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Abstract

We consider a singular limit for the compressible Euler system in the low Mach number
regime driven by a large external force. We show that any dissipative measure-valued solution
approaches a solution of the lake equation in the asymptotic regime of low Mach and Froude
numbers. The result holds for the ill-prepared initial data creating rapidly oscillating acoustic
waves. We use dispersive estimates of Strichartz type to eliminate the effect of the acoustic
waves in the asymptotic limit.
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1 Introduction

Singular limits of stratified fluids play an important role in the real world applications of fluid
mechanics, notably in meteorology, see the survey by Klein [17]. We consider the following scaled
Euler equations in the whole space R2:{

∂tρ+ div(ρu) = 0,
∂t(ρu) + div(ρu⊗ u) + 1

Ma2∇xp(ρ) = 1
Fr2 ρ∇xF,

(1.1)

where the unknown fields ρ = ρ(t, x) and u = u(t, x) represent the density and the velocity of
an inviscid compressible fluid driven by an external potential force ∇xF . The Mach number Ma,
proportional to the characteristic velocity divided by the sound speed, and the Froude number
Fr, defined as the ratio of the flow inertia to the external force, play the role of singular (small)
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parameters. The symbol p = p(ρ) denotes the barotropic pressure. The system is supplemented
by the far field conditions

u → 0, ρ→ ρ, as |x| → ∞, where ρ > 0. (1.2)

For Ma = Fr = ε and ρ = ρε, u = uε, the system (1.1) takes the form{
∂tρε + div(ρεuε) = 0,
∂t(ρεuε) + div(ρεuε ⊗ uε) + 1

ε2∇xp(ρε) = 1
ε2 ρε∇xF.

(1.3)

Our goal is to study the singular limit ε→ 0. Obviously, the density will approach an asymptotic
profile ρ̃,

∇xp(ρ̃) = ρ̃∇xF, ρ̃→ ρ, as |x| → ∞. (1.4)

Moreover, similarly to [4, 11], the limit velocity v solves the so-called lake equation

div(ρ̃v) = 0,

∂tv + v∇xv +∇xΠ = 0.

The results of the present paper can be seen as a natural extension of those in [11], where
a similar problem is considered for the compressible Navier–Stokes equations with low viscosity.
In contrast with [11], smooth solutions of the Euler system (1.3) will exhibit blow-up in a finite
time no matter how smooth or small the initial data are. It seems therefore more appropriate
to consider a suitable class of admissible weak solutions to (1.3). By admissible we mean that
solutions will satisfy some form of the energy balance. Unfortunately, although the method of
convex integration gave rise to several rather general existence results for the compressible Euler
system, see e.g. Chiodaroli [5], De Lellis and Székelyhidi [7], the existence of global-in-time
admissible weak solutions for arbitrary initial data remains an outstanding open problem.

The need for global admissible solutions of the Euler system leads to the concept of more
general dissipative measure–valued (DMV) solutions introduced in the context of the full Euler
system in [2, 3]. The reader may consult [13, 14, 16, 21] for applications of the theory of (DMV)
solutions in fluid mechanics or their counterparts [6, 20] in other areas of mathematical physics.
Compared with weak solutions, the advantage of (DMV) solutions is the following:

1 DMV solutions to the compressible Euler system exist globally in time.

2 Convergence to the limit system holds for any ill-prepared initial data.

To the best of our knowledge, there are only a few results concerning singular limits in the
context of measure–valued solutions. The low Mach number limit was studied in [15], where it
is shown that (DMV) solutions approach the smooth solutions of incompressible Euler system
both for well-prepared and ill-prepared data. Bruell and Feireisl [1] identified the singular limit
of the full compressible Euler system in the low Mach and strong stratification regime for the
well-prepared data. Our goal is to consider the asymptotic limit of (DMV) solutions to the
compressible Euler equations with ill-prepared data in the case of strong stratification. It seems
interesting to compare the results of the present paper with those obtained in [11], where the
same scaling was considered for the Navier–Stokes system with vanishing viscosity. The analysis
in [11] leans, among other things, on the estimates on the pressure term based on the presence of
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viscosity that are not available for the Euler system. The extension of the results of [11] to the
Euler system is therefore not straightforward.

