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Abstract

We propose a finite volume scheme for the compressible (isentropic) Navier—Stokes system.
We show that the numerical solutions generate a dissipative measure-valued solution of the
limit system by deriving suitable stability and consistency estimates. By virtue of the weak-
strong uniqueness principle in the class of dissipative measure-valued solutions, the limit
coincides with the strong solution as long as the latter exists.
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1 Introduction

We study the flow of an isentropic viscous fluid governed by the compressible Navier—Stokes system:

0o + div,(ou) = 0,
O(ou) + div,(ou ®@u) + V,p = pAzu+ (u+ AV, div,u

(1.1)
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in the time-space domain (0,7") x Q. Here o = o(t,z), and u = u(¢, x) are the fluid density and
velocity, constants p > 0, A > 0 are the viscosity coefficients. The pressure p is assumed to satisfy
the isentropic state equation

plo) =a0’, a>0, v>1. (1.2)

For the sake of simplicity, we impose the space periodic boundary conditions, meaning, the physical
domain can be identified with the flat torus Q = ([0, 1]]p1)?, d = 1,2, 3. The problem is (formally)
closed by prescribing the initial conditions

0(0) = 0o € L7(Q), 0o >0, u(0) =, € L*(; RY). (1.3)

Although many numerical methods have been developed to solve the isentropic Navier-Stokes
system, see, e.g., the monographs by Dolejsi and Feistauer [4, 5], the article papers [1, 12, 13, 14]
and references therein, their mathematical properties are not well understood. In particular, the
convergence of approximate solutions towards the solution of the continuous system remains open
in many cases. A pioneering work was done by Karper who proved the convergence of a combined
finite volume (FV) — finite element (FE) method in [16] under the assumption on the adiabatic
exponent v > 3, see [16]. The physically relevant range of adiabatic coefficient v € (1,2) was
successfully handled in [9] via the dissipative measure-valued (DMV) solutions introduced in [7].

Pursuing the strategy of [9], we introduce the concept of (DMV) solution to problem (1.1).

Definition 1.1 (Dissipative measure-valued solution). We say that a parametrized family of prob-
ability measures {Viz }(t.2)e0,1)x05

Vie € L ((0.7) x 2 P(@), @ = {[ou] | e € [0.00), we BV},

is a dissipative measure-valued (DMV) solution of the Navier—Stokes system in (0,7") x €, with the
initial condition Vy, € P(Q) and dissipative defect D € L>°(0,7"), D > 0, if the following holds:

[ [ Wi aote. dx} = [ 1000016 + Vs o) - Vs do
Q t=0 0 Q
for any 0 <7 < T, and any ¢ € C*([0,7] x Q);

t=1 T
[ [0 o dx] [ [0 w0 + (s onwu o) s Vgl e
Q t=0 0 Q
— / / S(V,u): Voo drdt +/ (rM: V) dt
0 Q 0
for any 0 <7 < T, and any ¢ € C1([0,7T] x Q; R?), where
w, = (Viaiu), ue L20,7;WH(Q; RY),
S(V,u) = p(Vyu+ Viu) + Adiveul, and v € L0, T; M(Q));



[/(Vtmlgu + H(o) } // (Veu) : Voudrdt + D(7) <0,

fora.a. 0 <7 < T, where H(p) = ) . The dissipation defect D dominates the concentration
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measure RM | specifically,
[(r™(7); 9)| S E(T)D(7) [8ll oy » for some € € L1(0, 7).

The interested reader may consult [7] for thorough discussion of the concept of (DMV) solutions
and their basic properties, in particular, the weak—strong uniqueness principle used in the present
paper. Recently, the approach to convergence proof via the (DMV) solutions has been successfully
applied to the two finite difference Marker-and-Cell schemes, see [17, 18]. To the best of our
knowledge, there is no convergence proof of any (FV) scheme for the Navier—Stokes system (1.1).

Our numerical method is inspired by a semi-discrete (FV) scheme proposed for the complete
Euler system in [10], where the convergence of piecewise constant numerical solutions via the
(DMV) solutions was proved. We adapt this approach to a fully discrete scheme for the isentropic
Navier—Stokes system (1.1) and aim to show the stability as well as the convergence of numerical
solutions to the smooth solution of the limit system.

The paper is organized as follows. In Section 2, we introduce the necessary preliminaries
including the properties of the mesh, basic notation, the numerical method, and some (in)equalities.
Next, in Section 3, we show the energy stability of the scheme and derive all necessary a prior:
bounds. Then we establish the consistency formulation of the scheme in Section 4. Finally, we
address the convergence of approximate solutions in Section 5.

2 Numerical scheme

We introduce the basic notation, mesh, space and time discretization, and, finally, we define the
numerical scheme along with some useful (in)equalities.

