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EFIMOV SPACES AND THE SEPARABLE QUOTIENT PROBLEM
FOR SPACES C,(K)
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ABSTRACT. The classic Rosenthal-Lacey theorem asserts that the Banach space C(K)
of continuous real-valued maps on an infinite compact space K has a quotient isomorphic
to ¢ or 5. In [22] we proved that the space C,(K) endowed with the pointwise topol-
ogy has an infinite-dimensional separable quotient algebra iff K has an infinite countable
closed subset. Hence Cp,(8N) lacks infinite-dimensional separable quotient algebras. This
motivates the following question: (x) Does C,(K) admit an infinite-dimensional separa-
ble quotient (shortly SQ) for any infinite compact space K ? Particularly, does C,(5N)
admit SQ? Our main theorem implies that C,(K) has SQ for any compact space K
containing a copy of SN. Consequently, this result reduces problem (%) to the case when
K is an Efimov space (i.e. K is an infinite compact space that contains neither a non-
trivial convergent sequence nor a copy of SN). Although, it is unknown if Efimov spaces
exist in ZFC, we show, making use of some result of R. de la Vega (2008) (under ¢),
that for some Efimov space K the space Cp(K) has SQ. Some applications of the main
result are provided.

1. PRELIMINARIES

One of famous unsolved problems of Functional Analysis (posed by S. Mazur 1932) asks

(*) whether any infinite-dimensional Banach space has an infinite-dimensional sepa-
rable (Hausdorff) quotient (in short SQ)?

We refer to [31] and [29], [21] (and references there) concerning several aspects related
with problem (*) for Banach spaces. Clearly:

(**) A Banach space X has SQ if and only if X is mapped on an infinite-dimensional
separable Banach space under a continuous linear map.

While this problem still remains open, several concrete classes of Banach spaces admit
infinite-dimensional separable quotients. For example, all infinite-dimensional reflexive
(or WCG) Banach spaces are of that type. With Mazur’s problem yet unsolved, analysts
since Eidelheit (1936) have studied the separable quotient problem for non-Banach spaces;
see [20], [22] for more details.

Rosenthal [30] and Lacey [24] proved that for any infinite compact space K the Banach
space C'(K) of real-valued continuous functions has a quotient isomorphic to ¢ or ¢y; see
also [25]. One can argue as follows:

Two cases are possible.
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(i) K is scattered. Then K contains a convergent sequence (x,,) of distinct points. The
linear map 7" : C(K) — ¢, f — (f(x,)) is a continuous surjection. Hence the quotient
C(K)/T~*(0) is isomorphic to c.

(ii) K is not scattered. Then K is continuously mapped onto [0,1]. The space f5 is
isomorphic to a closed subspace of L[0, 1] and /1[0, 1] is isomorphic to a closed subspace
Li(K,Bk, 1), where p is some nonnegative finite regular Borel measure on K. The latter
space is isomorphic to a closed subspace of the norm dual Y of C(K). Therefore the
reflexive space (5 is a subspace of Y that is weakly*-closed, and then a quotient of C'(K)
is isomorphic to ¢y, see [30, Corollary 1.6, Proposition 1.2].

If £ is a Banach space with SQ, then the spaces C,(K, E) and C (K, E) of E-valued
continuous functions over a non-empty compact K have SQ. In fact, C,(K, E) has a
complemented copy of £ and C(K, E) has a complemented copy of cg, see [3].

In [22, Theorem 18] we proved

Theorem 1. For any completely reqular Huasdorff space X the following are equivalent:

(i) Cp(X) has an infinite-dimensional separable quotient algebra.
(ii) Cx(K) has an infinite-dimensional separable quotient algebra.
(i) X contains an infinite countable closed subset.

Consequently C,(8N) does not admit an infinite-dimensional separable quotient alge-
bra. This motivates the following natural problem, formally posed in [22].

Problem 2. Does C,(K) have SQ for every infinite compact space K ? Particularly, does
Cyp(BN) admit SQ?

