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Abstract. In 1983 P. Domański investigated the question: For which
separable topological vector spaces E, does the separable space Ec have a
nonseparable closed vector subspace, where c is the cardinality of the contin-
uum? He provided a partial answer, proving that every separable topological
vector space whose completion is not q-minimal (in particular, every separa-
ble infinite-dimensional Banach space) E has this property. Using a result of
S.A. Saxon, we show that for a separable locally convex space (lcs) E, the
product space Ec has a nonseparable closed vector subspace if and only if E
does not have the weak topology. On the other hand, we prove that every
metrizable vector subspace of the product of any number of separable Haus-
dorff lcs is separable. We show however that for the classical Michael line
M the space of all continuous real-valued functions on M endowed with the
pointwise convergence topology, Cp(M) contains a nonseparable closed vector
subspace while Cp(M) is separable.

1. Introduction

All topological spaces and topological vector spaces are assumed to be Hausdorff.
We say that a topological space X is separable if it contains a dense countable
subset. It is well-known that a subspace of a separable metric space is separable
but that a closed subspace of a separable Hausdorff topological space need not
be separable. For topological groups, G. Itzkowitz [14] proved that any closed
subgroup of a separable compact Hausdorff group is separable. This was extended
by W. Comfort and G. Itzkowitz [3] to show that any closed subgroup of a separable
locally compact Hausdorff group is separable. Recently the second and third named
authors of this paper and M. Tkachenko [17] proved that any almost connected
closed subgroup of a separable pro-Lie group is separable. Another result of [17]
states that for a topological groupG which is a product of connected locally compact
groups, if G is homeomorphic to a subspace of a separable Hausdorff space X, then
G is separable.

In this paper we focus on separable locally convex spaces (lcs) over the fixed
field R of reals. Despite the evident fact that any lcs is linearly connected, our case
is quite different as an infinite-dimensional lcs is never locally compact and is a
pro-Lie group if and only if it is complete and has the weak topology ([12], [13]).

Probably the first example of a closed (but not complete) nonseparable vector
subspace of a separable lcs was given by R.H. Lohman and W.J. Stiles [18].
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We observe that that for a compact Hausdorff space X with a closed subspace
Y , the free locally convex space L(Y ) on Y is a closed vector subspace of the free
locally convex space L(X) on X, see [22]. It could be easily shown that if we
take a compact X containing a nonseparable closed subspace Y , then L(Y ) is a
nonseparable lcs which is a closed subspace of the separable lcs L(X).

L. Drewnowski and R.H. Lohman [10] showed that while a subspace of finite
codimension of a separable lcs is separable, this is not the case if the subspace is as-
sumed only to be of countable codimension. Since (as observed in [16, Lemma 3.2])
any algebraic complement of an ℵ0-codimensional closed subspace of a barrelled lcs
is a topological complement, any nonseparable closed vector subspaces of a sepa-
rable barrelled space would have to be of uncountable codimension. An example
of a separable lcs E (which is not barrelled by the previous remark) containing a
closed ℵ0-codimensional nonseparable subspace has been provided in [10]. We pose
the following problem:

Problem 1. Characterize those separable locally convex spaces E which contain
nonseparable closed vector subspaces.

If E is an lcs which is a continuous linear image of a separable lcs F , where F has
all of its closed vector subspaces separable (for example F is a separable Banach
space or a separable Frechet space), then of course E has all of its closed vector
subspaces separable. Also, if the topological space underlying E is a continuous
image of a separable metrizable topological space, then E has all of its subspaces,
including vector subspaces, separable.

The classical Hewitt–Marczewski–Pondiczery theorem implies that the product
of no more than c separable topological spaces is separable. P. Domański [8] gave an
example of a nonseparable complete lcs which can be embedded as a closed vector
subspace of a product of c copies of the Banach space c0. Later he extended this
result to show that every product of c copies of any infinite-dimensional Banach
space has nonseparable closed vector subspaces [9]. In fact, P. Domański proved
in [9] that if Ei, i ∈ I, with card(I) = c are separable topological vector spaces
whose completions are not q-minimal, then the product

∏
i∈I Ei has a nonseparable

closed vector subspace. (An lcs is called q-minimal if it and all its quotient spaces
are minimal.) This prompted the following problem:

Problem 2. What separable Hausdorff locally convex spaces Ei, i ∈ I, with
card(I) = c are such that the product

∏
i∈I Ei has a nonseparable closed vector

subspace?

In this paper we provide a complete answer to Problem 2. We show that E
has the property referred to in Problem 2 if and only if E does not have the weak
topology. Indeed, we prove that if each Ei, i ∈ I, is an lcs with at least c of the
Ei not having the weak topology, then

∏
i∈I Ei has a nonseparable closed vector

subspace. The key to our proof is to consider the space ϕ, promoted in a number of
papers by S.A. Saxon, where ϕ is the ℵ0-dimensional lcs with the strongest locally
convex topology.

