You are here

Infrared, terahertz and microwave spectroscopy of the soft and central modes in PMN

Analysis of IR and THz spectra using Bruggeman effective medium approach revealed that the mesoscopic structure of Pb(Mg1/3Nb2/3)O3 (PMN) consists of randomly oriented uniaxially anisotropic polar nanodomains with harder transverse optical polar modes in the direction along the local dipoles.

The lowest-frequency phonon of the E symmetry polarized perpendicular to the local dipole moments undergoes softening towards T* ≈ 400 K, which gives evidence about a local structural phase transition. This softening is also responsible for previously observed high temperature dependence of permittivity, which follows the Curie-Weiss law with the same critical temperature even without any anomaly in the low-frequency permittivity [D. Nuzhnyy et al, Phys. Rev. B 96, 174113 (2017)].

Figure: Temperature dependence of soft-mode components A1 and E in PMN from our terahertz and IR spectra.