If K contains a non-trivial convergent sequence, say z,, — o, then for A := {z, :
n € N} U {zo}, the space C,(K) has a quotient isomorphic to the infinite-dimensional
separable (and metrizable) space C,(A). Many compact spaces contain non-trivial con-
vergent sequences; particularly Valdivia compact spaces, by Kalenda’s result [23]. They
are plentiful, indeed: metrizable compact = Eberlein compact = Talagrand compact =
Gulko compact = Corson compact = Valdivia compact.

Let K be an infinite compact space. If K is scattered, then it contains a non-trivial
convergent sequence. If K is not scattered, then there exists a continuous map from K
onto [0, 1] but this property seems to be not so helpful for C,(K). Nevertheless, we show
that a stronger condition (+): K is continuously mapped onto [0, 1], implies that C,(K)
has SQ. Recall that the condition (+) is equivalent to the fact that K contains a copy of
PN, see [32].

On the other hand, we have the following easy fact (compare with (**)).

Proposition 3. For any infinite compact K the space C,(K) can be mapped onto an
infinite-dimensional separable metrizable locally convex space by a continuous linear map.

Proof. If K is separable, C,(K) has countable pseudocharacter [1, Theorem 1.1.4]. Hence
C,(K) admits a weaker metrizable and separable locally convex topology, see [15, Lemma
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3.2]. If K is arbitrary, choose a compact separable infinite subset L and apply the previous
case using the restriction surjective map C,(K) — C,(L). O

The main result of the paper is the following

Theorem 4. Let X be a completely reqular space with a sequence (K,) of non-empty
compact subsets such that for any n > 1 the set K, contains two disjoint subsets home-
omorphic to K, 1. Then C,(X) has SQ. Consequently, if K is a compact space which
contains a copy of BN, then C,(K) has SQ.

This implies the following

Corollary 5. Let X be a normal topological space with a sequence (S,) of non-empty
closed subsets such that for any n > 1 the set S, contains two disjoint closed subsets S

and S} that are homeomorphic to Sy41. Then C,(BX) has SQ.

Proof. Let n > 1. Denote by K,,, K|, K and K, the closures in X of the sets S,,, 5/, S/
and 5,41, respectively. Then K] and K are compact and disjoint subsets of K, that are

homeomorphic to K, 1 by [12, Corollaries 3.6.4 and 3.6.8]. Using the last theorem, we
infer that C,(8X) has SQ. O

Corollary 6. If K is an infinite compact space and every infinite closed set in K contains
two infinite disjoint homeomorphic closed sets, then C,(K) has SQ.

Problem 2 combined with our main result is also connected with the following question
of Efimov (posed in [10]):

Does every infinite compact space contain a non-trivial convergent sequence or a copy
of BN?

So far, there have been known several counterexamples to the above problem - called
Efimov spaces, see e.g. Fedorchuk [13] and [14], Dow [8], [7], or Dow and Shelah [9],
Geschke [16]; however no ZFC counterexample is known. We refer also to [17] for classes
of compact spaces containing a copy of SN. Since (as will be shown) C,(SN) admits
SQ, Problem 2 reduces to the case when K is an Efimov space. Nevertheless, under ¢
there exists an Efimov space K such that C,(K) has SQ, see Example 15 below. Our
approach to Problem 2 suggests a question whether every Efimov space contains two
disjoint homeomorphic infinite closed subsets. It will be answered in the negative in
Example 17.

2. THE PROOF OF THEOREM 4

We need the following

Lemma 7. Let X be a Tychonoff space. The following assertions are equivalent:
(i) Cp(X) has SQ.
(ii) Cp(X) admits a strictly increasing sequence of closed vector subspaces whose union
15 dense.
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(i) There exists a sequence (G,,) of non-zero continuous linear functionals on C,(X)
such that the subspace E = J,— (_, ker G, C Cp(X) is dense in Cp(X).

(iv) There exists a sequence (F,,) of finite subsets of X and a sequence (f,) of non-zero
functions f, : F,, — R such that for every finite subset G of X and any function
g:G — R and any € > 0, there exists f in C(X) having the following properties:

(1) > ser, fu(x)f(x) =0 for almost all n € N.
(2) |f(z) — g(x)| <€ forallx € G.

