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EFIMOV SPACES AND THE SEPARABLE QUOTIENT PROBLEM
FOR SPACES Cp(K)

J. KA̧KOL AND W. ŚLIWA

Abstract. The classic Rosenthal-Lacey theorem asserts that the Banach space C(K)

of continuous real-valued maps on an infinite compact space K has a quotient isomorphic

to c or `2. In [22] we proved that the space Cp(K) endowed with the pointwise topol-

ogy has an infinite-dimensional separable quotient algebra iff K has an infinite countable

closed subset. Hence Cp(βN) lacks infinite-dimensional separable quotient algebras. This

motivates the following question: (∗) Does Cp(K) admit an infinite-dimensional separa-

ble quotient (shortly SQ) for any infinite compact space K? Particularly, does Cp(βN)

admit SQ? Our main theorem implies that Cp(K) has SQ for any compact space K

containing a copy of βN. Consequently, this result reduces problem (∗) to the case when

K is an Efimov space (i.e. K is an infinite compact space that contains neither a non-

trivial convergent sequence nor a copy of βN). Although, it is unknown if Efimov spaces

exist in ZFC, we show, making use of some result of R. de la Vega (2008) (under ♦),

that for some Efimov space K the space Cp(K) has SQ. Some applications of the main

result are provided.

1. Preliminaries

One of famous unsolved problems of Functional Analysis (posed by S. Mazur 1932) asks

(*) whether any infinite-dimensional Banach space has an infinite-dimensional sepa-

rable (Hausdorff) quotient (in short SQ)?

We refer to [31] and [29], [21] (and references there) concerning several aspects related

with problem (*) for Banach spaces. Clearly:

(**) A Banach space X has SQ if and only if X is mapped on an infinite-dimensional

separable Banach space under a continuous linear map.

While this problem still remains open, several concrete classes of Banach spaces admit

infinite-dimensional separable quotients. For example, all infinite-dimensional reflexive

(or WCG) Banach spaces are of that type. With Mazur’s problem yet unsolved, analysts

since Eidelheit (1936) have studied the separable quotient problem for non-Banach spaces;

see [20], [22] for more details.

Rosenthal [30] and Lacey [24] proved that for any infinite compact space K the Banach

space C(K) of real-valued continuous functions has a quotient isomorphic to c or `2; see

also [25]. One can argue as follows:

Two cases are possible.
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(i) K is scattered. Then K contains a convergent sequence (xn) of distinct points. The

linear map T : C(K) → c, f 7→ (f(xn)) is a continuous surjection. Hence the quotient

C(K)/T−1(0) is isomorphic to c.

(ii) K is not scattered. Then K is continuously mapped onto [0, 1]. The space `2 is

isomorphic to a closed subspace of L[0, 1] and l1[0, 1] is isomorphic to a closed subspace

L1(K,BK , µ), where µ is some nonnegative finite regular Borel measure on K. The latter

space is isomorphic to a closed subspace of the norm dual Y of C(K). Therefore the

reflexive space `2 is a subspace of Y that is weakly∗-closed, and then a quotient of C(K)

is isomorphic to `2, see [30, Corollary 1.6, Proposition 1.2].

If E is a Banach space with SQ, then the spaces Cp(K,E) and C(K,E) of E-valued

continuous functions over a non-empty compact K have SQ. In fact, Cp(K,E) has a

complemented copy of E and C(K,E) has a complemented copy of c0, see [3].

In [22, Theorem 18] we proved

Theorem 1. For any completely regular Huasdorff space X the following are equivalent:

(i) Cp(X) has an infinite-dimensional separable quotient algebra.

(ii) Ck(K) has an infinite-dimensional separable quotient algebra.

(iii) X contains an infinite countable closed subset.

Consequently Cp(βN) does not admit an infinite-dimensional separable quotient alge-

bra. This motivates the following natural problem, formally posed in [22].

