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Abstract

The classic Arens theorem states that the space C(X) of real-valued continuous functions on a Tychonoff
space X is metrizable in the compact-open topology τk if and only if X is hemicompact. Less demanding
but still applicable problem asks whether τk has an NN-decreasing base at zero (Uα)α∈NN , called in the
literature a G-base. We characterize those spaces X for which C(X) admits a locally convex topology
T between the pointwise topology τp and the bounded-open topology τb such that (C(X), T ) is either
metrizable or is an (LM)-space or even has a G-base.

Keywords: metrizable, (LM)-topology, G-base, K-analytic, Hewitt realcompactification, functionally
bounded set
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1. Introduction

For a Tychonoff space X we denote by Cp(X), Ck(X) and Cb(X) the space C(X) of all real-valued
continuous functions on X endowed with the pointwise topology τp, the compact-open topology τk and
the bounded-open topology τb, respectively. By τw we mean the weak topology of the locally convex space
Ck(X).

The interplay among the topological properties of a Tychonoff space X and the locally convex or
topological properties of the space C(X) equipped with a locally convex topology T has been widely
studied, mainly for the cases when T is τp or τk. For example, classical Nachbin–Shirota theorems provide
necessary and sufficient conditions, in terms of X, for the space Ck(X) to be barrelled or bornological, see
[13, Theorems 11.7.5 and 13.6.1]. The corresponding characterizations for Cp(X) are due to Buchwalter
and Schmets, see [3].

The question about metrizability of (C(X), T ) seems also to be attracting and important. The classic
Arens theorem states that Ck(X) is a metrizable (metrizable and complete) locally convex space if and
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only if X is hemicompact (and a kR-space), and Ck(X) is a Banach space if and only if X is compact by
[1, Theorem 13]. It is also well-known that Cp(X) is metrizable if and only if X is countable. This shows
that metrizability for the mentioned topologies on C(X) implies strong conditions on X. The Fréchet–
Urysohn property for C(K), a weaker condition than metrizability, have provided another interesting line
of research. Pytkeev, Gerlitz and Nagy (see §3 of [2]) characterized those spaces X for which Cp(X) is
Fréchet–Urysohn, sequential or a k-space (these properties coincide for the spaces Cp(X)).

It is clear that one of the simplest conditions on X which guarantees the metrizability of compact
subsets of X is submetrizability, i. e., X admits a weaker metrizable topology. It is well known (see [16])
that the space Cp(X) is submetrizable if and only if X is separable, and Ck(X) is submetrizable if and
only if X is almost σ-compact. However, in order to show that all compact subsets of Ck(X) or Cb (X)
are metrizable it is sufficient to find a metrizable (eventually locally convex) topology T on C(X) either
between τp and τk or between τp and τb, respectively. These facts and observations motivate the main
result of our paper presented in Theorem 3.1.

The concept of a locally convex space E with a so-called G-base (of neighborhoods of the origin), which
is more general than metrizability (but still yielding angelicity of E ), has been successfully adopted to
study spaces C(X); we know that Cp(X) has a G-base if and only if X is countable (cf. [14, Corollary
15.2]) and that Ck(X) has a G-base if and only if X has a compact resolution swallowing the compact
sets (cf. [8, Theorem 2]); the latter one is a nice generalization of mentioned Arens theorem. Recall that a
locally convex space E is said to have a G-base if it admits a base of neighborhoods at zero {Uα : α ∈ NN}
such that Uα ⊆ Uβ whenever β ≤ α for all α, β ∈ NN. The class of locally convex spaces with a G-base is
rich, contains among others, the class of all (LM)-spaces, particularly all metrizable locally convex spaces.
We refer the reader to the monograph [14] for more details. These results motivate our general result,
Theorem 2.2, which particularly provides a characterization of spaces X for which C(X) endowed with
some set-open topology τS admits a finer locally convex topology T which is metrizable or has a G-base,
see Corollary 2.3.

2. General results

We start with the following general observation (connected also to the previous facts for concrete cases),
which seems to be known but hard to locate.