Conditions (i), (ii) and (iii) are equivalent for any locally convex space, see [20, Propo-
sition 1], or [34]. The equivalence between (iii) and (iv) is easy to prove by using the
description of the topological dual of C,(X). In fact, (iv) means that there exists a se-
quence (G,,) of non-zero continuous linear functionals over C,(X) such that the subspace
H:={feCyX):G,(f) =0 for almost all n € N} is dense in C,(X).

We are at position to prove Theorem 4.

Proof of Theorem 4. By Lemma 7 it is enough to show that for C,(X) the item (iii) holds
Let F} = X. By assumptions there exists a family {F! : n > 1,1 < i < 2} of non-empty
compact subsets of X such that for any n > 1 we have
(1) F71UF3 - Fé—ﬁ
(2) FyNEY=0;
(3) F!is homeomorphic to F?.
Let hl : F}' — F! be the identity map and h2 : F! — F? be a homeomorphism for any
n>1.
Inductively with respect to n € N we can define homeomorphisms h?, for n > 2 and
3 <4 < 2" such that
= e F ) o1
forn>2and1<i<2"land 0<t<1.
Put F! = hi(F}) for n > 2 and 3 < i < 27 clearly F! = hl(F}) for n > 1 and
1<¢<2 Forn>1and1<7<2" we have

stfll = hiﬁl(FﬁH) = h;(Fiﬂ) - hZ(FrIL) = F,

and
ngl = h?j—}—l(Fé+1) = hZ(Fiﬂ) C hi,(F,) = F}.
Hence F,.; C F, for n > 1, where F, = Ufil Fi,and F! N FJ = () for n > 1 and
1<i,5 <2" with ¢ # j.
Forn >1and 1 <i,5 < 2" the map
hb =hl o (hl)™': F! — F’
is a homeomorphism.

By induction with respect to k we prove the following

(%) BEISH2IT— g P2 for k> 1n>1,1<i,j<2" and 0<t<2F—1.
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Let k=1,n>1,1<14,7<2"and 0 <t <1. Then
hy 7 = Il o () = [(WIF) o Bt o (B Fat) o i)™ =
(| Fait) o (hy | Frs) ™ = [, o (hy) 1A (F) = hy? |FRiy,

since
h;(Fi:D = hi:f © (hifl)_l(FnQH) = hiﬂ:f o (hi:—tl)_1<h721:-tl(F7}+l)) = hi:f(Féﬂ) = ng_lt-
Assume now that (*) holds for some k& > 1.

We prove that (*) holds for k£ + 1.

Letn>1,1<4,7j<2"and 0 <t <21 — 1. Let 0<t; <2 —1and 0 <ty <1 with
2t1 + t9 = t. Then we have

h2k+1i—t,2k+1j—t o h2(2’%—t1)—t2,2(2kj—t1)—t2 .
ntk+1 — "(ntk)+1 -

2ki—t1,2kj—t1 | 2(2%i—t1)—ta _ 14| p2%i—ty 2k+Llit 545 m2ktli—t
hn—l—k |Fn+k;+1 - (hn |Fn+k )‘Fn—l—k—s—l =h ’Fn—&-k—i—l .

Let (z,) C X be a sequence with x, € F! for n > 1. Put !, = h'(z,) for n > 1 and
1 <i¢<2" Then

(1) ', € F! C F, forn>1and 1 <7 <2" and

(2) hid(xi)=ad forn>1and 1 <i,j <2
Hence, by (*), we deduce that

(#5) B (@25t = 2237 for k>1,n>1 and 1<i,j < 2"

Let P, : C,(X) — K be a map defined by the formula f — f(z), for x € X. Next define
271
Gn: Cp(X) > K, Gy =Y Py
i=1

for all n > 1. Clearly (G,,) is a sequence of non-zero continuous linear functionals on the
space Cp(X).
We prove that the subspace

E = G ﬁkean

n=1m=n
is dense in C,(X). To prove this it it is enough to show that for any n > 1 and for all
n different points z1,..., z, of X there exists ¢ € F with g(z;) = 1 and g(z;) = 0 for
1 <1< n.