Problem 2. Does Cp(K) have SQ for every infinite compact space K? Particularly, does

Cp(βN) admit SQ?

If K contains a non-trivial convergent sequence, say xn → x0, then for A := {xn :

n ∈ N} ∪ {x0}, the space Cp(K) has a quotient isomorphic to the infinite-dimensional

separable (and metrizable) space Cp(A). Many compact spaces contain non-trivial con-

vergent sequences; particularly Valdivia compact spaces, by Kalenda’s result [23]. They

are plentiful, indeed: metrizable compact ⇒ Eberlein compact ⇒ Talagrand compact ⇒
Gulko compact ⇒ Corson compact ⇒ Valdivia compact.

Let K be an infinite compact space. If K is scattered, then it contains a non-trivial

convergent sequence. If K is not scattered, then there exists a continuous map from K

onto [0, 1] but this property seems to be not so helpful for Cp(K). Nevertheless, we show

that a stronger condition (+): K is continuously mapped onto [0, 1]c, implies that Cp(K)

has SQ. Recall that the condition (+) is equivalent to the fact that K contains a copy of

βN, see [32].

On the other hand, we have the following easy fact (compare with (**)).

Proposition 3. For any infinite compact K the space Cp(K) can be mapped onto an

infinite-dimensional separable metrizable locally convex space by a continuous linear map.

Proof. If K is separable, Cp(K) has countable pseudocharacter [1, Theorem 1.1.4]. Hence

Cp(K) admits a weaker metrizable and separable locally convex topology, see [15, Lemma
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3.2]. If K is arbitrary, choose a compact separable infinite subset L and apply the previous

case using the restriction surjective map Cp(K)→ Cp(L). �

The main result of the paper is the following

Theorem 4. Let X be a completely regular space with a sequence (Kn) of non-empty

compact subsets such that for any n ≥ 1 the set Kn contains two disjoint subsets home-

omorphic to Kn+1. Then Cp(X) has SQ. Consequently, if K is a compact space which

contains a copy of βN, then Cp(K) has SQ.

This implies the following

Corollary 5. Let X be a normal topological space with a sequence (Sn) of non-empty

closed subsets such that for any n ≥ 1 the set Sn contains two disjoint closed subsets S ′n
and S ′′n that are homeomorphic to Sn+1. Then Cp(βX) has SQ.

Proof. Let n ≥ 1. Denote by Kn, K
′
n, K

′′
n and Kn+1 the closures in βX of the sets Sn, S

′
n, S

′′
n

and Sn+1, respectively. Then K ′n and K ′′n are compact and disjoint subsets of Kn that are

homeomorphic to Kn+1 by [12, Corollaries 3.6.4 and 3.6.8]. Using the last theorem, we

infer that Cp(βX) has SQ. �

Corollary 6. If K is an infinite compact space and every infinite closed set in K contains

two infinite disjoint homeomorphic closed sets, then Cp(K) has SQ.

Problem 2 combined with our main result is also connected with the following question

of Efimov (posed in [10]):

Does every infinite compact space contain a non-trivial convergent sequence or a copy

of βN?

So far, there have been known several counterexamples to the above problem - called

Efimov spaces, see e.g. Fedorchuk [13] and [14], Dow [8], [7], or Dow and Shelah [9],

Geschke [16]; however no ZFC counterexample is known. We refer also to [17] for classes

of compact spaces containing a copy of βN. Since (as will be shown) Cp(βN) admits

SQ, Problem 2 reduces to the case when K is an Efimov space. Nevertheless, under ♦
there exists an Efimov space K such that Cp(K) has SQ, see Example 15 below. Our

approach to Problem 2 suggests a question whether every Efimov space contains two

disjoint homeomorphic infinite closed subsets. It will be answered in the negative in

Example 17.

2. The proof of Theorem 4

We need the following

Lemma 7. Let X be a Tychonoff space. The following assertions are equivalent:

(i) Cp(X) has SQ.