Proposition 2.1. A locally convex space E with dual E′ admits a metrizable and separable locally convex
topology T weaker than σ(E,E′) if and only if σ(E′, E) is separable.

Proof. For the ‘only if’ part set F := (E, T )′. Then (F, σ(F,E)) is a σ-compact space with a coarser
metrizable topology, the latter because (E, σ(E,F )) is separable. Now observe that the adjoint of the
identity map from (E, σ(E,E′)) onto (E, σ(E,F )) has σ(E′, E)-dense rank. �

In what follows we need some notations. LetX be a topological space (all topological spaces in the article
are assumed to be Hausdorff). Denote by S(X) the family of all collections S of functionally bounded
subsets of X which are directed (that is for every S1, S2 ∈ S there is S3 ∈ S such that S1 ∪ S2 ⊆ S3) and
∪S = X. For every S ∈ S(X), the sets of the form

[S, ε] := {f ∈ C(X) : |f(x)| < ε ∀x ∈ S}, where S ∈ S and ε > 0,

define a base at the zero function 0 of a Hausdorff locally convex topology τS on C(X), put CS(X) :=
(C(X), τS). If S is the family Fin(X) of all finite subsets of X or the family Com(X) of all compact subsets of
X, we obtain the pointwise topology τp and the compact-open topology τk on C(X), respectively. For other
interesting set-open topologies T see [19], where some distinguishing examples are also provided. If E is a
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vector subspace of C(X), a subset A of X is called E-functionally bounded in X if every f ∈ E is bounded
on A. C(X)-functionally bounded subsets of X are called functionally bounded in X. Denote by FB(X)
the family of all functionally bounded subsets in X and let τb := τFB(X). We set Cp(X) := (C(X), τp),
Ck(X) := (C(X), τk) and Cb(X) := (C(X), τb). It is clear that τp ≤ τS ≤ τb for every S ∈ S(X), in
particular τp ≤ τk ≤ τb.

Let Ω be a set and let I be a partially ordered set with an order ≤. A family A = {Ai}i∈I of subsets
of Ω is called I-increasing (I-decreasing) if Ai ⊆ Aj (respectively, Ai ⊇ Aj) for every i ≤ j in I. For two
families B and C of subsets of Ω we say that C swallows B if for every B ∈ B there is C ∈ C such that
B ⊆ C. If X is a topological space, a family U = {Ui}i∈I is said to be a local I-base at a point x ∈ X if U
is an I-decreasing base at x.

Theorem 2.2. Let X be a Tychonoff space, S ∈ S(X), E a vector subspace of C(X) and I a partially
ordered set.

(i) Assume that E has a locally convex topology T with a local I-base U = {Ui}i∈I at zero stronger than
the relative topology τS |E. Then there exists an I-increasing family of E-functionally bounded subsets
in X swallowing S.

(ii) Assume that I is ordered isomorphic to N × A for some partially ordered set A and there exists an
I-increasing family {Bi}i∈I of E-functionally bounded subsets in X swallowing S. Then E has a
locally convex topology T with a local I-base at zero stronger than the relative topology τS |E.

Proof. (i) For each i ∈ I define

Bi := {x ∈ X : |f(x)| < 1 ∀f ∈ Ui}.

Let us show that Bi is E-functionally bounded in X. Indeed, if g ∈ E, take k ∈ N such that g ∈ kUi.
Then sup{|g(x)| : x ∈ Bi} ≤ k, and hence Bi is E-functionally bounded. Clearly, the family {Bi}i∈I is
I-increasing. To show that {Bi}i∈I swallows S take arbitrarily S ∈ S. By assumption τS |E ≤ T . So there
is i ∈ I such that Ui ⊆ [S, 1] ∩ E, which means that S ⊆ Bi.

(ii) We shall identify I with N×A. For each i = (n, α) ∈ I, set

Ui := {f ∈ E : |f(x)| < n−1 ∀x ∈ Bi}.