The paper is organized as follows. In Section 2, we introduce the dissipative measure solutions,
relative energy and the other necessary material. In Section 3, we state our main theorem. Section
4 is devoted to deriving uniform bounds of the Euler system independent of ε. In Section 5, we
perform the necessary analysis of the acoustic waves. The proof of the main theorem is completed
in Section 6.

2 Preliminaries, measure-valued solutions, relative energy

First observe that it is more convenient to rewrite the Euler system in terms of the conservative
variables ρ, m = ρu. Let Q = {[ρ,m]|ρ ∈ [0,∞),m ∈ R2} be the natural phase space associated
to solutions [ρ,m] = [ρ, ρu].

2.1 Dissipative measure–valued solutions

A dissipative measure-valued (DMV) solution of the Euler system (1.1) is a parameterized
family of probability measures

{Yt,x}t∈[0,T ],x∈Ω, (t, x) 7→ Yt,x ∈ L∞weak−(?)((0, T )× Ω;P(Q)), (2.1)

satisfying
• the continuity equation∫ T

0

∫
R2

[〈Yt,x; ρ〉∂tϕ+ 〈Yt,x;m〉∇xϕ]dxdt = −
∫

R2
〈Y0,x; ρ〉ϕ(0)dx, (2.2)

for all ϕ ∈ C∞c ([0, T )× R2);
• the momentum equation∫ T

0

∫
R2

[〈Yt,x;m〉∂tϕ+ 〈Yt,x;
m⊗m

ρ
〉 : ∇xϕ]dxdt+

∫ T

0

∫
R2
〈Yt,x; p(ρ)〉divϕdxdt

= −
∫

R2
〈Y0,x;m〉ϕ(0)dx−

∫ T

0

∫
R2
〈Yt,x; ρ〉∇xF · ϕdxdt−

∫ T

0

∫
R2
∇xϕ : dµc, (2.3)

for all ϕ ∈ C∞c ([0, T )× R2; R2), where µc ∈M([0, T ]× R2; R2 × R2) is the so–called momentum
concentration measure;
• the energy inequality∫

R2
[〈Yτ,x;

1
2
|m|2

ρ
+

(
P (ρ)− P ′(ρ̃)(ρ− ρ̃)− P (ρ̃)

)
〉dx+D(τ)

≤
∫

R2
〈Y0,x;

1
2
|m|2

ρ
+

(
P (ρ)− P ′(ρ̃)(ρ− ρ̃)− P (ρ̃)

)
〉dx+

∫
R2
〈Yt,x;m〉∇xFdx, (2.4)

for a.a τ ∈ (0, T ), where

P (ρ) = ρ

∫ ρ

ρ

p(z)
z2

dz, (2.5)
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and D is a non-negative function D ∈ L∞(0, T ), satisfying the compatibility condition∫ τ

0

∫
R2
|µc|dxdt ≤ C

∫ τ

0

ξ(t)D(t)dt, for some ξ ∈ L1(0, T ). (2.6)

Remark 2.1. The measure Y0,x plays the role of initial conditions.

Remark 2.2. We easily observe

P ′′(ρ) =
p′(ρ)
ρ

; whence P ′′(ρ̃)∇xρ̃ = ∇xF. (2.7)

Remark 2.3. We need to define the function

[ρ,m] 7→ |m|2

ρ

on the vacuum set as

[ρ,m] → |m|2

ρ
=


∞, if ρ = 0 and m 6= 0,
|m|2

ρ , if ρ > 0,
0, otherwise.

(2.8)

Accordingly, it follows from the energy inequality (2.4) that

Supp[Yt,x] ∩ {[ρ,m] ∈ Q|ρ = 0,m 6= 0]} = ∅ for a.a. (t, x). (2.9)

2.2 Relative energy

Motivated by [9, 3], we introduce the relative energy

E(ρ,m|r,U) =
∫

R2
〈Yt,x;

1
2
ρ|m
ρ
−U(t, x)|2 + (P (ρ)− P ′(r)(ρ− r)− P (r))〉dx, (2.10)

where r > 0, U are smooth “test” functions, r − ρ, U compactly supported in R2.
As shown in [3], any (DMV) solution of (1.1) satisfies the relative energy inequality