2.1 Space discretization

Mesh. A discretization of Q) is given by M = (T, &, D), where:
e The primary grid 7T is the set of all compact regular quadrilateral elements K such that

a=[J K.

KeT

Let h; be the mesh size in the i"* Cartesian direction, and h = max;—1,.qh; be the mesh size. The

mesh is regular in the sense that there exists a positive 7, such that 1, = max;— 4 {hi}



e We denote by & the set of all faces, and by &; the set of all faces that are orthogonal to the
standard basis vector e; (i € {1,...,d}) of the Cartesian coordinate system. By £(K) we denote
the set of faces of an element K, and define &;(K) = E(K)NE;. Each face o € £ is associated with
a normal vector n. The points xx and x, stand for the centers of mass of an element K € T and
a face o € &, respectively.

e The intersection K N L, for K, L € T, K # L, is either a vertex, or an ed_gs, or a face 0 € £.
For any o € £ we write 0 = K|L if 0 = E(K)NE(L), and further write a;K|L if x;, = xx + hie;
or X, = Xk + (h; — 1)e; for any o € &;. Similarly, we write K = [o0'] for 0,0’ € &(K) if
Xy = X, + hie;. For any o = K|L € &, i € 1,...,d, we also denote by d, = h; the periodic
distance between the points xx and xj.

e The dual grid D is the set of all dual cells. A dual element D, is associated to a generic face
o=KI|L €&, where D, = D, x U D, 1, and D, i (resp. D, ) is built by half of K (resp. L), see
Figure 1 for an example of such cell. Furthermore, we define D; = {D, },ce,,7 € {1,...,d}. Note
that the dual grid verifies for each fixed ¢ the equality

0= UDU.

o€t;

We emphasize that the dual grid is not used for the implementation of the scheme, but only for
the theoretical proof of convergence.

e By |K|, |D,| and |o| we denote the (d—, d— and (d — 1)—dimensional) Lebesgue measure of an
element K, a dual cell D,, and a face o, respectively. Obviously, |K| = h;|o| for any ¢ € &(K)
and |D,| = |o|d, for any o € &;. In what follows, we shall suppose

|K|:|Da|%hd, |U|%hd_1 forany K € T, D, € D, 0 € £.

D,k T% D, 1,

I
K ] ©e ® L

XK Xs Xr

Figure 1: Dual grid

Function spaces. In order to define a finite volume scheme we introduce the spaces ()5, and W,Ei)
(1 € {1,...,d}) of piecewise constant functions defined on the primary grid 7 and the dual grid
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D;, respectively. By q = (q1,...,qq4) € W, := (W}EI), ce W}Ed)), we mean that ¢; € W}Ei), for all
i=1,...,d. We define the standard projections of ¢ € L'(Q) into the discrete functional spaces
Qh and Wh,

1
My LNQ) > Qn. Tlro — ZlKW/chdx,

KeT

: 1
Mp: LYQ) =Wy Tp=(0p),... 005), IHe=>" D”/gzﬁde.
o€eé€ g

o]
7

For a piecewise (elementwise) continuous function v we define

v*" (1) = lim v(x +0n), v™(x) = lim v(z — én), v(z) = v (z) + v ()

__ ,out __,,in
Jim Jim =, o] = o™ (@) — " (@)

whenever x € o € £. Hereafter we mean by v € Q), that v € Q,(; R?), ie., v; € Qy, for all
i=1,....d

Diffusive upwind flux. Given the velocity filed v € (), the upwind flux for any function r € @,
is defined at each face o € £ by

Uplr,v] =rv-n=r"[v-n|" +r°[v-n]" =7v-n— ~[v-n|[r],

where

L1

fE1f] . rinifu-n >0,
=——"— and "= ]
2 o ifu-n < 0.

Furthermore, we consider a diffusive numerical flux function of the following form
Fy(r,v) =Up[r,v] = h?[r], e > 0. (2.1)

Discrete differential operators. We define the discrete differential operators with respect to
both the primary and the dual grid. The divergence operator based on the primary grid that
appears in the numerical scheme (2.3) below is given by

: : . 1 —
divyuy(x) == Z(dlvhuh)KlK, (divyup)g = 7l Z lo|ay -n, VY u, € Q. (2.2)

KeT | ’ cel(K)

We also need some discrete operators that are not directly used to discretize the Navier-Stokes
system, but are essential to establish the consistency formulation in Section 4. Thus, for any
rn € Qpn and qn = (q1ps - - - qan) € Wi, we define the difference operators based on the dual grid,

i i i rL —TK =7
or(x) = 1p, (agwh)m , (597%)]30 = Yo=KlLeg,

o€t;



and the primary grid
Tth Z(aTQ1h> 1K7 7:76{17"'7d}7
KeT

where

Qio’ — Gio ’ —l>
(57—qzh>K = Vo, €& and K = [o0'].