Clearly, Ui ⊆ Uj for every i ≥ j in I, and 2Ui′ ⊆ Ui for i′ = (2n, α). Moreover, Ui is E-absorbing. Indeed,
if g ∈ E there is k ∈ N such that |g(x)| < k for every x ∈ Bi, so g ∈ nkUi. So the family U = {Ui}i∈I is
I-decreasing and defines a locally convex topology T on E. To show that τS |E ≤ T fix arbitrarily S ∈ S
and ε > 0. Take t = (m,β) ∈ I such that S ⊆ Bt and m−1 < ε. Then clearly Ut ⊆ [S, ε] ∩ E. Thus
τS |E ≤ T . �

Part (ii) of Theorem 2.2 suggests (ii) of the corollary below. If I = N or I = NN, then I = N × {e}
(where {e} is a singleton with the trivial order) or I = N × NN, respectively. So Theorem 2.2 applies to
get the following

Corollary 2.3. Let X be a Tychonoff space, S ∈ S(X) and E a vector subspace of C(X). Then:

(i) E admits a metrizable locally convex topology T stronger than the induced topology τS |E if and only
if there is an increasing sequence {Bn}n∈N of E-functionally bounded subsets of X swallowing S.

(ii) E admits a locally convex topology T with a G-base stronger than the induced topology τS |E if and
only if there is an NN-increasing family {Bα}α∈NN of E-functionally bounded subsets of X swallowing
S.
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Let (E, τ) be a locally convex space covered by an increasing sequence E := {En}n∈N of vector subspaces
of E. We say that E admits an (LM)-topology on E associated with the sequence E if for every n ∈ N there
is a metrizable topology τn on En such that τ |En ≤ τn and τn+1|En ≤ τn. The finest locally convex topology
ξ on E such that ξ|En ≤ τn (which clearly exists and is stronger than τ) is called the (LM)-topology on E
and the space (E, ξ) is an (LM)-space associated with the sequence E . In [15] it is proved that Cp(X) is
an (LM)-space if and only if X is countable. Below we consider an analogous question for Ck(X).

If Σ ⊆ NN and A = {Aα : α ∈ Σ} is a family of subsets of a space X, we set

A (α|n) =
⋃
{Aβ : β ∈ Σ, β (i) = α (i) , 1 ≤ i ≤ n}

for α ∈ Σ and n ∈ N. Since A (α|n) = A (β|n) whenever α (i) = β (i) for 1 ≤ i ≤ n, we have that
M = {A (α|n) : α ∈ Σ, n ∈ N} is a countable family of subsets of X. Following [21, Definition 2.3] the
family M is called the envelope of A.

Definition 2.4. Let E = {En}n∈N be an increasing sequence of vector subspaces of C(X) covering C(X).
We say that the envelope of a family {Aα : α ∈ Σ} of subsets of X with Σ ⊆ NN is E-bounded if A (α|n) is
En-functionally bounded for each α ∈ Σ and n ∈ N.

The following theorem characterizes spaces CS(X) which admit stronger (LM)-topologies.

Theorem 2.5. Let X be a Tychonoff space, S ∈ S(X) and let E = {En}n∈N be an increasing sequence of
vector subspaces of C(X) covering C(X). Then the following assertions are equivalent:

(i) C(X) admits an (LM)-topology T associated with the sequence E finer than τS ;

(ii) for every n ∈ N there exists an increasing sequence {Bi,n}i∈N of En-functionally bounded subsets of
X swallowing S;

(iii) X has a resolution swallowing S with E-bounded envelope.

Proof. (i)⇒(ii) follows from Corollary 2.3. Let us prove (ii)⇒(i). We proceed by induction. For n = 1 and
every i ∈ N, set Ci,1 := Bi,1. So, by Corollary 2.3, {Ci,1}i∈N defines a metrizable topology τ1 on E1. Assume
that for every n = k > 1 we find an increasing sequence {Ci,k}i∈N of Ek-functionally bounded subsets of
X swallowing S which defines a metrizable locally convex topology τk on Ek such that τk|Ek−1

≤ τk−1 and
τS |Ek ≤ τk. Let {C ′i,k+1}i∈N be an enumeration of the countable family

{Bi,k+1 ∩ Cm,k : i,m ∈ N}.