E(ρ,m|r,U)|t=τ
t=0 +D(τ) ≤

∫ τ

0

∫
R2
〈Yt,x; (∂tU +

m
ρ
∇xU)(ρU−m)〉dxdt

+
∫ τ

0

∫
R2
〈Yt,x; (r − ρ)∂tP

′(r) + (rU−m)∇xP
′(r)〉dxdt (2.11)

−
∫ τ

0

∫
R2
〈Yt,x; p(ρ)− p(r)〉divUdxdt+

∫ τ

0

∫
R2
〈Yt,x;m− ρU〉∇xFdxdt+

∫ τ

0

∫
R2
∇xU : dµc.

for a.a. τ ∈ [0, T ], and any r,U ∈C1([0, T ]× R2), r − ρ, U compactly supported in R2.

3 Main result

Before stating our main result, we collect several mostly technical hypotheses and known facts
concerning the limit system.
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3.1 Pressure and the static density profile

We suppose the pressure p is a continuously differentiable function of the density such that
for some γ > 1,

p ∈ C1[0,∞) ∩ C∞(0,∞), p(0) = 0, p′(ρ) > 0 for all ρ > 0, lim
ρ→∞

p′(ρ)
ργ−1

= p∞ > 0. (3.1)

Furthermore, to facilitate the analysis, we consider

F ∈ C∞c (R2), F ≥ 0.

Accordingly, the stationary profile ρ̃ satisfies

P ′(ρ̃) = F + P ′(ρ).

From the above hypotheses, we deduce

(ρ̃− ρ) ∈ C∞c (R2), ρ̃(x) ≥ ρ ≥ 0, for all x ∈ R2, ρ̃(x) = ρ for all x ∈ R2 \ supp[F ].

Remark 3.1. Similarly to [15], we deduce that

p(ρ)− p′(r)(ρ− r)− p(r) is dominated by P (ρ)− P ′(r)(ρ− r)− P (r), specifically,

|ρ− r|2 ≤ c(δ)(P (ρ)− P ′(r)(ρ− r)− P (r)) when 0 < δ ≤ ρ, r ≤ 1
δ
, δ > 0,

1 + |ρ− r|+ P (ρ) ≤ c(δ)(P (ρ)− P ′(r)(ρ− r)− P (r)) if 0 < 2δ < r <
1
2δ
,

ρ ∈ [0, δ) ∪ (
1
δ
,∞), δ > 0.

3.2 Lake equation

The limit velocity v is expected to satisfy the lake equation

div(ρ̃v) = 0, (3.2)

∂tv + v∇xv +∇xΠ = 0, (3.3)

supplement with the initial condition

v|t=0 = v0. (3.4)

As shown by Oliver [22], the lake equation possesses a unique classical solution

v ∈ C([0, T ];Wm,2(R2)), Π ∈ C([0, T ];Wm,2(R2)), m ≥ 3, (3.5)

for any initial solution

v0 ∈Wm,2(R2), div(ρ̃v0) = 0. (3.6)
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3.3 Ill prepared initial–data

The ill–prepared initial data for the scaled system (1.3) take the form

ρε(0, ·) = ρ0,ε = ρ̃+ εs0,ε, uε(0, ·) = u0,ε,

where

s0,ε → s0 in W k,2(R2) ∩W k,1(R2), u0,ε → u0 in W k,2(R2) ∩W k,1(R2), (k > 3),

u0 = v0 +∇xΦ0, div(ρ̃v0) = 0,

cf. [11].

3.4 Singular limit – main result

Now, we are ready to state our main result.

Theorem 3.1. Let {Y ε
t,x}(t,x)∈[0,T ]×Ω be a family of (DMV) solutions to the scaled Euler system

(1.3) satisfying the compatibility condition (2.6) with a function ξ independent of ε. Let the initial

data {Y ε
0,x}x∈Ω be ill-prepared, namely∫

R2
〈Y ε

0,x;
1
2
ρ|m
ρ
− u0,ε(x)|2 +

1
ε2

(P (ρ)− P ′(ρ0,ε)(ρ− ρ0,ε)− P (ρ0,ε))〉dx→ 0,

where ρ0,ε, u0,ε are ill prepared data specified in Section 3.3.

