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Introduction

This text is intended to serve as some sort of lecture notes for a series of lectures given by the
author at the Department of Mathematics of the University of Pavia in May, 2003, originally
planned for 2001. The idea at that time was to make an introduction into mathematical meth-
ods of modeling and analysis of both continuous and discontinuous rate-independent hysteresis
phenomena. It seemed natural to describe the evolution of hysteresis systems in the space
G(a, b ; X) of the so-called regulated functions of one real variable t ∈ [a, b] with values in a
Banach or Hilbert space X , that is, functions which at each point of their domain of defini-
tion admit both (possibly different) one-sided limits. It turned out in the meantime that the
preparatory material on the three main ingredients of the theory, namely convergence concepts
in G(a, b ; X) , the Kurzweil integral, and regulated evolution variational inequalities, became
an organized system which brings some new aspects into the analysis of discontinuous processes
in general and deserves perhaps independent attention. In particular, the rich topological struc-
ture of the space G(a, b ; X) is of interest and might find applications also outside the classical
theory of hysteresis.

This is why the reader will actually find little about hysteresis here, also because a certain
number of monographs devoted exclusively to the mathematics of hysteresis is already avail-
able, for instance [12, 20, 22, 38]. In all these monographs, solution operators of variational
inequalities play a central role, although their variational structure remains sometimes hidden
under equivalent explicit representations in the scalar-valued situation, but main emphasis is
put on applications in hysteresis modeling. Instead, this survey, based substantially on recent
results obtained jointly with M. Brokate, J. Kurzweil, and Ph. Laurençot, focuses on the nec-
essary background for the Kurzweil integral formulation of evolution variational inequalities
which has been somewhat neglected so far.

The notes are divided into seven sections. Section 1 is devoted to an introduction into the
Kurzweil integration including a new generalized variant of the Kurzweil integral (the KN -
integral) which will be used throughout the text. In Section 2 we derive some basic properties
of regulated functions and of the space G(a, b ; X) , and list classical results on integration
of regulated functions. Before we continue with the investigation of oscillatory properties of
regulated functions and pointwise convergence in Section 4, we insert Section 3 containing the
formulation and first results on regulated variational inequalities which constitute an essential
step in the proof of equivalence of oscillation criteria. A detailed discussion about the relation-
ship between various convergence concepts in G(a, b ; X) is the topic of Section 5. In Section
6 we apply the above methods to proving the existence of a solution to a rather general qua-
sivariational inequality and show that the solution is not unique in general. Uniqueness and
continuous data dependence is obtained under additional smoothness assumptions. The last
Section is an Appendix collecting some basic concepts from convex analysis in Hilbert spaces,
in particular special properties of the Minkowski functional.

The author wishes to acknowledge gratefully the generous hospitality of the Department of
Mathematics of the Pavia University, as well as the friendly and creative atmosphere there.
Special thanks are expressed to Pierluigi Colli and Gianni Gilardi who inspired this work.
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1 The Kurzweil integral

The first section is devoted to a brief overview of the Kurzweil integration theory including also
some more recent specific results motivated by evolution (quasi-)variational inequalities.

1.1 Gauges and partitions

We consider a nondegenerate compact interval [a, b] ⊂ R , and denote by Da,b the set of all
divisions of the form

d = {t0, . . . , tm} , a = t0 < t1 < · · · < tm = b . (1.1)

With a division a = t0 < t1 < · · · < tm = b of the interval [a, b] we associate partitions D
defined as

D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} ; τj ∈ [tj−1, tj] ∀j = 1, . . . ,m . (1.2)

The basic concept in the Kurzweil integration theory, namely in its original version introduced
in [27] which we call below the K -integral , as well as in its generalizations (the K∗ -integral
defined in [31] and the KN -integral proposed in [23]), is that of a δ -fine partition. We define
the set

Γ(a, b) := {δ : [a, b] → R ; δ(t) > 0 for every t ∈ [a, b]} . (1.3)

An element δ ∈ Γ(a, b) is called a gauge. For t ∈ [a, b] and δ ∈ Γ(a, b) we denote

Iδ(t) := ]t− δ(t), t + δ(t)[ . (1.4)

Definition 1.1 Let δ ∈ Γ(a, b) be a given gauge. A partition D of the form (1.2) is said to
be δ -fine if for every j = 1, . . . , m we have

τj ∈ [tj−1, tj] ⊂ Iδ(τj) . (1.5)

If moreover a δ -fine partition D satisfies the implications

τj = tj−1 ⇒ j = 1 , τj = tj ⇒ j = m, (1.6)

then it is called a δ -fine* partition.

The set of all δ -fine (δ -fine*) partitions is denoted by Fδ(a, b) (F∗δ(a, b) , respectively).

We have indeed F∗δ(a, b) ⊂ Fδ(a, b) . The next lemma (often referred to as Cousin’s Lemma)
implies in particular that these sets are nonempty for every δ ∈ Γ(a, b) .

Lemma 1.2 Let δ ∈ Γ(a, b) and a dense subset Ω ⊂ ]a, b[ be given. Then there exists
D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} ∈ F∗δ(a, b) such that tj ∈ Ω for every j = 1, . . . ,m− 1 .
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Proof. We have [a, b] ⊂ ∪t∈[a,b]Iδ(t) , hence there exists a finite covering

[a, b] ⊂
m⋃

j=1

Iδ(τj) , a ≤ τ1 ≤ · · · ≤ τm ≤ b . (1.7)

The inclusion remains valid if we eliminate all intervals Iδ(τj) for which there exists k 6= j ,
Iδ(τj) ⊂ Iδ(τk) . We claim that then we have

min{τj+1, τj + δ(τj)} > max{τj, τj+1 − δ(τj+1)} (1.8)

for every j = 1, . . . , m − 1 . Indeed, we obviously have τj+1 > τj , since otherwise Iδ(τj+1) ⊂
Iδ(τj) or Iδ(τj) ⊂ Iδ(τj+1) according to whether δ(τj+1) ≤ δ(τj) or δ(τj+1) ≥ δ(τj) . Assume
now that for some j we have

min{τj+1, τj + δ(τj)} ≤ max{τj, τj+1 − δ(τj+1)} .

Then τj+1 > τj+1 − δ(τj+1) ≥ τj + δ(τj) > τj , hence the points τj + δ(τj) , τj+1 − δ(τj+1)
do not belong to Iδ(τj) ∪ Iδ(τj+1) . Then there exists necessarily either k < j such that
τj + δ(τj) ∈ Iδ(τk) , hence Iδ(τj) ⊂ Iδ(τk) , or k > j +1 such that τj+1− δ(τj+1) ∈ Iδ(τk) , hence
Iδ(τj+1) ⊂ Iδ(τk) , which is a contradiction. Inequality (1.8) is thus verified and we may choose
arbitrarily

tj ∈
]
max{τj, τj+1 − δ(τj+1)} , min{τj+1, τj + δ(τj)}

[
∩ Ω , j = 1, . . . , m− 1 ,

t0 := a , tm := b , and the assertion immediately follows. ¥

The advantage of the Kurzweil integration is based on the following property of δ -fine partitions
which enables us to control the position of the ‘tags’ τj .

Lemma 1.3 Let U ⊂ [a, b] be a finite set and let δ ∈ Γ(a, b) be a gauge such that

δ(t) ≤ dist (t, U \ {t}) for every t ∈ [a, b] . (1.9)

Then for every partition D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} ∈ Fδ(a, b) we have U ⊂ ∪m
j=1{τj}

and for every τj ∈ ∪m
j=1{τj} \ U we have [tj−1, tj] ∩ U = ∅ .

Proof. For every τj ∈ ∪m
j=1{τj} \ U we have δ(τj) ≤ dist (τj, U) , hence Iδ(τj) ∩ U = ∅ . On

the other hand, for every u ∈ U there exists i such that u ∈ [ti−1, ti] , hence u = τi . ¥

1.2 Definition of Kurzweil integrals

Having in mind applications to variational inequalities, we introduce the scalar Kurzweil integral
for functions with values in a separable Hilbert space X endowed with a scalar product 〈·, ·〉
and norm |x| =

√
〈x, x〉 for x ∈ X . For more general couplings we refer the reader to [32].

For given functions f, g : [a, b] → X and a partition D of the form (1.2) we define the Kurzweil
integral sum KD(f, g) by the formula

KD(f, g) =
m∑

j=1

〈f(τj), g(tj)− g(tj−1)〉 . (1.10)
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Definition 1.4 Let f, g : [a, b] → X be given. We say that J ∈ R (J∗ ∈ R) is the K -integral
(K∗ -integral, respectively) over [a, b] of f with respect to g and denote

J = (K)

∫ b

a

〈f(t), dg(t)〉 ,

(
J∗ = (K∗)

∫ b

a

〈f(t), dg(t)〉 , respectively

)
, (1.11)

if for every ε > 0 there exists δ ∈ Γ(a, b) such that for every D ∈ Fδ(a, b) (D∗ ∈ F∗δ(a, b) ,
respectively) we have

|J − KD(f, g)| ≤ ε ,
(
|J∗ − KD∗(f, g)| ≤ ε , respectively

)
. (1.12)

Using the fact that the implication

δ ≤ min{δ1 , δ2} ⇒
{ F∗δ(a, b) ⊂ F∗δ1(a, b) ∩ F∗δ2(a, b) ,

Fδ(a, b) ⊂ Fδ1(a, b) ∩ Fδ2(a, b)
(1.13)

holds for every δ , δ1 , δ2 ∈ Γ(a, b) , we easily check that the values J , J∗ in Definition 1.4
are uniquely determined. Since F∗δ(a, b) ⊂ Fδ(a, b) for every gauge δ , we also see that if

(K)
∫ b

a
〈f(t), dg(t)〉 exists, then (K∗)

∫ b

a
〈f(t), dg(t)〉 exists and both are equal. To illustrate

the difference between the integrals (K) and (K∗) , we prove the following easy Lemma. For
a subset B ⊂ [a, b] we denote by χB the characteristic function of B , that is, χB (t) = 1 for
t ∈ B , χB (t) = 0 for t ∈ [a, b] \B .

Lemma 1.5 Let g : [a, b] → X and a vector v ∈ X be given. Then (K)
∫ b

a

〈
v χ{a} (t), dg(t)

〉
exists if and only if limt→a+ 〈v, g(t)〉 =: 〈v, g〉 (a+) exists and we have

(K)

∫ b

a

〈
v χ{a} (t), dg(t)

〉
= 〈v, g〉 (a+)− 〈v, g(a)〉 . (1.14)

Proof. Assume first that the integral on the left-hand side of (1.14) exists and equals J , and
consider an arbitrary ε > 0 , We find δ ∈ Γ(a, b) such that for every D ∈ Fδ(a, b) we have

∣∣KD(v χ{a} , g)− J
∣∣ < ε , (1.15)

and put η = min{δ(a), b − a} . Let t̂ ∈ ]a, a + η[ be arbitrary. By Lemma 1.2 we con-
struct an arbitrary partition D̂ ∈ F∗δ(t̂, b) , D̂ = {(τj, [tj−1, tj]) ; j = 1, . . . , m} . The parti-

tion D = {(a, [a, t̂])} ∪ D̂ belongs to Fδ(a, b) , and (1.15) yields that
∣∣KD(v χ{a} , g)− J

∣∣ =

| 〈v, g(t̂)− g(a)
〉− J | < ε , hence 〈v, g〉 (a+) = 〈v, g(a)〉+ J .

Conversely, let 〈v, g〉 (a+) exist and let ε > 0 be arbitrary. We find δ0 > 0 such that t− a <
δ0 ⇒ | 〈v, g(t)〉 − 〈v, g〉 (a+)| < ε for t ∈ ]a, b] , and put δ(a) = δ0 , δ(t) = t− a for t ∈ ]a, b] .
For an arbitrary D ∈ Fδ(a, b) , D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} we have by Lemma 1.3 that
τ1 = t0 = a , t1 < a + δ0 , KD(v χ{a} , g) = 〈v, g(t1)− g(a)〉 , and the assertion follows. ¥

The following example shows that Lemma 1.5 does not hold for the K∗ -integral.
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Example 1.6 Consider a sequence sk ↘ a as k →∞ and the function

g(t) =
∞∑

k=1

v χ{sk} (t) for t ∈ [a, b] , (1.16)

with some v ∈ X , v 6= 0, and put

δ(t) =





1 for t = a ,

min{|t− s`| ; ` ∈ N \ {k}} for t = sk , k ∈ N ,

min{|t− s`| ; ` ∈ N} for t 6= a , t 6= sk .

(1.17)

Let D ∈ F∗δ(a, b) , D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} be an arbitrary partition. Arguing as
in Lemma 1.3 we obtain that τ1 = t0 = a . Moreover, as D belongs to F∗δ(a, b) , we have
t1 6= τ2 . Assuming that t1 = sk for some k ∈ N we may use again the argument of Lemma
1.3 and conclude that |τ2 − t1| < δ(τ2) ≤ |τ2 − sk| which is a contradiction. We therefore

have g(t1) = 0, hence KD(v χ{a} , g) = 0. We thus proved that (K∗)
∫ b

a

〈
v χ{a} (t), dg(t)

〉
= 0,

although 〈v, g〉 (a+) does not exist. We see in particular that (K)
∫ b

a

〈
v χ{a} (t), dg(t)

〉
does

not exist.

For our purposes, it is necessary to extend the notion of the Kurzweil integral beyond K∗ by
reducing further the sets of admissible partitions. We fix a system N of subsets of [a, b] with
the following properties:

[a, b] \ A = [a, b] ∀A ∈ N , (1.18)

A,B ∈ N ⇒ A ∪B ∈ N . (1.19)

Elements of N will be called negligible sets . Typically, N can be for instance the system of all
countable subsets or the system of all subsets of Lebesgue measure zero in [a, b] .

Definition 1.7 Let N be a system of negligible sets in [a, b] , let δ ∈ Γ(a, b) be a given gauge,
and let A ∈ N be a given set. A partition D of the form (1.2) is said to be (δ, A) -fine if it is
δ -fine* and

tj ∈ [a, b] \ A ∀j = 1, . . . , m− 1 . (1.20)

The set of all (δ, A) -fine partitions is denoted by Fδ,A(a, b) .

Definition 1.8 Let a system N of negligible sets and f, g : [a, b] → X be given. We say that
J ∈ R is the KN -integral over [a, b] of f with respect to g and denote

J = (KN)

∫ b

a

〈f(t), dg(t)〉 , (1.21)

if for every ε > 0 there exist δ ∈ Γ(a, b) and A ∈ N such that for every D ∈ Fδ,A(a, b) we
have

|J − KD(f, g)| ≤ ε . (1.22)
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The definition is again meaningful. Note first that the set Fδ,A(a, b) is nonempty for every
δ ∈ Γ(a, b) and every A ∈ N by Lemma 1.2. Furthermore, if J satisfying (1.22) exists, then
it is unique. Indeed, assume that there exist J1 6= J2 such that for every ε > 0 there exist
δ1, δ2 ∈ Γ(a, b) and A1, A2 ∈ N such that for each Di ∈ Fδi,Ai

(a, b) , i = 1, 2 , we have

|Ji − KDi
(f, g)| ≤ ε . (1.23)

Choosing ε < |J1 − J2|/2 and putting δ = min{δ1, δ2} , A = A1 ∪ A2 we may choose any
D ∈ Fδ,A(a, b) . Then D ∈ Fδ1,A1(a, b) ∩Fδ2,A2(a, b) , hence |Ji − KD(f, g)| ≤ ε for i = 1, 2 ,
which is a contradiction.

Obviously, if (K∗)
∫ b

a
〈f(t), dg(t)〉 exists, then (KN)

∫ b

a
〈f(t), dg(t)〉 exists and both integrals

are equal. In the trivial case N = {∅} , the KN -integral and the K∗ -integral coincide. Note also
the result of [23] showing that it suffices to exclude all countable subsets of [a, b] as negligible
sets, and the Young integral (which we do not introduce here) becomes a special case of the
KN -integral.

The main difference between the integrals (K∗) and (KN) consists in the following property.

Lemma 1.9 Let N be a system of negligible sets, and let A ∈ N and f, g : [a, b] → X be
such that g(t) = 0 for every t ∈ [a, b] \ A . Then we have

(KN)

∫ b

a

〈f(t), dg(t)〉 = 〈f(b), g(b)〉 − 〈f(a), g(a)〉 . (1.24)

The proof of Lemma 1.9 is obvious. Taking any δ ∈ Γ(a, b) such that δ(t) ≤ min{t− a, b− t}
for t ∈ ]a, b[ , we obtain KD(f, g) = 〈f(b), g(b)〉 − 〈f(a), g(a)〉 for all D ∈ Fδ,A(a, b) .

The identity (1.24) does not hold for the K∗ -integral even if f is continuous and g regulated.
The construction of the counterexample is however rather technical and details can be found
in [25]. On the other hand, we have the following result which shows that all aforementioned
Kurzweil-type integrals coincide if the function g is continuous.

Proposition 1.10 Let f, g : [a, b] → X be such that (KN)
∫ b

a
〈f(t), dg(t)〉 = J exists for

some choice of N , and let g be continuous in [a, b] . Then (K)
∫ b

a
〈f(t), dg(t)〉 exists and

equals J .

The proof of Proposition 1.10 is based on the following two auxiliary results. For a finite set
S , we denote by #S the number of its elements.

Lemma 1.11 Let δ ∈ Γ(a, b) be a gauge, and let D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} ∈ Fδ(a, b)
be an arbitrary partition. Let R(D) denote the set of all partitions

D′ = {(τ ′i , [t′i−1, t
′
i]) ; i = 1, . . . , m′} ∈ Fδ(a, b) (1.25)

such that

m′⋃
i=1

{τ ′i} =
m⋃

j=1

{τj} , (1.26)

m′⋃
i=0

{t′i} ⊂
m⋃

j=1

{tj} . (1.27)
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For D′ ∈ R(D) of the form (1.25) set

µ(D′) = #{i = 1, . . . , m′ − 1 ; τ ′i = τ ′i+1} , (1.28)

and assume that µ(D′) > 0 . Then there exists D′′ ∈ R(D) such that µ(D′′) = µ(D′)− 1 , and
for every f, g : [a, b] → X we have KD′′(f, g) = KD′(f, g) .

Proof of Lemma 1.11. Assume that τ ′i = τ ′i+1 for some i = 1, . . . , m′ − 1 . It suffices to put

τ ′′k =

{
τ ′k for k = 1, . . . , i ,

τ ′k+1 for k = i + 1, . . . ,m′ − 1 ,
(1.29)

t′′k =

{
t′k for k = 1, . . . , i− 1 ,

t′k+1 for k = i, . . . , m′ − 1 .
(1.30)

We have by hypothesis τ ′i = τ ′i+1 = t′i and [t′i−1, t
′
i+1] = [t′i−1, t

′
i] ∪ [t′i, t

′
i−1] ⊂ Iδ(τ

′
i) , hence

D′′ = {(τ ′′k , [t′′k−1, t
′′
k]) ; k = 1, . . . ,m′− 1} belongs to Fδ(a, b) , and therefore also to R(D) . For

every f, g : [a, b] → X we have

m′∑

k=1

〈
f(τ ′k), g(t′k)− g(t′k−1)

〉
=

i−1∑

k=1

〈
f(τ ′k), g(t′k)− g(t′k−1)

〉
+

〈
f(τ ′i), g(t′i+1)− g(t′i−1)

〉

+
m′−1∑

k=i+1

〈
f(τ ′k+1), g(t′k+1)− g(t′k)

〉

=
m′−1∑

k=1

〈
f(τ ′′k ), g(t′′k)− g(t′′k−1)

〉
,

and Lemma 1.11 is proved. ¥

Lemma 1.12 Let N be any system of negligible sets, and let δ ∈ Γ(a, b) , A ∈ N , and
D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} ∈ Fδ(a, b) be given. Assume that

τj < τj+1 ∀ j = 1, . . . , m− 1 . (1.31)

Then for every η > 0 there exists Dη = {(τj, [t
∗
j−1, t

∗
j ]) ; j = 1, . . . , m} ∈ Fδ,A(a, b) such that

|tj − t∗j | < η ∀ j = 0, . . . , m . (1.32)

Proof of Lemma 1.12. Put t∗0 = t0 = a , t∗m = tm = b . For every j = 1, . . . , m− 1 we have

tj ∈ [τj, τj+1]∩ ]τj+1 − δ(τj+1), τj + δ(τj)[

by virtue of (1.5), hence for every η > 0 and every j = 1, . . . , m− 1 , the set

Kη
j = ]τj, τj+1[ ∩ ]τj+1 − δ(τj+1), τj + δ(τj)[ ∩ ]tj − η, tj + η[ (1.33)

is a nondegenerate open interval. We obtain the assertion by choosing arbitrarily t∗j ∈ Kη
j \ A

for j = 1, . . . , m− 1 . ¥
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We are now ready to prove Proposition 1.10.

Proof of Proposition 1.10. Let ε > 0 be given. We find δ ∈ Γ(a, b) and A ∈ N such that for
every D̃ ∈ Fδ,A(a, b) we have

|KD̃(f, g) − J | ≤ ε

2
. (1.34)

Let D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} ∈ Fδ(a, b) be arbitrary. We claim that

|KD(f, g) − J | ≤ ε . (1.35)

To check that (1.35) holds, we use Lemma 1.11 and find D′ ∈ R(D) of the form (1.25) such
that µ(D′) = 0 and

KD′(f, g) = KD(f, g) . (1.36)

Let now η > 0 be such that the implication

|t− s| < η ⇒ |g(t)− g(s)|
m′∑
i=1

|f(τ ′i)| ≤
ε

4
(1.37)

holds for every t, s ∈ [a, b] . By Lemma 1.12 we find Dη = {(τ ′i , [t∗i−1, t
∗
i ]) ; i = 1, . . . , m′} ∈

Fδ,A(a, b) such that |t′i − t∗i | < η for all i = 1, . . . , m′ . Then (1.37) yields

|KDη(f, g)−KD′(f, g)| =

∣∣∣∣∣
m′∑
i=1

〈
f(τ ′i), g(t′i)− g(t′i−1)− g(t∗i ) + g(t∗i−1)

〉
∣∣∣∣∣ ≤

ε

2
. (1.38)

On the other hand, by (1.34) we have that

|KDη(f, g) − J | ≤ ε

2
. (1.39)

Combining (1.38) with (1.39) and (1.36) we obtain (1.35), and Proposition 1.10 follows. ¥

1.3 Basic properties

The integrals (K), (K∗), (KN) are linear with respect to both functions f and g . For the sake
of completeness, we state this easy result explicitly.

Proposition 1.13 Let
∫ b

a
〈f(t), dg(t)〉 denote one of the integrals (K), (K∗) , or (KN) .

(i) Let
∫ b

a
〈f1(t), dg(t)〉 , ∫ b

a
〈f2(t), dg(t)〉 exist. Then we have

∫ b

a

〈(f1 + f2)(t), dg(t)〉 =

∫ b

a

〈f1(t), dg(t)〉 +

∫ b

a

〈f2(t), dg(t)〉 . (1.40)

(ii) Let
∫ b

a
〈f(t), dg1(t)〉 ,

∫ b

a
〈f(t), dg2(t)〉 exist. Then we have

∫ b

a

〈f(t), d(g1 + g2)(t)〉 =

∫ b

a

〈f(t), dg1(t)〉 +

∫ b

a

〈f(t), dg2(t)〉 . (1.41)
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(iii) Let
∫ b

a
〈f(t), dg(t)〉 exist. Then for every constant λ ∈ R we have

∫ b

a

〈λf(t), dg(t)〉 =

∫ b

a

〈f(t), d(λg)(t)〉 = λ

∫ b

a

〈f(t), dg(t)〉 . (1.42)

Proof. Let us consider for instance the KN -integral with any system N of negligible sets, and
let ε > 0 be given. We find δ1 , δ2 ∈ Γ(a, b) and A1, A2 ∈ N such that for all Di ∈ Fδi,Ai

(a, b) ,
i = 1, 2 we have ∣∣∣∣(KN)

∫ b

a

〈fi(t), dg(t)〉 − KDi
(fi, g)

∣∣∣∣ <
ε

2
.

Put δ = min{δ1 , δ2} , A = A1 ∪ A2 . From the implication (1.13) we infer that for every
D ∈ Fδ,A(a, b) we have

∣∣∣∣(KN)

∫ b

a

〈f1(t), dg(t)〉 + (KN)

∫ b

a

〈f2(t), dg(t)〉 − KD(f1 + f2, g)

∣∣∣∣ < ε ,

and (1.40) follows. The same argument applies to the case (ii), while (iii) is trivial. ¥

In order to analyze the behaviour of the Kurzweil integral with respect to the variation of the
integration domain in Proposition 1.15 below, we derive the following Bolzano-Cauchy-type
characterization analogous to [32, Proposition 7]. Indeed, corresponding statements hold for
the integrals (K) and (K∗) , too.

Lemma 1.14 Let N be a system of negligible sets in [a, b] , and let f, g : [a, b] → X be given

functions. Then (KN)
∫ b

a
〈f(t), dg(t)〉 exists if and only if

∀ε > 0 ∃δ ∈ Γ(a, b) ∃A ∈ N ∀D, D′ ∈ Fδ,A(a, b) : |KD(f, g)−KD′(f, g)| ≤ ε . (1.43)

Proof. If (KN)
∫ b

a
〈f(t), dg(t)〉 exists, then (1.43) trivially holds. Conversely, assume that

(1.43) is satisfied. We find δ0 ∈ Γ(a, b) and A0 ∈ N such that (1.43) holds with ε = 1. For
each n ∈ N we construct by induction δn ∈ Γ(a, b) , δn ≤ δn−1 , and An ∈ N , An ⊃ An−1 such
that for all D,D′ ∈ Fδn,An(a, b) we have

|KD(f, g)−KD′(f, g)| ≤ 2−n . (1.44)

We fix some Dn ∈ Fδn,An(a, b) for each n ∈ N , and set Jn = KDn(f, g) . For all m ≥ n we
have by (1.44) that |Jn − Jm| ≤ 2−n , hence {Jn} is a Cauchy sequence, Jn → J as n →∞ .

Let now ε > 0 be given. We fix n ∈ N such that 2−n ≤ ε , and put δ = δn , A = An . From
(1.44) it follows that |KD(f, g) − Jm| ≤ ε for all D ∈ Fδ,A(a, b) and all m ≥ n , and letting

m →∞ we obtain J = (KN)
∫ b

a
〈f(t), dg(t)〉 , which we wanted to prove. ¥

Proposition 1.15 Let
∫ b

a
〈f(t), dg(t)〉 denote one of the integrals (K), (K∗) , or (KN) , and

let f, g : [a, b] → X be given functions. Let s ∈ ]a, b[ be given.

(i) Let
∫ b

a
〈f(t), dg(t)〉 exist. Then

∫ s

a
〈f(t), dg(t)〉 , ∫ b

s
〈f(t), dg(t)〉 exist.
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(ii) Let
∫ s

a
〈f(t), dg(t)〉 , ∫ b

s
〈f(t), dg(t)〉 exist. Then we have

∫ b

a

〈f(t), dg(t)〉 =

∫ s

a

〈f(t), dg(t)〉 +

∫ b

s

〈f(t), dg(t)〉 . (1.45)

Proof. We restrict ourselves to the KN -integral, the rest is similar. Let N be a system of
negligible sets in [a, b] .

(i) Assuming that (KN)
∫ b

a
〈f(t), dg(t)〉 exists, we prove that

∀ε > 0 ∃δ ∈ Γ(a, s) ∃A ∈ N ∀D,D′ ∈ Fδ,A(a, s) : |KD(f, g)−KD′(f, g)| ≤ ε , (1.46)

and then use Lemma 1.14 to conclude that (KN)
∫ s

a
〈f(t), dg(t)〉 exists.

