

INSTITUTE OF MATHEMATICS

Efimov spaces and the separable quotient problem for spaces Cp(K)

Jerzy Kąkol Wanda Śliwa

Preprint No. 99-2017
PRAHA 2017

EFIMOV SPACES AND THE SEPARABLE QUOTIENT PROBLEM FOR SPACES $C_p(K)$

J. KĄKOL AND W. ŚLIWA

ABSTRACT. The classic Rosenthal-Lacey theorem asserts that the Banach space C(K) of continuous real-valued maps on an infinite compact space K has a quotient isomorphic to c or ℓ_2 . In [22] we proved that the space $C_p(K)$ endowed with the pointwise topology has an infinite-dimensional separable quotient algebra iff K has an infinite countable closed subset. Hence $C_p(\beta\mathbb{N})$ lacks infinite-dimensional separable quotient algebras. This motivates the following question: (*) $Does\ C_p(K)$ admit an infinite-dimensional separable quotient (shortly SQ) for any infinite compact space K? Particularly, does $C_p(\beta\mathbb{N})$ admit SQ? Our main theorem implies that $C_p(K)$ has SQ for any compact space K containing a copy of $\beta\mathbb{N}$. Consequently, this result reduces problem (*) to the case when K is an $Efimov\ space$ (i.e. K is an infinite compact space that contains neither a non-trivial convergent sequence nor a copy of $\beta\mathbb{N}$). Although, it is unknown if $Efimov\ space$ exist in ZFC, we show, making use of some result of K. de la Vega (2008) (under K), that for some K the space K the space K some applications of the main result are provided.

1. Preliminaries

One of famous unsolved problems of Functional Analysis (posed by S. Mazur 1932) asks (*) whether any infinite-dimensional Banach space has an infinite-dimensional separable (Hausdorff) quotient (in short SQ)?

We refer to [31] and [29], [21] (and references there) concerning several aspects related with problem (*) for Banach spaces. Clearly:

(**) A Banach space X has SQ if and only if X is mapped on an infinite-dimensional separable Banach space under a continuous linear map.

While this problem still remains open, several concrete classes of Banach spaces admit infinite-dimensional separable quotients. For example, all infinite-dimensional reflexive (or WCG) Banach spaces are of that type. With Mazur's problem yet unsolved, analysts since Eidelheit (1936) have studied the separable quotient problem for non-Banach spaces; see [20], [22] for more details.

Rosenthal [30] and Lacey [24] proved that for any infinite compact space K the Banach space C(K) of real-valued continuous functions has a quotient isomorphic to c or ℓ_2 ; see also [25]. One can argue as follows:

Two cases are possible.

¹⁹⁹¹ Mathematics Subject Classification. 46B28, 46E27, 46E30.

Key words and phrases. Spaces of continuous functions, pointwise topology, separable quotient problem, spaces $C_p(X)$.

The first named author was supported by GAČR Project 16-34860L and RVO: 67985840.

- (i) K is scattered. Then K contains a convergent sequence (x_n) of distinct points. The linear map $T: C(K) \to c, f \mapsto (f(x_n))$ is a continuous surjection. Hence the quotient $C(K)/T^{-1}(0)$ is isomorphic to c.
- (ii) K is not scattered. Then K is continuously mapped onto [0,1]. The space ℓ_2 is isomorphic to a closed subspace of L[0,1] and $l_1[0,1]$ is isomorphic to a closed subspace $L_1(K,\mathfrak{B}_K,\mu)$, where μ is some nonnegative finite regular Borel measure on K. The latter space is isomorphic to a closed subspace of the norm dual Y of C(K). Therefore the reflexive space ℓ_2 is a subspace of Y that is weakly*-closed, and then a quotient of C(K) is isomorphic to ℓ_2 , see [30, Corollary 1.6, Proposition 1.2].

If E is a Banach space with SQ, then the spaces $C_p(K, E)$ and C(K, E) of E-valued continuous functions over a non-empty compact K have SQ. In fact, $C_p(K, E)$ has a complemented copy of E and C(K, E) has a complemented copy of c_0 , see [3].

In [22, Theorem 18] we proved

Theorem 1. For any completely regular Huasdorff space X the following are equivalent:

- (i) $C_p(X)$ has an infinite-dimensional separable quotient algebra.
- (ii) $C_k(K)$ has an infinite-dimensional separable quotient algebra.
- (iii) X contains an infinite countable closed subset.

Consequently $C_p(\beta \mathbb{N})$ does not admit an infinite-dimensional separable quotient algebra. This motivates the following natural problem, formally posed in [22].

Problem 2. Does $C_p(K)$ have SQ for every infinite compact space K? Particularly, does $C_p(\beta\mathbb{N})$ admit SQ?