Then

Dε → 0 in L∞(0, T ),

Y ε
t,x → δ[eρ(x),eρ(x)v(t,x)] in Lq(0, T ;L1

loc(R
2;M+(Q)weak−(?))) for any finite q ≥ 1,

where v is the unique solution of the lake equation starting from the initial data v0.

Remark 3.2. In particular, our result is valid for the shallow water equation{
∂th+ div(hu) = 0,
∂t(hu) + div(hu⊗ u) + 1

ε2h∇xh = 1
ε2h∇xb,

(3.7)

where u denotes the velocity, h is the fluid height and b is a given function depending on the

space variables.

The rest of the paper is devoted to the proof of Theorem 3.1.

4 Energy bounds

We start by deriving uniform bounds on solutions to (1.3) independent of ε. Similarly to [11],
we introduce the decomposition

h(ρ,m) = [h]ess(ρ,m) + [h]res(ρ,m), [h]ess = ψ(ρ)h(ρ,m), [h]res = (1− ψ(ρ))h(ρ,m),
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where

ψ ∈ C∞c (0,∞), 0 ≤ ψ(ρ) ≤ 1, ψ(ρ) = 1 for all ρ ∈ [
1
2

min
R2

ρ̃, 2 max
R2

ρ̃].

As the initial data are ill–prepared, the expression on the right–hand side of the energy
inequality (2.4) remains bounded uniformly for ε → 0. Consequently, we deduce the following
bound:

ess sup
t∈(0,T )

∫
R2
〈Y ε

t,x;
1
2
|m|2

ρ
+

1
ε2

(P (ρ)− P ′(ρ̃)(ρ− ρ̃)− P (ρ̃))〉dx ≤ C. (4.1)

Thus, exactly as in [15], we use the structural properties of the function p to deduce

ess sup
t∈(0,T )

∫
R2
〈Y ε

t,x; |[ρ− ρ̃

ε
]ess|2〉+ 〈Y ε

t,x; [
P (ρ) + 1

ε2
]ess〉dx ≤ C;

(t, x) 7→ 〈Y ε
t,x;m〉 bounded in L∞(0, T ;L2(R2) + L

2γ
γ+1 (R2));

(t, x) 7→ 〈Y ε
t,x; [

ρ− ρ̃

ε
]ess〉 bounded in L∞(0, T ;L2(R2));

(t, x) 7→ ε−
2
γ 〈Y ε

t,x; [ρ]res〉 bounded in L∞(0, T ;Lγ(R2)). (4.2)

5 Acoustic waves

It is well-known that ill-prepared data give rise to rapidly oscillating acoustic waves. Similarly
to [11], the relevant acoustic equation reads{

ε∂tsε + div(ρ̃∇xΦε) = 0,
ερ̃∂t∇xΦε + ρ̃∇x(p′(eρ)

eρ sε) = 0,
(5.1)

supplemented with the initial data

sε(0, ·) = s0, ∇xΦε(0, ·) = ∇xΦ0

where s0, ∇xΦ0 have been introduced in Section 3.3.
As a matter of fact, the initial data must be smoothed and cut-off via suitable regularization

operators, namely

sε(0, ·) = s0,δ =
ρ̃

p′(ρ̃)
[
p′(ρ̃)
ρ̃

s0]δ; ∇xΦε(0, ·) = ∇xΦ0,δ = ∇x[Φ0]δ,

where [·]δ denotes the regularization introduced in [11].
Denoting the corresponding solutions sε,δ, Φε,δ we report the following energy and dispersive

estimates proved in [11, Section 5]:

sup
t∈[0,T ]

[‖Φε,δ(t, ·)‖W m,2 + ‖sε,δ(t, ·)‖W m,2 ] ≤ C(m, δ)[‖∇xΦ0,δ‖L2 + ‖s0,δ‖L2 ], (5.2)

where C is independent of ε; and∫ T

0

[‖Φε,δ(t, ·)‖W m,∞ + ‖sε,δ(t, ·)‖W m,∞ ] ≤ ω(ε,m, δ)[‖∇xΦ0,δ‖L2 + ‖r0,δ‖L2 ], (5.3)

where ω(ε,m, δ) → 0 as ε→ 0 for any fixed m ≥ 0 and δ > 0.
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6 Convergence

The proof of convergence is based on the ansatz

rε = ρ̃+ εsε,δ, Uε = v +∇xΦε,δ, (6.1)

in the relative energy inequality (2.11). In addition, to avoid technicalities, we shall assume
that s0 and Φ0 are sufficiently regular so that the δ−regularization is not needed in (5.1–5.3).
Accordingly, we have sε,δ = sε, Φε,δ = Φε. The general case may be handled as in [11].