Using the above notations, we define the gradient operators for 7, € @), and q; € W}, by
d d
Verp(x) := (5((51)7%, . ,5(5 )rh)(x), and V7rqp := (5;1)(]1,;1, . ,53—)qd7h)(x),

respectively. Note that the divergence operator div, defined in (2.2) can be written as

d
divpuy, = Zﬁf(pm, YV u, € Q.

=1

Finally, we define the Laplace operator for r, € 5, on the primary grid

Ah’f‘h Z A( T‘h Z (Ahrh)KlK, A;:)’I"h(x) = Z (A](f)Th)KlK,

KeT KeT
where i € {1,...,d}, and

(i), ), . 1 [74] 1 [74]
(Ah Th)K-—W Z |0'| d07 (A}ﬂ"h)[{.—m Z |0'| ] S VKeT.

€& (K) oe&(K) 7

In addition, it is worth mentioning that

A Th —5 (5 Drn) Vi€ {1,...,d}.

2.2 Time discretization

For a given time step At = h > 0, we denote the approximation of a function vy, at time t* = kAt

by vf for k = ., Np(= T/At). The time derivative is discretized by the backward Euler
method,
k U’ﬁ — vy
Dy = Tth’ for k=1,2,..., Nr.

Furthermore, we introduce the piecewise constant extension of discrete values,
on(t,") = o) for t < At, on(t,") = of fort e [kAt, (k+1)At), k=1,2,..., Ny,
w,(t, ) = ul for t < At, uy(t,-) =uf fort € [kAL, (k+1)At), k=1,2,..., Np,
and pp, = p(op), for which the discrete time derivative then reads
vp(t, ) —op(t — At, )
At '
We shall write A ~ B if A < ¢B for a generic positive constant ¢ independent of h.

Dy, =
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2.3 Numerical scheme

Using the above notation we introduce the implicit (FV) scheme to approximate system (1.1).

Definition 2.1 (Numerical scheme). Given the initial values (g%, u)) = (II7 0o, II7uy), find (05, up) €
Qn x Qp, satisfying for k = 1,..., Ny the following equations

/ Dyof by da — Z/Fh of uf) [on] dSz =0, for all ¢, € Q, (2.3a)
ceé
/Dt ohuy) - ¢y, dx — Z/Fh opuy,uy) - [¢,] dSz — Z/phn [#,] dSz
el oe€

=y / [ui] - [#n] dSz — (+ ) / divyuf div,¢, dz, forall ¢, € Q. (2.3b)

ce€ Q

Approximate solutions resulting from the scheme (2.3) enjoy the following properties:

1. Conservation of mass.
Taking ¢, = 1 in the equation of continuity (2.3a) yields the total mass conservation

/Qh(t,-)dx:/ggdx:Mo>O, t>0.
Q Q

2. Existence of numerical solution.
The discrete problem (2.3) admits, for any k& € {1,..., Np}, a solution (of,uf). We refer the
reader to [15, Theorem 3.5] for the proof.

3. Positivity of numerical density.
Any solution (¢f, uf) to (2.3) satisfies of > 0 provided o} ~' > 0, k € {1,..., Nz}, see [15, Lemma
3.2] for the proof.

2.4 Preliminary material

Firstly, we recall the identity
1
UpVp — Up Up = 1 [un] [vn], (2.4)

together with the product rule
[unvn] = ur [on] + [un] vn (2.5)
which are valid for any uy, v, € Q. A direct application of the product rule (2.5) further implies

[[Tth]] [[Vh]] — % [[Th]] [[‘Vh‘2]] = ﬁ[[vh]f, fOI' TR € Qh, vy € Qh, (26)

and the following lemma.



Lemma 2.2. For any ry € Qp and v, € Qp, it holds
Z/ 7 [va] + %7 [r]) - n dSz = 0. (2.7)
el
Proof. For the functions r, vy, constant on each element K € 7T, it holds that
Z/ 7h [vi] + Vi [re]) -ndSz = Z/[[rhvh]] ndSx = ZTKVK Z /ndSaz =0.
o€l o€l KeT ce&(K

O

Consequently, for any rp,, ¢, € @ and q, € Wy, it is easy to observe the following discrete
integration by parts formulae

/ Aprpdp de = — / Very - Veopdx = / ralpép do, (2.8a)
Q Q Q
/ qi7h5g)rh dr = — / rhfigé)q@h dl’, 1€ {17 ce ,d} (28b)
Q Q

Next, we list some basic inequalities used in the numerical analysis. We assume the reader is
fairly familiar with this matter, for which we refer to the monograph [6], and the article paper [13].
If ¢ € C'(Q) we have

[76]| S hllgler, forany 2 €0 €&, and 6= Tlydl oy S blldller.  (29)

Furthermore, if ¢ € C%*(Q), there hold for all 1 < p < co that

Vo = Vellrgp S by [Vellrdll e S M10llcr + b, (2.10)

~

Ve = Vrllp (L) [, S h.  [Idivae — diva(Tlre)|, < D (2.11)
If in addition, ¢ € C3(%), we get
1AL ¢ — Asdll o S Rlldllos,  [1AILT 9L, S I9llc2 + hlldlles, ¥ 1 < p < oo. (2.12)
The inverse estimates [3] for r, € @, read
Irnllin@) S 1™ vl gy for any 1<q<p < oc. (2.13)

Finally, we need a discrete version of the Sobolev-type inequality that can be proved exactly as
[11, Theorem 10.17].



