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WEAK-STRONG UNIQUENESS FOR

NAVIER-STOKES/ALLEN-CAHN SYSTEM

RADIM HOŠEK AND VÁCLAV MÁCHA

Abstract. The coupled Navier-Stokes/Allen-Cahn system is a simple model
to describe phase separation in two-component systems interacting with an

incompressible fluid flow. We demonstrate the weak-strong uniqueness result

for this system in a bounded domain in three spatial dimensions which implies
that when a strong solution exists then a weak solution emanating from the

same data coincides with the strong solution on its whole life-span. The proof
of given assertion relies on a form of a relative entropy method.

1. Introduction

Given a bounded Lipschitz domain Ω ⊂ R3 and a time T > 0, let us consider
the following Navier-Stokes/Allen-Cahn system

ut + divx(u⊗ u) +∇xp = divxS(∇xu)− εdivx(∇xc⊗∇xc),(1.1)

divxu = 0,(1.2)

ct + u · ∇xc = ε∆xc−
1

ε
F ′(c).(1.3)

on QT := (0, T ) × Ω in conjection with the Dirichlet boundary value for velocity,
i.e.

(1.4) u|∂Ω = 0,

and Neumann boundary condition for concentration

(1.5) ∇xc · n|∂Ω = 0,

which emanates from the initial conditions

(1.6) u(0, ·) = u0(·), c(0, ·) = c0(·)

The system has three unknowns u : QT 7→ R3, p : QT 7→ R and c : QT 7→ R
which represent velocity, pressure and concentration respectively. Here, S, the stress
tensor, and F , the energy density, are prescribed functions satisfying assumptions
outlined in Section 2.

The existence of a weak solution to the above system was claimed (without

a proof) in [9] assuming u0 ∈ W 1,2
0,div and c0 ∈ W 2,2

n . A proof may readily be

constructed as in [7]. The uniqueness of a weak solution is still an open problem.
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2 RADIM HOŠEK AND VÁCLAV MÁCHA

On the other hand, strong solution is regular enough to ensure its uniqueness.
The existence of a strong solution emanating from u0 ∈ W 1,2

0,div(Ω), c ∈ W 2,2
n on a

short-time interval can also be proven as in [7].
The precise form of the above-mentioned existence results are stated in Section 2.
The main aim of this paper is to prove the weak-strong uniqueness for the above

system, namely, if a (unique) strong solution exists, all weak solutions emanating
from the same initial condition must be equal to the strong one.

We introduce a relative entropy functional which measures distance between a
weak solution and an arbitrary sufficiently smooth function, and demonstrate that
the relative entropy functional satisfies a relative entropy inequality which allows
us to conclude that the distance between any weak solution and the strong solution
is zero so long as the strong solution exists. The relative entropy method was
apparently first introduced by Dafermos [2]. The weak-strong uniqueness property
was proven for the compressible isentropic fluids using this method by Germain
[6] and for the full Navier-Stokes-Fourier by Feireisl and Novotný [5]. To the best
of our knowledge, a relative entropy functional for the Navier-Stokes/Cahn-Hillard
system is presented here for the first time.

Relative entropy functional provides a means of distance between a weak solution
of a given problem and a sufficiently smooth functions. In our case, these functions
will be a strong solution of the same problem. Another use of the relative entropy
method is proving the singular limits; in such case, the smooth functions would
be a solution of a target system (see e.g. [1], [3], [4] and many others). The
relative entropy functional for the Navier-Stokes/Allen-Cahn system is introduced
by relation (3.1).

The paper is organized as follows. In the next section we state hypotheses and
we recall some known results. The relative entropy functional is defined and the
relative entropy inequality is derived in Section 3. The last Section contains our
main claim and its proof.

1.1. Notation. Standard Lebesque, Sobolev and Bochner spaces are denoted by
Lp(Ω), W k,p(Ω) and Lp(0, T,X) respectively. We use this notation for both real-
and vector-valued function. Further, we introduce the following notation

L2
div(Ω) := {φ ∈ C∞0 (Ω),divxφ = 0}

‖.‖L2
,

W 1,2
0,div(Ω) := W 1,2

0 (Ω) ∩ L2
div(Ω),

W s,2
n (Ω) := {φ ∈ C∞(Ω),∇φ · n|∂Ω = 0}

‖.‖Ws,2
, s ∈ N.