Let ε > 0 be given. We find δ0 ∈ Γ(a, b) and A ∈ N such that for every D0, D
′
0 ∈ Fδ0,A(a, b)

we have
|KD0(f, g)−KD′0(f, g)| ≤ ε , (1.47)

and for t ∈ [a, b] set

δ(t) =

{
min{δ0(t), |t− s|} for t ∈ [a, b] \ {s} ,

δ0(s) for t = s .
(1.48)

Let D, D′ ∈ Fδ,A(a, s) be arbitrary, and let D∗ ∈ Fδ,A(s, b) be fixed. Then

D = {(τj, [tj−1, tj]) ; j = 1, . . . ,m} ,

D′ = {(τ ′k, [t′k−1, t
′
k]) ; k = 1, . . . , m′} ,

D∗ = {(τ ∗i , [t∗i−1, t
∗
i ]) ; i = 1, . . . , m∗} ,

and we have τm = tm = τ ′m′ = t′m′ = τ ∗1 = t∗0 = s by virtue of (1.48) and Lemma 1.3. Set

D0 = {(τj, [tj−1, tj]) ; j = 1, . . . , m− 1} ∪ {(s, [tm−1, t
∗
1])} (1.49)

∪ {(τ ∗i , [t∗i−1, t
∗
i ]) ; i = 2, . . . , m∗} ,

D′
0 = {(τ ′k, [t′k−1, t

′
k]) ; k = 1, . . . ,m′ − 1} ∪ {(s, [t′m′−1, t

∗
1])} (1.50)

∪ {(τ ∗i , [t∗i−1, t
∗
i ]) ; i = 2, . . . , m∗} .

Then D0, D
′
0 ∈ Fδ,A(a, b) ⊂ Fδ0,A(a, b) , hence (1.47) holds. Together with the identity

KD0(f, g)−KD′0(f, g) =
m−1∑
j=1

〈f(τj), g(tj)− g(tj−1)〉+ 〈f(s), g(t∗1)− g(tm−1)〉

−
m′−1∑

k=1

〈
f(τ ′k), g(t′k)− g(t′k−1)

〉− 〈
f(s), g(t∗1)− g(t′m′−1)

〉

=
m∑

j=1

〈f(τj), g(tj)− g(tj−1)〉 −
m′∑

k=1

〈
f(τ ′k), g(t′k)− g(t′k−1)

〉

= KD(f, g)−KD′(f, g)
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this implies (1.46). We analogously check that (KN)
∫ b

s
〈f(t), dg(t)〉 exists, and (i) is proved.

(ii) Put J1 = (KN)
∫ s

a
〈f(t), dg(t)〉 , J2 = (KN)

∫ b

s
〈f(t), dg(t)〉 . For ε > 0 we find δ1 ∈ Γ(a, s) ,

δ2 ∈ Γ(s, b) and A1, A2 ∈ N such that for every D1 ∈ Fδ1,A1(a, s) , D2 ∈ Fδ2,A2(s, b) we have

|J1 −KD1(f, g)| ≤ ε/2 , |J2 −KD2(f, g)| ≤ ε/2 . (1.51)

Set A = A1 ∪ A2 , and

δ(t) =





min{δ1(t), s− t} for t ∈ [a, s[ ,

min{δ2(t), t− s} for t ∈ ]s, b] ,

min{δ1(s), δ2(s)} for t = s .

(1.52)

Let D ∈ Fδ,A(a, b) be arbitrary, D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} . We find k ∈ {1, . . . , m}
such that s ∈ [tk−1, tk] . Then s = τk by (1.52), hence tk−1 < s < tk , and we may put

D1 = {(τj, [tj−1, tj]) ; j = 1, . . . , k − 1} ∪ {(s, [tk−1, s])} ,

D2 = {(s, [s, tk])} ∪ {(τj, [tj−1, tj]) ; j = k + 1, . . . ,m} .

We have D1 ∈ Fδ1,A1(a, s) , D2 ∈ Fδ2,A2(s, b) , and KD(f, g) = KD1(f, g) + KD2(f, g) , hence

|J1 + J2 −KD(f, g)| ≤ ε

as a consequence of (1.51), and the proof is complete. ¥

In order to preserve the consistency of (1.45) also in the limit cases s = a and s = b , we define
for each of the integrals (K) , (K∗) , and (KN)

∫ s

s

〈f(t), dg(t)〉 = 0 ∀s ∈ [a, b] , ∀ f, g : [a, b] → X . (1.53)

We conclude this section by establishing some typical formulas.

Proposition 1.16 For every f : [a, b] → X , a ≤ r ≤ s ≤ b and v ∈ X we have

(i) (K)

∫ b

a

〈
f(t), d

(
v χ{s}

)
(t)

〉
=





0 if s ∈ ]a, b[ ,

−〈f(a), v〉 if s = a ,

〈f(b), v〉 if s = b ,

(ii) (K)

∫ b

a

〈
f(t), d

(
v χ ]r,s[

)
(t)

〉
= 〈f(r)− f(s), v〉 .

Proof. To check that (i) holds for s = a , we put δ(t) := t − a for t ∈ ]a, b] , δ(a) :=
(b − a)/2 . Let D = {(τj, [tj−1, tj]) ; j = 1, . . . , m} ∈ Fδ(a, b) be an arbitrary partition. By
Lemma 1.3 we have a = τ1 , hence KD

(
f, v χ{a}

)
= −〈f(a), v〉 and the assertion follows. An

analogous argument yields the result for s = b . For a < s < b it suffices to use the identity

(K)

∫ b

a

〈
f(t), d

(
v χ{s}

)
(t)

〉
= (K)

∫ s

a

〈
f(t), d

(
v χ{s}

)
(t)

〉
+ (K)

∫ b

s

〈
f(t), d

(
v χ{s}

)
(t)

〉
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as a special case of (1.45). We next use a similar identity

(K)

∫ b

a

〈
f(t), d

(
vχ{ ]r,s[ }

)
(t)

〉
(1.54)

= (K)

∫ r

a

〈f(t), dg1(t)〉+ (K)

∫ s

r

〈f(t), dg2(t)〉+ (K)

∫ b

s

〈f(t), dg1(t)〉

− (K)

∫ s

r

〈
f(t), d

(
vχ{r}

)
(t)

〉− (K)

∫ s

r

〈
f(t), d

(
vχ{s}

)
(t)

〉

with g1(t) ≡ 0 , g2(t) ≡ v in their corresponding domains, hence

(K)

∫ r

a

〈f(t), dg1(t)〉 = (K)

∫ s

r

〈f(t), dg2(t)〉 = (K)

∫ b

s

〈f(t), dg1(t)〉 = 0 ,

and (ii) is obtained as a consequence of (i) and (1.54). ¥

Proposition 1.17 For every g : [a, b] → X , a ≤ r ≤ s ≤ b and v ∈ X we have

(i) (K)

∫ b

a

〈
v χ{s} (t), dg(t)

〉
= 〈v, g〉 (s+)− 〈v, g〉 (s−) ,

(ii) (K)

∫ b

a

〈
v χ ]r,s[ (t), dg(t)

〉
= 〈v, g〉 (s−)− 〈v, g〉 (r+) ,

provided the limits on the right-hand sides exist, with the convention 〈v, g〉 (a−) = 〈v, g(a)〉 ,
〈v, g〉 (b+) = 〈v, g(b)〉 .

Proof. We proceed by the same decomposition argument as in the proof of Proposition 1.16
using Lemma 1.5 and its counterpart for s = b , as well as the obvious fact that for f2(t) ≡ v
for t ∈ [r, s] we have (K)

∫ s

r
〈f2(t), dg(t)〉 = 〈v, g(s)− g(r)〉 . ¥

Remark 1.18 Here and in the sequel, note that whenever we integrate functions f, g defined
in [a, b] over an interval [r, s] ⊂ [a, b] , we automatically consider their restrictions f |[r,s], g|[r,s] .
In particular, we have e. g.

〈
v, f |[r,s]

〉
(s+) = 〈v, f(s)〉 , 〈

v, f |[r,s]
〉
(r−) = 〈v, f(r)〉 .
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2 Regulated functions and total variation

Let Y be a Banach space endowed with norm ‖ · ‖ . For a given function g : [a, b] → Y and
a given division d ∈ Da,b of the form (1.1) we define the variation Vd(g) of g on d by the
formula

Vd(g) :=
m∑

j=1

‖g(tj)− g(tj−1)‖

and the total variation Var [a,b] g of g by

Var
[a,b]

g := sup{Vd(g) ; d ∈ Da,b} .

In a standard way (cf. [7]) we denote the set of functions of bounded variation by

BV (a, b ; Y ) := {g : [a, b] → Y ; Var
[a,b]

g < ∞} . (2.1)

Let us further introduce the set S(a, b ; Y ) of all step functions of the form

w(t) :=
m∑

k=0

ĉk χ{tk} (t) +
m∑

k=1

ck χ ]tk−1,tk[ (t) , t ∈ [a, b] , (2.2)

where d = {t0, . . . , tm} ∈ Da,b is a given division, and ĉ0, . . . , ĉm, c1, . . . , cm are given elements
from Y .

2.1 Regulated functions

It is well-known (see e. g. the Appendix of [7]) that every function of bounded variation with
values in a Banach space admits one-sided limits at each point of its domain of definition.
Following [2], we separate this property from the notion of total variation and introduce the
following definition.

Definition 2.1 We say that a function f : [a, b] → Y is regulated if for every t ∈ [a, b] there
exist both one-sided limits f(t+), f(t−) ∈ Y with the convention f(a−) = f(a) , f(b+) = f(b) .

According to [18, 36], we denote by G(a, b ; Y ) the set of all regulated functions f : [a, b] → Y ,
and by GL(a, b ; Y ) and GR(a, b ; Y ) the space of left-continuous and right-continuous regulated
functions on [a, b] , respectively. We further set BVL(a, b ; Y ) = BV (a, b ; Y ) ∩ GL(a, b ; Y ) ,
BVR(a, b ; Y ) = BV (a, b ; Y ) ∩ GR(a, b ; Y ) , and SL(a, b ; Y ) = S(a, b ; Y ) ∩ GL(a, b ; Y ) ,
SR(a, b ; Y ) = S(a, b ; Y )∩GR(a, b ; Y ) . Let us introduce in G(a, b ; Y ) a system of seminorms

‖f‖[s,t] := sup{‖f(τ)‖ ; τ ∈ [s, t]} (2.3)

for any subinterval [s, t] ⊂ [a, b] . Indeed, ‖·‖[a,b] is a norm.

For a given function g ∈ G(a, b ; Y ) and a given division d ∈ Da,b we define the essential
variation Vd(g) of g on d by the formula

Vd(g) :=
m∑

j=1

‖g(tj−)− g(tj−1+)‖ +
m∑

j=0

‖g(tj+)− g(tj−)‖
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and the total essential variation Var [a,b] g of g by

Var
[a,b]

g := sup{Vd(g) ; d ∈ Da,b} .

We denote the space of functions of essentially bounded variation by

BV (a, b ; Y ) := {g : [a, b] → Y ; Var
[a,b]

g < ∞} . (2.4)

The terminology has been taken from [15], although we restrict ourselves a priori to regulated
functions which makes the analysis easier. This however means here in particular that Vd(g)
is defined for every function g : [a, b] → Y , but Vd(g) only for a regulated function g .

A function f : [a, b] → Y is called absolutely continuous , if for every ε > 0 there exists δ > 0
such that the implication

n∑

k=1

(bk − ak) < δ =⇒
n∑

k=1

‖u(bk)− u(ak)‖ < ε (2.5)

holds for every sequence of intervals ]ak, bk[⊂ [a, b] such that ]ak, bk[∩ ]aj, bj[ = ∅ for k 6= j .
We denote by AC(a, b ; Y ) the space of all absolutely continuous functions f : [a, b] → Y .

We summarize some easy basic properties of the above spaces in Lemma 2.2 below the proof
of which is left to the reader.

Lemma 2.2

(i) Every regulated function is bounded.

(ii) We have Var [a,b] g ≤ Var [a,b] g for every g ∈ G(a, b ; Y ) and Var [a,b] g = Var [a,b] g for
every g ∈ GL(a, b ; Y ) ∪GR(a, b ; Y ) .

(iii) The sets AC(a, b ; Y ) , S(a, b ; Y ) , BV (a, b ; Y ) , BV (a, b ; Y ) , G(a, b ; Y ) are vector
spaces satisfying the inclusions

(
AC(a, b ; Y ) ∪ S(a, b ; Y )

)
⊂ BV (a, b ; Y ) ⊂ BV (a, b ; Y ) ⊂ G(a, b ; Y ) .

(iv) The space G(a, b ; Y ) is complete and non-separable with respect to the norm ‖·‖[a,b] .

(v) Given C > 0 , the set VC := {g ∈ BV (a, b ; Y ) ; Var [a,b] g ≤ C} is closed in G(a, b ; Y ) .

(vi) The space C(a, b ; Y ) of continuous functions f : [a, b] → Y is a closed subspace of
G(0, T ; X) , and AC(a, b ; Y ) is a dense subspace of C(a, b ; Y ) with respect to the norm
‖·‖[a,b] .

Let us denote by R+ the interval [0,∞[ and by Φ the set of all increasing functions ϕ : R+ →
R+ such that ϕ(0) = ϕ(0+) = 0, ϕ(+∞) = +∞ . For ϕ ∈ Φ, g : [a, b] → Y and a division
d ∈ Da,b of the form (1.1) we define the ϕ -variation Vϕ

d (g) of g on d by the formula

Vϕ
d (g) :=

m∑
j=1

ϕ (‖g(tj)− g(tj−1)‖)
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and the total ϕ -variation ϕ−Var [a,b] g of g by

ϕ−Var
[a,b]

g := sup{Vϕ
d (g) ; d ∈ Da,b} .

This concept can be used for an alternative characterization of regulated functions.

Proposition 2.3 A function f : [a, b] → Y is regulated if and only if there exists ϕ ∈ Φ such
that ϕ−Var [a,b] f ≤ 1 .

Proof. Let f be regulated. Then for every r > 0 , the number of pairwise disjoint intervals
]ak, bk[⊂ [a, b] such that ‖f(bk) − f(ak)‖ ≥ r is bounded above by some N(r) ∈ N . In
particular, we may take N(r) = 1 for r > 2 ‖f‖[a,b] and assume that N : ]0,∞[→ N is
non-increasing. Set R = ‖f‖[a,b] . We claim that the assertion holds provided we put

ϕ(r) =
r

2R N(r/2)
for r > 0 . (2.6)

Indeed, then ϕ ∈ Φ, and putting

Mk =
{
j ∈ {1, . . . , m} ; ‖f(tj)− f(tj−1)‖ ∈ ]2−k+1R, 2−k+2R]

}
, k ∈ N

for an arbitrary division d = {t0, . . . , tm} ∈ Da,b , we obtain that

m∑
j=1

ϕ(‖f(tj)− f(tj−1)‖) =
∞∑

k=1

∑
j∈Mk

ϕ(‖f(tj)− f(tj−1)‖)

≤
∞∑

k=1

N(2−k+1R) ϕ(2−k+2R) =
∞∑

k=1

2−k+1 = 1 .

Conversely, let ϕ−Var [a,b] f ≤ 1 , and let t ∈ ]a, b] be arbitrary. Assume that the limit f(t−)
does not exist. Then there exists ε > 0 and a sequence tk ↗ t such that ‖f(tk+1)− f(tk)‖ ≥ ε
for all k ∈ N . For every m ∈ N we have 1 ≥ ∑m

k=1 ϕ(‖f(tk+1)− f(tk)‖) ≥ mϕ(ε) which is a
contradiction. We similarly check that f(t+) exists for all t ∈ [a, b[ , and the proof is complete.
¥

We now follow the lines of [18] and investigate some local properties of regulated functions.

Proposition 2.4

(i) Let f ∈ G(a, b ; Y ) and ε > 0 be given. Then there exists a division d = {t0, . . . , tm} ∈
Da,b such that for every j = 1, . . . , m we have

tj−1 < τ < t < tj =⇒ ‖f(t)− f(τ)‖ < ε . (2.7)

In particular, the set of discontinuity points of a regulated function is at most countable.

(ii) For every f ∈ G(a, b ; Y ) and ε > 0 there exists w ∈ S(a, b ; Y ) such that ‖f − w‖[a,b] ≤
ε , w(t) ∈ ∪τ∈[a,b]{f(τ)} for every t ∈ [a, b] , Var [a,b] w ≤ Var [a,b] f and Var [a,b] w ≤
Var [a,b] f .

(iii) Let g ∈ G(a, b ; Y ) and C > 0 be given, and assume that Var [a,s] g ≤ C for every
s ∈ ]a, b[ . Then g ∈ BV (a, b ; Y ) and Var [a,b] g = lims→b− Var [a,s] g + ‖g(b)− g(b−)‖ .
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Proof.

(i) Put Sε
f = {a}∪{b}∪{t ∈ [a, b] ; max{‖f(t)−f(t−)‖, ‖f(t+)−f(t)‖, ‖f(t+)−f(t−)‖} ≥ ε} .

The set Sε
f is finite, Sε

f = {s0, s1, . . . , s`} , a = s0 < s1 < · · · < s` = b , and the set ∪∞n=1S
1/n
f

of all discontinuity points of f is at most countable. For i = 1, . . . , ` put

fi(t) =





f(t) for t ∈ ]si−1, si[ ,

f(si−1+) for t = si−1 ,

f(si−) for t = si ,

(2.8)

and
hi = inf{t− τ ; si−1 ≤ τ < t ≤ si , ‖fi(t)− fi(τ)‖ ≥ ε} . (2.9)

By construction we have hi > 0 for all i , and choosing any division di = {τ0, τ1, . . . , τmi
} ,

si−1 = τ0 < τ1 < · · · < τmi
= si such that τj − τj−1 < hi for j = 1, . . . ,mi and i = 1, . . . , ` , we

may simply put d = d1 ∪ d2 ∪ · · · ∪ d` .

(ii) Let ε > 0 be given and let d = {t0, . . . , tm} ∈ Da,b be as in (i). For each j = 1, . . . ,m we
fix an arbitrary continuity point τj ∈ ]tj−1, tj[ of f , and put

w(tj) = f(tj)

w(t) = f(τj) for t ∈ ]tj−1, tj[ ,

for every j = 1, . . . , m . Then w ∈ S(a, b ; Y ) and from (i) we immediately obtain that
‖f(t) − w(t)‖ ≤ ε for every t ∈ [a, b] . Moreover, putting d̂ = {t0, τ1, t1, τ2, t2, . . . , τm, tm} ∈
Da,b we have Var [a,b] w = Vd̂(f) , Var [a,b] w ≤ Vd̂(f) , and the assertion follows.

(iii) Let d = {t0, . . . , tm} ∈ Da,b be an arbitrary division. For tm−1 < s < b set d̃ =
{t0, t1, . . . , tm−1, s} . Then

Vd(g) = Vd̃(g) + ‖g(b)− g(s)‖ , (2.10)

hence Vd(g) ≤ Var [a,s] g + ‖g(b)− g(s)‖ , and letting s tend to b− we obtain

Var
[a,b]

g ≤ lim inf
s→b−

Var
[a,s]

g + ‖g(b)− g(b−)‖ .

Conversely, for an arbitrary division d̃ ∈ Da,s of the above form put d = {t0, t1, . . . , tm−1, s, b} .
From (2.10) we then obtain that Var [a,s] g ≤ Var [a,b] g−‖g(b)−g(s)‖ , and the assertion follows.
The proof of Proposition 2.4 is complete. ¥

2.2 Kurzweil integration of regulated functions

In the sequel we restrict ourselves to a separable Hilbert space X as in Definition 1.4 and
investigate properties of the Kurzweil integration in the space of regulated functions. Our
consideration will from now on focus on one type of the Kurzweil integral which is particularly
suitable for applications to variational inequalities, namely we write simply

∫ b

a

〈f(t), dg(t)〉 = (KN)

∫ b

a

〈f(t), dg(t)〉 , N = {A ⊂ [a, b] ; A at most countable } .

(2.11)
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Propositions 1.13, 1.16 and 1.17 enable us to evaluate the integral
∫ b

a
〈f(t), dg(t)〉 provided

one of the functions f , g belongs to S(a, b ; X) . The next strategy consists in exploiting the
density of S(a, b ; X) in G(a, b ; X) established in Proposition 2.4 (ii). We first notice that for
all functions f, g : [a, b] → X and every partition D of the form (1.2) we have

KD(f, g) =
m∑

j=1

〈f(τj), g(tj)− g(tj−1)〉 (2.12)

= 〈f(b), g(b)〉 − 〈f(a), g(a)〉 −
m∑

j=0

〈f(τj+1)− f(τj), g(tj)〉

where we put τ0 := a , τm+1 := b . Let now g belong to G(a, b ; X) and let A be the set of
all discontinuity points of g . For an arbitrary δ ∈ Γ(a, b) and D ∈ Fδ,A(a, b) we then obtain
from (2.12) that

|KD(f, g)| ≤ min

{
‖f‖[a,b] Var

[a,b]
g ,

(
|f(a)|+ |f(b)|+ Var

[a,b]
f

)
‖g‖[a,b]

}
. (2.13)

Indeed, interesting cases are those where the right-hand side of (2.13) is bounded. The extension
of the Kurzweil integral to G(a, b ; X) is based on the following convergence theorem.

Theorem 2.5 Let g, f, fn : [a, b] → R be given for n ∈ N such that lim
n→∞

‖f − fn‖[a,b] = 0 .

Then the following implications hold.

(i) If g ∈ BV (a, b ; X) and

∫ b

a

〈fn(t), dg(t)〉 exists for each n ∈ N , then

∫ b

a

〈f(t), dg(t)〉
exists and we have ∫ b

a

〈f(t), dg(t)〉 = lim
n→∞

∫ b

a

〈fn(t), dg(t)〉

(ii) If g ∈ BV (a, b ; X) and

∫ b

a

〈g(t), dfn(t)〉 exists for each n ∈ N , then

∫ b

a

〈g(t), df(t)〉
exists and we have ∫ b

a

〈g(t), df(t)〉 = lim
n→∞

∫ b

a

〈g(t), dfn(t)〉

Proof.

(i) For n ∈ N put Jn :=
∫ b

a
〈fn(t), dg(t)〉 . Let A be the set of all discontinuity points of g .

For each n we find δn ∈ Γ(a, b) and A ⊂ An ∈ N such that for every D ∈ Fδn,An(a, b) we have

|KD(fn, g) − Jn| <
1

n
.

For m,n ∈ N put δmn := min{δm, δn} , Amn = Am ∪ An . For every D ∈ Fδmn,Amn(a, b) we
have

|KD(fn, g) − Jn| <
1

n
, |KD(fm, g) − Jm| <

1

m
,
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and (2.13) implies that

|Jn − Jm| ≤ |KD(fn, g) − Jn − KD(fm, g) + Jm| + |KD(fn − fm, g)|

≤ 1

m
+

1

n
+ ‖fn − fm‖[a,b] Var

[a,b]
g ,

hence {Jn} is a Cauchy sequence and we may put J := limn→∞ Jn . For each D ∈ Fδn,An(a, b)
we then have

|KD(f, g) − J | ≤ |KD(f − fn, g)| + |KD(fn, g) − Jn| + |Jn − J |
≤ ‖f − fn‖[a,b] Var

[a,b]
g + 1/n + |Jn − J | ,

hence
∫ b

a
〈f(t), dg(t)〉 = J and (i) is proved. The same argument based on (2.13) with f := g ,

g := fn − fm yields (ii). ¥

Corollary 2.6 If f ∈ G(a, b ; X) and g ∈ BV (a, b ; X) , then
∫ b

a
〈f(t), dg(t)〉 exists and

satisfies the estimate ∣∣∣∣
∫ b

a

〈f(t), dg(t)〉
∣∣∣∣ ≤ ‖f‖[a,b] Var

[a,b]
g . (2.14)

Moreover, for every g ∈ BV (a, b ; X) we have

Var
[a,b]

g = sup

{∫ b

a

〈f(t), dg(t)〉 ; f ∈ S(a, b ; B1(0))

}
, (2.15)

where Br(x0) for r > 0 and x0 ∈ X denotes the ball {x ∈ X ; |x − x0| ≤ r} centered at x0

with radius r .

Proof. Using Proposition 2.4 (ii) we approximate f uniformly by step functions. Passing

to the limit we obtain the existence of
∫ b

a
〈f(t), dg(t)〉 and inequality (2.14) directly from

Theorem 2.5 and identity (2.13). To prove (2.15), we consider an arbitrary ε > 0 , and find
d = {t0, . . . , tm} ∈ Da,b such that

m∑
j=1

|g(tj−)− g(tj−1+)|+
m∑

j=0

|g(tj+)− g(tj−)| ≥ Var
[a,b]

g − ε . (2.16)

Let σ : X → X be the function

σ(x) = x/|x| for x 6= 0 , σ(0) = 0 , (2.17)

and put

f(t) =
m∑

j=1

σ(g(tj−)− g(tj−1+)) χ ]tj−1,tj [
(t) +

m∑
j=0

σ(g(tj+)− g(tj−)) χ{tj} (t) . (2.18)

Then f ∈ S(a, b; B1(0)) . From Proposition 1.17 it follows that

∫ b

a

〈f(t), dg(t)〉 =
m∑

j=1

|g(tj−)− g(tj−1+)|+
m∑

j=0

|g(tj+)− g(tj−)| , (2.19)

and we obtain the assertion from (2.16). ¥
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Corollary 2.7 If f ∈ BV (0, T ; X) and g ∈ G(0, T ; X) , then
∫ b

a
〈f(t), dg(t)〉 exists and

satisfies the estimates∣∣∣∣〈f(a), g(a)〉+

∫ b

a

〈f(t), dg(t)〉
∣∣∣∣ ≤

(
|f(b)|+ Var

[a,b]
f

)
‖g‖[a,b] , (2.20)

∣∣∣∣〈f(b), g(b)〉 −
∫ b

a

〈f(t), dg(t)〉
∣∣∣∣ ≤

(
|f(a)|+ Var

[a,b]
f

)
‖g‖[a,b] . (2.21)

Moreover, for every f ∈ BV (0, T ; X) we have

|f(b)|+ Var
[a,b]

f = sup

{
〈f(a), g(a)〉+

∫ b

a

〈f(t), dg(t)〉 ; g ∈ SR(a, b ; B1(0))

}
, (2.22)

|f(a)|+ Var
[a,b]

f = sup

{
〈f(b), g(b)〉 −

∫ b

a

〈f(t), dg(t)〉 ; g ∈ SL(a, b ; B1(0))

}
. (2.23)

Proof. The existence of
∫ b

a
〈f(t), dg(t)〉 is obtained similarly as in Corollary 2.6, and inequalities

(2.20) – (2.21) follow from (2.12). To prove (2.22) – (2.23), we fix ε > 0 and find a division
d = {t0, . . . , tm} ∈ Da,b such that

m∑
j=1

|f(tj)− f(tj−1| ≥ Var
[a,b]

f − ε . (2.24)

Let σ : X → X be as in (2.17, and for t ∈ [a, b] put

g(t) = σ(f(b)) χ{b} (t)−
m∑

j=1

σ(f(tj)− f(tj−1)) χ [tj−1,tj [
(t) . (2.25)

We then infer from (2.24), Propositions 1.13 and 1.16 that

〈f(a), g(a)〉+
∫ b

a

〈f(t), dg(t)〉 = |f(b)|+
m∑

j=1

|f(tj)−f(tj−1| ≥ |f(b)|+Var
[a,b]

f−ε , (2.26)

and (2.22) follows from (2.20) and (2.26). The proof of (2.23) is analogous. ¥

The relation between Kurzweil’s integral and other integration concepts has been discussed in
detail in [33]. We mention in Proposition 2.9 below only one result which is directly related to
variational inequalities.

Let us denote by L1(a, b ; X) the space of Bochner integrable functions u : [a, b] → X endowed

with norm |u|1 = (L)
∫ b

a
|u(t)| dt , where (L) stands for the Lebesgue integration (for more

information about the Bochner integral, see e. g. [40] or [7, Appendix]). We cite without proof
the following result which is a special case of [7, Corollary A.2].

Theorem 2.8 For every function g ∈ AC([a, b] ; X) there exists an element ġ ∈ L1(a, b ; X)
such that

(i) ġ(t) = lim
h→0

g(t + h)− g(t)

h
a. e. ,

(ii) g(t) − g(s) = (B)

∫ t

s

ġ(τ) dτ for all a ≤ s < t ≤ b , where (B) denotes the Bochner

integration.
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Note that this representation theorem does not hold for a general Banach space X , and a
discussion on this subject can be found in the Appendix of [7].