(ii) Cp(X) admits a strictly increasing sequence of closed vector subspaces whose union

is dense.
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(iii) There exists a sequence (Gn) of non-zero continuous linear functionals on Cp(X)

such that the subspace E :=
⋃∞
n=1

⋂∞
m=n kerGn ⊂ Cp(X) is dense in Cp(X).

(iv) There exists a sequence (Fn) of finite subsets of X and a sequence (fn) of non-zero

functions fn : Fn → R such that for every finite subset G of X and any function

g : G→ R and any ε > 0, there exists f in C(X) having the following properties:

(1)
∑

x∈Fn
fn(x)f(x) = 0 for almost all n ∈ N.

(2) |f(x)− g(x)| < ε for all x ∈ G.

Conditions (i), (ii) and (iii) are equivalent for any locally convex space, see [20, Propo-

sition 1], or [34]. The equivalence between (iii) and (iv) is easy to prove by using the

description of the topological dual of Cp(X). In fact, (iv) means that there exists a se-

quence (Gn) of non-zero continuous linear functionals over Cp(X) such that the subspace

H := {f ∈ Cp(X) : Gn(f) = 0 for almost all n ∈ N} is dense in Cp(X).

We are at position to prove Theorem 4.

Proof of Theorem 4. By Lemma 7 it is enough to show that for Cp(X) the item (iii) holds

Let F 1
0 = X. By assumptions there exists a family {F i

n : n ≥ 1, 1 ≤ i ≤ 2} of non-empty

compact subsets of X such that for any n ≥ 1 we have

(1) F 1
n ∪ F 2

n ⊂ F 1
n−1;

(2) F 1
n ∩ F 2

n = ∅;
(3) F 1

n is homeomorphic to F 2
n .

Let h1
n : F 1

n → F 1
n be the identity map and h2

n : F 1
n → F 2

n be a homeomorphism for any

n ≥ 1.

Inductively with respect to n ∈ N we can define homeomorphisms hin for n ≥ 2 and

3 ≤ i ≤ 2n such that

h2i−t
n = (hin−1|F 2−t

n ) ◦ h2−t
n

for n ≥ 2 and 1 ≤ i ≤ 2n−1 and 0 ≤ t ≤ 1.

Put F i
n = hin(F 1

n) for n ≥ 2 and 3 ≤ i ≤ 2n; clearly F i
n = hin(F 1

n) for n ≥ 1 and

1 ≤ i ≤ 2. For n ≥ 1 and 1 ≤ i ≤ 2n we have

F 2i−1
n+1 = h2i−1

n+1 (F 1
n+1) = hin(F 1

n+1) ⊂ hin(F 1
n) = F i

n

and

F 2i
n+1 = h2i

n+1(F 1
n+1) = hin(F 2

n+1) ⊂ hin(F 1
n) = F i

n.

Hence Fn+1 ⊂ Fn for n ≥ 1, where Fn =
⋃2n

i=1 F
i
n, and F i

n ∩ F j
n = ∅ for n ≥ 1 and

1 ≤ i, j ≤ 2n with i 6= j.

For n ≥ 1 and 1 ≤ i, j ≤ 2n the map

hi,jn = hjn ◦ (hin)−1 : F i
n → F j

n

is a homeomorphism.

By induction with respect to k we prove the following

(∗) h2ki−t,2kj−t
n+k = hi,jn |F 2ki−t

n+k for k ≥ 1, n ≥ 1, 1 ≤ i, j ≤ 2n and 0 ≤ t ≤ 2k − 1.
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Let k = 1, n ≥ 1, 1 ≤ i, j ≤ 2n and 0 ≤ t ≤ 1. Then

h2i−t,2j−t
n+1 = h2j−t

n+1 ◦ (h2i−t
n+1)−1 = [(hjn|F 2−t

n+1) ◦ h2−t
n+1] ◦ [(hin|F 2−t

n+1) ◦ h2−t
n+1]−1 =

(hjn|F 2−t
n+1) ◦ (hin|F 2−t

n+1)−1 = [hjn ◦ (hin)−1]|hin(F 2−t
n+1) = hi,jn |F 2i−t

n+1 ,

since

hin(F 2−t
n+1) = h2i−t

n+1 ◦ (h2−t
n+1)−1(F 2−t

n+1) = h2i−t
n+1 ◦ (h2−t

n+1)−1(h2−t
n+1(F 1

n+1)) = h2i−t
n+1(F 1

n+1) = F 2i−t
n+1 .