2. Hypothesis and known results

The stress tensor is assumed to satisfy the standard linear constitutive relation,

S(∇xu) =
ν

2
(∇xu +∇Txu), ν > 0.

F is taken to be a double-well potential with two local minimizers y1, y2 which
satisfies

(2.1) F ∈ C1,1[f1, f2], −∞ < f1 < y1 < y2 < f2 <∞.
Further, we assume that the initial condition c0 satisfies

(2.2) [ess inf
Ω
c0, ess sup

Ω
c0] ⊆ [f1, f2].
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2.1. Energy balance. Proceeding formally, we multiply (1.1) by u and (1.3) by
(ct + u · ∇xc), then integrate over space to get

1

2

d

dt

∫
Ω

|u|2 dx+ ν

∫
Ω

S(∇xu) : ∇xudx = ε

∫
Ω

(∇xc⊗∇xc) : ∇xudx,

and

−
∫

Ω

|ct+u·∇xc|2 dx =
ε

2

d

dt

∫
Ω

|∇xc|2 dx+
1

ε

d

dt

∫
Ω

F (c) dx−ε
∫

Ω

(∇xc⊗∇xc) : ∇xudx.

Combining the above equalities yield the following dissipation equation
(2.3)
d

dt

∫
Ω

(
1

2
|u|2 +

ε

2
|∇xc|2 +

1

ε
F (c)

)
dx+

∫
Ω

(
S(∇xu) : ∇xu + |ct + u · ∇xc|2

)
dx = 0.

2.2. Weak formulation. We say that the couple (u, c)

(2.4) u ∈ L∞
(
0, T ;L2

div(Ω)
)
∩ L2

(
0, T ;W 1,2

0,div(Ω)
)
,

(2.5) c ∈ L∞
(
0, T ;W 1,2

n (Ω)
)
∩ L2

(
0, T ;W 2,2

n (Ω)
)
,

is a weak solution to the Navier-Stokes/Allen-Cahn system, if it satisfies∫
Ω

u(t) · v(t) dx−
∫

Ω

u0 · v(0)−
t∫

0

∫
Ω

u · vt dxdt−
t∫

0

∫
Ω

(u⊗ u) : ∇xvdx dt

+

t∫
0

∫
Ω

S(∇xu) : ∇xv dx dt = ε

t∫
0

∫
Ω

(∇xc⊗∇xc) : ∇xvdxdt,

(2.6)

for all v ∈ C∞(QT ) such that v = 0 on (0, T )×∂Ω and divxv = 0 for a.e. t ∈ [0, T ],

(2.7) ct + u · ∇xc = ε∆xc−
1

ε
F ′(c),

almost everywhere in Ω× [0, T ], as well as the energy inequality

∫
Ω

(
1

2
|u(t)|2 +

ε

2
|∇xc|2 +

1

ε
F (c)

)
(x, t) dx

+

t∫
0

∫
Ω

(
S(∇xu) : ∇xu + |ct + u · ∇xc|2

)
dx dt

≤
∫

Ω

(
1

2
|u0|2 +

ε

2
|∇xc0|2 +

1

ε
F (c0)

)
dx,

(2.8)

for a.e. t ∈ [0, T ].
We emphasise that the weak solution is supposed to fulfill the energy inequality

rather than equality. The energy dissipation (2.3) was derived just formally and it
holds only for sufficiently smooth solutions. Unfortunately, (2.4) does not allow to
multiply (1.1) by u.
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Since we are considering an incompressible fluid, the pressure does not appear
in the weak formulation. However, it can be reconstructed by standard techniques,
see for example [8].

2.3. Existence.

Theorem 2.1 ([9], Theorem 2.1). Let u0 ∈ L2
div(Ω) and c0 ∈W 1,2

n (Ω) satisfy (2.2)
and let (2.1) hold. Then the system (1.1–1.6) possesses a global weak solution

(u, c) ∈
(
L2(0, T,W 1,2

0,div(Ω)) ∩ L∞(0, T, L2(Ω))
)

×
(
L∞(0, T,W 1,2(Ω)) ∩ L2(0, T,W 2,2(Ω))

)
.

