Dagmar Medková Institute of Mathematic of the Czech Academy of Sciences

with M. Kohr and W. L. Wendland

Brinkman-Oseen transmission problem

$$\Omega_B = R^n \setminus \overline{\Omega}_O, \ n = 2,3$$
 $\overline{\omega} \subset \Omega_B, \ S \subset \partial \omega$

$$\Delta \mathbf{u}_O - \lambda \partial_1 \mathbf{u}_O - \nabla \pi_O = 0, \ \nabla \cdot \mathbf{u}_O = 0 \ \text{in} \ \Omega_O,$$

$$\Delta \mathbf{u}_B - \alpha \mathbf{u}_B - \nabla \pi_B = \mathbf{0}, \ \nabla \cdot \mathbf{u}_B = \mathbf{0} \ \text{in} \ \Omega_B \setminus S,$$

$$\mathbf{u}_B - \mathbf{u}_O = \mathbf{g}$$
 on $\partial \Omega_O$,

$$\partial_{\nu}^{0}(\mathbf{u}_{B}, \pi_{B}) - c_{O}\partial_{\nu}^{\lambda}(\mathbf{u}_{O}, \pi_{O}) + h\mathbf{u}_{B} = \mathbf{f} \text{ on } \partial\Omega_{O},$$

$$[\mathbf{u}_B]_+ - [\mathbf{u}_B]_- = \tilde{\mathbf{g}} \text{ on } S,$$

$$[\partial_{\nu}^{0}(\mathbf{u}_{B}, \pi_{B})]_{+} - [\partial_{\nu}^{0}(\mathbf{u}_{B}, \pi_{B})]_{-} + \tilde{h}[\mathbf{u}_{B}]_{+} = \tilde{\mathbf{f}} \text{ on } S.$$

where

$$\partial_{\nu}^{\beta}(\mathbf{u},\pi) := [\nabla \mathbf{u} + (\nabla \mathbf{u})^{T}]\nu - \pi\nu - \frac{\beta}{2}\nu_{1}\mathbf{u}$$

$$\begin{split} & \Phi \in W^{1,q}(\partial \Omega_O; R^m), \ \Psi \in L^q(\partial \Omega_O; R^m), \\ & \Theta \in L^q(S; R^m), \ \Theta = 0 = \tilde{\mathbf{g}} \ \text{on} \ \partial \omega \setminus S \\ & \mathbf{u}_O = W^O_{\Omega_O} \Phi + V^O_{\Omega_O} \Psi \\ & \pi_O = P^O_{\Omega_O} \Phi + Q^O_{\Omega_O} \Psi \\ & \mathbf{u}_B = W^B_{\Omega_B} \Phi + V^B_{\Omega_B} \Psi + W^B_\omega \tilde{\mathbf{g}} + V^B_\omega \Theta \\ & \pi_B = P^B_{\Omega_B} \Phi + Q^B_{\Omega_B} \Psi + P^B_\omega \tilde{\mathbf{g}} + Q^B_\omega \Theta \end{split}$$
 Integral equation

$$\tau(\Phi, \Psi, \Theta) = (g, f, \tilde{f})$$

 $q \leq 2 \text{ or } \partial\Omega_0 \in C^1$

- 1) τ is a Fredholm operator on $W^{1,q}(\partial\Omega_O; R^m) \times L^q(\partial\Omega_O; R^m) \times L^q(S; R^m)$ **easy**.
- M. Mitrea, M. Wright: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, Paris 2012 V. Maz'ya, M. Mitrea, T. Shaposhnikova: The inhomogenous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal-close to VMO^* . Funct. Anal. Appl. 43 (2009), No. 3, 217–235
- 2) uniqueness of the transmission problem **difficult**
- 3) solvability of $au(\Phi,\Psi,\Theta)=({f g},{f { ilde f}})$ very difficult

Theorem. Let $q \leq 2$ or $\partial \Omega_0 \in C^1$. Suppose that Ω_O is unbounded.

- If $(\mathbf{u}_B, \pi_B, \mathbf{u}_O, \pi_O)$ is an L^q -solution of the Brinkman-Oseen transmission problem then $\mathbf{u}_O(x) \to \mathbf{u}_\infty$, $\pi_O(x) \to \pi_\infty$ as $|x| \to \infty$.
- If $\mathbf{u}_{\infty} \in R^m$, $\pi_{\infty} \in R^1$, $\mathbf{g} \in W^{1,q}(\partial \Omega_O; R^m)$, $\mathbf{f} \in L^q(\partial \Omega_O; R^m)$, $\mathbf{\tilde{g}} \in W^{1,q}(\partial \omega; R^m)$, $\mathbf{\tilde{f}} \in L^q(\partial \omega, R^m)$, and $|\mathbf{\tilde{g}}| + |\mathbf{\tilde{f}}| = 0$ outside S, then there exists a unique L^q -solution of the Brinkman-Oseen transmission problem such that $\mathbf{u}_O(x) \to \mathbf{u}_{\infty}$, $\pi_O(x) \to \pi_{\infty}$ as $|x| \to \infty$.

Theorem. Let $q \leq 2$ or $\partial\Omega_0 \in C^1$. Suppose that Ω_B is unbounded. If $(\mathbf{u}_B, \pi_B, \mathbf{u}_O, \pi_O)$ is an L^q -solution of the Brinkman-Oseen transmission problem then $\mathbf{u}_B(x) \to \mathbf{u}_\infty$, $\pi_B(x) \to \pi_\infty$ as $|x| \to \infty$. Suppose that $\mathbf{u}_\infty \in R^m$, $\pi_\infty \in R^1$, $\mathbf{g} \in W^{1,q}(\partial\Omega_O; R^m)$, $\mathbf{f} \in L^q(\partial\Omega_O; R^m)$, $\mathbf{g} \in W^{1,q}(\partial\omega; R^m)$, $\mathbf{f} \in L^q(\partial\omega, R^m)$, and $|\mathbf{g}| + |\mathbf{f}| = 0$ outside S.

- If m=3 then there exists a unique L^q -solution of the Brinkman-Oseen transmission problem such that $\mathbf{u}_O(x) \to \mathbf{u}_\infty$, $\pi_O(x) \to \pi_\infty$ as $|x| \to \infty$.
- If m=2 then there exists an L^q -solution of the Brinkman-Oseen transmission problem such that $\mathbf{u}_O(x) \to \mathbf{u}_\infty$, $\pi_O(x) \to \pi_\infty$ as $|x| \to \infty$ if and only if

$$\int_{\partial\Omega_B} \mathbf{g} \cdot \mathbf{n}^{\Omega_B} \, d\sigma + \int_S \tilde{\mathbf{g}} \cdot \mathbf{n}^{\omega} \, d\sigma = 0.$$

This solution is unique.