Assume now that (*) holds for some k ≥ 1.

We prove that (*) holds for k + 1.

Let n ≥ 1, 1 ≤ i, j ≤ 2n and 0 ≤ t ≤ 2k+1 − 1. Let 0 ≤ t1 ≤ 2k − 1 and 0 ≤ t2 ≤ 1 with

2t1 + t2 = t. Then we have

h2k+1i−t,2k+1j−t
n+k+1 = h

2(2ki−t1)−t2,2(2kj−t1)−t2
(n+k)+1 =

h2ki−t1,2kj−t1
n+k |F 2(2ki−t1)−t2

n+k+1 = (hi,jn |F
2ki−t1
n+k )|F 2k+1i−t

n+k+1 = hi,jn |F 2k+1i−t
n+k+1 .

Let (xn) ⊂ X be a sequence with xn ∈ F 1
n for n ≥ 1. Put xin = hin(xn) for n ≥ 1 and

1 ≤ i ≤ 2n. Then

(1) xin ∈ F i
n ⊂ Fn for n ≥ 1 and 1 ≤ i ≤ 2n and

(2) hi,jn (xin) = xjn for n ≥ 1 and 1 ≤ i, j ≤ 2n.

Hence, by (∗), we deduce that

(∗∗) hi,jn (x2ki−t
n+k ) = x2kj−t

n+k for k ≥ 1, n ≥ 1 and 1 ≤ i, j ≤ 2n.

Let Px : Cp(X)→ K be a map defined by the formula f → f(x), for x ∈ X. Next define

Gn : Cp(X)→ K,Gn =
2n∑
i=1

Pxin

for all n ≥ 1. Clearly (Gn) is a sequence of non-zero continuous linear functionals on the

space Cp(X).

We prove that the subspace

E =
∞⋃
n=1

∞⋂
m=n

kerGn

is dense in Cp(X). To prove this it it is enough to show that for any n ≥ 1 and for all

n different points z1, . . . , zn of X there exists g ∈ E with g(z1) = 1 and g(zi) = 0 for

1 < i ≤ n.

Consider two cases.

Case 1 : z1 6∈ Fk for some k ≥ 1. Then there exists g ∈ C(X) with g(z1) = 1, g(zi) = 0

for 1 < i ≤ n and g|Fk = 0. For m ≥ k and 1 ≤ i ≤ 2m we have

xim ∈ F i
m ⊂ Fm ⊂ Fk,

so g(xim) = 0. Hence Gm(g) = 0 for m ≥ k, so g ∈ E.
Case 2 : z1 ∈

⋂∞
k=1 Fk. Then there exist 1 ≤ i0, j0 ≤ 2n with z1 ∈ F i0

n and zi 6∈ F j0
n for

1 ≤ i ≤ n. Thus there exists g1 ∈ C(F i0
n ) with g1(z1) = 1 and g1(zi) = 0 for 1 < i ≤ n

with zi ∈ F i0
n .
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Let g2 ∈ C(Fn) with

g2|F i0
n = g1, g2|F j0

n = −g1 ◦ (hi0,j0n )−1

and g2|F i
n = 0 for 1 ≤ i ≤ 2n with i0 6= i 6= j0. Then there exists g ∈ C(X) with g|Fn = g2

such that g(zi) = 0 for 1 < i ≤ n with zi 6∈ Fn. Clearly g(z1) = 1 and g(zi) = 0 for