If K contains a non-trivial convergent sequence, say $x_n \to x_0$, then for $A := \{x_n : n \in \mathbb{N}\} \cup \{x_0\}$, the space $C_p(K)$ has a quotient isomorphic to the infinite-dimensional separable (and metrizable) space $C_p(A)$. Many compact spaces contain non-trivial convergent sequences; particularly Valdivia compact spaces, by Kalenda's result [23]. They are plentiful, indeed: metrizable compact \Rightarrow Eberlein compact \Rightarrow Talagrand compact \Rightarrow Gulko compact \Rightarrow Corson compact \Rightarrow Valdivia compact.

Let K be an infinite compact space. If K is scattered, then it contains a non-trivial convergent sequence. If K is not scattered, then there exists a continuous map from K onto [0,1] but this property seems to be not so helpful for $C_p(K)$. Nevertheless, we show that a stronger condition (+): K is continuously mapped onto $[0,1]^{\mathfrak{c}}$, implies that $C_p(K)$ has SQ. Recall that the condition (+) is equivalent to the fact that K contains a copy of $\beta\mathbb{N}$, see [32].

On the other hand, we have the following easy fact (compare with (**)).

Proposition 3. For any infinite compact K the space $C_p(K)$ can be mapped onto an infinite-dimensional separable metrizable locally convex space by a continuous linear map.

Proof. If K is separable, $C_p(K)$ has countable pseudocharacter [1, Theorem 1.1.4]. Hence $C_p(K)$ admits a weaker metrizable and separable locally convex topology, see [15, Lemma

3.2]. If K is arbitrary, choose a compact separable infinite subset L and apply the previous case using the restriction surjective map $C_p(K) \to C_p(L)$.

The main result of the paper is the following

Theorem 4. Let X be a completely regular space with a sequence (K_n) of non-empty compact subsets such that for any $n \geq 1$ the set K_n contains two disjoint subsets homeomorphic to K_{n+1} . Then $C_p(X)$ has SQ. Consequently, if K is a compact space which contains a copy of $\beta\mathbb{N}$, then $C_p(K)$ has SQ.

This implies the following

Corollary 5. Let X be a normal topological space with a sequence (S_n) of non-empty closed subsets such that for any $n \geq 1$ the set S_n contains two disjoint closed subsets S'_n and S''_n that are homeomorphic to S_{n+1} . Then $C_p(\beta X)$ has SQ.

Proof. Let $n \geq 1$. Denote by K_n, K'_n, K''_n and K_{n+1} the closures in βX of the sets S_n, S'_n, S''_n and S_{n+1} , respectively. Then K'_n and K''_n are compact and disjoint subsets of K_n that are homeomorphic to K_{n+1} by [12, Corollaries 3.6.4 and 3.6.8]. Using the last theorem, we infer that $C_p(\beta X)$ has SQ.

Corollary 6. If K is an infinite compact space and every infinite closed set in K contains two infinite disjoint homeomorphic closed sets, then $C_p(K)$ has SQ.

Problem 2 combined with our main result is also connected with the following question of Efimov (posed in [10]):

Does every infinite compact space contain a non-trivial convergent sequence or a copy of $\beta\mathbb{N}$?

So far, there have been known several counterexamples to the above problem - called Efimov spaces, see e.g. Fedorchuk [13] and [14], Dow [8], [7], or Dow and Shelah [9], Geschke [16]; however no ZFC counterexample is known. We refer also to [17] for classes of compact spaces containing a copy of $\beta\mathbb{N}$. Since (as will be shown) $C_p(\beta\mathbb{N})$ admits SQ, Problem 2 reduces to the case when K is an Efimov space. Nevertheless, under \Diamond there exists an Efimov space K such that $C_p(K)$ has SQ, see Example 15 below. Our approach to Problem 2 suggests a question whether every Efimov space contains two disjoint homeomorphic infinite closed subsets. It will be answered in the negative in Example 17.

2. The proof of Theorem 4

We need the following

Lemma 7. Let X be a Tychonoff space. The following assertions are equivalent:

- (i) $C_p(X)$ has SQ.
- (ii) $C_p(X)$ admits a strictly increasing sequence of closed vector subspaces whose union is dense.