For every i ∈ N, set Ci,k+1 := ∪j≤iC ′j,k+1. Clearly, {Ci,k+1}i∈N is an increasing sequence of Ek+1-
functionally bounded subsets of X. Since the sequences {Bi,k+1}i∈N and {Ci,k}i∈N swallow S, then also
{Ci,k+1}i∈N swallows S. So, by Corollary 2.3, {Ci,k+1}i∈N defines a metrizable locally convex topology
τk+1 on Ek+1 stronger than τS |Ek+1

. Since every Ci,k+1 is contained in Cm,k for some m ∈ N we obtain
that τk+1|Ek ≤ τk. Finally, the finest locally convex topology ξ on E such that ξ|En ≤ τn, n ∈ N, is an
(LM)-topology on E associated with the sequence E .

(ii)⇒(iii) For α ∈ NN define

Aα =
∞⋂
n=1

Bα(n),n

and note that Aα ⊆ Aβ whenever α ≤ β due to the fact that the sequences {Bi,n : i ∈ N} are increasing.
If S ∈ S for each k ∈ N there exists γ (k) ∈ N such that S ⊆ Bγ(k),k. Consequently, S ⊆ Aγ . On the other
hand, observe that

A (α|n) = Bα(1),1 ∩ · · · ∩Bα(n),n
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for α ∈ NN and n ∈ N. Since A (α|n) ⊆ Bα(n),n, it turns out that A (α|n) is functionally En-bounded.

(iii)⇒(ii) Let
{
Aα : α ∈ NN

}
be a resolution in X swallowing S with E-bounded envelope. So, if we

fix n ∈ N then A (α|n) is En-bounded for every α ∈ N. Since A (α|n) is completely determined by the
n-tuple (α (1) , . . . , α (n)) and Nn is isomorphic to N, in case that (α (1) , . . . , α (n)) 7→ j we may define
Cj,n := A (α|n). If Bi,n :=

⋃
1≤j≤iCj,n, then the sequence {Bi,n : i ∈ N} is increasing, En-functionally

bounded and satisfies that
⋃
i∈NBi,n = X. In addition, if S ∈ S there exists γ ∈ NN such that S ⊆ Aγ ⊆

A (γ|n) = Ck,n ⊆ Bk,n, where (γ (1) , . . . , γ (n)) 7→ k. Thus the sequences {Bi,n : i ∈ N} for n ∈ N satisfy
the required conditions. �

Corollary 2.6. Let X be a Tychonoff space and let E = {En}n∈N be an increasing sequence of vector
subspaces of C(X) covering C(X). The compact open-topology τk is the (LM)-topology associated with the
sequence E only if X is K-analytic and has a compact resolution

{
Kα : α ∈ NN

}
with E-bounded envelope

that swallows the compact sets.

Proof. By Proposition 2.5, if τk is the (LM)-topology on C (X) associated with the sequence E , then X
has a resolution

{
Aα : α ∈ NN

}
with E-bounded envelope that swallows the compact sets. Since Ck (X) is

bornological, X is realcompact by virtue of the Nachbin–Shirota theorem and hence τb = τk. Thus, setting
Kα = Aα for each α ∈ NN, the family K :=

{
Kα : α ∈ NN

}
satisfies the required conditions. Indeed, if

K (α|n) =
⋃{

Kβ : β ∈ NN, β (i) = α (i) , 1 ≤ i ≤ n
}

choose f ∈ En. Since
{
Aγ : γ ∈ NN

}
has E-bounded envelope, let q ∈ N be such that

sup
x∈A(α|n)

|f (x)| < q.