Moreover, if u0 ∈ W 1,2
0,div(Ω) and c0 ∈ W 2,2

n (Ω), then there exists T ? > 0 such that

(1.1–1.6) possesses a unique strong solution (U, C) in [0, T ?) such that

(2.9) U ∈ L∞
(

0, T ;W 1,2
0,div(Ω)

)
∩ L2

(
0, T ;W 2,2

0,div(Ω)
)
,

(2.10) C ∈ L∞
(
0, T ;W 2,2

n (Ω)
)
∩ L2

(
0, T ;W 3,2

n (Ω)
)

holds for T < T ?.

The uniqueness of the strong solution is thus known. As mentioned before, our
aim is to show uniqueness of the strong solution in the class of weak solutions. The
integrability properties, which allow to use the relative entropy inequality, are

(2.11) U ∈ L2(0, T ;L∞(Ω)3), ∇xC ∈ L2(0, T ;L∞(Ω)).

which follows from (2.9–2.10) and the Sobolev embedding theorem in 3 dimensions.
As (2.11) does not hold in general for weak solutions, we are not able to show the
uniqueness of weak solutions.

2.4. Weak maximum principle on the concentration. Both strong and weak
solutions of the Allen-Cahn equation with convection satisfy the maximum (and
minimum) principle as specified in the following Proposition.

Proposition 2.2 (Weak maximum principle). Let (u, c) satisfy (2.4), (2.5)) and
(2.7) almost everywhere in QT with boundary condition (1.5) and initial condition
c(0, ·) = c0(·) fulfilling (2.2). Then for a.e. (x, t) ∈ QT ,

c(x, t) ∈ [m,M ] := co

{
ess inf

x∈Ω
c0, ess sup

x∈Ω
c0, y1, y2

}
,

where y1, y2 are the local minimizers of F .

Proof. We show the minimum principle only, the latter inequality is analogous. By
assumptions on c0 and F , we have m > −∞ and we test (2.7) by (c−m)− to get

1

2

∫
Ω

d

dt

(
(c−m)−

)2
dx+ ε

∫
Ω

|∇x(c−m)−|2 dx+
1

ε

∫
Ω

F ′(c)(c−m)− dx = 0.

As the second and third integrals in the above equation have positive sign (mono-
tonicity of F ), we recover that ((c−m)−)2 = 0 for a.a. t ∈ [0, T ] and, consequently,
c(x, t) ≥ m for a.e. (x, t) ∈ QT . �
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3. Relative entropy

3.1. Relative entropy functional. The particular form of the relative entropy
functional reads

E(u, c|U, C)(t) =

∫
Ω

(
1

2
|u−U|2 +

ε

2
|∇x(c− C)|2

)
(x, t) dx.(3.1)

To prove that the relative entropy functional indeed measures a distance of two
solutions, we need to show that it does not give zero value for c 6= C. This is a
direct consequence of the following lemma.

Lemma 3.1. Let Ω be a bounded Lipschitz domain T > 0, let F satisfy (2.1) and

c0 satisfy (2.2). Let u1, u2 ∈ L2(0, T,W 1,2
0,div(Ω)), c1, c2 satisfy (2.5). There exists

K independent on u1, c1, u2 and c2, such that if c1 and c2 are solutions to (2.7)
with corresponding velocities emanating from c0, then∫

Ω

(c1 − c2)2(t) dx ≤ K
t∫

0

∫
Ω

(
(∇x(c1 − c2))2 + (u1 − u2)2

)
dx,

holds for a.e. t ∈ [0, T ].

As a consequence, if E(u, c|U, C)(t) = 0 for a.e. t ∈ [0, T ], then c = C a.e in
Ω× [0, T ].

Proof. We take the difference of the equations (2.7) for the two solutions, test by
(c1 − c2) and integrate over (0, τ) ⊂ (0, T ) to obtain

∫
Ω

1

2
(c1 − c2)2(τ) dx = −

∫ τ

0

∫
Ω

(c1 − c2)(u1 · ∇xc1 − u2 · ∇xc2) dxdt

+ ε

∫ τ

0

∫
Ω

|∇x(c1 − c2)|2 dx dt+
1

ε

∫ τ

0

∫
Ω

(F ′(c1)− F ′(c2))(c1 − c2) dxdt.