First note that the relative energy for the scaled system reads

Eε(ρε,mε|rε,Uε) =
∫

R2
〈Yt,x;

1
2
ρε|

mε

ρε
−Uε|2 +

1
ε2

(P (ρε)− P ′(rε)(ρε − rε)− P (rε))〉dx, (6.2)

with the corresponding relative energy inequality:

Eε(ρε,mε|rε,Uε)|t=τ
t=0 +Dε(τ) ≤

∫ τ

0

∫
R2
〈Y ε

t,x; ρεUε −mε〉(∂tUε +
mε

ρε
∇xUε)dxdt

+
1
ε2

∫ τ

0

∫
R2

[〈Y ε
t,x; rε − ρε〉∂tP

′(rε) + 〈Y ε
t,x; rεUε −mε〉∇xP

′(rε)]dxdt

+
1
ε2

∫ τ

0

∫
R2
〈Y ε

t,x;mε − ρεUε〉∇xFdxdt−
1
ε2

∫ τ

0

∫
R2
〈Yt,x; p(ρε)− p(rε)〉divUεdxdt

+
∫ τ

0

∫
R2
∇xUε : dµc. (6.3)

Our goal is to show that, with the ansatz (6.1), the relative energy Eε(ρε,mε|rε,Uε) tends
to zero for ε → 0 uniformly in t ∈ [0, T ]. In view of the dispersive estimates (5.2) − (5.3), this
will yield the conclusion claimed in Theorem 3.1. To this end, we use a Gronwall type argument
showing that all integrals in the right-hand side of (6.3) are either small or can be absorbed by
the left-hand side as ε→ 0. This programme will be carried over by means of several steps.

6.1 Step 1

First, we compute∫ τ

0

∫
R2

[〈Y ε
t,x; rε − ρε〉∂tP

′(rε) + 〈Y ε
t,x; rεUε −mε〉∇xP

′(rε)− 〈Y ε
t,x; p(ρε)− p(rε)〉divUε]dxdt

=
∫ τ

0

∫
R2

[〈Y ε
t,x; p(rε)− p′(rε)(rε − ρε)− p(ρε)〉divUε + 〈Y ε

t,x; rε − ρε〉∂tP
′(rε)

+ 〈Y ε
t,x; (rε − ρε)p′(rε)〉divUε + 〈Y ε

t,x; (rε − ρε)∇xP
′(rε)〉Uε + 〈Y ε

t,x; (ρεUε −mε)∇xP
′(rε)〉]dxdt

=
∫ τ

0

∫
R2

[〈Y ε
t,x; p(rε)− p′(rε)(rε − ρε)− p(ρε)〉divUε + 〈Y ε

t,x; (rε − ρε)P ′′(rε)〉(∂trε + divx(rεUε))

+ 〈Y ε
t,x; (ρεUε −mε)∇xP

′(rε)〉]dxdt,

where we have used (2.7). Note that, in view of (5.1),

∂trε + divx(rεUε) = εdiv(sεUε).

Next, by virtue of (1.4) and (5.1),∫ τ

0

∫
R2

[〈Y ε
t,x; ρεUε −mε〉∇xP

′(rε) + 〈Y ε
t,x;mε − ρεUε〉∇xF ]dxdt
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=
∫ τ

0

∫
R2

[〈Y ε
t,x;∇x

(
P ′(rε)− P ′′(ρ̃)(rε − ρ̃)− P ′(ρ̃)

)
〉(ρεUε −mε)

+ 〈Y ε
t,x;∇x

(
P ′′(ρ̃)(rε − ρ̃)

)
〉(ρεUε −mε)]dxdt

=
∫ τ

0

∫
R2

[〈Y ε
t,x;∇x

(
P ′(rε)− P ′′(ρ̃)(rε − ρ̃)− P ′(ρ̃)

)
〉(ρεUε −mε)

− ε2〈Y ε
t,x; ∂t∇xΦε〉(ρεUε −mε)]dxdt.