Lemma 2.3 (Sobolev inequality). Let the function r > 0 be such that
0 </7“dx:cM, and /de < Cg forvy>1.
Q Q

Then the following Poincaré-Sobolev type inequality holds true

2
ol < elVevlugy + ¢ [ rblde) S clVerlag e e [ roPar (1)
Q Q

for any v € Qy,, where the constant ¢ depends on cpr and cg but not on the mesh parameter.

The following lemma shall be useful for analysing the error between the continuous convective
term and its numerical analogue.

Lemma 2.4. For any ry,, vy € Qp, and ¢ € CH(Q), it holds

/thvh \Y4 qbdx—Z/Fh rn, vi] [Or¢] dSz

el

-y / ( V- n|+ b+ - [[vh]] n) [r] [TIr¢] dSz + / Vi (Va¢ — Vrllp(Ilr¢)) dz

el

Proof. Using the basic equalities (2.4)—(2.7), we have

/rhvh v¢dx_2/rhvh V.o dx
Q

KeT
= Z / T'nVp V §Z§ VTHD (HT¢))d$ + Z / 'nVp - HHTgb dSz
KeT KeT
/ ravi - (Voo — Vllp (Tir¢)) do — / [ravi] - nll;¢ dSz
L =t

/rhvh (Voo — V7llp(Ilr¢)) d:c—l—Z/rhvh n [[Ir¢] dSx
Q

el

/rhvh (Vi — VTHD(HTQS dx—i— Z/ Thvy, — T Vi) - [Ir¢] dSz

el

+Z/rh vy, - n [Il7¢] deiZ/( |V - n| 4 A > [r] [ré] dSz

oce€ el

/Q rnvi - (Voo — Vollp (Tr¢) ) da + > / [r2] [va] - n [[r¢] dSx

el

+Z/Fh 4, Vi [I17¢] dS:U+Z/( ¥ - n| +h5> (ra] [T76] dSe.



3 Stability

We show the energy stability of the scheme and derive the estimates necessary for the consis-
tency formulation in Section 4. For simplicity, hereafter we will write the norms |||, and
Il oo riza () @ Ml Lo and [[][ o 1o, respectively.

To begin, we recall the discrete internal energy balance, which is a result of the renormalization
of the continuity equation, see, e.g. [8, Section 4.1] or [15, Lemma 3.1]. Indeed, multiplying (2.3a)
by H'(oF) gives rise to the result of the following lemma.

Lemma 3.1 (Internal energy balance). Let (op,u,) € Qn X Qp salisfy the discrete continuity
equation (2.3a). Then there exists &€ € co{of ™", of} and ¢ € co{ok, ok} for any o = K|L € € such
that

/QDt’H(@ﬁ) dfc—Z/u_fi'n [p(eh)] dSz

ocg VO

At " k|2 1
S AGIEYIR S

o€l

2 (3.1)
[ O[] 0 + [ ni) ase

g

Next, we recall the renormalization of the transport equation, see [8, Lemma A.1, Section A.2].

Lemma 3.2 (Renormalized transport equation). Suppose that bf € Qn, x € C?(R). Then there
exists € € co{by 1, 0}, ¢ € co{bk, (bF)°"} for any ¢p, € Qp, such that

/Q Dy(ekbY () ndo — 3 / Upldbth, ut] [ (45)én] dSa
ceEV
A
= /QDt (@ﬁx(bﬁ)) op dr — ;LUP[QZX(bi),uh] lon] dSz + {/QXN(OQZ_”D%F% dz

£ [ 1 L] [Oxteh) X 0k on] s

o0

(3.2)

32 [ O] ey [af -] ase

KeT cCcOK Y%

3.1 Total energy balance

Now, we are ready to derive the discrete counterpart of the total energy balance.