(3.2)

First, we focus on the difference of the convective terms. Integration by parts
together with boundary conditions and solenoidality of u1,u2 yield

(3.3) −
∫ τ

0

∫
Ω

(c1 − c2)(u1 · ∇xc1 − u2 · ∇xc2) dxdt

=

∫ τ

0

∫
Ω

c1u2·∇xc2 dxdt+

∫ τ

0

∫
Ω

c2u1·∇xc1 dxdt = −
∫ τ

0

∫
Ω

c1(u1−u2)·∇xc2 dxdt

= −
∫ τ

0

∫
Ω

(c1−c2)(u1−u2)·∇xc2 dxdt =

∫ τ

0

∫
Ω

c2(u1−u2)·∇x(c1−c2) dxdt.

Since F ′ is Lipschitz, the last term on the right hand side of (3.2) can be estimated
as

(3.4)
1

ε

∫ τ

0

∫
Ω

(F ′(c1)− F ′(c2))(c1 − c2) dxdt ≤ LF ′

ε

∫ τ

0

∫
Ω

(c1 − c2)2 dxdt.

We use (3.2), (3.3), (3.4) and the Cauchy-Schwarz inequality in order to deduce∫
Ω

1

2
|c1 − c2|2(τ) dx ≤

∫ τ

0

(
(ess sup

Ω

1

2
|c2|2 + ε)

∫
Ω

|∇x(c1 − c2)|2 dx

)
dt

+
1

2

∫ τ

0

∫
Ω

|u1 − u2|2 dx dt+
LF ′

ε

∫ τ

0

∫
Ω

|c1 − c2|2 dxdt.
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The integrability properties of (ui, ci) allow to apply the Gronwall inequality which
concludes the proof. �

3.2. Relative entropy inequality.

Proposition 3.2. Let (U, C) be a strong solution to (1.1–1.6). Then the relative
entropy functional satisfies the following relative entropy inequality

E(u, c|U,C)(t) +

t∫
0

∫
Ω

S(∇(u−U)) : ∇x(u−U) dxdt

+

t∫
0

∫
Ω

|(ct + u · ∇xc)− (Ct + U · ∇xC)|2 dxdt

−
∫

Ω

(
1

2
|u0 −U0|2 +

ε

2
|∇x(c0 − C0)|2

)
dx

≤
t∫

0

∫
Ω

((u−U)⊗U) : ∇x(u−U) dxdt

+ ε

t∫
0

∫
Ω

∆x(c− C)U · ∇x(c− C) dx dt

+ ε

t∫
0

∫
Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dxdt

+ ε

t∫
0

∫
Ω

∇x(c− C)⊗∇xC : ∇x(u−U) dxdt

+ ε

t∫
0

∫
Ω

∆x(c− C)(u−U) · ∇xC dxdt

− 1

ε

t∫
0

∫
Ω

(F ′(c)− F ′(C))× ((ct + u · ∇xc)− (Ct + U · ∇xC)) dx dt.

(3.5)

The remainder of Section 3 is devoted to a proof of (3.5).

3.3. Initial estimates. In order to obtain (3.5), we note the following:

• the energy inequality (2.8) which holds for weak solutions,

1

2

∫
Ω

|u|2(x, t) dx+
ε

2

∫
Ω

|∇xc|2(x, t) dx+
1

ε

∫
Ω

F (c)(x, t) dx

+

t∫
0

∫
Ω

S(∇xu) : ∇xudxdt+

t∫
0

∫
Ω

|ct + u · ∇xc|2 dxdt

≤ 1

2

∫
Ω

|u0|2 dx+
ε

2

∫
Ω

|∇xc0|2 dx+
1

ε

∫
Ω

F (c0) dx,

(3.6)
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• the weak formulation of the momentum equation (2.6) with v = −U:

−
∫

Ω

(u ·U)(x, t) dx+

∫
Ω

u0 ·U0 dx+

t∫
0

∫
Ω

u ·Ut dx dt

+

t∫
0

∫
Ω

(u⊗ u) : ∇xU dxdt−
t∫

0

∫
Ω

S(∇xu) : ∇xU dx dt

= −ε
t∫

0

∫
Ω

(∇xc⊗∇xc) : ∇xU dxdt.