In case that there exists {xm}∞m=1 ⊆ K (α|n) with |f (xm)| ≥ m for each m ∈ N, there is {βm}∞m=1 with
βm (i) = α (i) for 1 ≤ i ≤ n and m ∈ N such that xm ∈ Kβm for every m ∈ N. Selecting ym ∈ Aβm such
that |f (xm)− f (ym)| < 1 for each m ∈ N one has that |f (xm)| < 1 + q for all m ∈ N due to the fact
that ym ∈ Aβm ⊆ A (α|n) for all m ∈ N. Particularly |f (xq+1)| < q + 1, a contradiction. Therefore K has
an E-bounded envelope, and clearly K swallows the compact sets of X. By Proposition 3.13 of [14], X is
K-analytic. �

Below we apply Corollary 2.6 to prove the following classical result.

Corollary 2.7. The space Ck(X) is metrizable if and only if X is hemicompact.

Proof. If X is hemicompact then clearly Ck(X) is metrizable. Conversely, assume that Ck(X) is metriz-
able. Set E = {En}n∈N, where En = C(X) for every n ∈ N. By Corollary 2.6, X is K-analytic and has
a compact resolution

{
Kα : α ∈ NN

}
with E-bounded envelope that swallows the compact sets. By the

definition of E , the envelope M = {K(α|n) : α ∈ NN, n ∈ N} consists of functionally bounded subsets of
X. As X is realcompact, the countable family

M = {K(α|n) : α ∈ NN, n ∈ N}

consists of compact subsets of X and clearly swallows the compact sets of X. Thus X is hemicompact. �

It is natural to ask whether the topology τS is metrizable. We answer this question in the next propo-
sition which complements Corollary 2.7, its proof is similar to the original proof of the Arens theorem and
so it is omitted.
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Proposition 2.8. Let X be a Tychonoff space and S ∈ S(X). Then the space CS(X) is metrizable if and
only if X is almost hemi-S-compact, i.e., there is a sequence {Sn}n∈N ⊆ S such that for every S ∈ S there
exists n ∈ N such that S ⊆ Sn.

Example 2.9. If X is an uncountable P -space, there is no metrizable locally convex topology T on C(X)
such that τp ≤ T ≤ τb. Indeed, otherwise there exists a sequence {An : n ∈ N} of functionally bounded
sets in X covering X. But this is impossible, since each functionally bounded set in X is finite (see [11,
Problem 4K(3)]).

3. Concrete results

Let X be a Tychonoff space. Denote by υX the Hewitt realcompactification of X. It is clear that a
subset B of X is functionally bounded if and only if B is relatively compact in υX. Recall that X is called
a µ-space if the closure of every functionally bounded subset of X is compact. Every realcompact space is
Dieudonné complete, see [6, 8.5.13], and each Dieudonné complete space is a µ-space.

Let us also recall that an NN-increasing family {Bα}α∈NN of functionally bounded (compact) subsets of
X is called a functionally bounded (respectively, compact) resolution in X if it covers X.

The following theorem deals with the case when a desired topology satisfies inequalities τp ≤ T ≤ τk or
τk ≤ T ≤ τb, in (vii) we supplement also the list of another results on Cp(X) yielding countability of X,
see [21], [22].

Theorem 3.1. Let X be a Tychonoff space. Then:

(i) There exists a metrizable locally convex topology T on C (X) such that τp ≤ T ≤ τk if and only if X
is a σ-compact space.

(ii) There exists a metrizable locally convex topology T on C (X) such that τk ≤ T ≤ τb if and only if
there is an increasing sequence {Bn}n∈N of functionally bounded subsets of X swallowing the compact
sets of X.

(iii) There exists a metrizable locally convex topology T on C (X) such that τp ≤ T ≤ τb if and only if
there is an increasing sequence {Bn}n∈N of functionally bounded subsets of X covering X.

(iv) There is a metrizable locally convex topology T on C(X) such that τp ≤ T ≤ τw if and only if X is
countable.

(v) There exists a locally convex topology T on C (X) with a G-base such that τp ≤ T ≤ τk if and only
if X has a compact resolution.

(vi) There exists a locally convex topology T on C (X) with a G-base such that τk ≤ T ≤ τb if and only
if X has a functionally bounded resolution swallowing the compact sets of X.