- (iii) There exists a sequence (G_n) of non-zero continuous linear functionals on $C_p(X)$ such that the subspace $E := \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \ker G_n \subset C_p(X)$ is dense in $C_p(X)$.
- (iv) There exists a sequence (F_n) of finite subsets of X and a sequence (f_n) of non-zero functions $f_n : F_n \to \mathbb{R}$ such that for every finite subset G of X and any function $g : G \to \mathbb{R}$ and any $\epsilon > 0$, there exists f in C(X) having the following properties:
 - (1) $\sum_{x \in F_n} f_n(x) f(x) = 0$ for almost all $n \in \mathbb{N}$.
 - (2) $|f(x) g(x)| < \epsilon \text{ for all } x \in G.$

Conditions (i), (ii) and (iii) are equivalent for any locally convex space, see [20, Proposition 1], or [34]. The equivalence between (iii) and (iv) is easy to prove by using the description of the topological dual of $C_p(X)$. In fact, (iv) means that there exists a sequence (G_n) of non-zero continuous linear functionals over $C_p(X)$ such that the subspace $H := \{ f \in C_p(X) : G_n(f) = 0 \text{ for almost all } n \in \mathbb{N} \}$ is dense in $C_p(X)$.

We are at position to prove Theorem 4.

Proof of Theorem 4. By Lemma 7 it is enough to show that for $C_p(X)$ the item (iii) holds Let $F_0^1 = X$. By assumptions there exists a family $\{F_n^i : n \ge 1, 1 \le i \le 2\}$ of non-empty compact subsets of X such that for any $n \ge 1$ we have

- (1) $F_n^1 \cup F_n^2 \subset F_{n-1}^1$;
- $(2) F_n^1 \cap F_n^2 = \emptyset;$
- (3) F_n^1 is homeomorphic to F_n^2 .

Let $h_n^1: F_n^1 \to F_n^1$ be the identity map and $h_n^2: F_n^1 \to F_n^2$ be a homeomorphism for any $n \ge 1$.

Inductively with respect to $n \in \mathbb{N}$ we can define homeomorphisms h_n^i for $n \geq 2$ and $3 \leq i \leq 2^n$ such that

$$h_n^{2i-t} = (h_{n-1}^i | F_n^{2-t}) \circ h_n^{2-t}$$

for $n \geq 2$ and $1 \leq i \leq 2^{n-1}$ and $0 \leq t \leq 1$.

Put $F_n^i = h_n^i(F_n^1)$ for $n \geq 2$ and $3 \leq i \leq 2^n$; clearly $F_n^i = h_n^i(F_n^1)$ for $n \geq 1$ and $1 \leq i \leq 2$. For $n \geq 1$ and $1 \leq i \leq 2^n$ we have

$$F_{n+1}^{2i-1}=h_{n+1}^{2i-1}(F_{n+1}^1)=h_n^i(F_{n+1}^1)\subset h_n^i(F_n^1)=F_n^i$$

and

$$F_{n+1}^{2i}=h_{n+1}^{2i}(F_{n+1}^1)=h_n^i(F_{n+1}^2)\subset h_n^i(F_n^1)=F_n^i.$$

Hence $F_{n+1} \subset F_n$ for $n \geq 1$, where $F_n = \bigcup_{i=1}^{2^n} F_n^i$, and $F_n^i \cap F_n^j = \emptyset$ for $n \geq 1$ and $1 \leq i, j \leq 2^n$ with $i \neq j$.

For $n \ge 1$ and $1 \le i, j \le 2^n$ the map

$$h_n^{i,j} = h_n^j \circ (h_n^i)^{-1} : F_n^i \to F_n^j$$

is a homeomorphism.

By induction with respect to k we prove the following

$$(*) \ \ h_{n+k}^{2^k i-t, 2^k j-t} = h_n^{i,j} | F_{n+k}^{2^k i-t} \ \ \text{for} \ \ k \ge 1, n \ge 1, 1 \le i, j \le 2^n \ \ \text{and} \ \ 0 \le t \le 2^k - 1.$$

Let $k = 1, n \ge 1, 1 \le i, j \le 2^n$ and $0 \le t \le 1$. Then

$$\begin{split} h_{n+1}^{2i-t,2j-t} &= h_{n+1}^{2j-t} \circ (h_{n+1}^{2i-t})^{-1} = [(h_n^j|F_{n+1}^{2-t}) \circ h_{n+1}^{2-t}] \circ [(h_n^i|F_{n+1}^{2-t}) \circ h_{n+1}^{2-t}]^{-1} = \\ & (h_n^j|F_{n+1}^{2-t}) \circ (h_n^i|F_{n+1}^{2-t})^{-1} = [h_n^j \circ (h_n^i)^{-1}] |h_n^i(F_{n+1}^{2-t}) = h_n^{i,j}|F_{n+1}^{2i-t}, \end{split}$$

since

$$h_n^i(F_{n+1}^{2-t}) = h_{n+1}^{2i-t} \circ (h_{n+1}^{2-t})^{-1}(F_{n+1}^{2-t}) = h_{n+1}^{2i-t} \circ (h_{n+1}^{2-t})^{-1}(h_{n+1}^{2-t}(F_{n+1}^1)) = h_{n+1}^{2i-t}(F_{n+1}^1) = F_{n+1}^{2i-t} \circ (h_{n+1}^{2-t})^{-1}(h_{n+1}^{2-t}(F_{n+1}^1)) = h_{n+1}^{2i-t}(F_{n+1}^1) = h_{n+1}^{2i-t}$$

Assume now that (*) holds for some k > 1.