Consider two cases.

Case 1: z; ¢ F}, for some k > 1. Then there exists g € C(X) with g(z1) = 1,g9(z;) =0
for 1 <i<mnand g|F, =0. Form >k and 1 <1i < 2™ we have

. € F' CF, CF,

so g(x! ) = 0. Hence G,,(g9) =0 for m >k, so g € E.

Case 2: z1 € (pe; Fi. Then there exist 1 < ig, jo < 2" with 2; € F® and z; & FJ° for
1 <4 < n. Thus there exists g; € C(F®) with g;(z;) =1 and ¢;(2;) =0 for 1 <i < n
with z; € Fio.
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Let go € C(F,) with
92|Friz0 =91, gz\FT{O =—gi0 (hif’jo)*l

and go|F! = 0 for 1 <4 < 2™ with 4y # i # jo. Then there exists g € C(X) with g|F, = g»
such that ¢g(z;) = 0 for 1 < i < n with z; € F,. Clearly g(z;) = 1 and ¢(z;) = 0 for
1 <7 <n. For k> 1 we have

antk 2k—1 2k—1

i kjo— 0,50\ — kjo—
Grir(9) = Y 9(@h) = D (@257 = Y gro (Be) (a2 i) =0,
t=0 t=0

i=1

since hif’jo(:pfﬁi_t) = xi]fﬂg_t for 0 <t < 2% — 1. Thus one gets g € E. O

Since every extremally disconnected compact space K is an F-space, K contains a copy
of BN, so we have

Corollary 8. If K is an extremally disconnected compact space, then C,(K) has SQ.

Let X be a completely regular space that is not pseudocompact. It is well-known
that 5X \ X contains a copy of SN\ N. Moreover (as easily seen), C,(X) contains a
complemented copy of RY.

Corollary 9. If X is a completely regular space that is not pseudocompact, then C,(X)
and Cp(SX \ X) have SQ.

Theorem 4 yields also the following

Corollary 10. Let X be a completely reqular space containing an infinite compact subset
K such that:

(1) For any infinite closed subset S of K there exists an infinite closed subset T' of S
and a non-trivial continuous injection ¢ : T — S; or

(2) For any non-empty open subset U of K there exists an open subset V of U and a
non-trivial continuous injection ¢ : V. — U.

Then Cy(X) has SQ.

Proof. By (1) any infinite compact subset S of K contains two infinite disjoint compact
and homeomorphic subsets. By (2) any non-empty open subset U of K contains two
disjoint compact and homeomorphic subsets such that at least one of them has non-
empty interior with respect to K. Hence there exists a sequence (K,) of infinite compact
subsets of X such that K, contains two disjoint subsets homeomorphic to K,,,; for any
n € N. Now Theorem 4 applies. 0

Corollary 11. Let X be a locally compact space. Assume that X contains a non-empty
open subset U such that every non-empty open subset V of U has two different points x,y
that have some homeomorphic disjoint neighbourhoods V,, and V,. Then C,(X) has SQ.

Let X be a topological space. For any x € X we assign the set J(z) of all maps ¢
defined as follows: ¢ € J(z) iff there exits an open neighbourhood V' of x such that
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¢V — X is injective and continuous. The set O(z) = {¢(z) : ¢ € J(x)} will be called
the orbit of x.
Another consequence of Theorem 4 is the following

Theorem 12. Let X be an infinite compact space. Assume that the orbit O(x) of every
element x of X is infinite. Then Cp(X) has SQ.

We need the following

Lemma 13. Let X be a completely reqular space. Assume that X contains an element x
such that: (1) x is an accumulation point of its orbit O(z); (2) x has a neighbourhood V;
such that its closure Ko = Vj is compact. Then C,(X) has SQ.