Furthermore, by virtue of the compatibility condition (2.6), we can control the concentration
measure, ∫ τ

0

∫
R2
∇xU : dµc ≤ ‖∇xU‖L∞

∫ τ

0

ξ(t)Dε(t)dt.

Finally, as the hypotheses about the ill-prepared initial data, we have

Eε(ρε,mε|rε,Uε)(0) → 0 as ε→ 0.

Thus we may conclude that

Eε(ρε,mε|rε,Uε)(τ) +Dε(τ) ≤
∫ τ

0

∫
R2
〈Y ε

t,x; (∂tv +
mε

ρε
∇xUε)(ρεUε −mε)〉dxdt

+
1
ε2

∫ τ

0

∫
R2
〈Y ε

t,x;∇x

(
P ′(rε)− P ′′(ρ̃)(rε − ρ̃)− P ′(ρ̃)

)
〉(ρεUε −mε)dxdt

− 1
ε2

∫ τ

0

∫
R2
〈Y ε

t,x; p(ρε)− p(rε)− p′(rε)(ρε − rε)〉divUεdxdt

− 1
ε

∫ τ

0

∫
R2
〈Y ε

t,x; (ρε − rε)P ′′(rε)〉div(sεUε)dxdt+ c

∫ τ

0

ξ(t)Dε(t)dt+ ω(ε),

where ω(ε) denotes a generic quantity satisfying

ω(ε) → 0 in L1(0, T ) as ε→ 0.

6.2 Step 2

We write ∫ τ

0

∫
R2

[〈Yε
t,x; ρεUε −mε〉(∂tv +

mε

ρε
∇xUε)]dxdt

=
∫ τ

0

∫
R2
〈Y ε

t,x; ρεUε −mε〉(∂tv + v · ∇xv)dxdt

+
∫ τ

0

∫
R2
〈Y ε

t,x; ρεUε −mε〉(v · ∇x∇xΦε +∇xΦε∇xUε)dxdt

+
∫ τ

0

∫
R2
〈Y ε

t,x; ρεUε −mε〉(
mε

ρε
−Uε)∇xUεdxdt

= I1 + I2 + I3.

Using the uniform bounds (4.2), we can split the functions in I2 into their essential and residual
parts obtaining ∣∣∣∣∫

R2
〈Y ε

t,x; ρεUε −mε〉(v · ∇x∇xΦε +∇xΦε∇xUε) dx
∣∣∣∣

≤ ‖∇xΦε‖2W 1,∞ (‖v‖W 3,2 + ‖∇xUε‖W 3,2)2 + cEε(ρε,mε|rε,Uε),
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where the first term on the right–hand side can be controlled by means of the dispersive estimate
(5.2) and (5.3).

Next, we use the fact that v solves the lake equation (3.2)− (3.3) to obtain∫ τ

0

∫
R2
〈Y ε

t,x; ρεUε −mε〉(∂tv + v · ∇xv)dxdt =
∫ τ

0

∫
R2
〈Y ε

t,x;mε〉∇xΠdxdt

−
∫ τ

0

∫
R2
〈Y ε

t,x; ρεUε〉∇xΠdxdt.

Moreover, it follows form the energy bounds (4.2) that there exists a function M ∈ L∞(0, T ;L2∩
Lr(R2)) for some r > 1, that

〈Y ε
t,x;mε〉 → M weakly− (?) in L∞(0, T ;L2 + Lr(R2)),

〈Y ε
t,x; ρε〉 → ρ̃ weakly− (?) in L∞(0, T ;L2 + Lγ(R2)).

From the continuity equation (2.2), we can deduce that∫ τ

0

∫
R2

M · ∇xϕdxdt = 0,

for any ϕ ∈ C ′([0, T ]× R2) and a.a τ ∈ (0, T ). Consequently, for any 1 ≤ q ≤ ∞,

{τ →
∫ τ

0

∫
R2
〈Y ε

t,x;mε〉∇xΠdxdt} → 0, in Lq(0, T ) as ε→ 0.