We prove that (*) holds for k + 1.

Let $n \ge 1, 1 \le i, j \le 2^n$ and $0 \le t \le 2^{k+1} - 1$. Let $0 \le t_1 \le 2^k - 1$ and $0 \le t_2 \le 1$ with $2t_1 + t_2 = t$. Then we have

$$h_{n+k+1}^{2^{k+1}i-t,2^{k+1}j-t} = h_{(n+k)+1}^{2(2^ki-t_1)-t_2,2(2^kj-t_1)-t_2} =$$

$$h_{n+k}^{2^k i - t_1, 2^k j - t_1} | F_{n+k+1}^{2(2^k i - t_1) - t_2} = (h_n^{i,j} | F_{n+k}^{2^k i - t_1}) | F_{n+k+1}^{2^{k+1} i - t} = h_n^{i,j} | F_{n+k+1}^{2^{k+1} i - t}.$$

Let $(x_n) \subset X$ be a sequence with $x_n \in F_n^1$ for $n \geq 1$. Put $x_n^i = h_n^i(x_n)$ for $n \geq 1$ and $1 \leq i \leq 2^n$. Then

- (1) $x_n^i \in F_n^i \subset F_n$ for $n \ge 1$ and $1 \le i \le 2^n$ and
- (2) $h_n^{i,j}(x_n^i) = x_n^j$ for $n \ge 1$ and $1 \le i, j \le 2^n$.

Hence, by (*), we deduce that

(**)
$$h_n^{i,j}(x_{n+k}^{2^k i-t}) = x_{n+k}^{2^k j-t}$$
 for $k \ge 1, n \ge 1$ and $1 \le i, j \le 2^n$.

Let $P_x: C_p(X) \to K$ be a map defined by the formula $f \to f(x)$, for $x \in X$. Next define

$$G_n: C_p(X) \to K, G_n = \sum_{i=1}^{2^n} P_{x_n^i}$$

for all $n \geq 1$. Clearly (G_n) is a sequence of non-zero continuous linear functionals on the space $C_p(X)$.

We prove that the subspace

$$E = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \ker G_n$$

is dense in $C_p(X)$. To prove this it it is enough to show that for any $n \geq 1$ and for all n different points z_1, \ldots, z_n of X there exists $g \in E$ with $g(z_1) = 1$ and $g(z_i) = 0$ for $1 < i \leq n$.

Consider two cases.

Case 1: $z_1 \notin F_k$ for some $k \ge 1$. Then there exists $g \in C(X)$ with $g(z_1) = 1, g(z_i) = 0$ for $1 < i \le n$ and $g|F_k = 0$. For $m \ge k$ and $1 \le i \le 2^m$ we have

$$x_m^i \in F_m^i \subset F_m \subset F_k,$$

so $g(x_m^i) = 0$. Hence $G_m(g) = 0$ for $m \ge k$, so $g \in E$.

Case 2: $z_1 \in \bigcap_{k=1}^{\infty} F_k$. Then there exist $1 \le i_0, j_0 \le 2^n$ with $z_1 \in F_n^{i_0}$ and $z_i \notin F_n^{j_0}$ for $1 \le i \le n$. Thus there exists $g_1 \in C(F_n^{i_0})$ with $g_1(z_1) = 1$ and $g_1(z_i) = 0$ for $1 < i \le n$ with $z_i \in F_n^{i_0}$.

Let $g_2 \in C(F_n)$ with

$$g_2|F_n^{i_0}=g_1, \ g_2|F_n^{j_0}=-g_1\circ(h_n^{i_0,j_0})^{-1}$$

and $g_2|F_n^i=0$ for $1 \le i \le 2^n$ with $i_0 \ne i \ne j_0$. Then there exists $g \in C(X)$ with $g|F_n=g_2$ such that $g(z_i)=0$ for $1 < i \le n$ with $z_i \notin F_n$. Clearly $g(z_1)=1$ and $g(z_i)=0$ for $1 < i \le n$. For $k \ge 1$ we have

$$G_{n+k}(g) = \sum_{i=1}^{2^{n+k}} g(x_{n+k}^i) = \sum_{t=0}^{2^k - 1} g_1(x_{n+k}^{2^k i_0 - t}) - \sum_{t=0}^{2^k - 1} g_1 \circ (h_n^{i_0, j_0})^{-1} (x_{n+k}^{2^k j_0 - t}) = 0,$$

since
$$h_n^{i_0,j_0}(x_{n+k}^{2^k i_0 - t}) = x_{n+k}^{2^k j_0 - t}$$
 for $0 \le t \le 2^k - 1$. Thus one gets $g \in E$.