We note that G. Vidossich [23] (see also [18]) proved that every metrizable vector
subspace of a separable topological vector space is separable. Using techniques
developed for the study of varieties of locally convex spaces in J. Diestel, S.A.
Morris and S.A. Saxon [7], in contradistinction with that stated above, we prove
that for every family of separable lcs Ei, i ∈ I, if X is a vector subspace of

∏
i∈I Ei
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with Y a closed vector subspace of X such that either (a) Y is metrizable and X/Y
is separable or (b) Y is separable and X/Y is metrizable, then X is separable.
Immediately we obtain a corollary stating that every metrizable vector subspace of
the product of any number of separable Hausdorff lcs is separable. Thus we extend
an aforementioned result [23], [18]. Consequently, this applies to show that every
metrizable vector subspace of the space Cp(X,E) of continuous E-valued maps
endowed with the pointwise convergence topology is separable, whenever X is a
completely regular topological space and E is a separable lcs.

The following question arises naturally: is it true that the separability of Cp(X)
implies the separability of every closed vector subspace of Cp(X)? In Example 2.13
we show that the classical Michael line M provides the negative answer: Cp(M)
contains a nonseparable closed vector subspace while Cp(M) is separable.

We conclude with the following example. Let E = (E, τ) be the product of
continuum many finite-dimensional lcs (in fact E is isomorphic to Rc). There exist
two separable locally convex topologies ξ1 and ξ2 such that τ = inf{ξ1, ξ2} and each
(E, ξj) contains a nonseparable closed vector subspace.

2. Separability of subspaces of products of locally convex spaces

The key to the results in this section is to use the notion of a variety of locally
convex spaces, introduced in [7] and the locally convex space denoted by ϕ, which
is the ℵ0-dimensional vector space endowed with the finest locally convex topology
(which can also be identified with the free locally convex space on the countable
discrete space), see [20], [7].

A nonempty class Ω of lcs is said to be a variety if it is closed under the operations
of taking subspaces, quotient spaces, (arbitrary) cartesian products and isomorphic
images. Let C be a class of lcs and let V(C) be the intersection of all varieties
containing C. Then V(C) is said to be the variety generated by C. (Clearly this is
indeed a variety.) If C consists of a single lcs E, then V(C) is written as V(E) and
is said to be singly generated, see [7].

Proposition 2.1. (Theorem 1.4 of [20]) Let E be an lcs. Then the following are
equivalent:

(i) E is not a subspace of a product of copies of R;
(ii) E is not in V(R);
(iii) EI contains ϕ, for every I with card(I) ≥ c;
(iv) E does not have the weak topology.

Proposition 2.2. The space ϕ is a complete lcs which is not minimal and every
vector subspace of ϕ is closed.

Proof. The space ϕ is a complete lcs with every vector subspace closed by [21,
Exercise 7 (p.69)].

Proposition 2.1 says that an lcs E does not have the weak topology if EI has ϕ
as a subspace, for some index set I, with card(I) ≥ c. In particular, ϕ itself does
not have the weak topology. Let the topology of ϕ be τ . We now know that there
is a topology strictly weaker than τ on the underlying vector space of ϕ, namely
the weak topology. So ϕ is not a minimal space. �

Proposition 2.3. Let I be an index set and Ei an lcs for each i ∈ I. If at least c
of the Ei are not in V(R), or equivalently do not have the weak topology, then the
product

∏
i∈I Ei has ϕ

c as a closed vector subspace.
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Proof. Write I as a union of disjoint sets Jk, k ∈ K, where card(K) = c and such
that at least c of the Ej are not in V(R) for each j ∈ Jk. So

∏
i∈I

Ei =
∏
k∈K

( ∏
j∈Jk

Ej

)
.

By Corollary 1.5 of [20],
∏
j∈Jk

Ej has ϕ as a closed vector subspace. So
∏
i∈I

Ei has

ϕc as a closed vector subspace, as required. �

The next theorem follows immediately from Theorems 1 and 2 of [9].

Theorem 2.4. [9] Let Ei, i ∈ I with card(I) = c, be a family of lcs each of which
has its completion non-q-minimal. Then

∏
i∈I Ei has a nonseparable closed vector

subspace.

As a corollary of Proposition 2.3 and Theorem 2.4 we have our first main result.
It provides a complete and very satisfactory answer to Problem 2.

Theorem 2.5. Let I be an index set and Ei an lcs for each i ∈ I. If at least c
of the Ei are not in V(R), or equivalently do not have the weak topology, then the
product

∏
i∈I Ei has a nonseparable closed vector subspace.