1 < i ≤ n. For k ≥ 1 we have

Gn+k(g) =
2n+k∑
i=1

g(xin+k) =
2k−1∑
t=0

g1(x2ki0−t
n+k )−

2k−1∑
t=0

g1 ◦ (hi0,j0n )−1(x2kj0−t
n+k ) = 0,

since hi0,j0n (x2ki0−t
n+k ) = x2kj0−t

n+k for 0 ≤ t ≤ 2k − 1. Thus one gets g ∈ E. �

Since every extremally disconnected compact space K is an F-space, K contains a copy

of βN, so we have

Corollary 8. If K is an extremally disconnected compact space, then Cp(K) has SQ.

Let X be a completely regular space that is not pseudocompact. It is well-known

that βX \ X contains a copy of βN \ N. Moreover (as easily seen), Cp(X) contains a

complemented copy of RN.

Corollary 9. If X is a completely regular space that is not pseudocompact, then Cp(X)

and Cp(βX \X) have SQ.

Theorem 4 yields also the following

Corollary 10. Let X be a completely regular space containing an infinite compact subset

K such that:

(1) For any infinite closed subset S of K there exists an infinite closed subset T of S

and a non-trivial continuous injection φ : T → S; or

(2) For any non-empty open subset U of K there exists an open subset V of U and a

non-trivial continuous injection φ : V → U.

Then Cp(X) has SQ.

Proof. By (1) any infinite compact subset S of K contains two infinite disjoint compact

and homeomorphic subsets. By (2) any non-empty open subset U of K contains two

disjoint compact and homeomorphic subsets such that at least one of them has non-

empty interior with respect to K. Hence there exists a sequence (Kn) of infinite compact

subsets of X such that Kn contains two disjoint subsets homeomorphic to Kn+1 for any

n ∈ N. Now Theorem 4 applies. �

Corollary 11. Let X be a locally compact space. Assume that X contains a non-empty

open subset U such that every non-empty open subset V of U has two different points x, y

that have some homeomorphic disjoint neighbourhoods Vx and Vy. Then Cp(X) has SQ.

Let X be a topological space. For any x ∈ X we assign the set J(x) of all maps φ

defined as follows: φ ∈ J(x) iff there exits an open neighbourhood V of x such that
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φ : V → X is injective and continuous. The set O(x) = {φ(x) : φ ∈ J(x)} will be called

the orbit of x.

Another consequence of Theorem 4 is the following

Theorem 12. Let X be an infinite compact space. Assume that the orbit O(x) of every

element x of X is infinite. Then Cp(X) has SQ.

We need the following

Lemma 13. Let X be a completely regular space. Assume that X contains an element x

such that: (1) x is an accumulation point of its orbit O(x); (2) x has a neighbourhood V0

such that its closure K0 = V0 is compact. Then Cp(X) has SQ.

Proof. Let φ1 ∈ J(x) with φ1(x) ∈ (V0 \{x}). Let V1 and W1 be neighbourhoods of x such

that

V1 ⊂ W1 ⊂ V0 ∩ φ−1
1 (V0) and W1 ∩ φ1(W1) = ∅.

Next, let φ2 ∈ J(x) with φ2(x) ∈ (V1 \ {x}). Let V2 and W2 be neighbourhoods of x such

that

V2 ⊂ W2 ⊂ V1 ∩ φ−1
2 (V1) and W2 ∩ φ2(W2) = ∅.

Continuing on this manner we obtain a sequence (φn) ⊂ J(x) and two sequences (Vn) and

(Wn) of neighbourhoods of x such that

Vn ⊂ Wn ⊂ Vn−1 ∩ φ−1
n (Vn−1) and Wn ∩ φn(Wn) = ∅.