According to Theorem 2.8, it is justified to denote similarly as in the scalar-valued case by
W 1,1(a, b ; X) the space of absolutely continuous functions with values in a separable Hilbert
space X . The space W 1,1(a, b ; X) is a Banach space endowed with norm |g|1,1 = |g(a)|+ |ġ|1 .
For 1 ≤ p < ∞ we similarly introduce in a standard way the Banach spaces W 1,p(a, b ; X)

endowed with norm |g|1,p = |g(a)|+ |ġ|p , where |u|p = (L)
(∫ b

a
|u(t)|p dt

)(1/p)

.

In the next sections, we will make use of the following identity.

Proposition 2.9 If f ∈ G(a, b ; X) and g ∈ W 1,1(a, b ; X) , then

∫ b

a

〈f(t), dg(t)〉 = (L)

∫ b

a

〈f(t), ġ(t)〉 dt .

Proof. The assertion holds for each function f ∈ S(a, b ; X) by virtue of Proposition 1.17
and Theorem 2.8. Approximating an arbitrary function f ∈ G(a, b ; X) uniformly by step
functions, we may use Theorem 2.5 to complete the proof. ¥

As an easy consequence of Corollaries 2.6, 2.7, we have the following convergence result.

Proposition 2.10 Consider f, fn ∈ G(0, T ; X) , g, gn ∈ BV (0, T ; X) , n ∈ N such that

lim
n→∞

‖f − fn‖[a,b] = 0 , lim
n→∞

‖g − gn‖[a,b] = 0 , sup
n∈N

Var
[a,b]

gn = C < ∞ .

Then ∫ b

a

〈f(t), dg(t)〉 = lim
n→∞

∫ b

a

〈fn(t), dgn(t)〉 . (2.27)

Proof. For any w ∈ S(a, b ; X) we have by Corollaries 2.6 and 2.7 that

∣∣∣∣∣
∫ b

a

〈f(t), dg(t)〉 −
∫ b

a

〈fn(t), dgn(t)〉
∣∣∣∣∣ ≤

∣∣∣∣
∫ b

a

〈(f − fn)(t), dgn(t)〉
∣∣∣∣

+

∣∣∣∣
∫ b

a

〈(f − w)(t), d(g − gn)(t)〉
∣∣∣∣ +

∣∣∣∣
∫ b

a

〈w(t), d(g − gn)(t)〉
∣∣∣∣

≤ C ‖f − fn‖[a,b] + 2 C ‖f − w‖[a,b] +

(
2 ‖w‖[a,b] + Var

[a,b]
w

)
‖g − gn‖[a,b]

and the assertion follows from Proposition 2.4 (ii). ¥

Notice that the pointwise convergence gn(t) → g(t) for every t ∈ [a, b] is not sufficient in
Proposition 2.10 as in the case of the Riemann-Stieltjes integral. In the example X = R ,

fn(t) = f(t) = χ{0} (t) , g(t) ≡ 0 , gn(t) = χ ]0,1/n[ (t) for t ∈ [0, 1] (2.28)
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we have
∫ 1

0
fn(t) dgn(t) = 1 for every n ∈ N ,

∫ 1

0
f(t) dg(t) = 0, hence the assertion of Propo-

sition 2.10 does not hold. Similarly, putting

fn(t) :=
n∑

k=1

(−1)k−1χ{k/n2}(t) for t ∈ [0, 1] , (2.29)

gn(t) :=

{
1
2n

(
(−1)k + 1

)
for t ∈ [

k−1
n2 , k

n2

[
, k = 1, . . . , n ,

0 for t ∈ [
1
n
, 1

]
,

(2.30)

for n ∈ N , we see that fn, gn ∈ S(a, b ; X) , ‖fn‖[a,b] ≤ 1 , Var [a,b] gn ≤ 1 , ‖gn‖[a,b] → 0 and

fn(t) → 0 for every t ∈ [a, b] as n →∞ , while
∫ b

a
fn(t) dgn(t) → 1 .

Below in Section 5 we will consider different types of weak convergence in G(a, b ; X) which lead
to more general convergence theorems. We conclude this section with two integration-by-parts
formulas.

Proposition 2.11 For every f ∈ G(a, b ; X) , g ∈ BV (a, b ; X) we have
∫ b

a

〈f(t), dg(t)〉+

∫ b

a

〈g(t), df(t)〉 = 〈f(b), g(b)〉 − 〈f(a), g(a)〉 (2.31)

+
∑

t∈[a,b]

(
〈f(t)− f(t−) , g(t)− g(t−)〉 − 〈f(t+)− f(t) , g(t+)− g(t)〉

)
.

Proof. From Proposition 2.4 (i) it follows that the sum on the right-hand side of (2.31) is
at most countable, hence the formula is meaningful. Using Proposition 1.16 we check in a
straightforward way that (2.31) holds for every g ∈ BV (a, b ; X) whenever f is of the form
v χ{r} or v χ ]r,s[ , hence also for every f ∈ S(a, b ; X) by Proposition 1.13. For f ∈ G(a, b ; X)
and n ∈ N we find fn ∈ S(a, b ; X) such that ‖f − fn‖[a,b] → 0 as n →∞ . Using Proposition

2.10 and the obvious inequality
∑

t∈[a,b](|g(t) − g(t−)| + |g(t+) − g(t)|) ≤ Var [a,b] g we pass
to the limit. ¥

Corollary 2.12 For every g ∈ BV (a, b ; X) we have
∫ b

a

〈g(t+), dg(t)〉 =
1

2

(|g(b)|2 − |g(a)|2) +
1

2

∑

t∈[a,b]

|g(t+)− g(t−)|2 . (2.32)

Proof. The function g+(t) := g(t+) satisfies g+(t+) = g(t+) = g+(t) for every t ∈ [a, b] and
g+(t−) = g(t−) for every t ∈ ]a, b] , and by Proposition 2.11 we have

∫ b

a

〈g+(t), dg+(t)〉 =
1

2

(|g(b)|2 − |g(a+)|2) +
1

2

∑

t∈ ]a,b]

|g(t+)− g(t−)|2

(note that the sum is taken over the semi-open interval ]a, b] ), while (1.24) yields that
∫ b

a

〈g+(t), d(g − g+)(t)〉 = 〈g(a+), g(a+)− g(a)〉 .

Combining the above identities we obtain the assertion. ¥
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3 An abstract variational inequality

In this section we explain a method of solving an abstract evolution variational problem which
we denote as Problem P(u, ξ0) . In [28, 29] it is called a sweeping process , and we proceed
in principle in the same spirit with arguments adapted to the Kurzweil integral setting for
regulated functions with values in a separable Hilbert space X . We consider similarly as in
Section A.6 a family Z(v) ⊂ X of convex closed sets parametrized by elements v of a closed
subset V of a Banach space Y . The scalar product and norm in X as denoted as above by
〈·, ·〉 and | · | , for the norm in Y we use the symbol ‖ · ‖ . We first state the problem for a
general convex set evolution restricting ourselves to right-continuous regulated inputs, and then
extend the results to general regulated inputs under more specific assumptions on Z(v) . We
also show that in this case, the solutions are absolutely continuous if the inputs are absolutely
continuous, and the input-output mapping is continuous in W 1,p(0, T ; X) for 1 ≤ p < ∞ .

3.1 Statement of the problem

In a general setting, our model problem reads as follows.

Definition 3.1 Let T > 0 , u ∈ GR(0, T ; V ) , and ξ0 ∈ Z(u(0)) be given. We say that
ξ ∈ BVR(0, T ; X) is a solution to Problem P(u, ξ0) if

(i) ξ(t) ∈ Z(u(t)) ∀t ∈ [0, T ] ,

(ii) ξ(0) = ξ0 ,

(iii)
∫ T

0
〈w(t)− ξ(t), dξ(t)〉 ≥ 0 ∀w ∈ T(u) ,

where T(u) is the set of admissible test functions

T(u) = {w ∈ G(0, T ; X) ; w(t) ∈ Z(u(t)) ∀t ∈ [0, T ]} . (3.1)

By Dom (P) we denote the set of all pairs (u, ξ0) with u ∈ GR(0, T ; V ) , ξ0 ∈ Z(u(0)) , for
which Problem P(u, ξ0) has a solution.

We will assume that Hypothesis A.26 holds, and denote for simplicity as in Subsection A.6
by (Pv, Qv) the projection pair (PZ(v), QZ(v)) for every v ∈ V . Then Qu(t)x ∈ T(u) for every
x ∈ X and u ∈ GR(0, T ; V ) , hence T(u) is non-empty.

Lemma 3.2 Let Hypothesis A.26 hold, and let ξ ∈ BVR(0, T ; X) be a solution to Problem
P(u, ξ0) for some given (u, ξ0) ∈ Dom (P) . Then we have

(i)

∫ t

s

〈w(τ)− ξ(τ), dξ(τ)〉 ≥ 0 for all 0 ≤ s < t ≤ T and w ∈ T(u) ,

(ii) ξ(t) = Qu(t) ξ(t−) for every t ∈ [0, T ] ,

(iii) If ξ ∈ W 1,1(0, T ; X) , then there exists a set A ⊂ ]0, T [ of zero Lebesgue measure such

that
〈
z − ξ(t), ξ̇(t)

〉
≥ 0 for all z ∈ Z(u(t)) and t ∈ ]0, T [ \A .
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Condition (iii) can also be rewritten in the form

−ξ̇(t) ∈ NZ(u(t))(ξ(t)) a. e. , (3.2)

where NZ(u(t))(ξ(t)) is the normal cone to Z(u(t)) at the point ξ(t) as in (A.2.1), or alterna-
tively

−ξ̇(t) ∈ ∂IZ(u(t))(ξ(t)) a. e. , (3.3)

where ∂IZ(x) denotes the subdifferential of the indicator function IZ of a closed convex set Z
at the point x . Recall that IZ(x) is defined to be 0 if x ∈ Z and +∞ otherwise.

Proof of Lemma 3.2.

(i) Let w ∈ T(u) and 0 ≤ s < t ≤ T be given. For τ ∈ [0, T ] put

w̃(τ) =
(

χ [0,s] (τ) + χ ]t,T ] (τ)
)
ξ(τ) + χ ]s,t] (τ)w(τ) .

Then w̃ ∈ T(u) . Using Propositions 1.13, 1.15, 1.17 and the fact that ξ is right-continuous,
we obtain that

0 ≤
∫ T

0

〈w̃(τ)− ξ(τ), dξ(τ)〉 =

∫ t

s

〈w(τ)− ξ(τ), dξ(τ)〉 −
∫ t

s

〈
(w(s)− ξ(s))χ{s}(τ), dξ(τ)

〉

+

∫ T

t

〈
(w(t)− ξ(t))χ{t}(τ), dξ(τ)

〉
=

∫ t

s

〈w(τ)− ξ(τ), dξ(τ)〉 ,

which we wanted to prove.

(ii) We proceed similarly as above and for an arbitrary z ∈ Z(u(t)) put

w(τ) =
(

χ [0,t[ (τ) + χ ]t,T ] (τ)
)
ξ(τ) + χ{t} (τ)z .

Then Proposition 1.17 yields

0 ≤
∫ T

0

〈w(τ)− ξ(τ), dξ(τ)〉 = 〈z − ξ(t), ξ(t)− ξ(t−)〉 ,

and the assertion follows from Lemma A.2 (iv).

(iii) For every x ∈ X and 0 ≤ s < t ≤ T we have by Proposition 2.9

0 ≤
∫ t

s

〈
Qu(τ)x− ξ(τ), dξ(τ)

〉
=

∫ t

s

〈
Qu(τ)x− ξ(τ), ξ̇(τ)

〉
dτ .

Let S ⊂ X be a countable set which is dense in X . We find a set A ⊂ ]0, T [ of measure 0
such that 〈

Qu(t)x− ξ(t), ξ̇(t)
〉
≥ 0 ∀t ∈ ]0, T [ \A ∀x ∈ S . (3.4)

By density, we see that (3.4) holds for all x ∈ X . For z ∈ Z(u(t)) have Qu(t)z = z , and the
proof is complete. ¥

From (A.6.3) it follows that ξ(t−) ∈ Z(u(t−)) for all t ∈ [0, T ] . The trajectory

K(u) = {u(t), u(t−) ; t ∈ [0, T ]} (3.5)

of an arbitrary function u ∈ GR(0, T ; V ) is a compact subset of V , and using Lemma 3.2 we
obtain from (A.6.2) and (A.6.5) that

|ξ(t)− ξ(t−)| = |Pu(t)ξ(t−)| ≤ µK(u)(‖u(t)− u(t−)‖) ∀t ∈ [0, T ] . (3.6)

In particular, if u is continuous at a point t ∈ [0, T ] , then so is ξ .
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3.2 Construction of the solution

We derive an explicit formula for the solution if the input u is a step function, and then extend
the existence result using general convergence theorems for the Kurzweil integral from Section
1. Before, we show that the solution is uniquely determined by the data.

Lemma 3.3 Let Hypothesis A.26 hold. Then for every (u, ξ0) ∈ Dom (P) the solution ξ to
Problem P(u, ξ0) is unique.

Proof. Let ξ, η ∈ BVR(0, T ; X) be two solutions of Problem P(u, ξ0) . Then we have for all
t ∈ [0, T ] that

∫ t

0
〈η(τ)− ξ(τ), dξ(τ)〉 ≥ 0 ,

∫ t

0
〈ξ(τ)− η(τ), dη(τ)〉 ≥ 0 , and Corollary 2.12

yields that

0 ≥
∫ t

0

〈η(τ)− ξ(τ), d(η − ξ)(τ)〉 ≥ 1

2
|η(t)− ξ(t)|2 ,

and the assertion follows. ¥

Lemma 3.3 enables us to define the input-output operator p : Dom (P) → BVR(0, T ; X) which
with each (u, ξ0) ∈ Dom (P) associates the solution ξ = p[u, ξ0] of Problem P(u, ξ0) .

Proposition 3.4 Let Hypothesis A.26 hold, and let u ∈ GR(0, T ; V ) be a step function of
the form

u(t) =
m∑

k=1

uk−1 χ [tk−1,tk[ (t) + um χ{T} (t) , (3.7)

where 0 = t0 < t1 < · · · < tm = T is a division of [0, T ] and u0, u1, . . . , um are elements of
V . Then (u, ξ0) ∈ Dom (P) for every ξ0 ∈ Z(u0) , and ξ = p[u, ξ0] has the form

ξ(t) =
m∑

k=1

ξk−1 χ [tk−1,tk[ (t) + ξm χ{T} (t) , (3.8)

where ξ0 = ξ0 and
ξk = Quk

ξk−1 for k = 1, . . . , m . (3.9)

With the notation from (3.5) we moreover have

|ξk − ξk−1| ≤ µK(u)(‖uk − uk−1‖) for k = 1, . . . , m . (3.10)

Proof. Let w ∈ T(u) be arbitrary. By Proposition 1.16 we have

∫ T

0

〈w(t)− ξ(t), dξ(t)〉 =
m∑

k=1

〈w(tk)− ξk, ξk − ξk−1〉 .

For all k = 1, . . . , m we have ξk = Quk
ξk−1 , ξk − ξk−1 = −Puk

ξk−1 , and w(tk) ∈ Z(uk) , hence
〈w(tk)− ξk, ξk − ξk−1〉 ≥ 0 by virtue of Lemma A.2 (i). We have thus checked that ξ = p[u, ξ0] .
Inequality (3.10) follows from (A.6.2) and (A.6.5). ¥

Further extensions of Dom (P) are based on the following estimate.
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Lemma 3.5 Let Hypothesis A.26 hold, and let (u, ξ0), (ũ, ξ̃0) ∈ Dom (P) be given, ξ =
p[u, ξ0] , ξ̃ = p[ũ, ξ̃0] . Then for all t ∈ [0, T ] we have

|ξ(t)− ξ̃(t)|2 ≤ |ξ0 − ξ̃0|2 + 2

(
Var
[0,t]

ξ + Var
[0,t]

ξ̃

)
µK(u)∪K(ũ)(‖u− ũ‖[0,t]) . (3.11)

Proof. The functions t 7→ Qu(t)ξ̃(t) , t 7→ Qũ(t)ξ(t) are regulated by virtue of Lemma A.28 and
belong to T(u) , T(ũ) , respectively. Then Lemma 3.2 yields that

∫ t

0

〈
Qu(τ)ξ̃(τ)− ξ(τ), dξ(τ)

〉
≥ 0 ,

∫ t

0

〈
Qũ(τ)ξ(τ)− ξ̃(τ), dξ̃(τ)

〉
≥ 0 ,

and from (A.6.2), (A.6.5) and Corollary 2.6 it follows that

∫ t

0

〈
ξ̃(τ)− ξ(τ), d(ξ − ξ̃)(τ)

〉
≥

∫ t

0

〈
Pu(τ)ξ̃(τ), dξ(t)

〉
+

∫ t

0

〈
Pũ(τ)ξ(τ), dξ̃(τ)

〉

≥ −µK(u)∪K(ũ)(‖u− ũ‖[0,t])

(
Var
[0,t]

ξ + Var
[0,t]

ξ̃

)
.

Using Corollary 2.12 we easily complete the proof. ¥

Proposition 3.6 Let Hypothesis A.26 be fulfilled, let {(un, ξ0
n) ; n ∈ N} be a sequence in

Dom (P) such that ‖un − u‖[0,T ] → 0 , |ξ0
n − ξ0| → 0 as n →∞ , and let there exist a constant

C > 0 such that the functions ξn = p[un, ξ
0
n] satisfy the inequality Var [0,T ] ξn ≤ C . Then

(u, ξ0) ∈ Dom (P) , and putting ξ = p[u, ξ0] we have

lim
n→∞

‖ξn − ξ‖[0,T ] = 0 . (3.12)

Proof. Put K̃ = K(u) ∪ ⋃∞
n=1 K(un) . Then K̃ is compact, and from (3.11) we infer for all

n,m ∈ N and t ∈ [0, T ] that

|ξn(t)− ξm(t)|2 ≤ |ξ0
n − ξ0

m|2 + 4C µK̃

(
‖un − um‖[0,t]

)
. (3.13)

We see that {ξn} is a Cauchy sequence in GR(0, T ; X) with uniformly bounded variation,
hence ξ = limn→∞ ξn belongs to BVR(0, T ; X) , and from (A.6.3) it follows that ξ(t) ∈ Z(u(t))
for all t ∈ [0, T ] .

It remains to check that inequality (iii) in Definition 3.1 is fulfilled. For every n ∈ N and
w ∈ T(u) we have ∫ T

0

〈
Qun(t)w(t)− ξn(t), dξn(t)

〉 ≥ 0 , (3.14)

where, as a consequence of (A.6.2) and (A.6.5), we have

|w(t)−Qun(t)w(t)| = |Pun(t)w(t)| ≤ µK̃(‖un(t)− u(t)‖) ≤ µK̃(‖un − u‖[0,T ]) . (3.15)

By Proposition 2.10 we pass to the limit as n →∞ in (3.14) and obtain the assertion. ¥

Under slightly more restrictive assumptions we now show that Dom (P) contains all right-
continuous input functions with bounded variation.
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Proposition 3.7 Assume in addition to Hypothesis A.26 that for every compact set K ⊂ V
there exists a constant λK > 0 such that

∆(v, w) ≤ λK ‖v − w‖ ∀v, w ∈ K . (3.16)

Then every (u, ξ0) with u ∈ BVR(0, T ; V ) and ξ0 ∈ Z(u(0)) belongs to Dom (P) and ξ =
p[u, ξ0] satisfies the estimate

Var
[s,t]

ξ ≤ λK(u) Var
[s,t]

u for every 0 ≤ s < t ≤ T . (3.17)

Proof. By Proposition 2.4 (ii) we find a sequence {u(n)} of step functions of the form

u(n)(τ) =
mn∑

k=1

u
(n)
k−1 χ

[t
(n)
k−1,t

(n)
k [

(τ) + u(n)
mn

χ{T} (τ) for τ ∈ [0, T ] , (3.18)

where 0 = t
(n)
0 < t

(n)
1 < · · · < t

(n)
mn = T is a division of [0, T ] and u

(n)
0 , u

(n)
1 , . . . , u

(n)
mn are elements

of V such that
∥∥u(n) − u

∥∥
[0,T ]

→ 0 as n →∞ , K(u(n)) ⊂ K(u) , Var [0,T ] u
(n) ≤ Var [0,T ] u . For

given 0 ≤ s < t ≤ T we may assume that both s, t belong to {t(n)
0 , t

(n)
1 , . . . , t

(n)
mn} and u(n)(s) =

u(s) , u(n)(t) = u(t) for all n ∈ N . By construction we then have Var [s,t] u
(n) ≤ Var [s,t] u . The

solutions ξ(n) = p[u(n), ξ0] constructed according to Proposition 3.4 fulfil the inequalities

Var
[0,T ]

ξ(n) ≤ λK(u) Var
[0,T ]

u , Var
[s,t]

ξ(n) ≤ λK(u) Var
[s,t]

u (3.19)

as a consequence of (3.10), and it suffices to use Proposition 3.6. ¥

Similarly as in [20, 26, 28, 29], the non-empty interior condition in Hypothesis A.27 enables us
to extend Dom (P) to all input functions u ∈ GR(0, T ; V ) . The main result of this section
reads as follows.

Theorem 3.8 Let Hypotheses A.26 and A.27 be fulfilled, and let {(un, ξ0
n) ; n ∈ N} be a

sequence in Dom (P) such that ‖un − u‖[0,T ] → 0 , |ξ0
n − ξ0| → 0 as n → ∞ . Then (u, ξ0) ∈

Dom (P) and putting ξn = p[un, ξ0
n] , ξ = p[u, ξ0] we have

lim
n→∞

‖ξn − ξ‖[0,T ] = 0 , Var
[0,T ]

ξ ≤ lim inf
n→∞

Var
[0,T ]

ξn < ∞ . (3.20)

We first prove the following “selection lemma”.

Lemma 3.9 Let Hypotheses A.26 and A.27 hold, and let u ∈ GR(0, T ; V ) be given. Then
there exists r > 0 and z ∈ BVR(0, T ; X) such that

B2r(z(t)) ⊂ Z(u(t)) ∀t ∈ [0, T ] . (3.21)

Proof of Lemma 3.9. We use Proposition A.31 with K = K(u) to find %̃ > 0 such that for
every t ∈ [0, T ] there exists x(t) ∈ X satisfying the inclusion

B%̃(x(t)) ⊂ Z(u(t)) ∀t ∈ [0, T ] .
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By Proposition 2.4 (i) we find a division d = {t0, . . . , tm} ∈ Da,b such that for every j = 1, . . . , m
and t ∈ [tj−1, tj[ we have

µK(u) (‖u(t)− u(tj−1)‖) <
%̃

2
,

and for t ∈ [0, T ] put

z(t) =
m∑

j=1

x(tj−1) χ [tj−1,tj [
(t) + x(tm) χ{tm} (t) . (3.22)

Then z ∈ BVR(0, T ; X) , B%̃(z(t)) ⊂ Z(u(tj−1)) for all j = 1, . . . ,m and t ∈ [tj−1, tj[ ,
B%̃(z(tm)) ⊂ Z(u(tm)) . By Lemma A.30 we then obtain the assertion for r = %̃/4 . ¥

Proof of Theorem 3.8. Let r and z be as in Lemma 3.9, and let K̃ = K(u) ∪ ⋃∞
n=1 K(un) .

Then K̃ is compact, and we find n0 ∈ N sufficiently large such that

µK̃

(
‖un − u‖[0,T ]

)
≤ r for n ≥ n0 .

From Lemma A.30 we then obtain for all n ≥ n0 and t ∈ [0, T ] that

Br(z(t)) ⊂ Z(un(t)) . (3.23)

Let f ∈ G(0, T ; X) be an arbitrary function such that ‖f‖[0,T ] ≤ 1 . Then the function
w(t) = z(t) − r f(t) belongs to T(un) for all n ≥ n0 , and from Lemma 3.2 it follows for all
t ∈ [0, T ] that ∫ t

0

〈z(τ)− r f(τ)− ξn(τ), dξn(τ)〉 ≥ 0 . (3.24)

Using Corollaries 2.6, 2.7, and 2.12 we obtain

r Var
[0,t]

ξn +
1

2
|ξn(t)|2 ≤ 1

2
|ξ0

n|2 + z∗ ‖ξn‖[0,t] , (3.25)

where we put z∗ = 2 ‖z‖[0,T ] +Var [0,T ] z . There exists therefore a constant C > 0 independent
of n such that ‖ξn‖[0,T ] ≤ C , Var [0,T ] ξn ≤ C , and from Lemma 3.5 we conclude that {ξn} is
a Cauchy sequence in GR(0, T ; X) and there exists ξ ∈ BVR(0, T ; X) such that (3.20) holds.
To check that ξ = p[u, ξ0] we use Proposition 3.6. ¥

Corollary 3.10 Let Hypotheses A.26, A.27 hold. Then Dom (P) contains all (u, ξ0) with u ∈
GR(0, T ; V ) and ξ0 ∈ Z(u(0)) , and the mapping p : Dom (P) → GR(0, T ; X) is continuous.

3.3 The play operator in G(0, T ; X)

Let us consider now the special case

V = Y = X , Z(v) = v − Z , (3.26)

where Z ⊂ X is a fixed convex set, 0 ∈ Z . This is the most frequent situation in applications
to elastoplasticity and hysteresis, see [9, 22, 38]. The operator p : (u, ξ0) 7→ ξ is then called
the (multidimensional) play and its properties have been extensively studied also in [13, 20].
We show here how it can be extended to arbitrary regulated (not necessarily right-continuous)
inputs.
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Theorem 3.11 Let there exist r > 0 such that Br(0) ⊂ Z . Then for every u ∈ G(0, T ; X)
and ξ0 ∈ u(0)− Z there exists a unique ξ ∈ BV (0, T ; X) such that

(i) ξ(0) = ξ0 ,

(ii) u(t)− ξ(t) ∈ Z for every t ∈ [0, T ] ,

(iii)

∫ t

0

〈u(τ+)− ξ(τ+)− w(τ), dξ(τ)〉 ≥ 0 for every w ∈ G(0, T ; Z) and t ∈ [0, T ] .

Proof. Put ũ(τ) = u(τ+), ξ̃0 = ξ0 + PZ(ũ(0) − ξ0) , ξ̃(τ) = p[ũ, ξ̃0](τ) for τ ∈ [0, T ] , and
ξ(τ) = ξ̃(τ−)+PZ(u(τ)− ξ̃(τ−)) for τ ∈ ]0, T ] , ξ(0) = ξ0 . We then have u(τ)− ξ(τ) ∈ Z and
ξ(τ+) = ξ̃(τ) + PZ(u(τ+) − ξ̃(τ)) = ξ̃(τ) for all τ ∈ [0, T ] . For an arbitrary w ∈ G(0, T ; Z)
and a fixed t ∈ [0, T ] put

w̃(τ) = w(τ) + (ũ(t)− ξ̃(t)− w(t)) χ{t} (τ) for τ ∈ [0, T ] .

We then have
∫ t

0

〈u(τ+)− ξ(τ+)− w(τ), dξ(τ)〉 =

∫ t

0

〈
ũ(τ)− ξ̃(τ)− w̃(τ), dξ̃(τ)

〉

+

∫ t

0

〈
u(τ+)− ξ(τ+)− w(τ)− ũ(τ) + ξ̃(τ) + w̃(τ), dξ̃(τ)

〉

+

∫ t

0

〈u(τ+)− ξ(τ+)− w(τ), d(ξ − η)(τ)〉 ,

where by Proposition 1.17 and Remark 1.18 we have
∫ t

0

〈
u(τ+)− ξ(τ+)− w(τ)− ũ(τ) + ξ̃(τ) + w̃(τ), dξ̃(τ)

〉

=

∫ t

0

〈
(u(t)− ξ(t)− w(t))χ{t}(τ), dξ̃(τ)

〉
=

〈
u(t)− ξ(t)− w(t), ξ̃(t)− ξ̃(t−)

〉
.

From Lemma 1.9 we further obtain that
∫ t

0

〈u(τ+)− ξ(τ+)− w(τ), d(ξ − η)(τ)〉

=
〈
u(t)− ξ(t)− w(t), ξ(t)− ξ̃(t)

〉
−

〈
u(0+)− ξ(0+)− w(0), ξ(0)− ξ̃(0)

〉

=
〈
u(t)− ξ(t)− w(t), ξ(t)− ξ̃(t)

〉
+

〈
ũ(0)− ξ̃(0)− w(0), ξ̃(0)− ξ(0)

〉
,

hence
∫ t

0

〈u(τ+)− ξ(τ+)− w(τ), dξ(τ)〉 =

∫ t

0

〈
ũ(τ)− ξ̃(τ)− w̃(τ), dξ̃(τ)

〉
(3.27)

+
〈
u(t)− ξ(t)− w(t), ξ(t)− ξ̃(t−)

〉
+

〈
ũ(0)− ξ̃(0)− w(0), ξ̃(0)− ξ(0)

〉
.