Since every extremally disconnected compact space K is an F-space, K contains a copy of $\beta \mathbb{N}$, so we have

Corollary 8. If K is an extremally disconnected compact space, then $C_p(K)$ has SQ.

Let X be a completely regular space that is not pseudocompact. It is well-known that $\beta X \setminus X$ contains a copy of $\beta \mathbb{N} \setminus \mathbb{N}$. Moreover (as easily seen), $C_p(X)$ contains a complemented copy of $\mathbb{R}^{\mathbb{N}}$.

Corollary 9. If X is a completely regular space that is not pseudocompact, then $C_p(X)$ and $C_p(\beta X \setminus X)$ have SQ.

Theorem 4 yields also the following

Corollary 10. Let X be a completely regular space containing an infinite compact subset K such that:

- (1) For any infinite closed subset S of K there exists an infinite closed subset T of S and a non-trivial continuous injection $\phi: T \to S$; or
- (2) For any non-empty open subset U of K there exists an open subset V of U and a non-trivial continuous injection $\phi: V \to U$.

Then $C_p(X)$ has SQ.

Proof. By (1) any infinite compact subset S of K contains two infinite disjoint compact and homeomorphic subsets. By (2) any non-empty open subset U of K contains two disjoint compact and homeomorphic subsets such that at least one of them has non-empty interior with respect to K. Hence there exists a sequence (K_n) of infinite compact subsets of K such that K_n contains two disjoint subsets homeomorphic to K_{n+1} for any $n \in N$. Now Theorem 4 applies.

Corollary 11. Let X be a locally compact space. Assume that X contains a non-empty open subset U such that every non-empty open subset V of U has two different points x, y that have some homeomorphic disjoint neighbourhoods V_x and V_y . Then $C_p(X)$ has SQ.

Let X be a topological space. For any $x \in X$ we assign the set J(x) of all maps ϕ defined as follows: $\phi \in J(x)$ iff there exits an open neighbourhood V of x such that

 $\phi: V \to X$ is injective and continuous. The set $O(x) = \{\phi(x) : \phi \in J(x)\}$ will be called the *orbit* of x.

Another consequence of Theorem 4 is the following

Theorem 12. Let X be an infinite compact space. Assume that the orbit O(x) of every element x of X is infinite. Then $C_p(X)$ has SQ.

We need the following

Lemma 13. Let X be a completely regular space. Assume that X contains an element x such that: (1) x is an accumulation point of its orbit O(x); (2) x has a neighbourhood V_0 such that its closure $K_0 = \overline{V_0}$ is compact. Then $C_p(X)$ has SQ.

Proof. Let $\phi_1 \in J(x)$ with $\phi_1(x) \in (V_0 \setminus \{x\})$. Let V_1 and W_1 be neighbourhoods of x such that

$$\overline{V_1} \subset W_1 \subset V_0 \cap \phi_1^{-1}(V_0) \text{ and } W_1 \cap \phi_1(W_1) = \emptyset.$$

Next, let $\phi_2 \in J(x)$ with $\phi_2(x) \in (V_1 \setminus \{x\})$. Let V_2 and W_2 be neighbourhoods of x such that

$$\overline{V_2} \subset W_2 \subset V_1 \cap \phi_2^{-1}(V_1) \text{ and } W_2 \cap \phi_2(W_2) = \emptyset.$$

Continuing on this manner we obtain a sequence $(\phi_n) \subset J(x)$ and two sequences (V_n) and (W_n) of neighbourhoods of x such that

$$\overline{V_n} \subset W_n \subset V_{n-1} \cap \phi_n^{-1}(V_{n-1})$$
 and $W_n \cap \phi_n(W_n) = \emptyset$.

Set $K_n = \overline{V_n}$ and $K'_n = \phi_n(K_n)$ for all $n \in N$. The sets K_n and K'_n are disjoint, compact and homeomorphic subsets of K_{n-1} for $n \in N$. By Theorem 4 we conclude that $C_p(X)$ has SQ.

Proof of Theorem 12. By A^d we denote the set of all accumulation points of a subset A of X.