Set Kn = Vn and K ′n = φn(Kn) for all n ∈ N. The sets Kn and K ′n are disjoint, compact

and homeomorphic subsets of Kn−1 for n ∈ N. By Theorem 4 we conclude that Cp(X)

has SQ. �

Proof of Theorem 12. By Ad we denote the set of all accumulation points of a subset A

of X.

If x ∈ X and y ∈ O(x)d, then O(y)d ⊂ O(x)d. Indeed, let z ∈ O(y)d. Let Wz be

a neighbourhood of z. Then there exists a neighbourhood Vy of y and a continuous

injection φ : Vy → X with φ(y) ∈ (Wz \ {0}). Then Wy = φ−1(Wz) is a neighbourhood

of y. Since y ∈ O(x)d, there exists a neighbourhood Vx of x and a continuous injection

ψ : Vx → X with

ψ(x) ∈ (Wy \ {y, φ−1(z)}).
The set Wx = ψ−1(φ−1(Wz)) is a neighbourhood of x and φ◦ψ|Wx is a continuous injection

from Wx to X. Clearly, φ ◦ ψ(x) ∈ (Wz \ {z}). Consequently z ∈ O(x)d. We proved that

O(y)d ⊂ O(x)d.

For any x ∈ X the set O(x)d is non-empty and compact. The set Φ = {O(x)d : x ∈ X}
is ordered by inclusion. By Kuratowski-Zorn Lemma the family Ψ of all linearly ordered

subsets of Φ has a maximal element. Let Ω = {O(xγ)
d : γ ∈ Γ} be a maximal linearly

ordered subset of Φ. The set K =
⋂
γ∈Γ O(xγ)

d is non-empty. Let x ∈ K and y ∈ O(x)d.

Then O(y)d ⊂ O(x)d ⊂ O(xγ)
d for any γ ∈ Γ. By maximality of Ω we have O(y)d = O(xγ)

d

for some γ ∈ Γ. Hence O(y)d = O(x)d, so y ∈ O(y)d. By Lemma 13, Cp(X) has SQ. �
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3. Remarks, questions and examples

(A) A Banach space E is called a Grothendieck space [6] if every null sequence in

the weak∗-dual of E converges to zero in the weak topology of the dual of E. It is well

know that C(K) is not a Grothendieck space if a compact space K contains a non-trivial

convergent sequence. If K is extremally disconnected (in that case K contains a copy of

βN), the space C(K) is a Grothendieck space, see again [6]. On the other hand, Talagrand

[35] constructed under (CH) a compact space K such that C(K) is a Grothendieck space

and yet C(K) does not admit any quotient isomorphic to `∞, particularly K does not

contain a copy of βN. Hence this K is an Efimov space. This example combined with our

main Theorem 4 motivates the following

Problem 14. Does Cp(K) admit SQ if C(K) is a Grothendieck Banach space?

(B) From Lemma 7 (iv) and Theorem 4 we deduce for any compact space K:

non (iv) ⇔ Cp(K) fails SQ ⇒ K is Efimov.

Example 15. There exists (under ♦) an Efimov space K such that Cp(K) has SQ.

Proof. De la Vega [5, Theorem 3.22] (we refer also to [4]) constructed (under ♦) a compact

zero-dimensional S-space K (hence not containing a copy of βN) and such that:

(i) K does not contain non-trivial convergent sequences.

(ii) K has a base of clopen pairwise hemeomorphic sets.

(iii) K contains non homeomorphic clopen subsets.

It is easy to see that K admits a sequence (Kn) of infinite compact subsets such that each

Kn contains two disjoint subsets homeomorphic to Kn+1; therefore by our main Theorem

4 the space Cp(K) has SQ. �

There exist however compact zero-dimensional spaces K without non-trivial convergent

sequences for which no disjoint open sets are homeomorphic, see [28, Theorem ], see also

[2]. Last Example 15 motivates the following

Problem 16. Does there exist an Efimov space K such that Cp(K) does not admit SQ?