(3.7)

Note, that the regularity of U is sufficient. Indeed, U can be approximated
by smooth selenoidal functions which are allowed to be test functions in
(2.6). As all terms in (3.7) have sense, the convergence of corresponding
integrals is a standard matter.
• The equation for concentration (2.7) multiplied by −(Ct + U · ∇xC):

−
t∫

0

∫
Ω

(ct + u · ∇xc)(Ct + U · ∇xC) dxdt

= ε

t∫
0

∫
Ω

∇xc · ∇xCt dxdt+ ε

t∫
0

∫
Ω

∇xc · ∇x(U∇xC) dxdt

+
1

ε

t∫
0

∫
Ω

F ′(c)(Ct + U · ∇xC) dxdt.

(3.8)

• The momentum equation (1.1) for the strong solution (U, C) multiplied by
(U− u):

1

2

∫
Ω

|U|2(x, t) dx− 1

2

∫
Ω

|U0|2 dx−
t∫

0

∫
Ω

Ut · udxdt+

t∫
0

∫
Ω

(U⊗U) : ∇xudxdt

+

t∫
0

∫
Ω

S(∇xU) : ∇x(U− u) dxdt− ε
t∫

0

∫
Ω

(∇xC ⊗∇xC) : ∇x(U− u) dx dt = 0.

(3.9)
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• The concentration equation (1.3) for strong solutions (U, C) multiplied by
(Ct + U · ∇xC)− (ct + u · ∇xc):

t∫
0

∫
Ω

|Ct + U · ∇xC|2 dx dt−
t∫

0

∫
Ω

(Ct + U · ∇xC)(ct + u · ∇xc) dxdt

= −ε
2

∫
Ω

|∇xC|2(x, t) dx+
ε

2

∫
Ω

|∇xC0|2 dx

+ ε

t∫
0

∫
Ω

∆xC(U · ∇xC) dxdt− ε
t∫

0

∫
Ω

∆xC(ct + u · ∇xc) dxdt

− 1

ε

t∫
0

∫
Ω

F ′(C)(Ct + U · ∇xC) dxdt+
1

ε

t∫
0

∫
Ω

F ′(C)(ct + u · ∇xc) dxdt.

(3.10)

3.4. Formation of the left hand side of (3.5). We sum the relations (3.6–3.10).
With the help of integration by parts we obtain

∫
Ω

(
1

2
|u−U|2 +

ε

2
|∇x(c− C)|2

)
(x, t) dx

+

t∫
0

∫
Ω

S(∇(U− u)) : ∇x(U− u) dxdt

+

t∫
0

∫
Ω

|(ct + u · ∇xc)− (Ct + U · ∇xC)|2 dxdt

−
∫

Ω

(
1

2
|u0 −U0|2 +

ε

2
|∇x(c0 − C0)|2

)
dx ≤ R.

(3.11)

The left hand side of (3.11) is the difference of the relative entropy functionals plus
non-negative dissipation terms, while all the other terms were put to the right hand
side R. We can split R into three parts,

R = Rconv +Rε +RF .

Rconv contains the remaining convective terms, namely

(3.12) Rconv = −
t∫

0

∫
Ω

(U⊗U) : ∇xudx dt−
t∫

0

∫
Ω

(u⊗ u) : ∇xUdx dt.
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Rε is a sum of all remaining terms, led by ε, i.e.,

Rε = −ε
t∫

0

∫
Ω

(∇xc⊗∇xc) : ∇xUdxdt+ ε

t∫
0

∫
Ω

∇xc · ∇x(U · ∇xC) dxdt

+ ε

t∫
0

∫
Ω

(∇xC ⊗∇xC) : ∇x(U− u) dxdt+ ε

t∫
0

∫
Ω

∆xC(U · ∇xC) dx dt

− ε
t∫

0

∫
Ω

∆xC(u · ∇xc).

Finally, RF is a sum of all terms led by 1/ε:

εRF = −
∫

Ω

F (c)(x, t) dx+

∫
Ω

F (c0) dx+

t∫
0

∫
Ω

F ′(c)(Ct + U · ∇xC) dxdt

−
t∫

0

∫
Ω

F ′(C)(Ct + U · ∇xC) dx dt+

t∫
0

∫
Ω

F ′(C)(ct + u · ∇xc) dx dt.

(3.13)

3.5. Reformulation of the right hand side. We treat Rconv first. Using the
identities

−
∫

Ω

u⊗ u : ∇xUdx =

∫
Ω

u⊗U : ∇xudx,

∫
Ω

(u−U)⊗U : ∇xU dx = 0

we can rewrite (3.12) into

(3.14) Rconv =

t∫
0

∫
Ω

((u−U)⊗U) : ∇x(u−U) dx dt.