All three terms on the right-hand side of (3.27) are non-negative by hypothesis and by Lemma
A.2, hence (iii) holds. Uniqueness follows from Corollary 2.12 similarly as in Lemma 3.3. ¥
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Remark 3.12 We cannot write the variational inequality (iii) in Theorem 3.11 in the form

(iii)’

∫ t

0

〈u(τ)− ξ(τ)− y(τ), dξ(τ)〉 ≥ 0 ∀y ∈ G(0, T ; Z) ∀t ∈ [0, T ]

analogous to Definition 3.1. It suffices to consider the scalar case X = R , Z = [−r, r] for
some r > 0 , u(τ) = ū χ ]0,T ] (τ) with some ū > r . Assume that there exists ξ ∈ BV (0, T ; X)
satisfying (iii)’, ‖u− ξ‖[0,T ] ≤ r , ξ(0) = 0. Putting y(τ) = r χ{0} (τ) + (u(τ)− ξ(τ)) χ ]0,T ] (τ)
we obtain from (iii)’ and Proposition 1.17 that

0 ≤
∫ t

0

(u(τ)− ξ(τ)− r) χ{0} (τ) dξ(τ) = −r ξ(0+) ,

hence ξ(0+) ≤ 0 and u(0+)− ξ(0+) ≥ ū > r , which is a contradiction.

3.4 The play and stop in W 1,1(0, T ; X)

Let us now replace the condition Br(0) ⊂ Z in Theorem 3.11 by a weaker one 0 ∈ Z , and
assume that u ∈ W 1,1(0, T ; X) . The hypotheses of Proposition 3.7 are then satisfied with
λK ≡ 1 independently of K , and from (3.17) we infer that ξ ∈ W 1,1(0, T ; X) and |ξ̇(t)| ≤
|u̇(t)| a. e. Below we prove even more, namely that the input-output mapping is continuous
with respect to the norm in W 1,1(0, T ; X) . We proceed in several steps.

Proposition 3.13 Let Z ⊂ X be a convex closed set with 0 ∈ Z , let u ∈ W 1,1(0, T ; X) be
given, let Z(u(t)) = u(t)− Z for all t ∈ [0, T ] , and let ξ0 ∈ u(0)− Z be a given initial value.
Then ξ := p[u, ξ0] belongs to W 1,1(0, T ; X) and has the properties

(i)
〈
ξ̇(t), u(t)− ξ(t)− z

〉
≥ 0 a. e. ∀z ∈ Z ,

(ii)
〈
ξ̇(t), u̇(t)− ξ̇(t)

〉
= 0 a. e.

Proof. Statement (i) follows from Lemma 3.2 (iii). To prove (ii), it suffices to put z = (u −
ξ)(t± h) in (i) and let h tend to 0+ using Theorem 2.8. ¥

Let us denote x0 = u(0)− ξ0 ∈ Z , x(t) = u(t)− ξ(t) . The mapping s : W 1,1(0, T ; X)× Z →
W 1,1(0, T ; X) : (u, x0) 7→ x is called the stop which is related to the play through the formula

p[u, ξ0](t) + s[u, x0](t) = u(t) ∀t ∈ [0, T ] (3.28)

for every u ∈ W 1,1(0, T ; X) and every ξ0, x0 such that x0 ∈ Z and ξ0 + x0 = u(0) . It is
easy to see that s as operator from W 1,1(0, T ; X)×Z to C(0, T ; X) is Lipschitz continuous.
Indeed, putting x1 = s[u1, x

0
1] , x2 = s[u2, x

0
2] for given x0

1, x
0
2 ∈ Z , u1, u2 ∈ W 1,1(0, T ; X) we

immediately obtain from Proposition 3.13 (i) that

1

2

d

dt
|x1(t)− x2(t)|2 ≤ 〈x1(t)− x2(t), u̇1(t)− u̇2(t)〉 a. e. , (3.29)
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and dividing by |x1(t)− x2(t)| we obtain after integration that

|x1(t)− x2(t)| ≤ |x0
1 − x0

2|+
∫ t

0

|u̇1(τ)− u̇2(τ)| dτ ∀t ∈ [0, T ] . (3.30)

The continuity of s in W 1,p(a, b ; X) × Z → W 1,p(a, b ; X) for 1 ≤ p < ∞ is established in
Theorem 3.14 below.

Theorem 3.14 Let Z ⊂ X be a convex closed set with 0 ∈ Z , let {un} be a given sequence
in W 1,p(a, b ; X) for some p ∈ [1,∞[ such that limn→∞ |un − u|1,p = 0 , and let x0

n ∈ Z be
given initial values, limn→∞ |x0

n − x0| = 0 . Put xn = s[un, x0
n] for n ∈ N , x = s[u, x0] . Then

limn→∞ |xn − x|1,p = 0 .

Before passing to the proof, we mention two results from the Lebesgue and Bochner integration
theory.

Theorem 3.15 (Lebesgue Dominated Convergence Theorem) Let p ∈ [1,∞[ be given and
let vn ∈ Lp(a, b ; X) , gn ∈ Lp(a, b ; R) be given sequences for n ∈ N ∪ {0} such that

(i) limn→∞
∫ b

a
|gn(t)− g0(t)|p dt = 0 ,

(ii) limn→∞ |vn(t)− v0(t)| = 0 a. e.,

(iii) |vn(t)| ≤ gn(t) a. e. for all n ∈ N ∪ {0} .

Then limn→∞ |vn − v0|p = 0 .

We recall this well-known result in order to show the contrast to the following Theorem 3.16.
Notice that it does not follow from Theorem 3.15, since we do not assume the pointwise con-
vergence here. It was proved in [21] and further results in this direction can also be found in
[8, 39].

Theorem 3.16 Let vn ∈ L1(a, b ; X) , gn ∈ L1(a, b ; R) be given sequences for n ∈ N ∪ {0}
such that

(i) limn→∞
∫ b

a
〈vn(t), ϕ(t)〉 dt =

∫ b

a
〈v0(t), ϕ(t)〉 dt ∀ϕ ∈ C(0, T ; X) ,

(ii) limn→∞
∫ b

a
|gn(t)− g0(t)| dt = 0 ,

(iii) |vn(t)| ≤ gn(t) a. e. ∀n ∈ N ,

(iv) |v0(t)| = g0(t) a. e.

Then limn→∞ |vn − v0|1 = 0 .
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Proof. Using Lusin’s theorem, we check that property (i) is satisfied for every ϕ ∈ L∞(a, b; X) .
For t ∈ [a, b] put

ϕ(t) =

{
0 if v0(t) = 0 ,
v0(t) / g0(t) if v0(t) 6= 0 .

Then ϕ ∈ L∞(a, b; X) and the inequality

|vn(t)− v0(t)|2 ≤ g2
n(t)− 2 〈vn(t), v0(t)〉+ g2

0(t)

= |gn(t)− g0(t)|2 + 2g0(t) (gn(t)− g0(t) + 〈v0(t), ϕ(t)〉 − 〈vn(t), ϕ(t)〉)
holds for a. e. t ∈ [a, b] . By Hölder’s inequality we have

∫ b

a

|vn(t)− v0(t)| dt ≤
∫ b

a

|gn(t)− g0(t)| dt

+

(∫ b

a

2g0(t) dt

)1/2 (∫ b

a

(gn(t)− g0(t) + 〈v0(t), ϕ(t)〉 − 〈vn(t), ϕ(t)〉) dt

)1/2

,

and we can pass to the limit as n →∞ . ¥

We are now ready to prove Theorem 3.14.

Proof of Theorem 3.14. For n ∈ N ∪ {0} put ξn = un − xn , yn = xn − ξn . From (3.30) we
infer that |ξn − ξ0|∞ → 0 , |xn − x0|∞ → 0 , |yn − y0|∞ → 0 . By Proposition 3.13 (ii) we have

|ẏn| = |u̇n| a. e. ∀n ∈ N ∪ {0} . (3.31)

Theorem 3.16 for vn := ẏn , gn := |u̇n| yields limn→∞ |yn − y0|1,1 = 0. There exists therefore
a subsequence {ynk

} such that limk→∞ |ẏnk
(t) − ẏ0(t)| = 0 a. e. and from Theorem 3.15 we

conclude
lim
k→∞

|ynk
− y0|1,p = 0 . (3.32)

Since every subsequence of {yn} contains a subsequence satisfying (3.32), the proof is complete
if we take into account the relations xn = (un + yn)/2 , ξn = (un − yn)/2 . ¥

In [22, Theorem I.3.12] it is proved that the stop depends continuously also on Z in terms of
the Hausdorff distance dH defined in (A.5.1). We cite this result without proof.

Theorem 3.17 Let {Zn ; n ∈ N ∪ {0}} be a sequence of convex closed sets in X such that
0 ∈ ∩∞n=0Zn , limn→∞ dH(Z0, Zn) = 0 , and let {x0

n ∈ Zn} be a sequence of initial values such
that limn→∞ |x0

n − x0
0| = 0 . Let {un ; n ∈ N ∪ {0}} be a sequence in W 1,p(0, T ; X) such that

limn→∞ |un− u0|1,p = 0 for some p ∈ [1, +∞[ . Put xn = sn[un, x0
n] for n ∈ N∪{0} , where sn

is the stop associated with the convex set Zn . Then limn→∞ |xn − x0|1,p = 0 .

Remark 3.18 A counterpart of Theorem 3.14 with p = ∞ does not hold even if dim X = 1
with respect to the norm in W 1,∞(0, T ) defined as |u|1,∞ = |u(0)|+ sup ess {|u̇(t)| ; t ∈ [0, T ]} .
It suffices to consider Z = [−1, 1] , T = 1 and the sequence un(t) = (1 + 1/n) t for t ∈ [0, 1] ,
n ∈ N with u0(t) = t , x0

n = 0. For xn = s[un, x
0
n] , ξn = un − xn we then have

ξ0(t) ≡ 0, ξn(t) =

{
0 for t ∈ [

0, n
n+1

]
,(

1 + 1
n

)
t− 1 for t ∈ ]

n
n+1

, 1
] for n ∈ N ,

hence |un − u0|1,∞ → 0 , |ξn − ξ0|1,∞ ≥ 1 .
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4 The wbo-convergence

Most of the contents of this section are recent results from [10, 26]. We introduce a particular
“weak” convergence concept (the so-called wbo -convergence; the abbreviation ‘wbo’ stands for
‘weak bounded oscillation’) which will be shown in Example 5.3 to be independent of the usual
weak convergence, and derive equivalent criteria for the “wbo -sequential compactness” inspired
by Fraňková’s generalization of the Helly Selection Principle. The methods of proof are based
on properties of initial-value problems for variational inequalities established in the previous
section. This is why all results are stated on the interval [0, T ] , but they can be extended by
an easy linear time transformation to any interval [a, b] .

4.1 Uniformly bounded oscillation

We start with some definitions.

Definition 4.1 Let U ⊂ G(0, T ; X) be an arbitrary set, and assume with the notation of
Proposition 2.3 that ϕ ∈ Φ is an arbitrary function. Then U is said to have

(i) uniformly bounded ε -variation if there exists a non-increasing function L : R+ → R+

such that

∀ε > 0 ∀u ∈ U ∃ψ ∈ BV (0, T ; X) : ‖u− ψ‖[0,T ] ≤ ε , Var
[0,T ]

ψ ≤ L(ε) . (4.1)

(ii) uniformly bounded oscillation if

– there exists a constant R > 0 such that

|u(t)− u(s)| ≤ R ∀u ∈ U ∀s, t ∈ [0, T ] , (4.2)

– there exists a non-increasing function N : R+ → R+ such that for every r > 0 and
every system { ]ak, bk[ ; k = 1, . . . , m} of pairwise disjoint intervals ]ak, bk[⊂ [0, T ]
the implication

(
|u(bk)− u(ak)| ≥ r ∀k = 1, . . . , m

)
⇒ m ≤ N(r) (4.3)

holds for every u ∈ U .

(iii) uniformly bounded ϕ -variation if for every division 0 = t0 < t1 < · · · < tm = T we have

m∑
j=1

ϕ(|u(tj)− u(tj−1)|) ≤ 1 ∀u ∈ U .

Below we prove in detail the following equivalence result.

Theorem 4.2 Let U ⊂ G(0, T ; X) be a given set. Then the following three conditions are
equivalent.
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(i) U has uniformly bounded ε -variation.

(ii) U has uniformly bounded oscillation.

(iii) There exists ϕ ∈ Φ such that U has uniformly bounded ϕ -variation.

The equivalence (i) ⇔ (iii) restricted to continuous functions [0, T ] → X along with quantita-
tive estimates has been established in [35, Theorem 17] in the power law case ϕ(r) = Crp with
C > 0 and p ≥ 1 .

Before passing to the proof of Theorem 4.2, we need the following auxiliary result which uses
the concept of play operator defined in the previous section and generalizes the BV-estimate in
Theorem 3.11.

Lemma 4.3 Let Z ⊂ X be a convex closed set with Br(0) ⊂ Z for some r > 0 , and let
c0 > 0 be given. Let p be the operator which with each u ∈ GR(0, T ; X) and ξ0 of the form
u(0)− x0 with x0 ∈ Z associates the solution ξ of the problem

(i) ξ(0) = ξ0 ,

(ii) u(t)− ξ(t) ∈ Z for every t ∈ [0, T ] ,

(iii)

∫ T

0

〈u(t)− ξ(t)− w(t), dξ(t)〉 ≥ 0 for every w ∈ G(0, T ; Z) .

Let U ⊂ GR(0, T ; X) be a set with uniformly bounded oscillation. Then there exists C > 0
such that

Var
[0,T ]

p[u, ξ0] ≤ C (4.4)

for every x0 ∈ Z ∩Bc0(0) and every u ∈ U .

Proof of Lemma 4.3. Let x0 ∈ Z ∩Bc0(0) and u ∈ U be arbitrary. We define the set

S = {t ∈ [0, T [ ; |u(t)− u(t−)| > r} . (4.5)

Then S = {si}p
i=1 with

0 < s1 < · · · < sp < T , 0 ≤ p ≤ N(r) (4.6)

by Definition 4.1 (ii). We put s0 = 0, sp+1 = T , and for i = 1, . . . , p + 1 define recursively the
sequences

ti0 = si−1 , (4.7)

tik = sup{t ∈ ]tik−1, T ] ; |u(τ)− u(tik−1)| ≤ r/2 ∀τ ∈ ]tik−1, t[ } (4.8)

as long as tik−1 < si . It follows from (4.8) that tik ≤ si . Indeed, assuming tik > si would imply
|u(si)− u(tik−1)| ≤ r/2 , |u(si−)− u(tik−1)| ≤ r/2 , hence |u(si)− u(si−)| ≤ r in contradiction
with (4.5).
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Let us consider now a fixed i ∈ {1, . . . , p+1} , and assume that for some q ∈ N we have si−1 =
ti0 < ti1 < · · · < tiq < si . For each k = 1, . . . , q we have by (4.8) that |u(tik) − u(tik−1)| ≥ r/2 ,
and the uniformly bounded oscillation hypothesis then implies that q ≤ N(r/2) . For each
i = 1, . . . , p + 1 there exists therefore qi ∈ N such that

si−1 = ti0 < ti1 < · · · < tiqi
= si , qi ≤ q∗ := N(r/2) + 1 . (4.9)

Consider now a fixed k ∈ {1, . . . , qi} . By Lemma 3.2 (i) we have for every y ∈ G(0, T ; Z) , and
s ∈ ]tik−1, t

i
k[ that ∫ s

tik−1

〈u(τ)− ξ(τ)− y(τ), dξ(τ)〉 ≥ 0 . (4.10)

In particular, we may choose an arbitrary w ∈ S(0, T ; B1(0)) and put in (4.10)

y(τ) =
(
u(τ)− u(tk−1) +

r

2
w(τ)

)
χ [tik−1,tik[ (τ)

Indeed, then ‖y‖[0,T ] ≤ r according to (4.8), hence y(τ) ∈ Z for all τ ∈ [0, T ] . Then (4.10)
yields

r

2

∫ s

tik−1

〈w(τ), dξ(τ)〉 ≤
∫ s

tik−1

〈
u(tik−1)− ξ(τ), dξ(τ)

〉

and from Corollaries 2.6, 2.12, and Lemma 2.2 (ii) it follows that

r Var
[tik−1,s]

ξ ≤ |u(tik−1)− ξ(tik−1)|2 − |u(tik−1)− ξ(s)|2 .

Letting s → tik− we obtain on the one hand that

|u(tik−1)− ξ(tik−1)| ≥ |u(tik−1)− ξ(tik−)| , (4.11)

and Proposition 2.4 (iii) yields on the other hand that

r Var
[tik−1,tik]

ξ ≤ r |ξ(tik)− ξ(tik−)|+ |u(tik−1)− ξ(tik−1)|2 (4.12)

for every i = 1, . . . , p + 1 and k = 1, . . . , qi .

We now denote xi
k = u(tik)− ξ(tik) ∈ Z , xi−

k = u(tik−)− ξ(tik−) ∈ Z whenever it makes sense.
Then it follows from (4.11) that

|xi−
k | ≤ |xi

k−1|+ |u(tik−)− u(tik−1)| ≤ |xi
k−1|+ R for k = 1, . . . , qi . (4.13)

On the other hand, inequality (3.6) yields that

|ξ(tik−1)− ξ(tik−1−)| ≤ |u(tik−1)− u(tik−1−)| , (4.14)

hence

|xi
k−1| ≤ |xi−

k−1|+ 2 |u(tik−1)− u(tik−1−)| ≤ |xi−
k−1|+ 2R for k = 1, . . . , qi . (4.15)

Summing up the inequalities (4.13) and (4.15) over k , we obtain that |xi
k| ≤ |xi

0|+ 3Rq∗ for
all i = 1, . . . , p + 1 and k = 1, . . . , qi , hence |xi+1

0 | = |xi
qi
| ≤ |xi

0| + 3Rq∗ for i = 1, . . . , p ,
and

|xi
k| ≤ |x0|+ 3(p + 1)Rq∗ ≤ c0 + 3(p + 1)Rq∗ (4.16)
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for all i = 1, . . . , p+1 and k = 1, . . . , qi . From (4.12), (4.14), and (4.16) it further follows that

Var
[tik−1,tik]

ξ ≤ |u(tik−1)− u(tik−1−)|+ 1

r
|xi

k−1|2 ≤ R +
1

r
(c0 + 3(p + 1)Rq∗)2 (4.17)

independently of k and i . Summing up the above inequality over k and i we thus obtain

Var
[a,b]

ξ ≤ (1 + p)q∗
(

R +
1

r
(c0 + 3(p + 1)Rq∗)2

)
(4.18)

which together with (4.6) and (4.9) completes the proof. ¥

We now finish the proof of Theorem 4.2.

Proof of Theorem 4.2.

(i) ⇒ (ii) Let U have uniformly bounded ε -variation, and let ]ak, bk[ , k = 1, . . . , m
be pairwise disjoint subintervals of [0, T ] such that for some u ∈ U and r > 0 we have
|u(bk) − u(ak)| ≥ r . For ε = r/4 we find ψε ∈ BV (0, T ; X) such that ‖u− ψε‖[0,T ] ≤ r/4 ,
Var [0,T ] ψε ≤ L(r/4) . Then

L(r/4) ≥
m∑

k=1

|ψε(bk)− ψε(ak)| ≥
m∑

k=1

(|u(bk)− u(ak)| − r/2) ≥ mr

2
,

hence m ≤ 2/rL(r/4) . We now repeat the argument with ε = 1, and for each 0 ≤ s < t ≤ T
we obtain

|u(t)− u(s)| ≤ 2 + |ψ1(t)− ψ1(s)| ≤ 2 + Var
[0,T ]

ψ1 ≤ 2 + L(1) ,

and the assertion is proved.

(ii) ⇒ (i) Assume that U has uniformly bounded oscillation, consider an arbitrary ε > 0 ,
and put Z = Bε/2(0) , x0 = 0. Let p and ξ0 be as in Lemma 4.3. For t ∈ [0, T ] and u ∈ U
put u+(t) = u(t+), ξ(t) = p[u+, ξ0](t) . The set U+ = {u+ ; u ∈ U} has uniformly bounded
oscillation, and by Lemma 4.3 there exists Cε > 0 independent of u such that

Var
[0,T ]

ξ ≤ Cε , ‖u+ − ξ‖[0,T ] ≤ ε/2 . (4.19)

For u ∈ U we introduce the sets

S(u) = {t ∈ [0, T ] ; u(t) 6= u+(t)} , Sε(u) = {t ∈ [0, T ] ; |u+(t)− u(t)| ≥ ε/2} , (4.20)

and define the function
ψ(t) = ξ(t) + (u(t)− u+(t)) χSε(u) (t) . (4.21)

By hypothesis of uniformly bounded oscillation, the number of elements #Sε(u) of Sε(u) is
bounded above by a constant independent of u , say,

#Sε(u) ≤ N(ε/4) , (4.22)

hence
Var
[0,T ]

ψ ≤ Var
[0,T ]

ξ + 2
∑

t∈Sε(u)

|u+(t)− u(t)| ≤ Cε + 2RN(ε/4) . (4.23)
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We moreover have

|u(t)− ψ(t)| =

{
|u+(t)− ξ(t)| ≤ ε/2 for t ∈ [0, T ] \ (S(u) \ Sε(u)) ,

|u(t)− u+(t) + u+(t)− ξ(t)| ≤ ε for t ∈ S(u) \ Sε(u) ,
(4.24)

hence U has uniformly bounded ε -variation, and the implication follows.

(ii) ⇒ (iii) We can basically repeat the argument of Proposition 2.3. Let U have uniformly
bounded oscillation with a function N(r) and bound R . We set N(r) = 1 for r > R and
define ϕ ∈ Φ by the formula

ϕ(r) =
r

RN(r/2)
for r > 0 . (4.25)

Let u ∈ U and 0 = t0 < · · · < tm = T be arbitrary, and let Mk be the sets

Mk =
{
j ∈ {1, . . . ,m} ; |u(tj)− u(tj−1)| ∈ ]2−kR, 2−k+1R]

}
for k ∈ N . (4.26)

The number of elements of Mk does not exceed N(2−kR) , and we have

m∑
j=1

ϕ(|u(tj)−u(tj−1)|) =
∞∑

k=1

∑
j∈Mk

ϕ(|u(tj)−u(tj−1)|) ≤
∞∑

k=1

N(2−kR)ϕ(2−k+1R) = 1 , (4.27)

which we wanted to prove.

(iii) ⇒ (ii) This part is easy. Let ]ak, bk[ , k = 1, . . . , m be pairwise disjoint subintervals of
[0, T ] such that for some u ∈ U and r > 0 we have |u(bk)− u(ak)| ≥ r . Then

1 ≥
m∑

k=1

ϕ(|u(bk)− u(ak)|) ≥ mϕ(r) , (4.28)

hence m ≤ 1/ϕ(r) . Furthermore, for each 0 ≤ s < t ≤ T we have ϕ(|u(t)− u(s)|) ≤ 1 , hence
|u(t)− u(s)| ≤ sup{r ≥ 0 ; ϕ(r) ≤ 1} , and the proof is complete. ¥

4.2 Convergent subsequences

The concept of uniformly bounded ε -variation has been introduced in [16, Definition 3.3] with
the intention to extend the Helly Selection Principle to regulated functions. For our purposes,
we state this result in the following form.

Proposition 4.4 Let {fn ; n ∈ N} be a bounded sequence of functions from G(0, T ; X) which
has uniformly bounded ε -variation. Then there exist f ∈ G(0, T ; X) and a subsequence {fnk

}
of {fn} such that fnk

(t) converge weakly to f(t) as k →∞ for every t ∈ [0, T ] .

The original reference goes back to [16, Theorem 3.8] in the case dimX < ∞ . The extension
to a general separable Hilbert space X has been done in [26, Theorem 5.2]. The proof of
Theorem 4.4 consists in a gradual selection of subsequences similar to the proof of the classical
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Helly Selection Principle (see e. g. [19], pp. 372 – 374). In order to make the diagonalization
argument more transparent, we introduce the following notation.

By G(N) we denote the set of all infinite subsets M ⊂ N . We say that a sequence {xn ; n ∈ N}
of elements of a topological space M -converges to x if for every neighborhood U(x) of x there
exists n0 such that xn ∈ U(x) for every n ∈ M , n ≥ n0 .

We start with the following Lemma as the Hilbert-space version of [5], Theorem I.3.5.

Lemma 4.5 Let {ψn ; n ∈ N} be a bounded sequence in BV (0, T ; X) such that Var [0,T ] ψn ≤
C for every n ∈ N . Then there exist ψ ∈ BV (0, T ; X) and a set M ∈ G(N) such that
Var [0,T ] ψ ≤ C and the sequence ψn(t) weakly M -converges in X to ψ(t) for every t ∈ [0, T ] .

Proof. Let {wj ; j ∈ N} be a countable dense subset of X . The functions t 7→ 〈ψn(t), w1〉 have
uniformly bounded variation, and by virtue of the one-dimensional Helly Selection Principle we
find N1 ∈ G(N) such that the sequence {〈ψn(t), w1〉} N1 -converges to a limit v1(t) for every
t ∈ [0, T ] . By induction we construct a sequence {Nk ; k ∈ N} of sets in G(N) , N1 ⊃ N2 ⊃ . . . ,
such that the sequence {〈ψn(t), wj〉} Nj -converges to a limit vj(t) for every t ∈ [0, T ] . We
now put n1 := min N1 , nk := min{n ∈ Nk ; n > nk−1} for k = 2, 3, . . . , and define the set
M := {nk ; k ∈ N} ∈ G(N) . By construction, every Nj -convergent sequence is M -convergent,
hence {〈ψn(t), wj〉} M -converges to vj(t) for every t ∈ [0, T ] and j ∈ N .

For a fixed t ∈ [0, T ] , the mapping wj 7→ vj(t) can be extended in a unique way to a bounded
linear functional on X . By the Riesz Representation Theorem, there exists an element ψ(t) ∈
X such that vj(t) = 〈ψ(t), wj〉 for every j ∈ N . Since the system {wj} is dense in X , we
obtain that

lim
k→∞

〈ψnk
(t), w〉 = 〈ψ(t), w〉

for every w ∈ X and t ∈ [0, T ] . Moreover, for any fixed division 0 = t0 < t1 < · · · < tm = T
we have

m∑
i=1

|ψ(ti)− ψ(ti−1)| ≤ lim inf
k→∞

m∑
i=1

|ψnk
(ti)− ψnk

(ti−1)| ≤ C ,

and the assertion follows. ¥

We now use Lemma 4.5 to prove Theorem 4.4 by an argument similar to the one used in [16]
in the case dimX < ∞ .

Proof of Theorem 4.4. We fix a sequence εi → 0 and for every n, i ∈ N we find ψi
n ∈

BV (0, T ; X) such that ‖ψi
n − fn‖[0,T ] < εi , Var [0,T ] ψ

i
n ≤ L(εi) . We now apply Lemma 4.5

to find M1 ∈ G(N) and ψ1 ∈ BV (0, T ; X) such that Var [0,T ] ψ
1 ≤ L(ε1) and ψ1

n(t) weakly
M1 -converges to ψ1(t) for every t ∈ [0, T ] . We continue by induction and construct a sequence
{Mi} of sets in G(N) , M1 ⊃ M2 ⊃ . . . , such that the sequence {ψi

n(t)} weakly Mi -converges
to ψi(t) for every t ∈ [0, T ] and i ∈ N , ψi ∈ BV (0, T ; X) , Var [0,T ] ψ

i ≤ L(εi) . Putting
n1 := min M1 , nk := min{n ∈ Mk ; n > nk−1} for k = 2, 3, . . . , M∗ := {nk ; k ∈ N} we argue
as in the proof of Lemma 4.5 to obtain that ψi

n(t) weakly M∗ -converges to ψi(t) for every
t ∈ [0, T ] and i ∈ N .