Moreover, Corollary 6 may suggest also the following variant of Efimov’s problem:

Does every infinite compact space K without a non-trivial convergent sequence contain

two infinite disjoint homeomorphic closed subsets?

The authors were kindly informed by Professor P. Koszmider about the following exam-

ple answering the above problem. Recall that a compact space K is a Koszmider space,

see [11], if all operators on C(K) have the form gI + S, where g ∈ C(K) and S is weakly

compact. If K is a connected Koszmider space then C(K) is indecomposable, i.e. there

are no infinite-dimensional closed subspaces Y and Z such that C(K) = Y ⊕ Z, see [11,

Lemma 2.6].

Example 17. Under ♦ there exists a separable Efimov space F such that F is a Koszmider

space and does not admit two disjoint homeomorphic infinite closed subsets.
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Proof. Let K be the compact connected space as in [11, Theorem 5.2]. Let F be an

infinite separable closed subset of K. Assume that F contains two closed infinite disjoint

homeomorphic subsets L1 and L2. Put L := L1 ∪ L2. This generates a homeomorphism

φ : L→ L which is not the identity. Then the composition operator Cφ : C(L)→ C(L),

Cφ(g) := g ◦ φ, provides an operator which contradicts [11, Theorem 5.3]. Then F does

not contain βN. Moreover, F does not contain non-trivial convergent sequences. Indeed,

otherwise C(K) is not a Grothendieck space, so C(K) contains a complemented copy of

c0, see [3, Corollary 2], so C(K) is not indecomposable, a contradiction with the above

remark. �

Remark 18. As every separable compact space is a continuous image of βN, the space

F from above Example 17 enjoys this property. Therefore we conclude that the construc-

tion provided by Theorem 4 (which applies to βN) is not inherited by continuous open

surjections.

Having in mind that Cp(βN) has SQ we note also the following

Proposition 19. The following assertions are equivalent:

(i) Cp(bN) has SQ for any compactification bN of N.

(ii) Cp(K) has SQ for any infinite compact K.

Proof. Assume that (i) holds. Then for any infinite compact space K the space Cp(K)

has SQ. Indeed, as K contains a discrete infinite subset (in the induced topology), hence

homeomorphic to N, so its closure in K provides some compactification bN. Clearly Cp(K)

has a quotient isomorphic to Cp(S), so Cp(K) has SQ. The converse is trivial. �

(C) A topological space X is a σ-space, see [26], if X has a network composing a σ-

locally finite family of subsets of X. Recall also that the Alexandrov-Urysohn compacta

(AU -compacta) are separable uncountable compact spaces whose set of all accumulation

points has exactly one non-isolated point, see [26]. In [26, Theorem 3.4, Section 3.4] the

authors proved that Cp(K), where K is the AU -compacta K(2<ω) associated with the

Cantor tree, is a σ-space. There exist however AU -compacta K := K(ω<ω) associated

with a Baire tree such that Cp(K) is not perfect, hence not a σ-space, [26, Theorem 3.4].

Also by [26, Theorem 5.11] the space Cp(K) over a dyadic separable compacta is a σ-space

and yet K has non-trivial convergent sequences.

For this cases we know that Cp(K) can be mapped by a continuous and open linear

map onto a separable and metrizable infinite dimensional locally convex space, and clearly

every metrizable and separable space is a σ-space. One may ask whether for every infinite

separable compact space K not containing non-trivial convergent sequences and such that

Cp(K) has SQ the space Cp(K) is a σ-space. The answer is negative, as our Theorem 4

shows that Cp(βω) has SQ while Cp(βω) is not a σ-space; the latest follows from the

results in [26, Sec. 3], cf. also [27, Prop. 5.2]. So, there exist compact spaces K for which

Cp(K) have SQ (even metrizable) and some of those Cp(K) are perfect (even σ-spaces)

while some are not. We conclude with the following.
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Problem 20. Is Cp(K) a σ-space, if K is a separable Efimov space?
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