(vii) C(X) admits a locally convex topology T with a G-base such that τp ≤ T ≤ τb if and only if X has a
functionally bounded resolution.

(viii) There is a locally convex topology T on C(X) with a G-base such that τp ≤ T ≤ τw if and only if X
is countable.

Proof. To prove (i) and (v), for every set U in C (X) define U♦ in X by

U♦ = {x ∈ X : |f (x)| ≤ 1 ∀f ∈ U}.

Clearly, U♦ is closed in X and U ⊆ V implies that U♦ ⊇ V ♦.
Claim. Let T be a locally convex topology on C(X) such that τp ≤ T ≤ τk. If U is a neighborhood of

the origin in (C(X), T ), then U♦ is compact.
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Indeed, as in the proof of [8, Theorem 2], if K is compact and ε > 0 then [K, ε]♦ ⊆ K, since if x ∈ X \K
there is f ∈ C (X) with f (x) = 2 and f (K) = {0}, so that f ∈ [K, ε] and x /∈ [K, ε]♦. If K is compact
and 0 < ε ≤ 1, then K ⊆ [K, ε]♦ and hence [K, ε]♦ = K.

Now since T ≤ τk we may choose a compact set K in X such that [K, ε] ⊆ U for some ε > 0. Hence
U♦ ⊆ [K, ε]♦ ⊆ K, so U♦ is compact.

(i) If X =
⋃
{Kn : n ∈ N} is σ-compact with Kn ⊆ Kn+1 for each n ∈ N, we set

Vn :=

{
f ∈ C (X) : sup

x∈Kn
|f (x)| < 1

n

}
Then {Vn : n ∈ N} is an open decreasing base of absolutely convex neighborhoods of the origin of a metriz-
able locally convex topology T on C (X) such that τp ≤ T ≤ τk.

Conversely, assume that C (X) has a metrizable locally convex topology τp ≤ T ≤ τk with a decreasing
base {Un : n ∈ N} of neighborhoods of the origin. Then, by the claim, the family K = {U♦

n : n ∈ N}
consists of compact subsets of X. Moreover, if y ∈ X since τp ≤ T , there exists m ∈ N such that
Um ⊆ {f ∈ C (X) : |f (y)| ≤ 1}, which means that Um ⊆ [{y} , 1], so that y ∈ U♦

m. Thus K is a covering of
X and we are done.

(v) If X has a compact resolution
{
Kα : α ∈ NN

}
set

Vα :=

{
f ∈ C (X) : sup

x∈Kα
|f (x)| < 1

α (1)

}
.

Then the family
{
Vα : α ∈ NN

}
is an open G-base of a locally convex topology T on C(X) consisting of

absolutely convex sets such that τp ≤ T ≤ τk.
Conversely, assume that C(X) has a locally convex topology τp ≤ T ≤ τk with a G-base {Uα : α ∈ NN}.

Then, by the claim, the family K = {U♦
α : α ∈ NN} consists of compact subsets of X. If y ∈ X since

τp ≤ T , there exists β ∈ NN such that Uβ ⊆ {f ∈ C (X) : |f (y)| ≤ 1}. This means that Uβ ⊆ [{y} , 1], so

that {y} = [{y} , 1]♦ ⊆ U♦
β . Thus y ∈ U♦

β , which shows that K is a compact resolution of X.
(ii) and (vi) follow from Corollary 2.3.
(iii) It is known (see [2, Proposition III.2.21]), that X has a sequence of functionally bounded sets

covering X if and only if υX is σ-compact. Now the assertion follows from (i) of Corollary 2.3.
(iv) follows from (viii).
(vii) First we note that: (1) by Proposition 3.13 of [14], υX is K-analytic if and only if υX has a

compact resolution, and (2) {Kα}α∈NN is a compact resolution in υX if and only if {X ∩ Kα}α∈NN is a
functionally bounded resolution in X. So, if X has a functionally bounded resolution, the space C(X)
admits a locally convex topology T with a G-base such that τp ≤ T ≤ τb by (ii) of Corollary 2.3 applied
to S = Fin.