We now check that {ψi ; i ∈ N} is a Cauchy sequence in G(0, T ; X) . For i, j, n ∈ N we have
∥∥ψi

n − ψj
n

∥∥
[0,T ]

≤
∥∥ψi

n − fn

∥∥
[0,T ]

+
∥∥fn − ψj

n

∥∥
[0,T ]

≤ εi + εj.
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Consequently we have for t ∈ [0, T ] that

∣∣ψi(t)− ψj(t)
∣∣ ≤ lim inf

k→+∞

∣∣ψi
nk

(t)− ψj
nk

(t)
∣∣ ≤ εi + εj,

from which readily follows that {ψi} is a Cauchy sequence in G(0, T ; X) . We denote by
f ∈ G(0, T ; X) its limit. For each t ∈ [0, T ] , w ∈ X and k ∈ N we then have

〈f(t)− fnk
(t), w〉 =

〈
f(t)− ψi(t), w

〉
+

〈
ψi(t)− ψi

nk
(t), w

〉
+

〈
ψi

nk
(t)− fnk

(t), w
〉

for a suitably chosen i , and we easily conclude that fnk
(t) weakly converges to f(t) for every

t ∈ [0, T ] . Theorem 4.4 is proved. ¥

4.3 The wbo-convergence

The concepts presented here were applied to the limit passage in relaxation oscillation problems
in [24]. Here, we focus on the relationship with the Kurzweil integral.

Definition 4.6 A sequence {fn} in G(0, T ; X) is said to wbo -converge to a function f ∈
G(0, T ; X) , if the set {fn ; n ∈ N} has uniformly bounded oscillation and fn(t) → f(t) as
n →∞ weakly in X for every t ∈ [a, b] .

The following generalization of Proposition 2.10 reflects the “weak” character of the wbo -
convergence.

Theorem 4.7 Let f ∈ G(0, T ; X) be given, and let {fn ; n ∈ N} be a sequence in G(0, T ; X)
such that fn(t) → f(t) weakly in X for every t ∈ [0, T ] . Then the following two conditions
are equivalent.

(i) fn have uniformly bounded oscillation;

(ii) For every sequence {gn} in BV (0, T ; X) such that ‖gn − g‖[a,b] → 0 as n → ∞ and

Var gn ≤ C independently of n we have

∫ T

0

〈fn(t), dgn(t)〉 →
∫ T

0

〈f(t), dg(t)〉 .

For the proof of Theorem 4.7 we need the following lemma.

Lemma 4.8 Consider w ∈ S(0, T ; X) and f̃n : [0, T ] → X , f̃n(t) → 0 weakly for every
t ∈ [0, T ] . Then

lim
n→∞

∫ T

0

〈
f̃n(t), dw(t)

〉
= 0 .
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Proof of Lemma 4.8. For a function w of the form (2.2) we have by Proposition 1.16
∫ T

0

〈
f̃n(t), dw(t)

〉
=

m∑

k=0

〈
f̃n(tk), ck+1 − ck

〉
,

where we put c0 := ĉ0 , cm+1 := ĉm , and it suffices to pass to the limit as n →∞ . ¥

Proof of Theorem 4.7.

(i) ⇒ (ii) The sequence {fn} is obviously bounded in G(0, T ; X) . Indeed, as {fn(0)} is
weakly convergent, it is necessarily bounded and we have for every n and t that

|fn(t)| ≤ |fn(t)− fn(0)|+ |fn(0)| ≤ R + |fn(0)|
which for a fixed ε yields an upper bound for ‖fn‖[0,T ] independent of n , say ‖fn‖[0,T ] ≤ R′ .

Let now ε > 0 be arbitrarily chosen. By Theorem 4.2 we find for each n ∈ N functions {ψε} ,
{ψε

n} in BV (0, T ; X) such that ‖fn − ψε
n‖[0,T ] ≤ ε , ‖f − ψε‖[0,T ] ≤ ε , Var [0,T ] ψ

ε
n ≤ L(ε) ,

Var [0,T ] ψ
ε ≤ L(ε) . By Proposition 2.4 (ii) there exists a step function w ∈ S(0, T ; X) such

that ‖g − w‖[0,T ] ≤ ε/L(ε) , Var [0,T ] w ≤ C . Using Lemma 4.8 and the uniform convergence of

{gn} , we find n0 such that for n ≥ n0 we have | ∫ T

0
〈(f − fn)(t), dw(t)〉 | ≤ ε , ‖g − gn‖[0,T ] ≤

ε/L(ε) . Then Corollaries 2.6, 2.7 yield
∣∣∣∣∣
∫ T

0

〈f(t), dg(t)〉 −
∫ T

0

〈fn(t), dgn(t)〉
∣∣∣∣∣ ≤

∣∣∣∣
∫ T

0

〈(f − ψε − fn + ψε
n)(t), d(g − w)(t)〉

∣∣∣∣

+

∣∣∣∣
∫ T

0

〈(f − fn)(t), dw(t)〉
∣∣∣∣ +

∣∣∣∣
∫ T

0

〈(ψε − ψε
n)(t), d(g − w)(t)〉

∣∣∣∣

+

∣∣∣∣
∫ T

0

〈(fn − ψε
n)(t), d(g − gn)(t)〉

∣∣∣∣ +

∣∣∣∣
∫ T

0

〈ψε
n(t), d(g − gn)(t)〉

∣∣∣∣
≤ 2 C ‖f − ψε − fn + ψε

n‖[0,T ] + ε + (4 (R′ + ε) + 2 L(ε)) ‖g − w‖[0,T ]

+ 2 C ‖fn − ψε
n‖[0,T ] + (2 (R′ + ε) + L(ε)) ‖g − gn‖[0,T ]

≤ M ε

for n ≥ n0 , where M is a constant independent of n and ε , hence (2.27) holds.

(ii) ⇒ (i) Let us consider a sequence of pairwise disjoint intervals ]an
k , bn

k [ , k = 1, . . . ,m(n) in
[0, T ] such that for some r > 0 we have |fn(bn

k)−fn(an
k)| ≥ r for all n and k , and assume that

lim supn→∞ m(n) = ∞ . We find vn
k ∈ B1(0) such that 〈vn

k , fn(bn
k)− fn(an

k)〉 = |fn(bn
k)−fn(an

k)|
for all n and k , and set

gn(t) =
1

m(n)

m(n)∑

k=1

vn
k χ ]an

k ,bn
k [ (t)

for n ∈ N and t ∈ [0, T ] . Then Var [0,T ] gn ≤ 2 , there exists a subsequence of {gn} which
converges uniformly to 0 , and

∫ T

0

〈fn(t), dgn(t)〉 =
1

m(n)

m(n)∑

k=1

|fn(bn
k)− fn(an

k)| ≥ r

which is a contradiction. ¥
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5 Topology of the space of regulated functions

The topological structure of the space G(a, b ; X) is very rich. We now compare the wbo -
convergence introduced in the previous section with the usual weak convergence and with
the convergence in the so-called Skorokhod metric, and use the concept of uniformly bounded
oscillation for the characterization of compact sets in G(a, b ; X) if dimX < ∞ .

5.1 Representation of bounded linear functionals

Representation formulas for bounded linear functionals on GL(a, b ; X) using the Dushnik
integral were derived for the first time in [18], and a reformulation in terms of the Kurzweil
integral was published in [36]. The extension to the whole space G(a, b ; X) was done in [10].
We denote by BV0(a, b ; X) the closed subspace of BV (a, b ; X) consisting of all functions
µ ∈ BV (a, b ; X) which vanish everywhere except on a countable set.

Theorem 5.1 Let P : G(a, b ; X) → R be a bounded linear functional. Then there exist
uniquely determined functions µ ∈ BV0(a, b ; X) and f, f̂ ∈ BV (a, b ; X) such that µ(b) =
f(b) , µ(a) = f̂(a) , and for every g ∈ G(a, b ; X) we have

P (g) = 〈f(a), g(a)〉+

∫ b

a

〈f(t), dg(t)〉 −
∑

t∈[a,b]

〈µ(t), g(t+)− g(t)〉 , (5.1)

P (g) =
〈
f̂(b), g(b)

〉
−

∫ b

a

〈
f̂(t), dg(t)

〉
+

∑

t∈[a,b]

〈µ(t), g(t)− g(t−)〉 . (5.2)

Moreover, the norm

‖P‖ = sup{P (g) ; g ∈ G(a, b ; X) , ‖g‖[a,b] ≤ 1} (5.3)

of P satisfies the estimates

‖P‖ ≤ |µ(a)|+ |f(b)|+ Var [a,b] f + Var [a,b] µ ≤ 3 ‖P‖ , (5.4)

‖P‖ ≤ |f̂(a)|+ |µ(b)|+ Var [a,b] f̂ + Var [a,b] µ ≤ 3 ‖P‖ . (5.5)

In particular, the dual G(a, b ; X)′ to G(a, b ; X) is isomorphic to each of the two spaces Vb =
{(f, µ) ∈ BV (a, b ; X) × BV0(a, b ; X) ; f(b) = µ(b)} and Va = {(f̂ , µ) ∈ BV (a, b ; X) ×
BV0(a, b ; X) ; f̂(a) = µ(a)} .

The set M = {t ∈ [a, b] ; µ(t) 6= 0} is countable and
∑

t∈M |µ(t)| ≤ Var [a,b] µ < ∞ , hence
formulas (5.1) – (5.2) are meaningful. Let us recall also the Riesz Representation Theorem (see
[19, Chapter 4, §6] for real-valued functions) which states that every bounded linear functional
PC on C(a, b ; X) can be represented in a unique way as

PC(g) =

∫ b

a

〈g(t), df ∗(t)〉 ∀g ∈ C(a, b ; X) , ‖PC‖ = Var
[a,b]

f ∗ (5.6)

with some f ∗ ∈ BV (0, T ; X) such that f ∗(0) = 0 and f ∗(t) = (f ∗(t+) + f ∗(t−))/2 for
all t ∈ ]a, b[ . This also follows from (5.2) if we put f∗(t) = f̂(t) − f̂(a) χ{a} (t) , f ∗(t) =
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(f∗(t+) + f∗(t−))/2 for t ∈ ]a, b[ , f ∗(t) = f∗(t) for t = a, b , and integrate by parts using
Proposition 2.11. The main difference between, say, (5.1) and (5.6) consists in the fact that f ∗

in (5.6) generates a measure, so that the integral can also be interpreted in the Lebesgue sense,
while dg on the right-hand side of (5.1) or (5.2) is not a measure in general.

Proof of Theorem 5.1. It suffices to prove (5.1). Indeed, putting

f̂(t) = f(a)− f(t) + µ(t) (5.7)

we have f̂(b) = f(a) , f̂(a) = µ(a) , and from the identity
∫ b

a

〈µ(t), dg(t)〉 =
∑

t∈[a,b]

〈µ(t), g(t+)− g(t−)〉 (5.8)

for every g ∈ G(a, b ; X) we obtain (5.2). In fact, formula (5.8) can be verified using the results
of Subsection 2.2. For each n ∈ N we find a finite set Mn ⊂ M such that

∑
M\Mn

|µ(t)| < 1/n ,

and define µn(t) =
∑

s∈Mn
µ(s) χ{s} (t) . Identity (5.8) holds with µ replaced by µn for every

n as a consequence of Proposition 1.17 (i), and using the estimate in Corollary 2.7 we pass to
the limit as n →∞ .

In the proof of (5.1) we proceed analogously as in the Riesz Representation Theorem in [19].
For each fixed t ∈ [a, b] , the mappings v 7→ P (v χ [t,b] ) , v 7→ P (v χ{t} ) are bounded linear
functionals on X . There exist therefore elements denoted by f(t) , µ(t) , respectively, such
that

〈f(t), v〉 = P (v χ [t,b] ) , 〈µ(t), v〉 = P (v χ{t} ) ∀v ∈ X . (5.9)

For an arbitrary division a = t0 < t1 < · · · < tm = b and an arbitrary sequence c0, c1, . . . , cm ∈
B1(0) we have

∣∣∣∣∣
m∑

j=1

〈f(tj)− f(tj−1), cj〉
∣∣∣∣∣ =

∣∣∣∣∣P
(

m∑
j=1

cjχ[tj−1,tj [

)∣∣∣∣∣ ≤ ‖P‖ , (5.10)

∣∣∣∣∣
m∑

j=0

〈µ(tj), cj〉
∣∣∣∣∣ =

∣∣∣∣∣P
(

m∑
j=0

cjχ{tj}

)∣∣∣∣∣ ≤ ‖P‖ , (5.11)

hence f ∈ BV (a, b ; X) , µ ∈ BV (a, b ; X) , µ(t) 6= 0 in at most countably many points.
Furthermore, for every function g ∈ S(a, b ; X) of the form

g =
m∑

j=0

ĉj χ{tj} +
m∑

j=1

cj χ ]tj−1,tj [
(5.12)

with any choice of the division a = t0 < t1 < · · · < tm = b and of the sequences ĉ0, ĉ1, . . . , ĉm ,
c1, . . . , cm ∈ X we have P (cj χ ]tj−1,tj [

) = 〈f(tj−1)− f(tj)− µ(tj−1), cj〉 , hence

P (g) = 〈µ(b), ĉm〉+
m−1∑
j=0

〈µ(tj), ĉj − cj+1〉 −
m∑

j=1

〈f(tj)− f(tj−1), cj〉 . (5.13)

On the other hand, Proposition 1.16 yields
∫ b

a

〈f(t), dg(t)〉 = 〈f(b), ĉm〉 − 〈f(a), ĉ0〉 −
m∑

j=1

〈f(tj)− f(tj−1), cj〉 , (5.14)
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hence (note that f(b) = µ(b) )

P (g) = 〈f(a), ĉ0〉+

∫ b

a

〈f(t), dg(t)〉+
m−1∑
j=0

〈µ(tj), ĉj − cj+1〉 (5.15)

which is nothing but formula (5.1) for every g ∈ S(a, b ; X) of the form (5.12). Every function
g ∈ G(a, b ; X) can be approximated by a uniformly convergent sequence of functions from
S(a, b ; X) , hence, by Corollary 2.7, identity (5.1) holds for every g ∈ G(a, b ; X) .

The uniqueness of f , f̂ , µ is easy. Assume for instance that

〈f(a), g(a)〉+

∫ b

a

〈f(t), dg(t)〉 −
∑

t∈[a,b]

〈µ(t), g(t+)− g(t)〉 = 0 ∀g ∈ G(a, b ; X) . (5.16)

Choosing in (5.16) g(t) = gs(t) := µ(s) χ{s} (t) for s ∈ [a, b[ and t ∈ [a, b] we obtain from
Proposition 1.16 that µ(s) = 0 for all s ∈ [a, b[ . Similarly, the choice g(t) = g̃s(t) :=
f(s) χ [s,b] (t) for s ∈ [a, b] and t ∈ [a, b] yields that f(s) = 0 for all s ∈ [a, b] , hence also

µ(b) = f(b) = 0. The uniqueness of f̂ can be obtained similarly.

We now pass to the proof of (5.4). From Corollary 2.7 it immediately follows that

‖P‖ ≤ |f(b)|+ Var
[a,b]

f + 2
∑

t∈[a,b[

|µ(t)| ≤ |µ(a)|+ |f(b)|+ Var
[a,b]

f + Var
[a,b]

µ . (5.17)

Conversely, for every ε > 0 we use Corollary 2.7 and find gε ∈ G(a, b ; X) , ‖gε‖[a,b] ≤ 1 , such
that

〈f(a), gε(a)〉+

∫ b

a

〈f(t), dgε(t)〉 > |f(b)|+ Var
[a,b]

f − ε . (5.18)

We construct a finite set Dε ⊂ [a, b] , Dε = {tε1, . . . , tεm(ε)} , such that a ∈ Dε if µ(a) 6= 0,

b ∈ Dε if µ(b) 6= 0, µ(tεi ) 6= 0 for i = 1, . . . , m(ε) and

∑

t∈[a,b]\Dε

|µ(t)| <
ε

2
. (5.19)

Let λε be the function

λε(t) =

m(ε)∑
i=1

(
gε(t

ε
i+)− gε(t

ε
i ) + 2

µ(tεi )

|µ(tεi )|
)

χ{tεi } (t) for t ∈ [a, b] , (5.20)

and set
g(t) = gε(t) + λε(t) for t ∈ [a, b] . (5.21)

Proposition 1.16 yields (note that 〈f(b), λε(b)〉 = 2|µ(b)| = 2|f(b)| )

〈f(a), g(a)〉+

∫ b

a

〈f(t), dg(t)〉 = 〈f(a), gε(a)〉+

∫ b

a

〈f(t), dgε(t)〉+2|f(b)| . (5.22)

Furthermore, for i = 1, . . . , m(ε) , tεi 6= b we have

〈µ(tεi ), g(tεi+)− g(tεi )〉 = 〈µ(tεi ), gε(t
ε
i+)− gε(t

ε
i )− λε(t

ε
i )〉 = −2|µ(tεi )| , (5.23)
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hence, by virtue of (5.19) – (5.20),

−
∑
t∈Dε

〈µ(t), g(t+)− g(t)〉 = 2
∑

t∈Dε\{b}
|µ(t)| ≥ |µ(a)|+ Var

[a,b]
µ−|µ(b)| − ε , (5.24)

∣∣∣∣∣∣
∑

t∈[a,b]\Dε

〈µ(t), g(t+)− g(t)〉
∣∣∣∣∣∣
≤ 2

∑

t∈[a,b[ \Dε

|µ(t)| ≤ ε . (5.25)

From (5.18), (5.22), and (5.24) – (5.25) it follows that

P (g) = 〈f(a), g(a)〉+

∫ b

a

〈f(t), dg(t)〉 −
∑

t∈[a,b]

〈µ(t), g(t+)− g(t)〉 (5.26)

≥ |µ(a)|+ |f(b)|+ Var
[a,b]

f + Var
[a,b]

µ− 3ε ,

hence
|µ(a)|+ |f(b)|+ Var

[a,b]
f + Var

[a,b]
µ ≤ ‖P‖ ‖g‖[a,b] + 3ε ≤ 3 (‖P‖+ ε) . (5.27)

Since ε is arbitrary, we obtain (5.4) from (5.17) and (5.27). The proof of (5.5) is analogous. ¥

Representations formulas have a particularly simple form if we restrict ourselves to left-contin-
uous or right-continuous functions.

Corollary 5.2 For every functionals PR ∈ GR(a, b ; X)′ , PL ∈ GL(a, b ; X)′ there exist
uniquely determined functions f, f̂ ∈ BV (a, b ; X) such that

PR(g) = 〈f(a), g(a)〉+

∫ b

a

〈f(t), dg(t)〉 ∀g ∈ GR(a, b ; X) , (5.28)

PL(g) =
〈
f̂(b), g(b)

〉
−

∫ b

a

〈
f̂(t), dg(t)

〉
∀g ∈ GL(a, b ; X) , (5.29)

and we have
‖PR‖ = |f(b)|+ Var

[a,b]
f , ‖PL‖ = |f̂(a)|+ Var

[a,b]
f̂ . (5.30)

In particular, both GR(a, b ; X)′ , GL(a, b ; X)′ are isometrically isomorphic to BV (a, b ; X) .

This is a slight improvement with respect to Theorem 3.8 of [36], where bounded linear func-
tionals PL on GL(a, b ; R) (with an obvious extension to X -valued functions) are represented
in the form

PL(g) = 〈c, g(a)〉+

∫ b

a

〈p(t), dg(t)〉 (5.31)

with a vector c ∈ X and a function p ∈ BV (a, b ; X) . We thus “save” one component, although
(5.31) is indeed (note that g is left-continuous!) equivalent to (5.29) with

f̂(t) = c− p(t) χ [a,b[ (t) .

Proof of Corollary 5.2. To prove (5.28) – (5.29), we just repeat the argument the proof of
Theorem 5.1 with

〈f(t), v〉 = P (v χ [t,b] ) ,
〈
f̂(t), v

〉
= P (v χ [a,t] ) ∀v ∈ X . (5.32)

Identities (5.30) follow from Corollary 2.7. ¥
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5.2 Weak and wbo-convergences

A natural question is whether a functional P on GL(a, b ; X) or GR(a, b ; X) can also be
represented in the form

P (g) = 〈f(b), g(b)〉 −
∫ b

a

〈g(t), df(t)〉 , (5.33)

P (g) =
〈
f̂(a), g(a)

〉
+

∫ b

a

〈
g(t), df̂(t)

〉
(5.34)

analogous to (5.6) with functions f, f̂ ∈ BV (a, b ; X) . The following example shows that the
answer is in general negative.

Example 5.3 Consider the functional PR(g) = 〈g(s−), v〉 for some fixed s ∈ ]a, b[ and 0 6=
v ∈ X , which satisfies (5.1) with µ ≡ 0 and f = v χ [a,s[ . On the other hand, the sequence
{gn} , gn(t) = v χ [sn,s[ (t) , sn ↗ s has uniformly bounded oscillation and gn(t) → 0 for every

t ∈ [a, b] , hence
∫ b

a
〈gn(t), df(t)〉 → 0 for every f ∈ BV (a, b ; X) by virtue of Theorem 4.7, but

PR(gn) = |v|2 for every n ∈ N in contradiction with (5.33), (5.34). The same argument applies
to the functional PL(g) = 〈g(s+), v〉 , with gn(t) = v χ ]s,sn] (t) and sn ↘ s .

We see that the functions gn wbo -converge to 0 , but do not converge weakly in the usual
sense. On the other hand, the functions

ĝn =
2n−1∑

k=2n−1+1

v χ [a+(1/k)−2−2n, a+(1/k)[ (5.35)

for n ≥ n0 sufficiently large with a fixed vector 0 6= v ∈ X provide an example of a sequence
in GR(a, b ; X) which does not have uniformly bounded oscillation, but ĝn(t) → 0 as n →∞
for every t ∈ [a, b] and PR(ĝn) → 0 for every PR ∈ GR(a, b ; X)′ . Indeed, for every functional
PR of the form (5.28) we have

|PR(ĝn)| ≤ |v|
2n−1∑

k=2n−1+1

∣∣∣∣f
(

a +
1

k

)
− f

(
a +

1

k
− 2−2n

)∣∣∣∣ ≤ |v| Var
[a+2−n, a+21−n]

f . (5.36)

This yields that
∞∑

n=n0

|PR(ĝn)| ≤ |v| Var
[a,b]

f < ∞ , (5.37)

hence PR(ĝn) → 0 as n → ∞ . We see that there is no direct implication between the weak
and the wbo -convergence in GR(a, b ; X) or GL(a, b ; X) .

We conclude the considerations on representation of functionals by two statements illustrating in
a different way the duality between G(a, b ; X) and BV (a, b ; X) with respect to convergences
in Theorem 4.7.

Theorem 5.4 Let P : G(a, b ; X) → R be a bounded linear functional. Then the following two
conditions are equivalent.



pa8.tex 47

(i) P (gn) → P (g) for every wbo -convergent sequence gn → g in G(a, b ; X) ;

(ii) There exist f, f̂ ∈ BV (a, b ; X) such that for every g ∈ G(a, b ; X) the identities (5.33),
(5.34) hold.

Proof. The implication (ii) ⇒ (i) follows from Theorem 4.7 with gn ≡ g . To prove the converse,
we define the functions f , f̂ , and µ as in (5.9), (5.7). For every v ∈ X and every t ∈ [a, b[ we
have by hypothesis P (v χ ]t,b] ) = lims→t+ P (v χ [s,b] ) , hence f(t) = f(t+) + µ(t) , and similarly
for t ∈ ]a, b] we have P (v χ [t,b] ) = lims→t− P (v χ [s,b] ) , hence f(t) = f(t−) . We now invoke
the integration-by-parts formula (2.31) which in combination with (5.1) yields (5.33). Using
the fact that µ(t+) = 0 for t ∈ [a, b[ , µ(t−) = 0 for t ∈ ]a, b] , we obtain from (5.7) that
f̂(t) = f̂(t−) + µ(t) , f̂(t) = f̂(t+) for every t ∈ [a, b] , and argue as above to obtain (5.34). ¥

Theorem 5.5 Let QL : BVL(a, b ; X) → R be a bounded linear functional. Then the following
two conditions are equivalent.

(i) QL(gn) → QL(g) for every sequence {gn} in BVL(a, b ; X) such that ‖gn − g‖[a,b] → 0
as n →∞ and Var [a,b] gn ≤ C independently of n ;

(ii) There exists f̂ ∈ G(a, b ; X) such that

QL(g) =
〈
f̂(b), g(b)

〉
−

∫ b

a

〈
f̂(t), dg(t)

〉
∀g ∈ BVL(a, b ; X) . (5.38)

Proof. The implication (ii) ⇒ (i) follows again from Theorem 4.7 with fn ≡ f̂ . To prove the
converse, we argue as in the proof of Theorem 5.1 and define the function f̂ : [0, T ] → X by
the formula 〈

f̂(t), v
〉

= QL(v χ [a,t] ) ∀v ∈ X ∀t ∈ [a, b] . (5.39)

We check by contradiction that f̂ ∈ G(a, b ; X) . Assuming that there exist t ∈ ]a, b] , δ > 0 ,
and sequences sj ↗ t , tj ↗ t , sj < tj < sj+1 < tj+1 for all j ∈ N , such that |f̂(tj)−f̂(sj)| ≥ δ ,
it suffices to choose vj ∈ X in such a way that

〈
f̂(tj)− f̂(sj), vj

〉
= |f̂(tj)− f̂(sj)| , |vj| = 1 ∀j ∈ N ,

and put

gn = 2−n

2n∑

j=2n−1+1

vj χ ]sj ,tj ]
for n ∈ N . (5.40)

Then ‖gn‖[a,b] → 0 , Var [a,b] gn = 1 for n ∈ N , and

QL(gn) = 2−n

2n∑

j=2n−1+1

〈
vj, f̂(tj)− f̂(sj)

〉
≥ δ

2

which is a contradiction. This implies that f̂(t−) exists for all t ∈ ]a, b] . We analogously prove
that f̂(t+) exists for all t ∈ [a, b[ by considering sequences sj ↘ t , tj ↘ t , sj > tj > sj+1 >

tj+1 for all j ∈ N , hence f̂ ∈ G(a, b ; X) .
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For each function g of the form

g = c0 χ{a} +
m∑

j=1

cj χ ]tj−1,tj ]
, a = t0 < t1 < · · · < tm = b (5.41)

we have by Proposition 1.16 that

QL(g) =
〈
f̂(a), c0

〉
+

m∑
j=1

〈
f̂(tj)− f̂(tj−1), cj

〉
=

〈
f̂(b), g(b)

〉
−

∫ b

a

〈
f̂(t), dg(t)

〉
. (5.42)

Each function g ∈ BVL(a, b ; X) can be uniformly approximated by step functions gn of the
form (5.41) and such that Var [a,b] gn ≤ Var [a,b] g by virtue of Proposition 2.4 (ii). Passing to
the limit as n →∞ and using Proposition 2.10 we obtain the assertion. ¥

5.3 Compact sets in G(a, b ; X)

Compact sets in G(a, b ; X) obviously have uniformly bounded oscillation. We now use the
above results to prove the following variant of the Arzelà-Ascoli compactness criterion referring
to Proposition 2.4 (i). More can be found in [16, Section 2].

Theorem 5.6 Let dimX < ∞ . Then a set U ⊂ G(a, b ; X) is relatively compact if and only
if it is bounded and for every ε > 0 there exists a division d = {t0, . . . , tm} ∈ Da,b such that
for every f ∈ U and every j = 1, . . . , m we have

tj−1 < τ < t < tj =⇒ |f(t)− f(τ)| < ε . (5.43)

Proof. Let U be relatively compact and let ε > 0 be given. We find v1, . . . , vn ∈ G(a, b ; X)
such that for every f ∈ U there exists i ∈ {1, . . . , n} for which ‖f − vi‖[a,b] < ε/3 . For each

i = 1, . . . , n we use Proposition 2.4 (i) and find a division a = ti0 < ti1 < · · · < timi
= b such

that
tik−1 < τ < t < tik =⇒ |vi(t)− vi(τ)| < ε/3 . (5.44)

We now obtain (5.43) by putting {t0, . . . , tm} =
⋃n

i−1{ti0, ti1, . . . , timi
} .