We simplify Rε using integration by parts, in particular,

Rε = ε

t∫
0

∫
Ω

∆xcU · ∇xcdx dt− ε
t∫

0

∫
Ω

∆xcU · ∇xC dx dt

− ε
t∫

0

∫
Ω

∆xCU · ∇xC dxdt+ ε

t∫
0

∫
Ω

∆xCu · ∇xC dx dt

+ ε

t∫
0

∫
Ω

∆xCU · ∇xC dxdt− ε
t∫

0

∫
Ω

∆xCu · ∇xcdxdt.
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The third and the fifth terms cancel out, the remaining four are equal to

Rε = ε

t∫
0

∫
Ω

∆x(c− C)U · ∇x(c− C) dxdt

− ε
t∫

0

∫
Ω

∆xC(u−U) · ∇x(c− C) dxdt.

(3.15)

The latter integral in (3.15) is not in a form that enables its estimation. We
reformulate it using three integrations by parts, in particular

− ε
t∫

0

∫
Ω

∆xC(u−U) · ∇x(c− C) dx dt

= ε

t∫
0

∫
Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dx dt

+ ε

t∫
0

∫
Ω

∇xC ⊗ (u−U) : ∇x ⊗∇x(c− C) dxdt

= ε

t∫
0

∫
Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dx dt

− ε
t∫

0

∫
Ω

∇x(c− C)⊗ (u−U) : ∇x ⊗∇xC dxdt

= ε

t∫
0

∫
Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dx dt

+ ε

t∫
0

∫
Ω

∇x(c− C)⊗∇xC : ∇x(u−U) dxdt

+ ε

t∫
0

∫
Ω

∆x(c− C)(u−U) · ∇xC dxdt.

(3.16)
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We deduce from (3.15–3.16) that

Rε = ε

t∫
0

∫
Ω

∆x(c− C)U · ∇x(c− C) dxdt+ ε

t∫
0

∫
Ω

∇xC ⊗∇x(c− C) : ∇x(u−U) dxdt

+ ε

t∫
0

∫
Ω

∇x(c− C)⊗∇xC : ∇x(u−U) dx dt

+ ε

t∫
0

∫
Ω

∆x(c− C)(u−U) · ∇xC dxdt =:
4∑
j=1

Rε,j .

(3.17)

Finally, we treat RF . We write all terms in (3.13) as space-time integrals to get

RF = −1

ε

t∫
0

∫
Ω

F ′(c)(ct + u · ∇xc) dx dt+
1

ε

t∫
0

∫
Ω

F ′(c)(Ct + U · ∇xC) dxdt

− 1

ε

t∫
0

∫
Ω

F ′(C)Ct dxdt+
1

ε

t∫
0

∫
Ω

F ′(C)(ct + u · ∇xc) dx dt

= −1

ε

t∫
0

∫
Ω

(F ′(c)− F ′(C))× ((ct + u · ∇xc)− (Ct + U · ∇xC)) dx dt.

(3.18)

The desired inequality follows by combination of (3.11),(3.14), (3.17) and (3.18).

4. Weak-strong uniqueness property

Theorem 4.1. Let u0 ∈ W 1,2
0,div(Ω)3 and c0 ∈ W 2,2

n (Ω) fulfill (2.2) and (u, c) be a

weak solution and (U, C) the strong solution to Navier-Stokes/Allen-Cahn system
(1.2–2.2) both emanating from the same initial data (u0, c0). Then on the life span
[0, T ?) of the strong solution we have (u, c) = (U, C).

Proof. The proof of the weak-strong uniqueness uses the Gronwall-type argument.
Hence we aim at rewriting the relative entropy inequality in the form

(4.1) E(τ)− E0 +D ≤ λD + k

τ∫
0

ω(s)E(s) ds,

where

• k > 0 is a (possibly large) constant, independent of time,
• D denotes the dissipative terms and λ ∈ [0, 1),
• ω ∈ L1[0, T ] for all T ∈ (0, T ?),
• (4.1) holds for almost all τ ∈ [0, T ?).

After reaching (4.1), one employs the Gronwall inequality to obtain the desired
conclusion. Hence the whole proof reduces to showing (4.1).