Proof. Let ¢1 € J(z) with ¢1(x) € (Vo \ {z}). Let V; and W) be neighbourhoods of z such
that

Vi C Wi € Vondy' (Vo) and Wi Ny (Wr) = 0.
Next, let ¢o € J(z) with ¢o(z) € (V1 \ {z}). Let V5 and W; be neighbourhoods of x such
that

Vo €Wy € ViNgy ' (V1) and Wy N ¢o(W3) = 0.
Continuing on this manner we obtain a sequence (¢,,) C J(z) and two sequences (V},) and
(W,,) of neighbourhoods of z such that

V, W, CViNog, (Vo) and W, N ¢ (W) = 0.

Set K, =V, and K, = ¢,,(K,) for all n € N. The sets K,, and K! are disjoint, compact
and homeomorphic subsets of K,,_; for n € N. By Theorem 4 we conclude that C,(X)
has SQ. O

Proof of Theorem 12. By A? we denote the set of all accumulation points of a subset A
of X.

If z € X and y € O(z)?, then O(y)? C O(x)?% Indeed, let z € O(y)?. Let W, be
a neighbourhood of z. Then there exists a neighbourhood V), of y and a continuous
injection ¢ : V, = X with ¢(y) € (W, \ {0}). Then W, = ¢~ '(W,) is a neighbourhood
of y. Since y € O(z)?, there exists a neighbourhood V, of z and a continuous injection
YV, — X with

U(a) € (W, \ {y, 6 (2)}):
The set W, = ¢~ 1(¢~1(W,)) is a neighbourhood of z and ¢o1)|WW, is a continuous injection
from W, to X. Clearly, ¢ o (x) € (W, \ {z}). Consequently z € O(x)?. We proved that
O(y)* C O(x)™.

For any = € X the set O(z)? is non-empty and compact. The set ® = {O(z)?: x € X'}
is ordered by inclusion. By Kuratowski-Zorn Lemma the family W of all linearly ordered
subsets of ® has a maximal element. Let Q = {O(x,)? : v € I'} be a maximal linearly
ordered subset of ®. The set K = p O(z,)? is non-empty. Let z € K and y € O(z)%.
Then O(y)? C O(z)* C O(z,)? for any v € T'. By maximality of  we have O(y)? = O(x,)?
for some v € T. Hence O(y)? = O(x)?, so y € O(y)®. By Lemma 13, C,(X) has SQ. O
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3. REMARKS, QUESTIONS AND EXAMPLES

(A) A Banach space E is called a Grothendieck space [6] if every null sequence in
the weak*-dual of E' converges to zero in the weak topology of the dual of E. It is well
know that C'(K) is not a Grothendieck space if a compact space K contains a non-trivial
convergent sequence. If K is extremally disconnected (in that case K contains a copy of
PN), the space C'(K) is a Grothendieck space, see again [6]. On the other hand, Talagrand
[35] constructed under (C'H) a compact space K such that C'(K) is a Grothendieck space
and yet C'(K) does not admit any quotient isomorphic to £, particularly K does not
contain a copy of SN. Hence this K is an Efimov space. This example combined with our
main Theorem 4 motivates the following

Problem 14. Does C,(K) admit SQ if C(K) is a Grothendieck Banach space?

(B) From Lemma 7 (iv) and Theorem 4 we deduce for any compact space K:

non (w) < C,(K) fails SQ = K is Efimov.
Example 15. There exists (under ) an Efimov space K such that C,(K) has SQ.

Proof. De la Vega [5, Theorem 3.22] (we refer also to [4]) constructed (under ¢) a compact
zero-dimensional S-space K (hence not containing a copy of SN) and such that:

(i) K does not contain non-trivial convergent sequences.
(ii) K has a base of clopen pairwise hemeomorphic sets.
(iii) K contains non homeomorphic clopen subsets.

It is easy to see that K admits a sequence (K,) of infinite compact subsets such that each

K, contains two disjoint subsets homeomorphic to K, ; therefore by our main Theorem
4 the space C,(K) has SQ. O

There exist however compact zero-dimensional spaces K without non-trivial convergent
sequences for which no disjoint open sets are homeomorphic, see [28, Theorem |, see also
[2]. Last Example 15 motivates the following

Problem 16. Does there exist an Efimov space K such that C,(K) does not admit SQ?