Conversely, let U be a bounded set and let condition (5.43) hold. We first show that U has
uniformly bounded oscillation. Indeed, let ε > 0 be given, and let {t0, . . . , tm} be a division
such that (5.43) holds. Assume that there exists pairwise disjoint intervals ]a1, b1[ , . . . , ]ap, bp[
such that for some f ∈ U we have |f(b`) − f(a`)| ≥ ε for ` = 1, . . . , p . Then each interval
[a`, b`] contains at least one tj , hence p ≤ 2m . We thus proved that U is a bounded set with
uniformly bounded oscillation. There is nothing to prove if U is finite. Otherwise, we can use
Theorem 4.4 and from each sequence in U select a subsequence {fn} which converges pointwise
to an element f ∈ G(a, b ; X) . The proof will be complete if we show that the convergence is
uniform.

To this end, we consider again any ε > 0 and use condition (5.43) to find a suitable division
{t0, . . . , tm} ∈ Da,b such that for every n ∈ N and every j = 1, . . . , m we have

tj−1 < τ < t < tj =⇒ |fn(t)− fn(τ)| < ε/3 . (5.45)
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Let n0 be such that

n ≥ n0 =⇒



|fn(tj)− f(tj)| < ε ,∣∣∣fn

(
tj+tj−1

2

)
− f

(
tj+tj−1

2

)∣∣∣ < ε/3 ,
for j = 0, . . . , m .

For each t ∈ ]tj−1, tj[ and n ≥ n0 we then have

|fn(t)− f(t)| ≤
∣∣∣∣fn(t)− fn

(
tj + tj−1

2

)∣∣∣∣ +

∣∣∣∣fn

(
tj + tj−1

2

)
− f

(
tj + tj−1

2

)∣∣∣∣

+

∣∣∣∣f
(

tj + tj−1

2

)
− f(t)

∣∣∣∣ < ε ,

and the assertion follows. ¥

5.4 The Skorokhod metric

It is interesting to compare the above convergence concepts in the case X = R with the
Skorokhod metric in the form presented in [6]. Let us briefly recall its definition.

Let us define the set

H = {h ∈ W 1,1(a, b) ; h(a) = a , h(b) = b , 0 < ḣ(t) < ∞ a. e. }

of increasing absolutely continuous homeomorphisms of [a, b] , and for h ∈ H , r ≥ 0 put

M(h) = sup ess
t∈ ]a,b[

∣∣∣log ḣ(t)
∣∣∣ , Hr = {h ∈ H ; M(h) ≤ r} . (5.46)

The Skorokhod distance of two functions f, g ∈ GR(a, b ; R) is defined by the formula

dS(f, g) = inf{r ≥ 0 ; ∃h ∈ Hr : ‖f − g ◦ h‖[a,b] ≤ r} . (5.47)

It is shown in [6] that dS is a metric satisfying the inequality

dS(f, g) ≤ ‖f − g‖[a,b] ∀f, g ∈ GR(a, b ; R) ,

and transforms (GR(a, b ; R), dS) into a complete separable metric space. This is in fact the
purpose of the construction, as (GR(a, b ; R), ‖ · ‖) is not separable. It is also easy to see that
if dS(fn, f) → 0 as n → ∞ , then fn have uniformly bounded oscillation. Indeed, there exist
rn → 0 and homeomorphisms hn such that

e−rn ≤ ḣn(t) ≤ ern a. e. , ‖fn − f ◦ hn‖[a,b] ≤ rn .

The functions f ◦ hn have uniformly bounded oscillation, hence the same holds for fn . We
now construct an example which shows that the complete metric space (GR(a, b ; R), dS) is not
a metric linear space, as the addition is not continuous with respect to dS . Furthermore, the
convergence with respect to the metric dS does not imply weak convergence.



pa8.tex 50

Example 5.7 Consider the functions f = −g = χ [(1/2),1] in GR(0, 1 ; R) . For ε ∈ ]0, 1[ set

hε(t) =

{
(1 + ε)t for t ∈ [0, 1/2] ,

(1 + ε)/2 + (1− ε)(t− 1/2) for t ∈ ]1/2, 1] .

Then 1 − ε ≤ ḣ(t) ≤ 1 + ε a. e., hence hε ∈ Hrε with rε = log(1 + ε/(1 − ε)) . The functions
fε := f ◦ hε satisfy d(fε, f) ≤ rε . On the other hand, for every u ∈ GR(0, 1 ; R) we have
dS(u, 0) = ‖u‖[0,1] , hence d(fε + g, f + g) = d(fε + g, 0) = 1, and we see that the mapping
(f, g) 7→ f +g is discontinuous. If we now define a bounded linear functional P on GR(0, 1 ; R)
by the formula P (f) = f((1/2)−) for f ∈ GR(0, 1 ; R) , we obtain P (fε) = 1 for all ε > 0 ,
P (f) = 0.
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6 Implicit problems

Applications in continuum mechanics (see e. g. [3, 4]) often lead to variational inequalities
stated in Definition 3.1 with inputs u depending on the solution ξ in the form

u(t) = g(t, ξ(t)) , (6.1)

where g : [0, T ]×X → V is a given mapping. Such a problem is also called a quasivariational
inequality and we present here two different solution methods. The classical one consists in using
the Schauder-Tikhonov fixed point theorem in GR(0, T ; X) under fairly general hypotheses on
the convex constraint Z(v) provided both X and Y are finite-dimensional. In this way, we
establish the existence of a solution and show that uniqueness cannot be expected in general.
Assuming some smoothness of each Z(v) as well as a smooth dependence of Z(v) on v , we
explain in detail the existence and uniqueness argument of [11] based on the Banach Contraction
Principle in the space of absolutely continuous functions with values in any separable Hilbert
space X .

6.1 Existence

We will assume that dimX < ∞ , dimY < ∞ , and that there exist α ∈ BV (0, T ; R) and
κ > 0 such that the function g in (6.1) satisfies the inequality

‖g(t, x)− g(τ, x̃)‖ ≤ Var
[τ,t]

α + κ |x− x̃| (6.2)

for all 0 ≤ τ < t ≤ T and x, x̃ ∈ X . Let u0 ∈ V be given. For C > 1 we consider the sets

UC = {u ∈ BVR(0, T ; V ) ; u(0) = u0 , ‖u(t)−u(τ)‖ ≤ C Var
[τ,t]

α for 0 ≤ τ < t ≤ T} . (6.3)

The set UC is a compact subset of GR(0, T ; V ) . Indeed, it is closed by Lemma 2.2 (v). For
the function W (t) = Var [0,t] α for t ∈ [0, T ] we may use Proposition 2.4 (i) and find a division
{t0, . . . , tm} such that for every j = 1, . . . , m we have

tj−1 < τ < t < tj =⇒ W (t)−W (τ) < ε/C , (6.4)

and from Theorem 5.6 (applied to an equivalent Hilbert norm in Y ) it follows that UC is
compact. Consequently, the set

KC =
⋃

u∈UC

K(u) (6.5)

with K(u) defined in (3.5) is a compact subset of V .

Theorem 6.1 Let the hypotheses of Proposition 3.7 be fulfilled, and let ξ0 be such that ξ0 ∈
Z(g(0, ξ0)) . Put u0 = g(0, ξ0) and assume that there exists C > 1 such that the numbers KC ,
κ and λKC

in (3.16), (6.2) and (6.5) satisfy the inequality

κλKC
≤ C − 1

C
. (6.6)

Then there exists ξ ∈ BVR(0, T ; X) such that ξ(t) = p[g(·, ξ), ξ0](t) for all t ∈ [0, T ] .
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Proof. We define the set Ω of all functions η ∈ BVR(0, T ; X) such that

η(0) = ξ0 , |η(t)− η(τ)| ≤ λKC

1− κλKC

Var
[τ,t]

α for 0 ≤ τ < t ≤ T . (6.7)

For each η ∈ Ω and t ∈ [0, T ] put u(t) = g(t, η(t)) , ξ(t) = p[u, ξ0](t) . Then for 0 ≤ τ < t ≤ T
we have

‖u(t)− u(τ)‖ ≤ Var
[τ,t]

α + κ |η(t)− η(τ)| ≤ 1

1− κλKC

Var
[τ,t]

α ≤ C Var
[τ,t]

α ,

hence u ∈ UC , and Proposition 3.7 yields that ξ ∈ Ω. The set Ω is compact in GR(0, T ; X)
and convex, and the mapping Σ : Ω → Ω : η 7→ ξ is continuous by Proposition 3.6, hence Σ
admits a fixed point ξ ∈ Ω by virtue of the Schauder-Tikhonov fixed point theorem, see [14,
Theorem 3.6.1]. ¥

6.2 Example of non-uniqueness

The solution of the implicit problem is in general non-unique even if the constant κ is arbitrarily
small and we give a simple example illustrating this fact. More sophisticated examples can be
found in [4, 11]. Especially the example in [11] suggests that the sufficient conditions for
uniqueness in Theorem 6.10 below are optimal.

Example 6.2 Consider a family Z(v) ⊂ R2 of convex sets parametrized by v = (v1, v2) ,
v1 ≤ 0 , v2 ≥ 0 , and defined as follows.

z =

(
z1

z2

)
∈ Z(v) ⇐⇒





z1 ≤ v1 ,
z1 ≤ v1 − v2 + ψ(v2) z2 ,
z2 ≥ 0 ,

(6.8)

where ψ : [0, 1] → [0, 1] is an increasing concave function such that ψ(0) = 0 and

∫ 1

0

dx

ψ(x)
< ∞ . (6.9)

Let v = (v1, v2) , ṽ = (ṽ1, ṽ2) be two admissible parameters. To estimate the Hausdorff distance
of Z(v) and Z(ṽ) , we first notice that

z =

(
z1

z2

)
∈ Z(v) ⇐⇒ z̃ =

(
z1 − v1 + ṽ1

z2

)
∈ Z(ṽ1, v2) ,

hence
dH(Z(v), Z(ṽ1, v2)) ≤ |v1 − ṽ1| . (6.10)

We may assume v2 > ṽ2 . Then
Z(ṽ1, v2) ⊂ Z(ṽ) . (6.11)

Indeed, let there exist z ∈ Z(ṽ1, v2) \ Z(ṽ) . Then

ψ(v2) z2 − v2 ≥ z1 − ṽ1 > ψ(ṽ2) z2 − ṽ2 , (6.12)
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hence ψ(ṽ2) z2 < ṽ2 , (ψ(v2)− ψ(ṽ2) z2 > v2 − ṽ2 . In other words, we have

ψ(ṽ2)

ṽ2

<
ψ(v2)− ψ(ṽ2)

v2 − ṽ2

which contradicts the concavity of ψ , hence (6.11) holds. Let now z ∈ Z(ṽ) \ Z(ṽ1, v2) be
arbitrary. We have

ψ(v2) z2 − v2 < z1 − ṽ1 ≤ ψ(ṽ2) z2 − ṽ2 ,

hence there exists v∗2 ∈ [ṽ2, v2[ such that

z1 − ṽ1 = ψ(v∗2) z2 − v∗2 . (6.13)

We thus have z ∈ Z(ṽ1, v
∗
2) . Set

z∗ =

(
z1 + v∗2 − v2

z2

)
=

(
z∗1
z∗2

)
.

Then z∗1 − ψ(v2) z∗2 = ṽ1 − v2 + (ψ(v∗2) − ψ(v2)) z2 ≤ ṽ1 − v2 , hence z∗ ∈ Z(ṽ1, v2) , and
|z − z∗| ≤ v2 − v∗2 . This yields in particular that

dH(Z(ṽ1, v2), Z(ṽ)) ≤ |v2 − ṽ2| . (6.14)

Combining (6.10) with 6.14) we obtain

dH(Z(v), Z(ṽ)) ≤ |v1 − ṽ1|+ |v2 − ṽ2| . (6.15)

Let x : [0, t0] → R+ be the increasing solution to the problem

ẋ(t) = κψ(x(t)) , x(0) = 0 , (6.16)

where κ ∈ ]0, 1[ is a fixed constant and t0 is chosen in such a way that

ψ(x(t0)) ≤ κ . (6.17)

For t ∈ [0, t0] set

α(t) = x(t)

(
1− 1

κ
ψ(x(t))

)
− t . (6.18)

Then α(0) = 0 and

α̇(t) ≤ ẋ(t)− 1 ≤ κ2 − 1 < 0 ∀t ∈ ]0, t0[ . (6.19)

We now define the function g(t, η) = (g1(t, η), g2(t, η)) by the formula

g1(t, η) = α(t)

g2(t, η) = κ η2

}
for t ∈ [0, t0] , η =

(
η1

η2

)
, η1 ≤ 0 , η2 ≥ 0 . (6.20)

The assumptions of Theorem 6.1 are fulfilled with Y = R2 , V = {v = (v1, v2) ; v1 ≤ 0 , v2 ≥ 0}
endowed with the norm ‖v‖ = |v1| + |v2| , C = 1/(1 − κ) , λK = 1 for every K , hence the
implicit problem has a solution. We now check that both

ξ(1)(t) =

( −t
1
κ

x(t)

)
, ξ(2)(t) =

(
α(t)
0

)
(6.21)
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satisfy in [0, t0] the implicit problem in differential form





ξ(t) ∈ Z(g(t, ξ(t))) ,

ξ(0) = 0 ,
〈
ξ̇(t), z − ξ(t)

〉
≥ 0 ∀t ∈ ]0, t0[ ∀z ∈ Z(g(t, ξ(t))) .

(6.22)

Notice first that for v1 ≤ 0 , v2 ≥ 0 and t ∈ [0, t0] we have

z ∈ Z(g(t, η)) ⇐⇒




z1 ≤ α(t) ,
z1 ≤ α(t)− κ η2 + ψ(κη2) z2 ,
z2 ≥ 0 ,

(6.23)

hence

z ∈ Z(g(t, ξ(1)(t))) ⇐⇒




z1 ≤ α(t) ,
z1 ≤ ψ(x(t)) z2 −

(
t + 1

κ
x(t) ψ(x(t))

)
,

z2 ≥ 0 ,
(6.24)

z ∈ Z(g(t, ξ(2)(t))) ⇐⇒
{

z1 ≤ α(t) ,
z2 ≥ 0 .

(6.25)

By (6.18) – (6.19) we have 0 ≥ α(t) ≥ −t , hence ξ(i)(t) ∈ Z(g(t, ξ(i)(t))) for t ∈ [0, t0] and
i = 1, 2 . Furthermore,

ξ̇(1)(t) =

( −1
ψ(x(t))

)
, ξ̇(2)(t) =

(
α̇(t)
0

)
,

hence for z ∈ Z(g(t, ξ(1)(t))) we have by (6.24) that

〈
ξ̇(1)(t), z

〉
= −z1 + ψ(x(t)) z2 ≥ t +

1

κ
x(t) ψ(x(t)) =

〈
ξ̇(1)(t), ξ(1)(t)

〉
.

Similarly we obtain from (6.25) for z ∈ Z(g(t, ξ(2)(t))) that

〈
ξ̇(2)(t), z

〉
= α̇(t) z1 ≥ α̇(t) α(t) =

〈
ξ̇(2)(t), ξ(2)(t)

〉

using the fact that α̇(t) < 0 . We thus verified that the implicit problem admits multiple
solutions independently of how small the Lipschitz constant κ is.

6.3 The smooth explicit case

We now explain in detail how uniqueness can be obtained under additional smoothness assump-
tions using the argument from [11]. In particular, we will require the differentiability of the
data with respect to the parameter v ∈ V ⊂ Y . For this reason we assume that Y is now a
reflexive Banach space endowed with a norm ‖ ·‖ and V is a convex closed set with non-empty
interior V ◦ , but we impose no restriction on the dimension of the Hilbert space X any more.
By Y ′ we denote the dual of Y , ((·, ·)) is the duality pairing between Y and Y ′ , and | · |Y ′ ,
| · |L(X,Y )

denote natural norms in the corresponding spaces.
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In order to exploit properties of the Minkowski functional summarized in the Appendix, we
slightly reformulate the problem and assume that there exist 0 < c < C such that

Bc(0) ⊂ Z(v) ⊂ BC(0) ∀v ∈ V . (6.26)

As before, we consider separately two problems, namely an explicit parameter-dependent prob-
lem (Problem (P ) ) for which we derive additional estimates, and an implicit quasivariational
inequality (Problem (I ) stated in the next subsection).

For given functions u ∈ W 1,1(0, T ; X) , v ∈ W 1,1(0, T ; V ) and an initial condition x0 ∈
Z(v(0)) we look for a function ξ ∈ W 1,1(0, T ; X) such that

(P ) (i) u(t)− ξ(t) ∈ Z(v(t)) ∀t ∈ [0, T ] ,

(ii) u(0)− ξ(0) = x0 ,

(iii)
〈
ξ̇(t), u(t)− ξ(t)− z

〉
≥ 0 ∀z ∈ Z(v(t)) for a. e. t ∈ ]0, T [ .

Under the assumption (6.26), we denote by Z∗(v) the polar set to Z(v) defined in (A.3.1) for
v ∈ V , and by M∗(v, ·) its Minkowski functional. By Proposition A.11 we have B1/C(0) ⊂
Z∗(v) ⊂ B1/c(0) for every v ∈ V , and the inequalities

|x|
C

≤ M(v, x) ≤ |x|
c

, (6.27)

c |x| ≤ M∗(v, x) ≤ C |x| (6.28)

hold for every x ∈ X and v ∈ V . We make the following hypothesis.

Hypothesis 6.3

(i) The partial derivatives ∂v M(v, x) ∈ Y ′ , ∂x M(v, x) ∈ X exist for every x ∈ X \ {0}
and v ∈ V ◦ , the mappings

J(v, x) = M(v, x) ∂xM(v, x) : V ◦ ×X \ {0} → X , (6.29)

K(v, x) = M(v, x) ∂vM(v, x) : V ◦ ×X \ {0} → Y ′ (6.30)

admit continuous extensions to x = 0 and v ∈ V , and there exists a constant K0 > 0
such that

|K(v, x)|Y ′ ≤ K0 ∀x ∈ BC(0) ∀v ∈ V . (6.31)

(ii) For every x, x′ ∈ BC(0) and v, v′ ∈ V we have

|J(v, x)− J(v′, x′)| ≤ CJ (‖v − v′‖+ |x− x′|) , (6.32)

|K(v, x)−K(v′, x′)|Y ′ ≤ CK (‖v − v′‖+ |x− x′|) (6.33)

with some fixed constants CJ , CK > 0 .
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Note that by (A.3.25) we have K(v, x) = 1
2
∂v 〈J(v, x), x〉 for all (v, x) ∈ V ×X . By virtue of

(A.4.15), inequality (6.32) can also be restated in terms of the Lipschitz dependence on both
variables of the unit outward normal vector at points x/M(v, x) with |x| = 1. According to
Theorem A.20 it also implies a positive lower bound for the constant c > 0 in (6.26). The
example in [11] shows that these conditions cannot be relaxed.

Proposition 6.4 Let Hypotheses (6.26) and 6.3 (i) hold. Then Problem (P ) admits a unique
solution ξ ∈ W 1,1(0, T ; X) for every given functions u ∈ W 1,1(0, T ; X) , v ∈ W 1,1(0, T ; V )
and every initial condition x0 ∈ Z(v(0)) .

Proof. Problem (P ) has the form as in Definition 3.1, with parameters ṽ = (v, u) ∈ Ṽ := V ×X
and convex sets Z̃(ṽ) := u− Z(v) . We now prove the inequality

dH(Z(v), Z(v′)) ≤ C K0 ‖v − v′‖ ∀v, v′ ∈ V , (6.34)

which will enable us afterwards to obtain the assertion directly from Proposition 3.7 and Lemma
3.2 (iii). To verify that (6.34) holds, we use Lemma A.24 to obtain that

dH(Z(v), Z(v′)) ≤ C sup
|x|=C

|M(v, x)−M(v′, x)| ,

where by (6.27) we have for |x| = C that M(v, x) ≥ 1 , M(v′, x) ≥ 1 , hence
∣∣∣∣
1

2
M2(v, x)− 1

2
M2(v′, x)

∣∣∣∣ ≥
1

2
|M(v, x)−M(v′, x)| (M(v, x) + M(v′, x)) ≥ |M(v, x)−M(v′, x)|

and (6.34) follows from (6.31). ¥

In the following two lemmas we derive some useful formulas.

Lemma 6.5 Let Hypothesis 6.3 (i) hold, let (v, u) ∈ W 1,1(0, T ; V )×W 1,1(0, T ; X) and x0 ∈
Z(v(0)) be given, and let ξ ∈ W 1,1(0, T ; X) solve Problem (P ). For t ∈ ]0, T [ set

A[v, u](t) =
〈
ξ̇(t), J(v(t), x(t))

〉
,

B[v, u](t) =
1

2
M2(v(t), x(t)) ,

G[v, u](t) = 〈u̇(t), J(v(t), x(t))〉+ ((K(v(t), x(t)), v̇(t))) ,

with x(t) = u(t)− ξ(t) . Then for a. e. t ∈ ]0, T [ we have either

(i) ξ̇(t) = 0 , d
dt

B[v, u](t) = G[v, u](t)

or

(ii) ξ̇(t) 6= 0 , x(t) ∈ ∂Z(v(t)) , A[v, u](t) = G[v, u](t) > 0 , B[v, u](t) = max[0,T ] B[v, u] =
1/2 , d

dt
B[v, u](t) = 0 , and

ξ̇(t) =
A[v, u](t)

|J(v(t), x(t))|2 J(v(t), x(t)) . (6.35)
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Proof. Let L ⊂ ]0, T [ be the set of Lebesgue points of all functions u̇ , v̇ , ξ̇ , d
dt

B[v, u] . Then
L has full measure in [0, T ] , and for t ∈ L we have

d

dt
B[v, u](t) = 〈ẋ(t), J(v(t), x(t))〉+ ((K(v(t), x(t)), v̇(t))) . (6.36)

If ξ̇(t) = 0, then ẋ(t) = u̇(t) , and (i) follows from (6.36). If ξ̇(t) 6= 0, then x(t) ∈ ∂Z(v(t)) ,
hence M(v(t), x(t)) = 1 = maxs∈[0,T ] M(v(s), x(s)) . We therefore have B[r, u](t) = 1/2 =

max[0,T ] B[r, u] , d
dt

B[r, u](t) = 0. As a consequence of (P ) (iii) we have ξ̇(t) = k n(v(t), x(t))
with a constant k > 0 , where n(v(t), x(t)) is the unit outward normal to Z(v(t)) at the point

x(t) , hence k =
〈
ξ̇(t), n(v(t), x(t))

〉
, and (6.35) follows from (A.4.15). Furthermore, (6.36)

yields 〈ẋ(t), J(v(t), x(t))〉 = − ((K(v(t), x(t)), v̇(t))) , hence

〈
ξ̇(t), J(v(t), x(t))

〉
= 〈u̇(t), J(v(t), x(t))〉 − 〈ẋ(t), J(v(t), x(t))〉
= 〈u̇(t), J(v(t), x(t))〉+ ((K(v(t), x(t)), v̇(t))) ,

and the proof is complete. ¥

In the situation of Lemma 6.5, we always have

|G[v, u](t)| ≤ |u̇(t)||J(v(t), x(t))|+ K0‖v̇(t)‖ , (6.37)

|ξ̇(t)| ≤ |u̇(t)|+ CK0‖v̇(t)‖ . (6.38)

Indeed, (6.38) is trivial if ξ̇(t) = 0; otherwise we have |ξ̇(t)| = A[v, u](t)/|J(v(t), x(t))| =
G[v, u](t)/|J(v(t), x(t))| with x(t) ∈ ∂Z(v(t)) . As a consequence of (6.28) and (A.4.15) we
have that C |J(v(t), x(t)))| ≥ M∗(v(t), J(v(t), x(t))) = M(v(t), x(t)) = 1, and (6.38) follows
from (6.37).

Lemma 6.6 Let Hypothesis 6.3 (i) hold, let (vi, ui) ∈ W 1,1(0, T ; V )×W 1,1(0, T ; X) and x0
i ∈

Z(vi(0)) be given, let ξi ∈ W 1,1(0, T ; X) be the respective solutions to Problem (P ), and set
xi = ui − ξi for i = 1, 2 . Then for a. e. t ∈ ]0, T [ we have

|A[v1, u1](t)− A[v2, u2](t)| +
d

dt
|B[v1, u1](t)−B[v2, u2](t)| (6.39)

≤ |G[v1, u1](t)−G[v2, u2](t)| ,
|ξ̇1(t)− ξ̇2(t)| ≤ C |A[v1, u1](t)− A[v2, u2](t)| (6.40)

+ C (|u̇1(t)|+ CK0‖v̇1(t)‖)|J(v1(t), x1(t))− J(v2(t), x2(t))| .

Proof. The assertion follows directly from Lemma 6.5 if ξ̇1(t) = ξ̇2(t) = 0. Assume now

• ξ̇1(t) 6= 0, ξ̇2(t) 6= 0.

Then (6.39) is again an immediate consequence of Lemma 6.5. To prove (6.40), we use (6.35)
and the elementary vector identity

∣∣∣∣
z

|z|2 −
z′

|z′|2
∣∣∣∣ =

1

|z||z′| |z − z′| for z, z′ ∈ X \ {0} ,
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to obtain

|ξ̇1(t)− ξ̇2(t)| ≤ |A[v1, u1](t)|
∣∣∣∣

J(v1(t), x1(t))

|J(v1(t), x1(t))|2 −
J(v2(t), x2(t))

|J(v2(t), x2(t))|2
∣∣∣∣

+
1

|J(v2(t), x2(t))| |A[v1, u1](t)− A[v2, u2](t)|

=
1

|J(v1(t), x1(t))| |J(v2(t), x2(t))| |G[v1, u1](t)| |J(v1(t), x1(t))− J(v2(t), x2(t))|

+
1

|J(v2(t), x2(t))| |A[v1, u1](t)− A[v2, u2](t)| .

By (A.4.15) we have |J(vi(t), xi(t))| ≥ 1/C for i = 1, 2 , and combining the above inequalities
with (6.37) we obtain the assertion.

Let us consider now the case

• ξ̇1(t) 6= 0, ξ̇2(t) = 0.

Then |A[v1, u1](t)−A[v2, u2](t)| = A[v1, u1](t) , B[v1, u1](t)−B[v2, u2](t) = 1/2−B[v2, u2](t) ≥
0 , hence

|A[v1, u1](t)− A[v2, u2](t)|+ d

dt
|B[v1, u1](t)−B[v2, u2](t)| = A[v1, u1](t)− d

dt
B[v2, u2](t)

= G[v1, u1](t)−G[v2, u2](t) ,

hence (6.39) is fulfilled. We further have similarly as above that

|ξ̇1(t)− ξ̇2(t)| = |ξ̇1(t)| ≤ C A[v1, u1](t) = C |A[v1, u1](t)− A[v2, u2](t)| ,
hence (6.40) holds. The remaining case

• ξ̇1(t) = 0, ξ̇2(t) 6= 0

is analogous, and Lemma 6.6 is proved. ¥

We are now ready to prove the following crucial estimate.

Proposition 6.7 Let Hypothesis 6.3 hold, let (vi, ui) ∈ W 1,1(0, T ; V ) × W 1,1(0, T ; X) and
x0

i ∈ Z(vi(0)) be given, let ξi ∈ W 1,1(0, T ; X) be the respective solutions to Problem (P ), and
set xi = ui − ξi for i = 1, 2 . Then for a. e. t ∈ ]0, T [ we have

|ξ̇1 − ξ̇2|(t) + C
d

dt
|B[v1, u1]−B[v2, u2]|(t) ≤ C

c
|u̇1 − u̇2|(t) + CK0 ‖v̇1 − v̇2‖(t) (6.41)

+ C
(
2CJ |u̇1(t)|+ (CK + CCJK0) ‖v̇1(t)‖

)(
‖v1 − v2‖(t) + |x1 − x2|(t)

)
.

Proof. We have c |J(v1(t), x1(t))| ≤ M∗(v1(t), J(v1(t), x1(t))) = M(v1(t), x1(t)) ≤ 1 by virtue
of (A.4.15), hence |J(v1(t), x1(t))| ≤ 1/c for every t ∈ [0, T ] . By Lemma 6.6, we can estimate
the left-hand side of (6.41) by

C
(
|G[v1, u1](t)−G[v2, u2](t)|+ (|u̇1(t)|+ CK0‖v̇1(t)‖)|J(v1(t), x1(t))− J(v2(t), x2(t))|

)

which together with the assumptions (6.31) – (6.33) yields the assertion. ¥
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6.4 Uniqueness in the smooth implicit problem

We now formulate Problem (I ) under the following hypothesis.