Theorem 3.3 (Discrete energy balance). Let (o, uy) be a numerical solution obtained from the
scheme (2.3). Then, for any k = 1,..., Nr, there exists ¢ € co{of ', oF} and ¢ € co{d¥, o} } such

10



that, for any o = K|L € &,

1
Dt/ (Qthu —i—?—l(gh)) dx—i—hEZ/Qh [[uh]] dSa:+u||VguhHL2 (p+A) /\dlvhu dz

el

/7—[” )| Dyof|*do — = /7—[” ha+ k- n|> dSz

At N o
-5 oF | Dyuf 2 x——Z/ or) p|uh n| [[uh]] dSx.
Q ocef

Proof. First, taking ¢, = uf in (2.3b) we get

/Dt oruf) uhdx—Z/Fh oruf, uf) [[uh]] dSm—Z/phn [[uh]] dSz

ocef el
=L HVSUZHLQ — (p+ )\)/ |div,uf|? dz
Q
Next, we use relation (3.2) for b, = uf, x(Juf|) = i{u}|?, and ¢, = 1 to compute

/Dt(@ﬁui dx—Z/Up ohuy, ug] - [[uhﬂ dSz
Q

el

1 A
:/Dt (—gmu )dm— /Up[ of [uf|? uﬁ] I1] de+—t/gi_1|Dtuﬁ2dx
QO 2 \\// 2 (e}

ocel

> ot [R5 L S i ] o

el KeT cCOK

t e
:/Dt (§Q§|uﬁ|2> dx+7/9 1\Dtuh|2dx_2/h [or] |[ |uh|2ﬂ dSz

ce€
+ = Z/ oF)ou u_h [[uh]] dSz.

cel

Further, summing up the previous two observations we infer that

1 .
Dt/—gh|uf12d:c+uHVgui||L2+(u—|—)\)/ |div,uf | da
02

_Z/phn [[uh]] de—Z/hE [[Q uh]] [[uh]] dSm—FZ/if [[gh]] H [uy, ﬂ dSx

oce€ o€l o€t

—ﬁ Dy dx——Z/ oF up|uh n| [[uh]] dSz.

2
el

11

(3.3)

(3.4)



Finally, combining (3.4) with (3.1) and using the equalities (2.6)—(2.7) we get

1
Dt/ (29h|u —i—H(Qh)) dx—i—hEZ/Qh [[uhﬂ dS:U—I—/L”VguhHLQ (n+A) /|d1vhuh| dz

/7—[" (O)|Dyof|? dz — = /7—[" hE + [uk - n|> dSz

o | Dyai]® x——Z/ o up‘uh n| [[uh]] dSz,

oe€

At

which completes the proof.

3.2 Uniform bounds

Having established all necessary ingredients, we are ready to discuss the available a priori bounds
for solutions of scheme (2.3). From the total energy balance (3.3) and the Sobolev inequality

(2.14), we directly get the estimates comprised in the following corollary.

Corollary 3.4. Let (o, uy) satisfy the scheme (2.3) for v > 1. Then the following estimates hold

2
thuh”LooLl 5 17

lonllpoors S 1,
lonanll, 2 S 1,

LT
IVeunl|2p2 S 1,
[diviupl[ o ST,

lanllpeps S 1,

/ Z/Qh[[uh]] dSzdt <1,

ce€
T
|3 [ Ll 0 + - nly asiar 51,
0 occE V9

where ¢ € co{ok, oL} for any o = K|L € £.

To show the consistency of the numerical scheme we shall need further bounds on the numerical
solution, which can be derived provided the adiabatic coefficient in (1.2) lies in the physically

realistic range v € (1,2).

Lemma 3.5. Let (op,u) satisfy the scheme (2.3), and let 1 < v < 2. Then there hold

e+2

”\/ Qh”LZLoo s h_ 2 9

12

(3.6a)



e+2

HQhHL2L2 S ) (3.6b)

_et2
| onunl| 22 ShT (3.6¢)

Proof. The estimates (3.6a) and (3.6b) hold true due to the bounds (3.5a), (3.5b), (3.5h). The
detailed proof can be found in [18, Lemma 3.3], see also [9, Section 4.10]. The estimate (3.6c¢) is a
direct consequence of the previous two, indeed,

< < -
lonunll 22 ~ [V/onll 2 g [[V/0n0A] oo 2 ~ 1

e+2
2y

4 Consistency

Another step towards the convergence of the approximate solutions is the consistency of the nu-
merical scheme. In particular, we require the numerical solution to satisfy the weak formulation
of the continuous problem up to a residual term vanishing for h — 0.

Theorem 4.1. Let (on,un) be a solution of the approximate problem (2.3) on the time interval
0,7 with1l <y <2and 0 <e<min{l,2(y—1)}. Then

T T
- [ do0yas= [ [ 000+ o, Vo) dadt [ ennteio e (41)
for any ¢ € C3([0,T) x Q);

T
- / opupe(0,-) dz = / / [onuy, - 0, + opuy, @y, 2 Ve + prdiv, o] dzdt,
. 0 e (4.2)

T T T
— u/ / Veuy, : Vypdedt — (p+ /\)/ / divyuy, div,¢ do dt +/ ean(t, @) dt
o Ja o Ja 0

for any ¢ € C2([0,T] x ; RY);
lejn( D)o S h° (|9llcz + hlldllcs), j=1,2, for some B> 0.