Having settled which products of locally convex spaces have nonseparable closed
vector subspaces, we turn our attention to conditions which guarantee that a vector
subspace of a product of locally convex spaces is separable. Our work is an extension
of that of G. Vidossich [23] who proved that every metrizable vector subspace of a
separable topological vector space is separable. In particular we shall see that every
metrizable subspace of any product of separable lcs is separable. The key will be
to use a powerful result of J. Diestel, S.A. Morris and S.A. Saxon on varieties of
locally convex spaces in [7].

Proposition 2.6. (Theorem 4.1(ii) of [7]) Let C be any class of Hausdorff lcs and
let E be an lcs in the variety V(C), of locally convex spaces generated by C. If E
is metrizable then E is isomorphic to a vector subspace of a countable product of
quotient vector spaces of finite products of lcs in C.

The most important point in Proposition 2.6 is that we need only countable
products. We now prove the second main result of this section.

Theorem 2.7. Let I be any index set and each Ei, i ∈ I, a separable lcs. If X is
a vector subspace of

∏
i∈I Ei with Y a closed vector subspace of X such that either

(a) Y is metrizable and X/Y is separable, or
(b) Y is separable and X/Y is metrizable,

then X is separable.

Proof. With Proposition 2.6 in mind, we observe that lcs which is a countable
product of a quotient vector spaces of a finite product of a family of (separable)
spaces in C is separable.

Assume firstly that Y is metrizable and X/Y is separable. By Proposition 2.6,
Y is a metrizbale subspace of a separable space and so is separable. As X/Y is also
separable, and separability is a three-space property, we have that X is separable.

Assume next that X/Y is metrizable and Y is separable. As X/Y is in V(C), it is
a vector subspace of a countable product of quotient vector spaces of finite products
of lcs in C by Proposition 2.6. Since such a space is separable, the metrizable space
X/Y is also separable. As separability is a three-space property and Y is separable,
the space X is separable. �
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Corollary 2.8. Every metrizable vector subspace of the product of any number of
separable Hausdorff lcs is separable.

Let Cp(X,E) denote the space of all continuous E-valued functions on X en-
dowed with the pointwise convergence topology, where E is an lcs. The space
Cp(X,E) is a vector subspace of EX endowed with the product topology.

Corollary 2.9. Let X be a completely regular topological space. If E is a separable
lcs, then every metrizable vector subspace of Cp(X,E) is separable.

Remark 2.10. The claim in the Corollary 2.9 for the particular case when E = R
is the space of real numbers can be also proved as follows. Let G be a metrizable
vector subspace of Cp(X) = Cp(X,R), and let L be its closure in RX . Clearly L is
metrizable in RX and is isomorphic to a product RA for some set A by [2, Corollary
2.6.5]. Consequently, A is countable, so L is separable. Hence G is separable.

For any lcs E denote by σ(E,E′) and σ(E′, E) the weak topologies on E and the
dual space E′ respectively. Denote by X = (E′, σ(E′, E)). Since (E, σ(E,E′)) ⊂
Cp(X) holds for every lcs E, Corollary 2.9 yields also the following

Corollary 2.11. Let E be an lcs and let L be a vector subspace of E. The following
assertions are equivalent.

(i) (L, σ(E,E′)|L) is metrizable and separable.
(ii) (L, σ(E,E′)|L) is metrizable.

We note two relevant facts: 1) if X is discrete, then the separability of Cp(X)
implies the separability of every closed vector subspace of Cp(X); 2) if X is a
compact Hausdorff space, then the separability of Cp(X) implies the separability
of every subspace of Cp(X). Both facts are true for the space of all continuous
real-valued functions on X endowed with the compact-open topology, Cc(X).

Is it true that for any completely regular topological space X the separability of
Cp(X) or Cc(X) implies the separability of every closed vector subspace of Cp(X)
or Cc(X), respectively? Below we give the negative answer to these questions.

Proposition 2.12. Let X be a completely regular topological space such that every
closed vector subspace of Cp(X) is separable. Then every closed subset F of X is a
Gδ-set, that is F =

⋂∞
i=1 Ui , where each Ui is open in X.

Proof. Define L = {f ∈ Cp(X) : f(x) = 0 for any x ∈ F}. It is easy to see that
L is a closed vector subspace of Cp(X). By the assumption there is a countable
sequence {fi}∞i=1 which is dense in L. Define Ui = f−1i (−1, 1). Clearly, each Ui is
open in X and F ⊂ Ui. We claim that F =

⋂∞
i=1 Ui. Fix any point x ∈ X \ F .