Assume that C(X) admits a locally convex topology T with a G-base {Vα}α∈NN such that τp ≤ T ≤ τb.
Denote by E the topological dual space of (C(X), T ). Then the family {V ◦α }α∈NN , the polars being taken
with respect to E, covers E and is a resolution of E consisting of absolutely convex σ

(
E,C(X)

)
-compact

sets. Denote by L(X) the free vector space over X. Then the space Lp(X) :=
(
L(X), σ(L(X), C(X))

)
is

a vector subspace of
(
E, σ(E,C(X))

)
. Since every functionally bounded subset of a locally convex space

is bounded, we obtain that {L(X) ∩ V ◦α }α∈NN is a bounded resolution in Lp(X). Thus υX is K-analytic
by Lemma 30 of [7].

(viii) The ‘if’ case is trivial. For the ‘only if’ case, suppose that such T exists and proceed by contra-
diction by assuming that X is uncountable. Let U =

{
Uα : α ∈ NN

}
be a G-base of neighborhoods of the

origin of T . Clearly, each Uα ∈ U is a neighborhood of the origin for the weak topology τw. So the family
M = {U◦α : α ∈ NN} (polars in Ck(X)′) is an NN-increasing family of subsets of F := Ck(X)′ consisting of
τw-equicontinuous sets. But since T is stronger than τp, M covers the linear subspace L(X) of F . Note
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that each U◦α is contained in a finite-dimensional subspace of F . Consequently, we have an NN-increasing
family M of subsets of F , covering L(X), consisting of finite-dimensional sets. This implies that each of
those sets U◦α meets the canonical copy δ (X) of X in

(
F, σ(F,C(X)

)
in a finite set U◦α ∩ δ (X) (otherwise

U◦α, would be infinite-dimensional due to the fact that δ (X) is a linearly independent set in F ). HenceM
meets δ (X) in a resolution consisting of finite sets. But since X is uncountable, some of these sets must
be infinite by Proposition 3.7 of [14]. This contradiction shows that X is countable. �

There are plenty of nonmetrizable locally convex topologies with a G-base on C(X) as the following
example shows.

Example 3.2. Nonmetrizable locally convex topologies on C(X) with a G-base. If X has a compact
resolution but is not σ-compact, then there exists a non-metrizable locally convex topology T on C(X)
with a G-base such that τp ≤ T ≤ τb. For instance, if K is an infinite Talagrand compact set, X := Cp(K)
is K-analytic but not σ-compact by virtue of Velichko’s theorem. So there exists a locally convex topology
on C(X) with those characteristics.

Example 3.3. Let κ be the first ordinal of cardinality 2c. Then κ is a pseudocompact non-compact space
whose cofinality is strictly bigger than the continuum c. As the cofinality of NN is less or equal than c we
obtain that κ does not have compact resolution, in particular, Ck(κ) does not have a G-base. Clearly, the
metrizable topology defined by the sup-norm of C(κ) is strictly finer than the compact-open topology.

Example 3.4. Let Z be the subspace of [0, 1]ω1 consisting of transfinite sequences with at most countably
many non-zero coordinates and define X :=

⋃
n∈N nZ ⊆ Rω1 . If τsc denotes the set-open topology on

C(X) defined by the sequentially compact subsets of X, there exists a metrizable locally convex topology
T on C(X) such that τp < T < τsc and neither T < τk nor τk < T . Indeed, setting An :=

⋃
k≤n kZ

for n ∈ N, the sequence {An : n ∈ N} consists of sequentially compact sets and covers X, so it defines a
metrizable locally convex topology T on C(X) such that τp < T < τsc. In addition, since each An is closed
and noncompact, it turns out that T ≮ τk. On the other hand, the set K = {nen : n ∈ N} ∪ {0}, where
en(γ) = 0 if γ 6= n and en(n) = 1, γ < ω1, is evidently compact in Rω1 and is not contained in any An.
Therefore τk ≮ T .

Acknowledgement. The authors thank the referee for careful reading and useful remarks.
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