Proof. Let ¢ € C3([0,T) x Q) and ¢ € C3([0,T) x 2; R?). We test the equations (2.3a) and (2.3b)
with Il¢ and I11¢, respectively. Then, we deal with each term in 4 steps.

13



Step 1 — time derivative terms:

— t — At
/ / DIl da dt = / / ”L ) ot) dw dt
T—At
/ /Th dxdt—A—t /rh o(t + At)dzdt
/ /Th YD (t dxdt—l——/ /Th o(t + At) dxdt——/ /rh o(t + At)dxdt
T—At At
/ / t)Dyop(t dxdt—/r2¢(0) dz
Q
where 7, stands for g, or gpu;p, @ =1,...,d. Thus, we have
T T
| [ pettrodsat =~ [ [ oD asa - [ oo (4.30)
0o Ja 0o Ja Q
T T
| [ ptomnnirgdsat—— [ [ oD@ dra - [ dufs@dr, @)
0o Ja 0o Ja Q

for the continuity and the momentum equations, respectively.

Step 2 — convective terms:
To deal with the convective terms, it is convenient to recall Lemma 2.4:

T T 4
/0 /thuh~Vx¢dxdt—/0 ;/UF[rh,uh] [1r¢] dedt:jZIEj(rh),

where .
1
—5 [ X [ 1@l ] el dsar,
0 sege
1 [T
= Z/ Z/ [un] - nry] [Tr¢] dSxdt,
5(rp) / > / he [r1] [r¢] dSz dt,
el
Ex(ra) = / [ (V26 = Vrllo(11re) ) dedt,
0 Jo
are the error terms to be estimated. Again, 7}, is either g or opuip, 1 =1,...,d.

e Firstly, for the error term F; we can write
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-5/ TZ / -0l ] [70] szt = 5 Zg [ o] dsaar

/ i=1 o€&;

:__/ ZKZT/hfﬁ |
:__/ i) (o8 HT¢>) )dxdt

where we have used the integration by parts formula (2.8b), the product rule

/ hi[win 097, 00Ty ¢ dSx dt

Tt HT¢> de dt

/T‘K (|uzh|Kh5 ( )Hrgb)—l—h< )|

i=1 KeT

7”1+7"2
2

1+ G2
T2g2 — T1q1 = (7"2—7”1)

(2 —q1) + 5

and

(@) = % for o,0' € &(K), o # o'

Further, employing the inequality ( 5 ) <4 +b twice, we clalm’

Wih ‘LQ rg Hui,hHLQ- Slmllarly, we

claim H?ﬁgf)m‘ N H?ﬁ(i)ui h ‘ (5%2— u; h) = <6é)ui,h> . Then applying Holder’s inequality,
K

interpolation error estlmates (2 10 (2.12), the velocity estimates (3.5d), (3.5f), the fact |O,u;| >
Or|u;|, and noticing A ro= 5 55 r, we derive

() / ”KGT/ r (\ulh\K pid (0 T176) + hy (9l ) ( /IEQS)K) dz dt
fé(/f;/x%) ([ Zf) Jaeoed
([ g h o)

d
S (@) (i) 0)
Y s ([85170], s+ 001, [

Loe [

oY 7 ¢

Leo Lo ]

L2L2>

KeT

<
~h ||7"h||L2L2 (HAhHTﬁbHLwLoo ||uhHL2L2 + ||V€HT¢||LOOL<>° HVSU-h”L?L?)

S hlral g2y
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Consequently, applying the density estimate (3.6b), and the momentum estimate (3.6¢) indicates

€+ 2
2y

Ey(rp) <K, p=1- > 0, provided e < 2(y — 1),

for r,, being g5, or gru;pn, i =1,...,d.

e Secondly, we deal with the error term Fs. In accordance with (2.9), we have

Ex(ra) ~ 2> [ | [ua] -0 [ry] | dSz dt.

ocE V9

For rj, being oy, we further write

Es(on) ~ h (/OTZ/Uﬂuh]]Z dedt) " </0T2Lﬂghﬂ2 dedt) !

T 1/2
< hhl/2 ( / > |’ dSx dt)
0

ocg V9

2

e+ 2
2y

SRRV gyl pape S BE, B=1- > 0, as soon as € < 2(y — 1).

Here we have used Holder’s inequality, (3.5d), (3.6b), and the fact |[on] | < 20n.

For 7, being opu; p, we get
§ T
Es(onus) Nh/ Z/H[uh]] ‘0| [on] T + [w] 7| dSwdt = Ty + T,
0 gee

To control the residual term 7 we apply Holder’s inequality, (3.5a), (3.5g), inverse estimate (2.13)
and the inequality | [on] | < 205 to obtain

T
< / S [ 1w - nfgri dSzdr
0

oceg 9

- 1/2 - 1/2
Sh (/ Z on [un]? de) (/ Z @]u_h|2d5x>

0 seedo 0 seedo
< pa-az.