Moreover, Corollary 6 may suggest also the following variant of Efimov’s problem:
Does every infinite compact space K without a non-trivial convergent sequence contain
two infinite disjoint homeomorphic closed subsets?

The authors were kindly informed by Professor P. Koszmider about the following exam-
ple answering the above problem. Recall that a compact space K is a Koszmider space,
see [11], if all operators on C'(K) have the form g/ + S, where g € C(K) and S is weakly
compact. If K is a connected Koszmider space then C(K) is indecomposable, i.e. there
are no infinite-dimensional closed subspaces Y and Z such that C(K) =Y & Z, see |11,
Lemma 2.6].

Example 17. Under { there exists a separable Eftimov space F such that F is a Koszmider
space and does not admit two disjoint homeomorphic infinite closed subsets.
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Proof. Let K be the compact connected space as in [11, Theorem 5.2]. Let F' be an
infinite separable closed subset of K. Assume that F' contains two closed infinite disjoint
homeomorphic subsets L and Ly. Put L := L; U Ly. This generates a homeomorphism
¢ : L — L which is not the identity. Then the composition operator Cy : C(L) — C(L),
Cs(g) := g o ¢, provides an operator which contradicts [11, Theorem 5.3]. Then F' does
not contain SN. Moreover, F' does not contain non-trivial convergent sequences. Indeed,
otherwise C'(K) is not a Grothendieck space, so C'(K) contains a complemented copy of
co, see [3, Corollary 2], so C'(K) is not indecomposable, a contradiction with the above
remark. 0

Remark 18. As cvery separable compact space is a continuous image of BN, the space
F' from above Example 17 enjoys this property. Therefore we conclude that the construc-
tion provided by Theorem 4 (which applies to SN) is not inherited by continuous open
surjections.

Having in mind that C,(8N) has SQ we note also the following

Proposition 19. The following assertions are equivalent:

(i) C,(bN) has SQ for any compactification bN of N.
(ii) Cp(K) has SQ for any infinite compact K.

Proof. Assume that (i) holds. Then for any infinite compact space K the space C,(K)
has SQ. Indeed, as K contains a discrete infinite subset (in the induced topology), hence
homeomorphic to N, so its closure in K provides some compactification bN. Clearly C,(K)
has a quotient isomorphic to C,(5), so C,(K) has SQ. The converse is trivial. O

(C) A topological space X is a o-space, see [26], if X has a network composing a o-
locally finite family of subsets of X. Recall also that the Alexandrov-Urysohn compacta
(AU-compacta) are separable uncountable compact spaces whose set of all accumulation
points has exactly one non-isolated point, see [26]. In [26, Theorem 3.4, Section 3.4] the
authors proved that C,(K), where K is the AU-compacta K(2<“) associated with the
Cantor tree, is a o-space. There exist however AU-compacta K := K(w<¥) associated
with a Baire tree such that C,(K) is not perfect, hence not a o-space, [26, Theorem 3.4].
Also by [26, Theorem 5.11] the space C,(K) over a dyadic separable compacta is a o-space
and yet K has non-trivial convergent sequences.

For this cases we know that C,(K) can be mapped by a continuous and open linear
map onto a separable and metrizable infinite dimensional locally convex space, and clearly
every metrizable and separable space is a o-space. One may ask whether for every infinite
separable compact space K not containing non-trivial convergent sequences and such that
Cp(K) has SQ the space C,(K) is a o-space. The answer is negative, as our Theorem 4
shows that C,(fw) has SQ while C,(Bw) is not a o-space; the latest follows from the
results in [26, Sec. 3], cf. also [27, Prop. 5.2]. So, there exist compact spaces K for which
Cp(K) have SQ (even metrizable) and some of those C,(K) are perfect (even o-spaces)
while some are not. We conclude with the following.
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Problem 20. Is C,(K) a o-space, if K is a separable Efimov space?

[1]
2]

3]
[4]

[5]
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