If $x \in X$ and $y \in O(x)^d$, then $O(y)^d \subset O(x)^d$. Indeed, let $z \in O(y)^d$. Let W_z be a neighbourhood of z. Then there exists a neighbourhood V_y of y and a continuous injection $\phi: V_y \to X$ with $\phi(y) \in (W_z \setminus \{0\})$. Then $W_y = \phi^{-1}(W_z)$ is a neighbourhood of y. Since $y \in O(x)^d$, there exists a neighbourhood V_x of x and a continuous injection $\psi: V_x \to X$ with

$$\psi(x) \in (W_y \setminus \{y, \phi^{-1}(z)\}).$$

The set $W_x = \psi^{-1}(\phi^{-1}(W_z))$ is a neighbourhood of x and $\phi \circ \psi | W_x$ is a continuous injection from W_x to X. Clearly, $\phi \circ \psi(x) \in (W_z \setminus \{z\})$. Consequently $z \in O(x)^d$. We proved that $O(y)^d \subset O(x)^d$.

For any $x \in X$ the set $O(x)^d$ is non-empty and compact. The set $\Phi = \{O(x)^d : x \in X\}$ is ordered by inclusion. By Kuratowski-Zorn Lemma the family Ψ of all linearly ordered subsets of Φ has a maximal element. Let $\Omega = \{O(x_\gamma)^d : \gamma \in \Gamma\}$ be a maximal linearly ordered subset of Φ . The set $K = \bigcap_{\gamma \in \Gamma} O(x_\gamma)^d$ is non-empty. Let $x \in K$ and $y \in O(x)^d$. Then $O(y)^d \subset O(x)^d \subset O(x_\gamma)^d$ for any $\gamma \in \Gamma$. By maximality of Ω we have $O(y)^d = O(x_\gamma)^d$ for some $\gamma \in \Gamma$. Hence $O(y)^d = O(x)^d$, so $y \in O(y)^d$. By Lemma 13, $C_p(X)$ has SQ. \square

3. Remarks, questions and examples

(A) A Banach space E is called a *Grothendieck space* [6] if every null sequence in the weak*-dual of E converges to zero in the weak topology of the dual of E. It is well know that C(K) is not a Grothendieck space if a compact space K contains a non-trivial convergent sequence. If K is extremally disconnected (in that case K contains a copy of $\beta\mathbb{N}$), the space C(K) is a Grothendieck space, see again [6]. On the other hand, Talagrand [35] constructed under (CH) a compact space K such that C(K) is a Grothendieck space and yet C(K) does not admit any quotient isomorphic to ℓ_{∞} , particularly K does not contain a copy of $\beta\mathbb{N}$. Hence this K is an Efimov space. This example combined with our main Theorem 4 motivates the following

Problem 14. Does $C_p(K)$ admit SQ if C(K) is a Grothendieck Banach space?

(B) From Lemma 7 (iv) and Theorem 4 we deduce for any compact space K: $non\ (iv) \Leftrightarrow C_p(K)\ fails\ SQ \Rightarrow K\ is\ Efimov.$

Example 15. There exists (under \Diamond) an Efimov space K such that $C_p(K)$ has SQ.

Proof. De la Vega [5, Theorem 3.22] (we refer also to [4]) constructed (under \Diamond) a compact zero-dimensional S-space K (hence not containing a copy of $\beta \mathbb{N}$) and such that:

- (i) K does not contain non-trivial convergent sequences.
- (ii) K has a base of clopen pairwise hemeomorphic sets.
- (iii) K contains non homeomorphic clopen subsets.

It is easy to see that K admits a sequence (K_n) of infinite compact subsets such that each K_n contains two disjoint subsets homeomorphic to K_{n+1} ; therefore by our main Theorem 4 the space $C_p(K)$ has SQ.

There exist however compact zero-dimensional spaces K without non-trivial convergent sequences for which no disjoint open sets are homeomorphic, see [28, Theorem], see also [2]. Last Example 15 motivates the following

Problem 16. Does there exist an Efimov space K such that $C_p(K)$ does not admit SQ?

Moreover, Corollary 6 may suggest also the following variant of Efimov's problem: Does every infinite compact space K without a non-trivial convergent sequence contain two infinite disjoint homeomorphic closed subsets?

The authors were kindly informed by Professor P. Koszmider about the following example answering the above problem. Recall that a compact space K is a Koszmider space, see [11], if all operators on C(K) have the form gI + S, where $g \in C(K)$ and S is weakly compact. If K is a connected Koszmider space then C(K) is indecomposable, i.e. there are no infinite-dimensional closed subspaces Y and Z such that $C(K) = Y \oplus Z$, see [11, Lemma 2.6].

Example 17. Under \Diamond there exists a separable Efimov space F such that F is a Koszmider space and does not admit two disjoint homeomorphic infinite closed subsets.