Further, applying (3.5g) we can control the residual term 75 as

T
T — h/ S [ 1wl - 0] [wa] [or dSe dt £ 1.
0

ocE VY
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Therefore, we claim that provided ¢ < 2(y — 1) we have
Ex(ry) Sh°, B>0
for r;, being o5, or gru;pn, i =1,...,d.

e Next, we consider the error term Fs. Analogously as above, the integration by parts formula
(2.8a), Holder’s inequality, and the interpolation error (2.12) yield

T T
Eg(’l"h) = ha/ Z/ [[Th]] [[HTgb]] dSxdt = —hE—H/ /ThAhHqu)diL' dt
0 segdo 0 Q
SE rall g (16llez + B lléllos) S B Irall s -

Furthermore, using the estimates (3.5b) and (3.5¢) we can conclude for rj, being o or nu;p,
1=1,...,d, that

E3(7’h) S hEJrl.

e Finally, using the estimates of kinetic energy (3.5a) and momentum (3.5¢) together with inter-
polation error (2.11) we obtain for rj, being g5, or gpu;p, @ = 1,...,d that

T
i) = / / rattn - (Vo — Vollp (I76)) dadt < hlollgs lrmnllp g < bllratnll e e < 5
0 Q

Consequently, we conclude the consistency formulae of the convective terms in both equations
(2.3a) and (2.3b), by collecting the above estimates of the four terms E; (j =1,...,4):

[ o Vaodo =3 [ Flonw) [Mire] ase < 1, (4.40)

{ oeg 9

/ onuy @y 1 Vo da — Y [ Floguy, wy] [Ty o] dSz < h%, (4.4b)
& oeg 9

for some (31, 53 > 0 provided e < min{1,2(y —1)}.

Step 3 — viscosity terms:
In accordance with (2.10) and (3.5d), we have the control of the viscosity terms. Indeed, we have

/OT/QVEUhichbdxdt—/OTZ/Ud%[[uh]].[[HquH dSz dt

. et (4.5a)
- / / Vew, : (Voop — Vellrg) dodt < |Veunllape b [@lln < b,
0 Q
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and for the divergence term, we get

T T
/ / dthuh dth (HT¢) dx — / / dthuh lex(ﬁ dx dt
0 Q 0 Q

T
- / / diviw, (divy (Tl ¢) = dive@ ) dodt S [[divaw | a2 b [ llcs S b,
0 Q

by using (3.5¢) and (2.11).

(4.5b)

Step 4 — pressure term:
The pressure term can be controlled by using the integration by parts formula (2.7), the interpo-
lation error (2.11), and the estimate (3.5b), i.e.,

/ Z/phn [Ir¢] dSa:dt—/ /phlemqbdiL'dt
/ Z/Hﬂb n[py] dSxdt — /

ock 0 ket

/ > ok Y /HT¢ ndSa:dt—/

KeT  oe&(K 0 ke
/o

/ph dlvh(HT¢) d1v$¢) dx dt

/ prdiv,¢ dx dt

/ prdiv,¢ dz di

KeT
S lpnllpee i Pl @iz < P
(4.6)
Collecting the inequalities (4.3)—(4.6) we complete the proof of Theorem 4.1. O

5 Convergence

5.1 Convergence to dissipative measure-valued solution

In this section, we show that any Young measure generated by a family of numerical solutions is
a (DMV) solution in the sense of Definition in 1.1.

Theorem 5.1. Let {(of, u})Y™", be a family of numerical solutions obtained by the scheme (2.3),
with At =~ h, 1 <v<2,0<e< mm{l, 2(y — 1)}, and the initial data satisfying

00 € L7(Q), 0o >0, uy € L*(%; RY).

Then any Young measure {Viz}z)co,mx0 generated by o, up for h — 0 represents a dissipative
measure-valued solution of the Navier—Stokes system (1.1) in the sense of Definition 1.1.

The rest of the section is devoted to the proof of Theorem 5.1.
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5.1.1 Weak limit

We may use the energy estimates (3.3) to deduce that, at least for suitable subsequences,

on — o weakly-(*) in L>(0,7; L7(R2)), 0 >0
w;, — u weakly in L*((0,T) x Q; R%),
where u € L*(0,T; W"(Q2)), Veu,, — V,u weakly in L*((0,T) x Q; R™>%),
on, — ot weakly-(*) in L0, T; L7+ (Q; RY)).

where the superscript ‘~’ denotes the L'-weak limit.
Note that, the limit functions satisfy the equation of continuity in the form

_/nggb(o,-)dxz/OT/Q[Qc‘?tqurﬁl-Vzcb] dzdt (5.1)

for any test function ¢ € C([0,00) x Q). It follows from (5.1) that 0 € Cyeax([0,T]; L7(£2));
whence (5.1) can be rewritten as

[eoteras] = [ [lovo+ gm0 as (52
for any 0 < 7 < T and any ¢ € C*°([0,T] x Q).