We focus on right hand side terms of (3.5). They all share similar structure:
They are integrals of three factors, two of them being in a difference form. Roughly
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speaking, one of those differences is L2(0, T ;L2(Ω)) integrable and is a part of the
dissipation D. The latter difference is L∞(0, T ;L2(Ω)) integrable and is a part
of the relative entropy (3.5). Finally the third factor which is not a difference is
L2(0, T ;L∞(Ω)) integrable.

The strategy for reaching (4.1) is to use weighted Young’s inequality with small
weight to the first type factors to ensure λ < 1, while the large weight is kept with
the latter. The latter integral contains two factors whose integrability properties
match ideally. This is crucial to ensure that the condition on ω in the scheme (4.1)
is fulfilled. In particular, we have

|Rconv| ≤
τ∫

0

∫
Ω

|∇x(u−U)||U||u−U|dxdt

≤ δ

2

τ∫
0

∫
Ω

|∇x(u−U)|2 dx dt+
1

2δ

τ∫
0

(
ess sup

Ω
|U|2

∫
Ω

|u−U|2 dx

)
dt.

(4.2)

|Rε,1| ≤ ε
τ∫

0

∫
Ω

|∆x(c− C)||U||∇x(c− C)| dx dt

≤ δε

2

τ∫
0

∫
Ω

|∆x(c− C)|2 dxdt+
ε

2δ

τ∫
0

(
ess sup

Ω
|U|2

∫
Ω

|∇x(c− C)|2 dx

)
dt.

(4.3)

|Rε,2|+ |Rε,3| ≤ 2ε

τ∫
0

∫
Ω

|∇x(c− C)||∇xC||u−U|dxdt

≤ δε
τ∫

0

∫
Ω

|u−U|2 dxdt+
ε

δ

τ∫
0

(
ess sup

Ω
|∇xC|2

∫
Ω

|∇x(c− C)|2 dx

)
dt.

(4.4)

|Rε,4| ≤ ε
τ∫

0

∫
Ω

|∆x(c− C)||u−U||∇xC|dxdt

≤ δε

2

τ∫
0

∫
Ω

|∆x(c− C)|2 dxdt+
ε

2δ

τ∫
0

(
ess sup

Ω
|∇xC|2

∫
Ω

|u−U|2 dx

)
dt,

(4.5)

and finally, using the Lipschitz property of the function F ′,
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RF ≤
1

ε

τ∫
0

∫
Ω

|F ′(c)− F ′(C)||(ct + u · ∇xc)− (Ct + U · ∇xC)|dxdt

≤ δ

2ε

τ∫
0

∫
Ω

|(ct + u · ∇xc)− (Ct + U · ∇xC)|2 dxdt+
LF ′

2δε

τ∫
0

∫
Ω

|c− C|2 dxdt.

(4.6)

In the last-but-one step, we use the equations (1.3), (2.7) to treat the term

δε

2

τ∫
0

∫
Ω

|∆x(c− C)|2 dxdt

≤ δ

ε

τ∫
0

∫
Ω

∣∣∣∣ε∆x(c− C)− 1

ε
(F ′(c)− F ′(C))

∣∣∣∣2 dxdt+
δ

ε

τ∫
0

∫
Ω

∣∣∣∣1ε (F ′(c)− F ′(C))

∣∣∣∣2 dxdt

≤ δ

ε

τ∫
0

∫
Ω

|(ct + u · ∇xc)− (Ct + U · ∇xC)|2 dxdt+
δL2

F ′

ε3

τ∫
0

∫
Ω

|c− C|2.

(4.7)

Finally, we collect all terms on the right hand sides of (4.2–4.6) and apply (4.7)
and also Lemma 3.1. Then, clearly, with a proper choice of δ, one gets the in-
equality of the Gronwall type (4.1). Applying the Gronwall’s inequality yields
E(u, c|U, C)(t) = 0 for almost all t ∈ [0, T ?), which concludes the proof. �
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[3] B. Ducomet and v. Nečasová. Diffusion limits in a model of radiative flow. Ann. Univ. Ferrara

Sez. VII Sci. Mat., 61(1):17–59, 2015.
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25, 115 67 Praha 1, Czech Republic
E-mail address: macha@math.cas.cz

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