Proof. Let K be the compact connected space as in [11, Theorem 5.2]. Let F be an infinite separable closed subset of K. Assume that F contains two closed infinite disjoint homeomorphic subsets L_1 and L_2 . Put $L := L_1 \cup L_2$. This generates a homeomorphism $\phi: L \to L$ which is not the identity. Then the composition operator $C_{\phi}: C(L) \to C(L)$, $C_{\phi}(g) := g \circ \phi$, provides an operator which contradicts [11, Theorem 5.3]. Then F does not contain $\beta\mathbb{N}$. Moreover, F does not contain non-trivial convergent sequences. Indeed, otherwise C(K) is not a Grothendieck space, so C(K) contains a complemented copy of c_0 , see [3, Corollary 2], so C(K) is not indecomposable, a contradiction with the above remark.

Remark 18. As every separable compact space is a continuous image of $\beta\mathbb{N}$, the space F from above Example 17 enjoys this property. Therefore we conclude that the construction provided by Theorem 4 (which applies to $\beta\mathbb{N}$) is not inherited by continuous open surjections.

Having in mind that $C_p(\beta\mathbb{N})$ has SQ we note also the following

Proposition 19. The following assertions are equivalent:

- (i) $C_p(b\mathbb{N})$ has SQ for any compactification $b\mathbb{N}$ of \mathbb{N} .
- (ii) $C_p(K)$ has SQ for any infinite compact K.

Proof. Assume that (i) holds. Then for any infinite compact space K the space $C_p(K)$ has SQ. Indeed, as K contains a discrete infinite subset (in the induced topology), hence homeomorphic to \mathbb{N} , so its closure in K provides some compactification $b\mathbb{N}$. Clearly $C_p(K)$ has a quotient isomorphic to $C_p(S)$, so $C_p(K)$ has SQ. The converse is trivial. \square

(C) A topological space X is a σ -space, see [26], if X has a network composing a σ -locally finite family of subsets of X. Recall also that the Alexandrov-Urysohn compacta (AU-compacta) are separable uncountable compact spaces whose set of all accumulation points has exactly one non-isolated point, see [26]. In [26, Theorem 3.4, Section 3.4] the authors proved that $C_p(K)$, where K is the AU-compacta $K(2^{<\omega})$ associated with the Cantor tree, is a σ -space. There exist however AU-compacta $K := K(\omega^{<\omega})$ associated with a Baire tree such that $C_p(K)$ is not perfect, hence not a σ -space, [26, Theorem 3.4]. Also by [26, Theorem 5.11] the space $C_p(K)$ over a dyadic separable compacta is a σ -space and yet K has non-trivial convergent sequences.

For this cases we know that $C_p(K)$ can be mapped by a continuous and open linear map onto a separable and metrizable infinite dimensional locally convex space, and clearly every metrizable and separable space is a σ -space. One may ask whether for every infinite separable compact space K not containing non-trivial convergent sequences and such that $C_p(K)$ has SQ the space $C_p(K)$ is a σ -space. The answer is negative, as our Theorem 4 shows that $C_p(\beta\omega)$ has SQ while $C_p(\beta\omega)$ is not a σ -space; the latest follows from the results in [26, Sec. 3], cf. also [27, Prop. 5.2]. So, there exist compact spaces K for which $C_p(K)$ have SQ (even metrizable) and some of those $C_p(K)$ are perfect (even σ -spaces) while some are not. We conclude with the following.

Problem 20. Is $C_p(K)$ a σ -space, if K is a separable Efimov space?