Hypothesis 6.8 We are given a mapping g : [0, T ]×X ×X → Y which is continuous in its
domain and g(t, u, ξ) ∈ V for each (t, u, ξ) ∈ [0, T ]×X×X . Its partial derivatives ∂tg, ∂ug, ∂ξg
exist and satisfy the inequalities

|∂ξg(t, u, ξ)|L(X,Y )
≤ γ , (6.42)

|∂ug(t, u, ξ)|L(X,Y )
≤ ω , (6.43)

‖∂tg(t, u, ξ)‖ ≤ a(t) , (6.44)

|∂ξg(t, u, ξ)− ∂ξg(t, u′, ξ′)|L(X,Y )
≤ Cg (|u− u′|+ |ξ − ξ′|) , (6.45)

|∂ug(t, u, ξ)− ∂ug(t, u′, ξ′)|L(X,Y )
≤ Cu (|u− u′|+ |ξ − ξ′|) , (6.46)

‖∂tg(t, u, ξ)− ∂tg(t, u′, ξ′)‖ ≤ b(t) (|u− u′|+ |ξ − ξ′|) (6.47)

for every u, u′, ξ, ξ′ ∈ X and a. e. t ∈ ]0, T [ with given functions a, b ∈ L1(0, T ) and given
constants γ, ω, Cg, Cu > 0 such that

δ = CK0 γ < 1 , (6.48)

where C , K0 are as in Hypothesis 6.3.

For a given function g satisfying Hypothesis 6.8, for a given u ∈ W 1,1(0, T ; X) and an initial
condition x0 ∈ Z(g(0, u(0), u(0) − x0)) (for instance, any x0 ∈ Bc(0) satisfies this inclusion)
we look for a solution ξ ∈ W 1,1(0, T ; X) of the implicit problem

(I ) (i) u(t)− ξ(t) ∈ Z(g(t, u(t), ξ(t))) ∀t ∈ [0, T ] ,

(ii) u(0)− ξ(0) = x0 ,

(iii)
〈
ξ̇(t), u(t)− ξ(t)− y

〉
≥ 0 ∀y ∈ Z(g(t, u(t), ξ(t))) for a. e. t ∈ ]0, T [ .

Let us start our analysis with the following necessary condition.

Lemma 6.9 Let Hypotheses 6.3, 6.8 hold, and let ξ ∈ W 1,1(0, T ; X) be a solution to Problem
(I ) with some u ∈ W 1,1(0, T ; X) and x0 ∈ Z(g(0, u(0), u(0)− x0)) . Then we have

|ξ̇(t)| ≤ 1

1− δ
((1 + CK0ω)|u̇(t)|+ CK0 a(t)) a. e. (6.49)

Proof. Inequality (6.49) is an easy consequence of (6.38) with v(t) = g(t, u(t),ξ(t)) . Indeed,
using (6.42), (6.43) we obtain ‖v̇(t)‖ ≤ a(t) + ω|u̇(t)|+ γ|ξ̇(t)| and (6.49) follows. ¥

We now prove the converse as the main result of this subsection.
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Theorem 6.10 Let Hypotheses 6.3, 6.8 hold. Then for every u ∈ W 1,1(0, T ; X) and every
x0 ∈ Z(g(0, u(0),u(0)− x0)) there exists a unique solution ξ ∈ W 1,1(0, T ; X) to Problem (I )
in the set

Ω =

{
η ∈ W 1,1(0, T ; X) ;

|η̇(t)| ≤ 1
1−δ

((1 + CK0ω)|u̇(t)|+ CK0 a(t)) a. e.

η(0) = u(0)− x0

}
.

Proof. Let S : Ω → W 1,1(0, T ; X) be the mapping which with each η ∈ Ω associates the
solution ξ to Problem (P ) with v(t) = g(t, u(t), η(t)) . By (6.38) we have

|ξ̇(t)| ≤ |u̇(t)|+ CK0‖v̇(t)‖ ≤ (1 + CK0ω)|u̇(t)|+ CK0 a(t) + δ|η̇(t)| (6.50)

≤ 1

1− δ
((1 + CK0ω)|u̇(t)|+ CK0 a(t)) ,

hence S(Ω) ⊂ Ω. The set Ω is convex and closed in W 1,1(0, T ; X) . We now check that
S : Ω → Ω is a contraction with respect to a suitable norm in W 1,1(0, T ; X) .

Let η1, η2 ∈ Ω be given. By Proposition 6.7, the functions ξi = S(ηi) for i = 1, 2 satisfy almost
everywhere the inequality

|ξ̇1(t)− ξ̇2(t)|+ β̇(t) ≤ δ|η̇1(t)− η̇2(t)| (6.51)

+ Cδ(|u̇(t)|+ a(t) + b(t))(|η1(t)− η2(t)|+ |ξ1(t)− ξ2(t)|)
with β(t) = C|B[g(·, u, η1), u](t) − B[g(·, u, η2), u](t)| ≥ 0 , β(0) = 0, and with a constant
Cδ > 0 independent of η1, η2 .

Let now ε > 0 be chosen so small that

δ + εCδ

1− εCδ

= δ∗ < 1 , (6.52)

and let us define an auxiliary function

w(t) = e−
1
ε

R t
0 (|u̇(τ)|+a(τ)+b(τ)) dτ for t ∈ [0, T ] . (6.53)

We have w(t) > 0 for every t ∈ [0, T ] and ẇ(t) ≤ 0 a. e. We test the inequality (6.51) by w(t)
and integrate over [0, T ] . Taking into account the relations

∫ T

0

β̇(t) w(t) dt = [β(t) w(t)]T0 −
∫ T

0

β(t) ẇ(t) dt ≥ 0 ,

∫ T

0

w(t) (|u̇(t)|+ a(t) + b(t))(|η1(t)− η2(t)|+ |ξ1(t)− ξ2(t)|) dt

≤ −ε

∫ T

0

ẇ(t)

∫ t

0

(|η̇1(τ)− η̇2(τ)|+ |ξ̇1(τ)− ξ̇2(τ)|) dτ dt

= −ε

[
w(t)

∫ t

0

(|η̇1(τ)− η̇2(τ)|+ |ξ̇1(τ)− ξ̇2(τ)|) dτ

]T

0

+ ε

∫ T

0

w(t) (|η̇1(t)− η̇2(t)|+ |ξ̇1(t)− ξ̇2(t)|) dt

≤ ε

∫ T

0

w(t) (|η̇1(t)− η̇2(t)|+ |ξ̇1(t)− ξ̇2(t)|) dt ,
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we obtain from (6.51) that
∫ T

0

w(t) |ξ̇1(t)− ξ̇2(t)| dt ≤ (δ + εCδ)

∫ T

0

w(t) |η̇1(t)− η̇2(t)| dt + εCδ

∫ T

0

w(t) |ξ̇1(t)− ξ̇2(t)| dt

hence ∫ T

0

w(t) |ξ̇1(t)− ξ̇2(t)| dt ≤ δ∗
∫ T

0

w(t) |η̇1(t)− η̇2(t)| dt . (6.54)

We thus checked that S is a contraction on Ω with respect to the weighted norm

‖η‖1,1,w = |η(0)|+
∫ T

0

w(t) |η̇(t)| dt ,

hence S admits a unique fixed point ξ ∈ Ω which is a solution of (I ) . ¥

6.5 Local Lipschitz continuity of the input-output mapping

We now prove even more, namely that the solution mappings for both Problems (P ) and (I )
satisfy the local Lipschitz condition in their domains of definition.

Theorem 6.11 Let the assumptions of Proposition 6.7 be fulfilled. Then there exist posi-
tive constants C0, C1 such that for every R > 0 , every (v1, u1), (v2, u2) ∈ W 1,1(0, T ; V ) ×
W 1,1(0, T ; X) with

∫ T

0
(|u̇i|+ ‖v̇i‖) dt ≤ R and every x0

i ∈ Z(vi(0)) for i = 1, 2 , the respective
solutions ξi ∈ W 1,1(0, T ; X) of problem (P ) satisfy the inequality
∫ T

0

|ξ̇1 − ξ̇2| dt ≤ C1e
C0R

(
|x0

1 − x0
2|+ ‖v1(0)− v2(0)‖+

∫ T

0

(|u̇1 − u̇2|+ ‖v̇1 − v̇2‖) dtdt

)
.

(6.55)

Proof. By Proposition 6.7, there exists a constant C0 > 0 such that

|ẋ1(t)− ẋ2(t)|+ β̇(t) ≤ C0

(
|u̇1(t)− u̇2(t)|+ ‖v̇1(t)− v̇2(t)‖ (6.56)

+ (|u̇1(t)|+ ‖v̇1(t)‖)(|x1(t)− x2(t)|+ ‖v1(t)− v2(t)‖)
)

with β(t) = C |B[v1, u1](t)−B[v2, u2](t)| . We argue similarly as in the proof of Theorem 6.10
and test (6.56) by the function w1(t) = exp(−C0

∫ t

0
(|u̇1|+ ‖v̇1‖) dτ) . This yields

d

dt

(
w1(t)

∫ t

0

|ẋ1 − ẋ2| dτ

)
+ w1(t) β̇(t) ≤ C0 w1(t)

(
|u̇1(t)− u̇2(t)|+ ‖v̇1(t)− v̇2(t)‖

)
(6.57)

−ẇ1(t)

(
|x0

1 − x0
2|+ ‖v1(0)− v2(0)‖+

∫ t

0

‖v̇1 − v̇2‖ dτ

)
.

Note that
∫ T

0

w1(t) β̇(t) dt = [w1(t) β(t)]T0 −
∫ T

0

ẇ1(t) β(t) dt ≥ −w1(0) β(0) (6.58)

≥ −C

2
|M2(v1(0), x0

1)−M2(v2(0), x0
2)| ≥ −

(
CK0‖v1(0)− v2(0)‖+

C

c
|x0

1 − x0
2|

)
.
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On the other hand, integrating (6.57) from 0 to T and using the fact that for every t ∈ [0, T ]
we have 1 ≥ w1(t) ≥ w1(T ) ≥ e−C0R we obtain

e−C0R

∫ T

0

|ẋ1 − ẋ2| dt ≤ −
∫ T

0

w1(t) β̇(t) dt + |x0
1 − x0

2|+ ‖v1(0)− v2(0)‖ (6.59)

+ (C0 + 1)

∫ T

0

(|u̇1 − u̇2|+ ‖v̇1 − v̇2‖) dt ,

and the assertion follows from (6.58), (6.59). ¥

Theorem 6.12 Let the assumptions of Theorem 6.10 be fulfilled. Then there exist positive
constants C2, C3 such that for every R > 0 , every ui ∈ W 1,1(0, T ; X) with

∫ T

0
|u̇i| dt ≤ R and

every x0
i ∈ Z(g(0, u(0), u(0)− x0

i ) for i = 1, 2 , the respective solutions ξ1, ξ2 ∈ W 1,1(0, T ; X)
of problem (I ) satisfy the inequality

∫ T

0

|ξ̇1 − ξ̇2| dt ≤ C3e
C2R

(
|x0

1 − x0
2|+ |u1(0)− u2(0)|+

∫ T

0

|u̇1 − u̇2| dt

)
. (6.60)

Proof. We use Lemma 6.9 and Proposition 6.7 with vi(t) = g(t, ui(t), ξi(t)) for i = 1, 2 , and
find a constant C∗ > 0 such that

(1− δ)|ξ̇1(t)− ξ̇2(t)|+ β̇(t) ≤ C∗
(
|u̇1(t)− u̇2(t)| (6.61)

+ (|u̇1(t)|+ a(t) + b(t))(|u1(t)− u2(t)|+ |ξ1(t)− ξ2(t)|)
)

with β(t) = C |B[g(·, u1, ξ1), u1](t) − B[g(·, u2, ξ2), u2](t)| . Repeating the procedure from the
proof of Theorem 6.11 with

C2 =
C∗

1− δ
, w2(t) = e−C2

R t
0 (|u̇1(τ)|+a(τ)+b(τ)) dτ (6.62)

we easily obtain the assertion. ¥
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A Appendix: Convex sets

The aim of this section is to recall some basic elements of convex analysis in Hilbert spaces.
Most of the results are well-known. We present them in order to fix the notation and keep the
presentation consistent (for more information we refer the reader to the monographs [1] and
[30]). Throughout the section, X denotes a real separable Hilbert space endowed with a scalar

product 〈·, ·〉 and norm |x| := 〈x, x〉1/2 . For x0 ∈ X and r > 0 we will denote by

Br(x0) = {x ∈ X ; |x− x0| ≤ r} (A.0.1)

the closed ball in X centered at x0 with radius r . For x ∈ X and a set A ⊂ X we define

dist (x,A) = inf{|x− a| ; a ∈ A} . (A.0.2)

We start with a simple lemma.

Lemma A.1 Let Z ⊂ X be a non-empty convex closed set. Then for each x ∈ X there exists
a unique z ∈ Z such that |x− z| = dist (x, Z) = min {|x− y| ; y ∈ Z} .

Proof. Let x ∈ X be given. Put p = inf {|x− y| ; y ∈ Z} and let {yn} be a sequence in Z
such that |x− yn| → p . From the identity

|u− v|2 + |u + v|2 = 2(|u|2 + |v|2) (A.0.3)

for u = x− yn , v = x− yk , it follows

1

2
|yn − yk|2 = |x− yn|2 + |x− yk|2 − 2

∣∣∣∣x−
yn + yk

2

∣∣∣∣
2

≤ |x− yn|2 + |x− yk|2 − 2p2,

hence {yn} is a Cauchy sequence and it suffices to put z := lim
n→∞

yn . Uniqueness is obtained

in a similar way. ¥

Using Lemma A.1 we can define the projection QZ : X → Z onto Z and its complement
PZ = I −QZ (I is the identity) by the formula

QZx ∈ Z , |PZx| = dist (x, Z) for x ∈ X . (A.0.4)

In the sequel, we call (PZ , QZ) the projection pair associated with Z . We make extensive use
of the following lemma.

Lemma A.2 For every x, y ∈ X we have

(i) 〈PZx,QZx− z〉 ≥ 0 ∀z ∈ Z ,

(ii) 〈PZx− PZy, QZx−QZy〉 ≥ 0 ,

(iii) QZ(x + αPZx) = QZx ∀α ≥ −1 .

(iv) (x ∈ Z , 〈y, x− z〉 ≥ 0 ∀z ∈ Z) ⇐⇒ (x = QZ(x + y) , y = PZ(x + y)) .
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Proof. (i) For z ∈ Z , z 6= QZx and γ ∈ ]0, 1[ we have |x − γz − (1 − γ)QZx|2 > |PZx|2 ,
hence 2 〈PZx, QZx− z〉+γ|QZx− z|2 > 0 and the assertion follows easily. Statement (ii) is an
obvious consequence of (i). To prove (iii) we notice that for all z ∈ Z we have |x+αPZx−z|2 =
|QZx− z|2 + (1 + α)2|PZx|2 + 2(1 + α) 〈PZx,QZx− z〉 , hence the minimum of |x + αPZx− z|
is attained for z = QZx . The implication “⇐” in (iv) is an immediate consequence of (i). Let
now the left-hand side of (iv) be fulfilled for some x ∈ Z and y ∈ X , and put u = QZ(x + y) ,
v = PZ(x+y) . By (i) we have 〈v, u− x〉 ≥ 0 , which together with the hypothesis 〈y, x− u〉 ≥ 0
yields that 0 ≤ 〈v − y, u− x〉 = −|v − y|2 , hence v = y , u = x . ¥

A.1 Recession cone

At each point z0 ∈ Z we define the recession cone CZ(z0) by the formula

CZ(z0) = {u ∈ X ; z0 + tu ∈ Z ∀t ≥ 0} . (A.1.1)

Then CZ(z0) is a convex closed set with the following property.

Lemma A.3 For all z0, z1 ∈ Z we have CZ(z0) = CZ(z1) .

Proof. By symmetry, it suffices to prove the inclusion CZ(z0) ⊂ CZ(z1) . Let u ∈ CZ(z0) and
t ≥ 0 be arbitrary. For each α ∈ ]0, 1[ we have

zα := z1 + tu + α(z0 − z1) = α

(
z0 +

t

α
u

)
+ (1− α)z1 ∈ Z ,

and letting α tend to 0 we obtain that z1 + tu ∈ Z , hence u ∈ CZ(z1) . ¥

According to Lemma A.3 it is meaningful to put

CZ = {u ∈ X ; ∃z0 ∈ Z : z0 + tu ∈ Z ∀t ≥ 0} , (A.1.2)

and we have CZ = CZ(z0) for all z0 ∈ Z .

Lemma A.4 Let Z $ X be such that CZ ∪ (−CZ) = X . Then there exist z0 ∈ ∂Z and
n ∈ X , |n| = 1 , such that Z is the half-space

Z = {z ∈ X ; 〈n, z0 − z〉 ≥ 0} .

Proof. For an arbitrary x0 ∈ X \Z put z0 = QZ(x0) , n = PZ(x0)/|PZ(x0)| . For all z ∈ Z we
have by Lemma A.2 that 〈n, z0 − z〉 ≥ 0 , hence

Z ⊂ {z ∈ X ; 〈n, z0 − z〉 ≥ 0} .

To obtain the opposite inclusion, we notice that we have 〈n, u〉 = 〈n, (z0 + u)− z0〉 ≤ 0 for
every u ∈ CZ , 〈n, u〉 ≥ 0 for every u ∈ −CZ , hence

CZ = {u ∈ X ; 〈n, u〉 ≤ 0} .

Assuming that 〈n, z0 − z〉 ≥ 0 we thus obtain that z − z0 ∈ CZ , which in turn implies that
z ∈ Z , and the proof is complete. ¥
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Lemma A.5 Let Z ⊂ X be such that CZ ∪ (−CZ) 6= X . Then for every z ∈ Z there exist
z1, z2 ∈ ∂Z and α ∈ [0, 1] such that z = αz1 + (1− α)z2 .

Proof. The case z ∈ ∂Z is obvious. Assume that z ∈ Int Z and fix some u ∈ X\(CZ∪(−CZ)) .
The numbers t1 = max{t ≥ 0 ; z + tu ∈ Z} , t2 = max{t ≥ 0 ; z − tu ∈ Z} are both positive
and both z1 = z + t1u , z2 = z − t2u belong to ∂Z , it suffices therefore to put α = t2/(t1 + t2)
to obtain the assertion. ¥

A.2 Tangent and normal cones

A natural generalization of normal vectors and tangent hyperplanes which in general are not
uniquely determined, is the concept of normal cone NZ(x) and tangent cone TZ(x) to a convex
closed set Z ⊂ X at a point x ∈ Z . They are defined by the formula

{
NZ(x) := {y ∈ X; 〈y, x− z〉 ≥ 0 ∀z ∈ Z},
TZ(x) := {w ∈ X; 〈w, y〉 ≤ 0 ∀y ∈ NZ(x)}. (A.2.1)

Every element u ∈ X admits a unique orthogonal decomposition into the sum u = v+w of the
normal component v ∈ NZ(x) and the tangential component w ∈ TZ(x) , namely v = QN(u) ,
w = PN(u) , where (PN , QN) is the projection pair associated with NZ(x) . Indeed, by Lemma
A.2 (i) we have 〈w, (1− α) v〉 ≥ 0 for all α ≥ 0 , hence 〈w, v〉 = 0 and 〈w, y〉 ≤ 0 for every
y ∈ NZ(x) . Uniqueness is easy: assume v1 + w1 = v2 + w2 for some vi ∈ NZ(x) , wi ∈ TZ(x) ,
〈wi, vi〉 = 0, i = 1, 2 . Then 0 ≤ 〈w1 − w2, v1 − v2〉 ≤ −|w1 − w2|2 , hence w1 = w2 , v1 = v2 .

For x ∈ Int Z we obviously have NZ(x) = {0} , TZ(x) = X . One might expect that for x ∈ ∂Z
the normal cone should contain nonzero elements. The example Z := {x ∈ X; | 〈x, ek〉 | ≤
1/k ∀k ∈ N} , where {ek} is an orthonormal basis, shows that this conjecture is false, since
0 ∈ ∂Z and NZ(0) = {0} . The statement below shows that this cannot happen in ‘regular’
cases.

Proposition A.6 If Int Z 6= ∅ , then we have NZ(x) \ {0} 6= ∅ for every x ∈ ∂Z .

Proof. Let {zn; n ∈ N} be a sequence in X \ Z such that limn→∞ |zn − x| = 0. Put εn =
|PZzn| > 0 , yn := zn + 1/εn PZzn . We have εn ≤ |zn − x| and Lemma A.2 (iii) yields QZyn =
QZzn , PZyn = (1+1/εn) PZzn . By Lemma A.2 (i) we further have |QZyn−x|2 = |QZzn−x|2 =
|zn − x|2 − |PZzn|2 − 2 〈PZzn, QZzn − x〉 ≤ |zn − x|2 and

〈PZyn, QZyn − z〉 ≥ 0 ∀z ∈ Z, ∀n ∈ N. (A.2.2)

Passing to subsequences we can assume that {PZyn} converges weakly to an element ξ which
belongs to NZ(x) by (A.2.2). It remains to verify that ξ 6= 0. We fix an arbitrary ball
Bδ(x0) ⊂ Int Z . Putting z := x0 + δ/(1+ εn) PZyn in (A.2.2) we obtain δ ≤ 〈ξ, x− x0〉 , hence
ξ 6= 0. ¥
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A.3 The Minkowski functional

For a given set A ⊂ X we define its polar A∗ by the formula

A∗ := {y ∈ X; 〈y, x〉 ≤ 1 ∀x ∈ A} . (A.3.1)

We immediately see that A∗ is convex and closed, 0 ∈ A∗ . The following duality statement
holds.

Lemma A.7 Let A ⊂ X be given, and let A∗∗ be the polar of A∗ . Then A∗∗ is the closed
convex hull conv (A∪ {0}) of A∪ {0} , that is, the minimal convex closed set in X containing
A ∪ {0} .

Proof. Put Â = conv (A ∪ {0}) . We have by definition

A∗∗ = {z ∈ X; 〈y, z〉 ≤ 1 ∀ y ∈ A∗} , (A.3.2)

hence 0 ∈ A∗∗ and A ⊂ A∗∗ . Since A∗∗ is convex and closed, we necessarily have Â ⊂ A∗∗ .
To prove the inclusion A∗∗ ⊂ Â , we fix an arbitrary z ∈ A∗∗ and apply Lemma A.2 with the
projection pair (PÂ, QÂ ) associated with Â . This yields

〈PÂz , z − PÂz − x〉 ≥ 0 ∀x ∈ Â . (A.3.3)

For every k > 0 we have in particular

〈k PÂz , z〉 ≥ k |PÂz|2 + sup {〈k PÂz , x〉 ; x ∈ A} . (A.3.4)

Put
κ := inf {k > 0 ; k PÂz /∈ A∗} . (A.3.5)

From inequality (A.3.4) it follows κ > 0 , and we distinguish two cases.

(i) κ = +∞ : Putting x = 0 in inequality (A.3.3), we obtain

k |PÂz|2 ≤ 〈k PÂz , z〉 ≤ 1 ∀ k > 0 . (A.3.6)

(ii) κ < +∞ : Then κPÂz ∈ ∂A∗ , sup {〈κPÂz, x〉 ; x ∈ A} = 1, and inequality (A.3.4)
yields

1 + κ |PÂz|2 ≤ 〈κPÂz , z〉 ≤ 1 . (A.3.7)

In both cases (A.3.6) and (A.3.7), we conclude PÂz = 0, hence z ∈ Â . Lemma A.7 is proved.
¥

Lemma A.8 Let A ⊂ X be a set with polar A∗ , and let C > 0 be given. Then

A ⊂ BC(0) ⇐⇒ B1/C(0) ⊂ A∗ . (A.3.8)

Proof. Assume A ⊂ BC(0) and fix y ∈ B1/C(0) . Then for x ∈ A we have 〈y, x〉 ≤ |y| |x| ≤ 1 ,
hence y ∈ A∗ . Conversely, let B1/C(0) ⊂ A∗ and fix x ∈ A . Then |x| = sup{〈x,w〉 ; w ∈
B1(0)} = C sup{〈x, y〉 ; y ∈ B1/C(0)} ≤ C . ¥
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Definition A.9 Let Z ⊂ X be a convex closed set, 0 ∈ Z . The functional MZ : X →
R+ ∪ {+∞} defined by the formula

MZ(x) := inf

{
s > 0 ;

1

s
x ∈ Z

}
for x ∈ X . (A.3.9)

is called the Minkowski functional of Z .

The functional MZ is sometimes called gauge, cf. [30] (not to be confused with the gauge in
Section 1). We list without proof some of its basic properties.

Proposition A.10 In the situation of Definition A.9, we have

(i) Z = {x ∈ X ; MZ(x) ≤ 1} ,

(ii) CZ = {x ∈ X ; MZ(x) = 0} ,

(iii) MZ(tx) = tMZ(x) ∀x ∈ X , ∀t ≥ 0 ,

(iv) MZ(x + y) ≤ MZ(x) + MZ(y) ∀x, y ∈ X .

As an immediate consequence of the above considerations, we have the following

Proposition A.11 Let Z ⊂ X be a convex closed set and let C > c > 0 be given numbers
such that

Bc(0) ⊂ Z ⊂ BC(0) . (A.3.10)

Then

B1/C(0) ⊂ Z∗ ⊂ B1/c(0) , (A.3.11)

1

C
|x| ≤ MZ(x) ≤ 1

c
|x| ∀x ∈ X , (A.3.12)

c |x| ≤ MZ∗(x) ≤ C |x| ∀x ∈ X , (A.3.13)

where Z∗ is the polar of Z .

By virtue of Proposition A.10 and inequality (A.3.12), the Minkowski functional of a convex
set Z satisfying the hypotheses of Proposition A.11 is convex and Lipschitz continuous. Its
subdifferential has the following properties.

Lemma A.12 Let Z satisfy the hypotheses of Proposition A.11, and let ∂MZ be the subdif-
ferential of MZ . Then

(i) ∂MZ(x) 6= ∅ ∀ x ∈ X ,

(ii) ∂MZ(tx) = ∂MZ(x) ∀x ∈ X , ∀ t > 0 ,

(iii) 〈w, x〉 = MZ(x) , 〈w, y〉 ≤ MZ(y) ∀x, y ∈ X , ∀w ∈ ∂MZ(x) .
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(iv) MZ∗(w) = 1 ∀w ∈ ∂MZ(x) , ∀x 6= 0 .

Proof.

(i) We have for all x ∈ X

w ∈ ∂MZ(x) ⇐⇒ 〈w, x − y〉 ≥ MZ(x) − MZ(y) ∀ y ∈ X , (A.3.14)

hence ∂MZ(0) = Z∗ . For x 6= 0, we choose a sequence 0 < tn ↗ MZ(x), n = 1, 2, . . . , and put
xn := x/tn , x0 := x/MZ(x) . Then xn 6∈ Z for n ≥ 1 , hence PZxn 6= 0 and

〈PZxn, QZxn − z〉 ≥ 0 ∀ z ∈ Z . (A.3.15)

On the other hand, we have QZx0 = x0 , and |QZxn − x0| ≤ |xn − x0| → 0 as n → ∞ .
Selecting a subsequence, if necessary, we may assume that PZxn/|PZxn| converge weakly to
some w0 ∈ B1(0) . Then (A.3.15) yields

〈w0, x0 − z〉 ≥ 0 ∀ z ∈ Z . (A.3.16)

Putting z := c PZxn/|PZxn| in (A.3.15) and passing to the limit as n →∞ , we obtain

〈w0, x0〉 ≥ c > 0 . (A.3.17)

Inequality (A.3.16) implies

〈
w0,

x

MZ(x)
− y

MZ(y)

〉
≥ 0 ∀y ∈ X \ {0} , (A.3.18)

or equivalently,

〈w0, x − y〉 ≥ (MZ(x) − MZ(y)) 〈w0, x0〉 ∀ y ∈ X . (A.3.19)

By virtue of (A.3.14) and (A.3.17), we have w := w0/〈w0, x0〉 ∈ ∂MZ(x) and (i) is proved.
Using Proposition A.10 (iii) we obtain (ii) trivially from (A.3.14), part (iii) follows from (A.3.14)
by putting successively y := 0 and y := 2x and part (iv) follows from (iii). ¥

Remark A.13 Lemma A.12 does not hold for general convex closed sets Z . To see this, we
first notice that by (A.3.14), for every x with MZ(x) > 0 and every w ∈ ∂MZ(x) we have

w 6= 0 , (A.3.20)

〈
w,

x

MZ(x)
− y

〉
≥ 0 ∀ y ∈ Z . (A.3.21)

As an example, we choose X := L2(0, 1) , Z := {z ∈ X; −1 ≤ z(t) ≤ 1 a.e. } , x(t) := t
for t ∈ [0, 1] . Then Z is convex and closed, 0 ∈ Z , MZ(x) = 1. Assume that ∂MZ(x) is
nonempty and let w ∈ ∂MZ(x) be arbitrary. By (A.3.21), we have

∫ 1

0

w(t) t dt ≥ sup

{∫ 1

0

w(t) y(t) dt ; y ∈ X , − 1 ≤ y(t) ≤ 1 a.e.