There exists a function f ∈ L such that f(x) = 2. By the denseness of the sequence
{fi}∞i=1 in L we have a function fi such that ‖fi(x)−f(x)‖ < 0.1, hence x /∈ Ui. �

Example 2.13. We recall a definition of the Michael line M. Let P and Q de-
note respectively the irrationals and the rationals with their usual topologies. The
Michael line M is the refinement of the real line R obtained by isolating all irra-
tional points. Let us mention that M was the first ZFC example of a hereditarily
paracompact space such that the product M × P is not normal. By construction,
M admits a weaker separable metrizable topology, therefore according to Noble’s
theorem [19] Cp(M) is a separable space.

The set Q is closed in M, and it is known, by the Baire category theorem argu-
ment, that Q is not a Gδ-set in M, see [11, 5.5.2]. By Proposition 2.12 it means that
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the separable space Cp(M) contains a nonseparable closed vector subspace. Cc(M)
ia also separable and evidently contains a nonseparable closed vector subspace be-
cause its topology is stronger than the pointwise convergence topology.

In view of the last results the following particular case of Problem 1 arises nat-
urally and deserves special attention.

Problem 3. Characterize those completely regular topological spaces X such that
all closed vector subspaces of Cp(X) ( Cc(X)) are separable.

Our results provide necessary conditions: X admits a weaker separable metriz-
able topology; and every closed subset F of X is a Gδ-set. We do not know if these
conditions are sufficient.

We complete the paper with the following example motivated by our Theorem
2.5. We will use the concept of Baire-likeness due to S.A. Saxon [20]. An lcs E is
called Baire-like if given any increasing sequence (An)n of absolutely convex closed
subsets of E, there exists n ∈ N such that An has a non-void interior (equivalently,
An is a neighbourhood of zero). Every Baire lcs is Baire-like and the topological
product of any family of Baire-like spaces is Baire-like, see [20].

Following [5] for a topological vector space (X, γ) and a vector subspace L ⊂ X,
denote by γ|L the relative topology induced by γ on L and let γ/L denote the
quotient topology on the quotient space X/L.

Example 2.14. Let E = (E, τ) = Rc. Although every closed vector subspace of E
is separable, there exist two separable locally convex topologies ξ1 and ξ2 such that
τ = inf{ξ1, ξ2} and each (E, ξj) contains a nonseparable closed vector subspace.

Proof. Since E is Baire-like, E contains a dense Baire-like (even Baire) subspace
F such that dimE = dimF = dim(E/F ) = 2c, see [15, Proposition 2.10]. Let
G := C[0, 1]c be endowed with the product topology. Then G is a separable lcs
which contains a closed subspace L not being separable by Theorem 2.5.

Let q : E → E/F be the quotient map. Since the quotient topology of E/F is
trivial and dimG = dim E/F , the space E/F admits a stronger separable locally
convex topology α such that (E/F, α) is isomorphic to G. Hence there exists on
E a coarsest vector topology ξ1 such that τ < ξ1, ξ1/F = α, ξ1|F = τ |F, see
[5, (2), p.194]. Note that the sets U ∩ q−1(V ), where U and V run over τ - and
α-neighbourhoods of zero, respectively, form a basis of neighbourhoods of zero for
ξ1. Since separability is a three space property, the topology ξ1 is separable, see [6,
12.10]. Moreover, since both spaces (F, ξ1|F ) and (E/F, ξ1/F ) are Baire-like, the
resulting space (E, ξ1) is Baire-like by [1] (Baire-likeness is a three space property).
Note also that ξ1 is strictly stronger than τ . Indeed, this follows from the fact
that F a proper subspace of E which is τ -dense and ξ1-closed. Finally, since L
is a nonseparable closed subspace of (E/F, α), the space q−1(L) is a nonseparable
closed subspace of (E, ξ1), which completes the proof of the first step.

Now we construct the topology ξ2. Since (E, ξ1) is Baire-like, we obtain in the
space (E, ξ1) a dense subspace F1 of codimension 2c (similarly to what we did
previously using the argument from the proof of [15, Proposition 2.10]). Clearly
F1 is also dense in (E, τ). Let ξ2 be a separable locally convex topology which is
strictly stronger that τ and such that ξ2|F1 = τ |F1 and (E, ξ2)/F1 is isomorphic
to G, constructed similarly to what we have done for ξ1. Also (E, ξ2) contains a
nonseparable closed vector subspace.
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Clearly τ ≤ inf{ξ1, ξ2}. The following equalities hold

τ |L1 = inf{ξ1, ξ2}|L1 = ξ2|L1, τ/L1 = inf{ξ1, ξ2}/L1 = ξ1/L1,

since the topologies τ/L1 and ξ1/L1 are trivial, so they are the same. We proved
that

τ |L1 = inf{ξ1, ξ2}|L1, τ/L1 = inf{ξ1, ξ2}/L1.

This together with [4, Lemma 1] yields the expected equality τ = inf{ξ1, ξ2}, and
the proof is complete. �
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