k e N.

Note that the ambiguity in the Definition 2.15 with respect to the Definition 2.2 is
justified by the following claims. It follows that if I/ is close to a P-ultrafilter, then we can
find a P-ultrafilter V such that U is close to V), in particular we can take V = G (U).

Claim 2.16. Let U be thin and close to a P-ultrafilter. Then U is a P-ultrafilter.

FUO (T'L)
FUO (n+1)
pseudointersection U of {(U;C) ;} . We claim that V' = UNUj is a pseudointersection of

4) k<w

{Uk}y<,- To see this fix & < w. We know that there is some m such that U \ m C (Uy),.
Let z € Uy N (U \ m). There is y € (Uy): such that max{‘l - %‘ 1= %‘} < 1. Note

Proof. Let {Uy}, .., € U be a decreasing sequence and assume that < % Find a

1
that y € Uy because the sequence is decreasing. From the properties of Uy we have that
x = y. This implies that V' \ m C Uy which finishes the proof. ]

Claim 2.17. Let U,V be close ultrafilters. Then U is close to a P-ultrafilter if and only if
V s close to a P-ultrafilter.

Proof. Assume that U,V are close and U is close to a P-ultrafilter. Let {Vi},_, €V and
e > 0 are given. Choose dy, d1,d2 > 0 such that 1 —e < (1 —dp) (1 — d1) (1 — d2). Then by
simple computation we have for every A C w

(43)3),, = U [0 - =) 0= ),

neA

n

(=00 (1—o)(1—3y)] <

U |a-amgtg] =

neA
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Because U,V are close, we have {<Vk>6o} C U. By the assumption on U there is a

k<w
pseudointersection V' of {((Vk) 50) 51} . One can easily check that Vj, is a pseudointersec-
k<w

o).

So Vs, is also a pseudointersection of {(Vi) }, ., € V.

. Since U,V are close, Vs, € V and {<((Vk)5o)61>5 } c V.

k<w
Theorem 2.18. An ultrafilter U is close to a P-ultrafilter if and only if dyy has AP (*).

Proof. Combine Proposition 2.14, Claim 2.16 and Claim 2.17. U

Corollary 2.19. There is a P-ultrafilter if and only if there exists ultrafilter density that
satisfies AP (*).

Question 2.20. Does the existence of a density that satisfies AP (*) imply the existence
of a P-ultrafilter?

3. ULTRAPRODUCTS

In the last section we show how certain special properties of ultrafilters may affect prop-
erties of some ideals in the measure ultraproduct. Recall that for a sequence (B;,m;),_,, of
o-complete boolean algebras with measures (not necessarily strictly positive or g-additive)
and for U an ultrafilter on w we define the ultraproduct measure my on [[._. B; as

my (f) = U-limm; (f (2))

i<w

for fel,., Bi

There are several natural ideals that one may assign to the product. In order to keep the
presentation as straightforward as possible we make the assumption that (B;, m;) = (B, m)
for every ¢+ < w where B is a o-complete boolean algebra with a measure m. Given an
ultrafilter U on w we define

o Ny={fe€B”:my(f)=0},

o Z={feB:lim,m(f(i)) =0},

e My={feBY:{i:m(f(i)) =0} e},
o Iy = {fGB” : /\Ueuvz‘eUf(w}‘

We summarize basic relations between these ideals.

Proposition 3.1. Let (B, m) be a o-complete boolean algebra with a o-additive and strictly
positive measure. Then Z, My C Ny and My C Iy C Ny.

Proof. The only case that does not follow immediately from the definitions is Z;y C MNy.
Let f & Ny. Then

5Ié£m<\/f(i)>:c>0.

icU
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Take a decreasing sequence {Uy},_, € U such that
lim m 1) | =
€Uy

Since the sequence {\/ZeUk (z)} heo 18 also decreasing there must be some b € B such

that b < V., f (i) for every k < w and m (b) = c¢. We show that d <V, f (i)
for every U € U, this finishes the proof. Assume that there is some U € U such that
bZ V,cy f (i) =a. Then m (b\ a) = € > 0 and therefore

kh_)ng(}m( \/ fG )—c—e
eUpNU

which is a contradiction. O

Let U be a non-principal ultrafilter on w. We say that U is

of positive real numbers such that - lim,, . a,, =
a, < 00.

e semi-selective if for every {a,}
0 there is U € U such that )

nw

nelU

Theorem 3.2. Let (B, m) be a o-complete infinite boolean algebra with a o-additive strictly
positive measure and U an ultrafilter on w. Then the following hold

e U is a P-ultrafilter if and only if Ny =Z+ My ={fVg:f€Z, ge My},
o U is semi-selective if and only if Ty = Ny.

Proof. To prove the first claim notice that it is enough for each f € Ny, find a set U € U
such that lim;epy m (f (7)) = 0. Under the assumption that B is infinite, this is possible if
and only if U is P-ultrafilter.

Let U be a semi-selective ultrafilter and f € Ny. Then there is U € U such that
Y icom (f (1)) < oo and therefore

AV fG
n<w ie(U\n)

of positive real numbers
<w — B
is independent (see for example [1]). We have for every

Let U be not semi-selective. There must be a sequence {a;},_,
such that ¢/-lima; = 0 and for every U € U is ) ., a; = co. Take a sequence {b;},
such that m (b;) = a; and {b;}
U € U that

<w

m(l—\/f(i)> =m</\(1—f(i))) =[Ima-rw=o

Therefore \/,; f (1) =1 and f € Ny \ Zu. O
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