}
=

∫ 1

0

|w(t)| dt

hence w = 0, which contradicts (A.3.20).
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The main result of this subsection reads as follows.

Theorem A.14 Let Z satisfy the hypotheses of Proposition A.11, and let Z∗ be the polar of
Z . For x ∈ X put JZ(x) := MZ(x) ∂MZ(x) , JZ∗(x) := MZ∗(x) ∂MZ∗(x) . Then

(i) 〈w − z, x− y〉 ≥ (MZ(x)−MZ(y))2 ∀x, y ∈ X , w ∈ JZ(x) , z ∈ JZ(y) ,

(ii) 〈w∗ − z∗, x− y〉 ≥ (MZ∗(x)−MZ∗(y))2 ∀x, y ∈ X , w∗ ∈ JZ∗(x) , z∗ ∈ JZ∗(y) ,

(iii) y ∈ JZ(x) ⇐⇒ x ∈ JZ∗(y) ∀x, y ∈ X ,

(iv) Z∗ = JZ(Z) , Z = JZ∗(Z
∗) , where JZ(Z) :=

⋃
x∈Z

JZ(x) , JZ∗(Z
∗) :=

⋃
y∈Z∗

JZ∗(y) .

The proof Theorem A.14 uses the following Lemma.

Lemma A.15 Let the hypotheses of Theorem A.14 hold. Then for all x, y ∈ X \ {0} we have

〈y, x〉 ≤ MZ(x) MZ∗(y) , (A.3.22)

〈y, x〉 = MZ∗(y) MZ(x) ⇐⇒ x

MZ(x)
∈ ∂MZ∗(y) ⇐⇒ y

MZ∗(y)
∈ ∂MZ(x) . (A.3.23)

Proof of Lemma A.15. Inequality (A.3.22) follows immediately from the definition of Z∗ and
Lemma A.12 (iii) yields the implications

x

MZ(x)
∈ ∂MZ∗(y) ⇒ 〈y, x〉 = MZ∗(y) MZ(x) ,

y

MZ∗(y)
∈ ∂MZ(x) ⇒ 〈y, x〉 = MZ∗(y) MZ(x) .

Assume now
〈x, y〉 = MZ(x) MZ∗(y) for some x, y ∈ X \ {0} . (A.3.24)

Then, by (A.3.22) we have
〈

x

MZ(x)
, y − z

〉
≥ MZ∗(y) − MZ∗(z) ∀ z ∈ X ,

〈
y

MZ∗(y)
, x − z

〉
≥ MZ(x) − MZ(z) ∀ z ∈ X

and the assertion follows. ¥

Proof of Theorem A.14. Inequalities (i), (ii) follow from (A.3.14) (and the corresponding
inequality for MZ∗ ). To prove (iii), it suffices to fix x ∈ X and y ∈ JZ(x) and prove that
x ∈ JZ∗(y) . The other implication then follows from the duality Z = Z∗∗ and JZ = JZ∗∗ . The
definition of JZ immediately entails JZ(0) = {0} , JZ∗(0) = {0} , hence it suffices to assume
x 6= 0. By Lemma A.12 (iii), (iv) we have

〈y, x〉 = M2
Z(x) , MZ∗(y) = MZ(x) . (A.3.25)

and Lemma A.15 yields the assertion. To prove (iv), it suffices to use (iii) and (A.3.25). ¥

We call JZ the duality mapping induced by Z . It can be interpreted geometrically by means
of the normal cone NZ(x) in the following way.
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Proposition A.16 Let the hypotheses of Theorem A.14 hold. Then for every x ∈ ∂Z , we
have JZ(x) ⊂ NZ(x) . Conversely, for each y ∈ NZ(x) , y 6= 0 , we have 〈y, x〉 = MZ∗(y) and
y/〈y, x〉 ∈ JZ(x) .

Proof. The inclusion JZ(x) ⊂ NZ(x) follows immediately from the definition. Let now y ∈
NZ(x) , y 6= 0 be given. Then 〈y, x〉 ≥ 〈y, z〉 for all z ∈ Z , hence y/〈y, x〉 ∈ Z∗ . We
have in particular MZ∗(y) ≤ 〈y, x〉 and from (A.3.22) (note that MZ(x) = 1) we obtain
〈y, x〉 = MZ∗(y) . Lemma A.15 then completes the proof. ¥

Remark A.17 It is easy to see that M2
Z∗/2 is the conjugate function to M2

Z/2 in the sense
of [1], that is,

1

2
M2

Z∗(y) = sup

{
〈y, x〉 − 1

2
M2

Z(x) ; x ∈ X

}
for every y ∈ X . (A.3.26)

Let us also mention the case of “regular” convex domains Z ⊂ X such that NZ(x) reduces
to a half-line for each x ∈ ∂Z . By Proposition A.16, this is equivalent to saying that JZ is a
single-valued mapping. They allow for the following dual characterization.

Theorem A.18 Let Z satisfy (A.3.10) and let Z∗ be its polar. Then the following conditions
are equivalent.

(i) JZ is single-valued,

(ii) Z∗ is strictly convex, that is, (y0 + y1)/2 ∈ Int Z∗ for all y0, y1 ∈ Z∗ , y0 6= y1 .

Proof.

(ii) ⇒ (i) : Let x ∈ X and y0, y1 ∈ JZ(x) be given. For x = 0 we have y0 = y1 = 0, otherwise
we put y := (y0 + y1)/2 . Then y ∈ JZ(x) and MZ∗(y) = MZ∗(y0) = MZ∗(y1) = MZ(x) .
Consequently, all y0/MZ(x) , y1/MZ(x) , y/MZ(x) belong to ∂Z∗ , hence y0 = y1 .

non (ii) ⇒ non (i) : Assume that there exist y0 6= y1 ∈ Z∗ such that y := (y0 + y1)/2 ∈ ∂Z∗ .
Let x ∈ JZ∗(y) be arbitrarily chosen. Then MZ(x) = MZ∗(y) = 1 and

1 = 〈x, y〉 =
1

2
(〈x, y0〉 + 〈x, y1〉) ≤ 1 .

This yields 〈x, y0〉 = 〈x, y1〉 = 1 = MZ∗(y0) = MZ∗(y1) and from Lemma A.15 (ii), we conclude
y0, y1 ∈ JZ(x) and Theorem A.18 is proved. ¥

Example A.19 If Z = {x ∈ X ; 〈x, ni〉 ≤ βi , i = 1, . . . , p} is a polyhedron with a sys-
tem {ni ; i = 1, . . . , p} of unit vectors and with βi > 0 , then Z∗ is the polyhedron Z∗ =
conv ({0, n1/β1, . . . , np/βp}) .
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A.4 Smooth convex sets

The aim of this paragraph is to give a characterization of what we will call a “smooth convex
set” in the sequel.

Theorem A.20 Let Z $ X be a convex closed set and let c > 0 be given. Then the following
two conditions are equivalent.

(i) For every x ∈ ∂Z there exists a unique unit outward normal n(x) to Z at the point x ,
and for every x, y ∈ ∂Z we have

|n(x)− n(y)| ≤ 1

c
|x− y| . (A.4.1)

(ii) There exists a convex closed set Z̃ $ X such that Z = Z̃ + Bc(0) .

The proof of Theorem A.20 is based on the following Lemma.

Lemma A.21 Let condition (i) in Theorem A.20 hold. Then for every x ∈ ∂Z we have
Bc(x− c n(x)) ⊂ Z .

Proof of Lemma A.21. For x ∈ ∂Z set x0 = x − c n(x) and assume that Bc(x0) 6⊂ Z . We
distinguish three cases a), b), c) as follows.

a) x0 /∈ Z .

Put y = QZ(x0) . We then have 0 < |PZ(x0)| =: c′ ≤ c , n(y) = (1/c′) PZ(x0) . Further-
more, n(x) = (1/c)(x− x0) = (1/c)(x− y)− (c′/c)n(y) , hence

n(x)− n(y) =
1

c
(x− y)−

(
1 +

c′

c

)
n(y) . (A.4.2)

From (A.4.1), (A.4.2) we obtain that

1

c
|x− y|2 ≥ |n(x)− n(y)| |x− y| ≥ 〈n(x)− n(y), x− y〉 (A.4.3)

=
1

c
|x− y|2 +

(
1 +

c′

c

)
〈n(y), y − x〉 ≥ 1

c
|x− y|2 ,

hence n(x)−n(y) = (1/c) (x− y) = n(x)+ (c′/c)n(y) . This yields that n(y) = 0 which
is a contradiction.

b) x0 ∈ ∂Z .

We have 〈n(x0), x0 − x〉 ≥ 0 , hence, by (A.4.1),

1

c
|x− x0|2 ≥ |n(x)− n(x0)| |x− x0| ≥ 〈n(x)− n(x0), x− x0〉 (A.4.4)

= 〈n(x), x− x0〉+ 〈n(x0), x0 − x〉 ≥ 1

c
|x− y|2 ,

and arguing similarly as in a) we obtain n(x0) = 0 which is again a contradiction.
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c) x0 ∈ Int Z , dist (x0, ∂Z) = c′ < c .

We fix some ε ∈ ]0, c−c′[ sufficiently small and find y ∈ ∂Z such that c′ ≤ |y−x0| < c′+ε .
We have 〈n(y), y − (x0 + c′n(y))〉 ≥ 0 , hence

〈n(y), y − x0〉 ≥ c′ . (A.4.5)

The rest of the proof is an exercise on the triangle inequality. Put w = n(y)− (1/c′)(y−
x0) . Then

|w|2 ≤ 1 +

(
c′ + ε

c′

)2

− 2

c′
〈n(y), y − x0〉 ≤

(
c′ + ε

c′

)2

− 1 =: γ2(ε) ,

hence

n(x)− n(y) =
1

c
(x− y) −

(
1− c′

c

)
n(y)− c′

c
w . (A.4.6)

This yields that

〈n(x)− n(y), x− y〉 ≥ 1

c
|x− y|2 +

c′

c
〈w, y − x〉 ≥ 1

c
|x− y|2 − 2c′ γ(ε) . (A.4.7)

From (A.4.1), (A.4.7) it follows that

c

2

∣∣∣∣(n(x)− n(y))− 1

c
(x− y)

∣∣∣∣
2

≤ 2c′ γ(ε) , (A.4.8)

hence ∣∣∣∣(n(x)− n(y))− 1

c
(x− y)

∣∣∣∣ ≤ 2
√

γ(ε) . (A.4.9)

Combining (A.4.6) with (A.4.9) we obtain that

∣∣∣∣
(

1− c′

c

)
n(y) +

c′

c
w

∣∣∣∣ ≤ 2
√

γ(ε) , (A.4.10)

hence

1− c′

c
≤ γ(ε) + 2

√
γ(ε)

which is a contradiction for small ε .

The above cases a), b), c) exhaust all possibilities, and Lemma A.21 is proved. ¥

Proof of Theorem A.20. The assertion is a trivial consequence of Lemma A.4 if CZ ∪ (−CZ) =
X . Assume that this is not the case and that (i) holds. Putting

A = {x− c n(x) ; x ∈ ∂Z} , Z̃ = conv A . (A.4.11)

By Lemma A.21 we have A + Bc(0) ⊂ Z , hence Z̃ + Bc(0) ⊂ Z . Conversely, by (A.4.11) we
have ∂Z ⊂ A + Bc(0) ⊂ Z̃ + Bc(0) . From Lemma A.5 it follows that Z ⊂ Z̃ + Bc(0) , hence
(ii) is verified.
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Let now (ii) be fulfilled. We claim that

n(x) =
1

c
PZ̃x ∀x ∈ ∂Z . (A.4.12)

To see that (A.4.12) holds, we first notice that we have |PZ̃z| = dist (z, Z̃) ≤ c for all z ∈ Z ,
|PZ̃x| = c for all x ∈ ∂Z . This yields that for all x ∈ ∂Z and z ∈ Z we have

〈PZ̃x, x− z〉 = 〈PZ̃x,QZ̃x−QZ̃z〉+ 〈PZ̃x, PZ̃x− PZ̃z〉 ≥ c2 − |PZ̃x| |PZ̃z| ≥ 0 ,

hence PZ̃x ∈ NZ(x) for all x ∈ ∂Z . Let now x ∈ ∂Z and n ∈ NZ(x) be arbitrary, |n| = 1.
Then we have

0 ≤ 〈n, x− (QZ̃x + c n)〉 = 〈n, PZ̃x〉 − c ≤ |n| |PZ̃x| − c = 0 ,

hence n = PZ̃x . We thus proved that (A.4.12) holds. It follows from Lemma A.2 (ii) that

|PZ̃x− PZ̃y| ≤ |x− y| . (A.4.13)

This yields for all x, y ∈ ∂Z that

|n(x)− n(y)| =
1

c
|PZ̃x− PZ̃y| ≤ 1

c
|x− y| ,

and the proof is complete. ¥

Using Proposition A.16 we now show that the Lipschitz continuity condition (A.4.1) can be
equivalently written in terms of the duality mapping JZ .

Proposition A.22 Let condition (A.3.10) hold. Then for every x ∈ ∂Z there exists a unique
unit outward normal n(x) to Z at x if and only if JZ(x) is single-valued for every x ∈ X ,
and in this case we have

1

C
|n(x)− n(y)| ≤ |JZ(x)− JZ(y)| ≤ 1

c

(
1 +

C

c

)
|n(x)− n(y)| ∀x, y ∈ ∂Z , (A.4.14)

where we use (by a slight abuse of notation) the same symbol JZ(x) to denote the unique
element of JZ(x) .

Proof. By Proposition A.16 and (A.3.25) we have

JZ(x) = |JZ(x)|n(x) , MZ∗(JZ(x)) = 〈JZ(x), x〉 = 1 ∀x ∈ ∂Z , (A.4.15)

hence 〈n(x), x〉 = MZ∗(n(x)) = 1/|JZ(x)| , where we have by virtue of Proposition A.11 that
1/C ≤ |JZ(x)| ≤ 1/c . For x, y ∈ ∂Z we thus have

|JZ(x)− JZ(y)| =

∣∣∣∣
n(x)

MZ∗(n(x))
− n(y)

MZ∗(n(y))

∣∣∣∣

≤ 1

MZ∗(n(x))

(
|n(x)− n(y)|+ 1

MZ∗(n(y))
MZ∗ (n(x)− n(y))

)

≤ 1

c

(
1 +

C

c

)
|n(x)− n(y)| .
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To prove the second inequality we refer to the general vector formula

∣∣∣∣
u

|u| −
v

|v|

∣∣∣∣
2

≤ 1

|u||v| |u− v|2

with u = JZ(x) , v = JZ(y) , and use the fact that |u|, |v| ≥ 1/C . ¥

Corollary A.23 Let C > c > 0 be given, and let 0 ∈ Z̃ ⊂ BC−c(0) be a non-empty closed
convex set, Z = Z̃ + Bc(0) . Let JZ be the duality mapping associated with Z . Then for every
x, y ∈ X we have

|JZ(x)− JZ(y)| ≤ 1

c2

(
1 +

(
1 +

C

c

)2
)
|x− y| .

Proof. The assertion is obvious if x = 0 or y = 0. For arbitrary x, y ∈ X \ {0} we have by
Theorem A.20 and Proposition A.22 that

|JZ(x)− JZ(y)| =

∣∣∣∣MZ(x) JZ

(
x

MZ(x)

)
−MZ(y) JZ

(
y

MZ(y)

)∣∣∣∣

≤ MZ(x− y)

∣∣∣∣JZ

(
x

MZ(x)

)∣∣∣∣ + MZ(y)

∣∣∣∣JZ

(
x

MZ(x)

)
− JZ

(
y

MZ(y)

)∣∣∣∣

≤ 1

c2
|x− y|+ 1

c2

(
1 +

C

c

)
MZ(y)

∣∣∣∣
x

MZ(x)
− y

MZ(y)

∣∣∣∣

≤ 1

c2

(
2 +

C

c

)
|x− y|+ 1

c2

(
1 +

C

c

) |x|
MZ(x)

MZ(x− y)

≤ 1

c2

(
2 +

C

c
+

(
1 +

C

c

)
C

c

)
|x − y| ,

which we wanted to prove. ¥

A.5 Distance of convex sets

We can measure the distance of two sets Z1, Z2 in X either as the Hausdorff distance

dH(Z1, Z2) = max{ sup
z1∈Z1

dist (z1, Z2), sup
z2∈Z2

dist (z2, Z1)} , (A.5.1)

or, if both Z1 and Z2 are convex and contain the origin, the Minkowski distance

dM(Z1, Z2) = sup
|x|=1

|MZ1(x)−MZ2(x)| . (A.5.2)

We first show that these concepts are equivalent in the class of sets satisfying condition (A.3.10).

Lemma A.24 Let Z1, Z2 be convex closed sets such that (A.3.10) holds for both Z = Zi ,
i = 1, 2 . Then we have

c2dM(Z1, Z2) ≤ dH(Z1, Z2) ≤ C2dM(Z1, Z2) . (A.5.3)
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Proof. Assume first that there exists x ∈ Z1 \ Z2 . Using (A.3.12) we obtain

dist (x, Z2) ≤
∣∣∣∣x−

x

MZ2(x)

∣∣∣∣ ≤
|x|2

MZ1(x)MZ2(x)

(
MZ2

(
x

|x|
)
−MZ1

(
x

|x|
))

≤ C2dM(Z1, Z2) ,

and reversing the roles of Z1 and Z2 we obtain the right inequality in (A.5.3). To prove the
left estimate in (A.5.3), we divide the unit sphere ∂B1(0) into the sets

A0 = {x ∈ ∂B1(0) ; MZ1(x) = MZ2(x)} ,

A1 = {x ∈ ∂B1(0) ; MZ1(x) > MZ2(x)} ,

A2 = {x ∈ ∂B1(0) ; MZ1(x) < MZ2(x)} .

For x ∈ A2 set x̄ = x/MZ1(x) . We have MZ2(x̄) > MZ1(x̄) = 1, hence x̄ /∈ Z2 and d :=
|PZ2x̄| > 0 . Put m = 1 + d/c . Then the vector

1

m
x̄ =

c

c + d
QZ2x̄ +

d

c + d

cPZ2x̄

d

is a convex combination of elements of Z2 , hence MZ2(x̄) ≤ m . This yields

MZ2(x̄)−MZ1(x̄) ≤ m− 1 ≤ 1

c
dist (x̄, Z2) ≤ 1

c
dH(Z1, Z2) .

Using (A.3.12) we conclude that

MZ2(x)−MZ1(x) ≤ 1

c2
dH(Z1, Z2) ,

and arguing similarly for x ∈ A0 ∪ A1 we complete the proof. ¥

In Section 6 we solve the uniqueness problem for quasivariational inequalities using a distance
criterion involving the mapping JZ introduced in Theorem A.14. We now prove that it is
stronger than the Minkowski distance. The reader will easily construct smoothened versions of
Example 6.2 with ψ(v) =

√
v showing that the square root on the right-hand side of (A.5.4)

cannot be removed in general.

Lemma A.25 Let C > c > 0 be given, and let 0 ∈ Z̃i ⊂ BC−c(0) ⊂ X for i = 1, 2 be convex
closed sets, Zi = Z̃i+Bc(0) for Z = Zi , i = 1, 2 . Let LJ be the Lipschitz constant in Corollary
A.23. Then for all x ∈ ∂B1(0) we have

2

C
|MZ1(x)−MZ2(x)| ≤ |JZ1(x)− JZ2(x)| ≤ 2

√
2

c

(
dM(Z1, Z2) (cLJ + dM(Z1, Z2))

)1/2

.

(A.5.4)

Proof. The left inequality is an easy consequence of Proposition A.11 and Lemma A.12 (iii)
which for every x ∈ X yield that

2|x|
C

|MZ1(x)−MZ2(x)| ≤ |M2
Z1

(x)−M2
Z2

(x)| = | 〈JZ1(x)− JZ2(x), x〉 | .
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To prove the other estimate, we fix x ∈ X with |x| = 1 such that JZ1(x) 6= JZ2(x) , and define

xs = x + s
JZ2(x)− JZ1(x)

|JZ2(x)− JZ1(x)| for s ≥ 0 . (A.5.5)

We may assume that 〈xs − x, x〉 ≤ 0 , otherwise we interchange Z1 and Z2 . The functions
λi(s) := 1

2
M2

Zi
(xs) are convex and satisfy

λi(0) + sλ′i(0) ≤ λi(s) ≤ λi(0) + sλ′i(s) for s ≥ 0 . (A.5.6)

Thus,

λ2(s)− λ1(s) ≥ λ2(0)− λ1(0) + s (λ′2(0)− λ′1(s)) (A.5.7)

= λ2(0)− λ1(0) + s (λ′2(0)− λ′1(0)) + s (λ′1(0)− λ′1(s)) .

Note that

λ′i(s) =

〈
JZi

(xs),
JZ2(x)− JZ1(x)

|JZ2(x)− JZ1(x)|
〉

for s ≥ 0 ,

hence

λ′2(0)− λ′1(0) = |JZ2(x)− JZ1(x)| , (A.5.8)

|λ′1(s)− λ′1(0)| ≤ |JZ1(xs)− JZ1(x)| ≤ sLJ . (A.5.9)

We further have by (A.3.12) for all s ≥ 0 that

|λ2(s)−λ1(s)| ≤ |xs|
c
|MZ2(xs)−MZ1(xs)| ≤ |xs|2

c
dM(Z1, Z2) ≤ 1 + s2

c
dM(Z1, Z2) . (A.5.10)

Combining (A.5.7)–(A.5.10) we obtain for all s > 0 that

|JZ2(x)− JZ1(x)| ≤ 2 + s2

sc
dM(Z1, Z2) + sLJ . (A.5.11)

The right-hand side attains its minimum for s =
√

2 dM(Z1, Z2)/(cLJ + dM(Z1, Z2)) , and the
assertion follows. ¥

A.6 Parameter-dependent convex sets

To conclude the section, we will consider families of convex sets Z(v) ⊂ X parametrized by
elements v of a closed subset V of a Banach space Y endowed with norm ‖ · ‖ . We will
consecutively make the following hypotheses.

Hypothesis A.26

(i) Z(v) is a non-empty convex closed subset of X for every v ∈ V ;

(ii) The mapping ∆ : V × V → R+ : (v, w) 7→ dH(Z(v), Z(w)) is continuous.
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Hypothesis A.27 For every v ∈ V there exists x(v) ∈ X and %(v) > 0 such that

B%(v)(x(v)) ⊂ Z(v) . (A.6.1)

For simplicity, we denote by (Pv, Qv) instead of (PZ(v), QZ(v)) the projection pair associated
with Z(v) for v ∈ V . As an easy consequence of the definition, we have the implication

v, w ∈ V , x ∈ Z(v) =⇒ |Pwx| ≤ ∆(v, w) . (A.6.2)

Let us consider now arbitrary sequences {xn} in X , {vn} in V such that xn ∈ Z(vn) for all
n , |xn − x| → 0 , ‖vn − v‖ → 0 as n →∞ . From (A.6.2) it follows that

dist (x, Z(v)) ≤ |x−Qvxn| ≤ |x− xn|+ |Pvxn| ≤ |x− xn|+ ∆(v, vn) .

Under Hypothesis A.26, the right-hand side of this inequality tends to 0 an n → ∞ . This
enables us to conclude that

(
xn → x , vn → v , xn ∈ Z(vn) ∀n ∈ N

)
=⇒ x ∈ Z(v) . (A.6.3)

We now derive some further consequences of the definition.

Lemma A.28 Let Hypothesis A.26 hold, and let x, y ∈ X , v, w ∈ V be given. Then we have

|Pvx− Pwy|2 ≤ |x− y|2 + ∆2(v, w) + 4∆(v, w) |Pvx| . (A.6.4)

Proof. By (A.6.2) and Lemma A.2 we have

〈Pvx,Qvx−Qwy〉 = 〈Pvx,Qvx−QvQwy〉+ 〈Pvx, PvQwy〉 ≥ −|Pvx|∆(v, w) ,

〈Pwy,Qwy −Qvx〉 = 〈Pwy,Qwy −QwQvx〉+ 〈Pwx, PwQvy〉 ≥ −|Pwy|∆(v, w) .

Summing up the above inequalities we obtain

|Pvx− Pwy|2 ≤ 〈Pvx− Pwy, x− y〉+ (|Pvx|+ |Pwy|) ∆(v, w)

≤ |Pvx− Pwy| (|x− y|+ ∆(v, w)) + 2∆(v, w) |Pvx|
and (A.6.4) follows easily. ¥

Lemma A.29 Let Hypothesis A.26 hold, and let K ⊂ V be a compact set. Then there exists
a non-decreasing function µK : R+ → R+ , µK(0) = µK(0+) = 0 , such that

∆(v, w) ≤ µK(‖v − w‖) ∀v, w ∈ K . (A.6.5)

Proof. For h ≥ 0 it suffices to set

µK(h) = max{∆(v, w) ; v, w ∈ K , ‖v − w‖ ≤ h} . (A.6.6)

The µK is non-decreasing and (A.6.5) holds. From the compactness of K and continuity of ∆
we easily obtain that µK(0+) = 0. ¥
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Lemma A.30 Let Hypotheses A.26, A.27 hold, let K ⊂ V be a compact set, and let v ∈ K
be given. Let x ∈ X , % > 0 and h > 0 be such that

µK(h) < % , B%(x) ⊂ Z(v) . (A.6.7)

Then for every w ∈ K , ‖v − w‖ ≤ h we have

B%−µK(h)(x) ⊂ Z(w) . (A.6.8)

Proof. Let y ∈ B%−µK(h)(x) be arbitrarily given, and assume that y /∈ Z(w) , that is,

|x− y| ≤ %− µK(h) , |Pw(y)| > 0 . (A.6.9)

Put α = 1 + µK(h)/|Pwy| > 1 and

ỹ = Qwy + αPwy = y + (α− 1)Pwy . (A.6.10)

From Lemma A.2 (iii) it follows that Qwỹ = Qwy , hence

Pwỹ = αPwy . (A.6.11)

On the other hand, we have |ỹ − x| ≤ |x− y|+ (α− 1)|Pw(y)| ≤ % , hence ỹ ∈ B%(x) ⊂ Z(v) .
From (A.6.2), (A.6.6), and (A.6.11) we thus obtain that

∆(v, w) ≥ |Pwỹ| = α|Pwy| = |Pwy|+ µK(h) > ∆(v, w)

which is a contradiction. ¥

Proposition A.31 Let Hypotheses A.26, A.27 hold, and let K ⊂ V be a compact set. Then
there exists %̃ > 0 and x1, . . . , xn ∈ X such that for every v ∈ K there exists i ∈ {1, . . . , n}
satisfying B%̃(xi) ⊂ Z(v) .

Proof. For every v ∈ K we find h(v) > 0 such that

µK(h(v)) ≤ 1

2
%(v) (A.6.12)

with %(v) from Hypothesis A.27. From the covering K ⊂ ⋃
v∈K {w ∈ K ; ‖v − w‖ < h(v)} we

select a finite subcovering

K ⊂
n⋃

i=1

{w ∈ K ; ‖vi − w‖ < h(vi)} (A.6.13)

with some v1, . . . , vn ∈ K . Set xi = x(vi) for i = 1, . . . , n . From Hypothesis A.27, Lemma
A.30 and formula (A.6.12) we obtain the implication

v ∈ K , ‖v − vi‖ < h(vi) =⇒ B%(vi)/2(xi) ⊂ Z(v) (A.6.14)

for all i = 1, . . . , n . Combining (A.6.13) with (A.6.14) we obtain the assertion by putting
%̃ = mini=1,...,n %(vi)/2 . ¥
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