References

- [1] A. V. Arkhangel'skii, Topological function spaces, Math. and its Appl., Kluwer, 1992.
- [2] G. Brenner, A simple construction for ridig and weakly homogenous Bollean algebras answering a question of Rubin, Proc. Amer. Math. Soc. 87 (1983), 601–606.
- [3] P. Cembranos, C(K, E) contains a complemented copy of c_0 . Proc. Amer. Math. Soc. **91** (1984), 556-558.
- [4] De la R. Vega, Basic homogeneity properties in the class of zero-dimensional compact spaces, Topology Appl. 155 (2008), 225–232.
- [5] De la R. Vega, *Homogeneity properties on compact spaces*, Disserationes (2005) University of Wisconsin-Madison.
- [6] H. G. Dales, F. K. Dashiell, M. Lau, D. Strauss, Banach Spaces of Continuous Functions a Dual space, Can. Math. Soc. 2016.
- [7] A. Dow, Efimov spaces and the splitting number, Topology Proc. 29 (2005), 105-113.
- [8] A. Dow, Compact sets without converging sequences in the random real model, Acta Math. Univ. Comenianae **76** (2007), 161-171
- [9] A. Dow, S. Shelah, An Efimov space from Martins Axiom, Houston J. Math. 39 (2013), 1423-1435.
- [10] B. Efimov, Subspaces of dyadic bicompacta, Doklady Akademiia Nauk USSR 185 (1969), 987-990
 (Russian); English transl., Soviet Mathematics. Doklady 10 (1969), 453-456.
- [11] R. Fajardo Quotients of indecomposable Banach spaces of continuous functions, Studia Math. 212 (2012), 259–283.
- [12] R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
- [13] V. V. Fedorcuk, A bicompactum whose infinite closed subsets are all n-dimensional, Mathematics of the USSR. Sbornik 25 (1976), 37-57.
- [14] V. V. Fedorcuk, Completely closed mappings, and the consistency of certain general topology theorems with the axioms of set theory, Mathematics of the USSR. Sbornik 28 (1976), 3-33.
- [15] S. Gabriyelyan, J. Kakol, W. Kubiś, M. Marciszewski, Networks for the weak topology of Banach and Fréchet spaces, J. Math. Anal. Appl. 142 (2015), 1183–1199.
- [16] S. Geschke, *The coicoinitialities of Efimov spaces* Set Theory and its Applications, Babinkostova et al., Editors, Contemporary Mathematics **533** (2011), 259–265.
- [17] M. Gillman, M. Jerison, *Rings of Continuous Functions*, Grad. Texts in Math., **43**, Springer, Berlin, 1976.
- [18] P. Hart, Efimov's problem, Problems in Topology II Edited by E. Pearl, pages 171–177, 2007.
- [19] W. B. Johnson, H. P. Rosenthal, On weak*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1975), 166–168.
- [20] J. Kakol, and W. Śliwa, Remarks concerning the separable quotient problem, Note Mat. 13 (1993), 277–282.
- [21] J. Kakol, S. A. Saxon and A. Tood, Barrelled spaces with (out) separable quotients, Bull. Aust. Math. Soc. 90 (2014), 295—303.
- [22] J. Kąkol, S. A. Saxon, Separable quotients in $C_c(X)$, $C_p(X)$ and their duals, Proc. Amer. Math. Soc. 145 (2017), 3829–3841.
- [23] O. Kalenda, A characterization of Valdivia compact spaces, Collect. Math. 51 (2000), 59–81.
- [24] E. Lacey, Separable quotients of Banach spaces, An. Acad. Brasil. Ciènc. 44 (1972), 185–189.
- [25] E. Lacey, P. Morris, On spaces of the type A(K) and their duals, Proc. Amer. Math. Soc. 23 (1969), 151-157
- [26] W. Marciszewski, R. Pol, On Banach spaces whose norm-open sets are F_{σ} -sets in the weak topology, J. Math. Anal. Appl. **350** (2009), 708–722.

- [27] W. Marciszewski, G. Plebanek, On Borel structures in the Banach space $C(\beta\omega)$, J. Funct. Anal. **266** (2014), 4026–4036.
- [28] K. Mcaloon, Consistency results about ordinal definability, Anals of Math. Logic, 2 (1971), 449–467.
- [29] J. Mujica, Separable quotients of Banach spaces, Rev. Mat. Complut. 10 (1997), 299–330.
- [30] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L_p(\mu)$ to $L_r(\nu)$, J. Funct. Anal. 4 (1969), 176–214.
- [31] S. A. Saxon, A. Wilansky, *The equivalence of some Banach space problems*, Colloq. Math. **37** (1977), 217–226.
- [32] V. Shapirovsky, On mappings onto Tychonoff cubes (in Russian), Uspekhi Mat. Nauk. **35** (1980), 122-130.
- [33] W. Śliwa, The separable quotient problem and the strongly normal sequences, J. Math. Soc. Japan **64** (2012), 387–397.
- [34] W. Śliwa, M. Wójtowicz, Separable Quotients of Locally Convex Spaces, Bulletin of the Polish Academy of Sciences Math., 43 (1995), 175–185.
- [35] M. Talagrand, Un nouvean C(K) qui possede la propriete de Grotjhendieck, Israel J. Math. 37 (1980), 181–191.

FACULTY OF MATHEMATICS AND INFORMATICS. A. MICKIEWICZ UNIVERSITY, UL. UMULTOWSKA 87, 61-614 POZNAŃ,

POLAND

 $E ext{-}mail\ address: kakol@amu.edu.pl}$

FACULTY OF MATHEMATICS AND NATURAL SCIENCES, UNIVERSITY OF RZESZW,

UL. PIGONIA 1, 35-310 RZESZW, POLAND

E-mail address: sliwa@amu.edu.pl