Finally, we may write

−
∫ τ

0

∫
R2
〈Y ε

t,x; ρεUε〉∇xΠdxdt =− ε

∫ τ

0

∫
R2
〈Y ε

t,x;
ρε − ρ̃

ε
〉Uε · ∇xΠdxdt

−
∫ τ

0

∫
R2
〈Y ε

t,x; ρ̃(v +∇xΦε)〉∇xΠdxdt,

where the dispersive estimates (5.2) and (5.3) can be used to control the integrals on the right–
hand side.

Summing up the previous observations we may infer that the relative energy inequality with
the ansatz (6.1) reduces to

Eε(ρε,mε|rε,Uε)(τ) +Dε(τ) ≤
1
ε2

∫ τ

0

∫
R2
〈Y ε

t,x;∇x

(
P ′(rε)− P ′′(ρ̃)(rε − ρ̃)− P ′(ρ̃)

)
〉(ρεUε −mε)dxdt

− 1
ε2

∫ τ

0

∫
R2
〈Y ε

t,x; p(ρε)− p(rε)− p′(rε)(ρε − rε)〉divUεdxdt

− 1
ε

∫ τ

0

∫
R2
〈Y ε

t,x; (ρε − rε)P ′′(rε)〉div(sεUε)dxdt+ c

∫ τ

0

ξ(t)Dε(t)dt+ ω(ε),

6.3 Step 3

Using direct calculation and the Taylor formula, we deduce that

|∇x

(
P ′(rε)−P ′(ρ̃)− P ′′(ρ̃)(rε − ρ̃)

)
|
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= |ε
(
P ′′(rε)− P ′′(ρ̃)

)
∇xsε +

(
P ′′(rε)− P ′′(ρ̃)− P ′′′(ρ̃)(rε − ρ̃)∇xρ̃|

≤ ε2(sε|∇xsε|+ s2ε).

Therefore,

1
ε2

∫ τ

0

〈Y ε
t,x;∇x

(
P ′(rε)− P ′(ρ̃)− P ′′(ρ̃)(rε − ρ̃)

)
〉(ρεUε −mε)dt

≤
∫ τ

0

〈Y ε
t,x; sε|∇xsε|+ s2ε〉|ρεUε −mε|dt

≤ C

∫ τ

0

E(ρε,mε|rε, Uε)dt+ ω(ε).

6.4 Step 4

Finally, we deal with the remaining pressure terms. First,

| 1
ε2

∫ τ

0

〈Y ε
t,x; p(ρε)− p(rε)− p′(rε)(ρε − rε)〉divUεdt|

= | 1
ε2

∫ τ

0

〈Y ε
t,x; p(ρε)− p(rε)− p′(rε)(ρε − rε)〉(divv + ∆Φε)dt|

≤ c| 1
ε2

∫ τ

0

〈Y ε
t,x;P (ρε)− P (rε)− P ′(rε)(ρε − rε)〉(divv + ∆Φε)dt|

≤ C

∫ τ

0

Eε(ρε,mε|rε,Uε)dt.

Second, the last term can be controlled as

−1
ε

∫ τ

0

∫
R2
〈Y ε

t,x; (ρε − rε)P ′′(rε)〉div(sεUε)dxdt

≤ C

∫ τ

0

∫
R2
〈Y ε

t,x; (|ρε − ρ̃

ε
|+ |sε|)(|sε|+ |∇xsε|)(|v|+ |divxv|+ |∇xΦε|+ |∆Φε|)dxdt.

where the right-hand side tends to zero in L1(0, T ) due to the dispersive estimate (5.2), (5.3).
Putting together Step 1 to step 4 we conclude

Eε(ρε,mε|rε,Uε) +Dε(τ) ≤ ω(ε) +
∫ τ

0

(1 + ξ(t))[E(ρε,mε|rε,Uε) +Dε(t)]dt,

where rε, Uε are given by (6.1). Letting ε→ 0 and applying the Gronwall’s lemma, we complete
the proof of Theorem 3.1.
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