5.1.2 Young measure generated by numerical solutions

The energy stability (Theorem 3.3) together with the consistency (Theorem 4.1) provide a suitable
platform for the use of the theory of measure-valued solutions developed in [7]. In accordance with
the weak convergence statement derived in the preceding part, the family [os,uy] generates a
Young measure - a parameterized measure [2, 19]

Ve € L®((0,T) x Q;P([0,00) x RY)) for a.e. (t,z) € (0,T) x €,

such that

(Vew,9(0,0)) = g(o,u)(t, x) for a.e. (t,z) € (0,T) x &,
for any g € C([0,00) x R?) such that

—_——

g(on, up) — g(o,u) weakly in L*((0,T) x ).

Accordingly, the equation of continuity (5.2) can be written as

[/Q 00(t, ) dx] Z:; _ /OT /Q (00, + (Vya, 0u) - Vo] dadt (5.3)
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For the consistency formulation of the momentum equation (4.2), we apply a similar treatment,

onty, @ Wy, + p(on)I — {ou® u+ p(o)I} weakly-(*) in [L>(0,T; M(Q))]™;

whence letting h — 0 in (4.2) gives rise to
t=1 T
{/ (Viz; 0u) - B(t, ) dfﬂ] =/ / [(Vt,x; ou) - 0p + {ou @ u+ p(p)I}: quﬁ} de dt
Q t=0 0 Q

_ / / [Mvmu:V$¢+(;¢+)\)dikudivx¢} da dt,
0 Q

or, rewritten as

[/Q (Vi; 0u) -¢(t,~)de;; —/OT/Q [<Vt,m;9u>'8t¢+{9u®u+p(0)]1} : Vﬂﬁ} dz dt -

— / / [,uvmu : Ve + (1 + N)diveu divmgb} dx dt,
o Ja
for any 0 <7 < T, ¢ € C=([0,T] x ; R?), where we have set

Vo,e = Oloo () u0(x)] -

Next, we introduce the concentration remainder
R ={ou®u+p(o)l} — <Vt,x; Qu@u+ 1?/(?)1[> € [L(0, T; M(2))] ™4,

and rewrite (5.4) in the form

t=1

{ /Q (Via; 0u) - B(t,-) dl’} »
_ / ' /Q [ Visi 0w) - 0+ Vi ou @ ) - Vi + (Vi p(0)) divig| do (5.5)

— / / [uvxu Ve + (1 + A)div,u - divxqb} dx dt +/ / R :V,.pdrdt
0o Ja o Ja

for any 0 <7 < T, ¢ € C=([0,T] x Q; RY).
Similarly, the energy inequality (3.3) can be written as

[ s Ouetat o) s o [ [t e D) drat D) <0 (56)

for a.e. 7 € [0,T], with the dissipation defect D satisfying

/ IR e dtg/ D(t) dt, D(r) Zliminf/ Vo2 dt—/ /|qu|2dx dt,  (5.7)
0 0 h=0"Jg 0o Ja
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cf. [7, Lemma 2.1].

Relations (5.3), (5.5)-(5.7) imply that the Young measure {V,;}ize(0,m)x0 represents a dissi-
pative measure-valued solution of the Navier—Stokes system (1.1) in the sense of Definition 1.1.
Seeing that validity of (5.5) as well as the bound on the dissipation remainder (5.7) can be extended
to the class of test functions ¢ € C1([0,T] x ©; R?), we have proved Theorem 5.1.

5.2 Convergence to strong solution

In the previous subsection, we have shown that the numerical solution generates the dissipative
measure-valued solution. We admit the conclusion of Theorem 5.1 is rather weak, also due to
the non-uniqueness of Young measure, however, we may directly use the weak-strong uniqueness
principle established in [7, Theorem 4.1] to obtain our final convergence result.

Theorem 5.2 (Convergence to strong solution). In addition to the hypotheses of Theorem 5.1,
suppose that the Navier—Stokes system (1.1) endowed with the initial data (09, wg) admits a reqular
solution (o, ) belonging to the class

0,Vz0,u,V,ue C([0,T) x Q), due L* (0,T;C(1RY), 0> 0.
Then
on — 0 (strongly) in L ((0,T) x ), u, — u (strongly) in L* ((0,T) x Q; R?).

Indeed, the weak—strong uniqueness implies that the Young measure generated by the family
of numerical solutions coincides at a.a. point (¢,x) with the Dirac mass supported by the smooth
solution of the problem. In particular, the numerical solutions converge strongly and no oscillations
occur.

Remark 5.3. We have constructed solution on a space-periodic domain €2. When considering a
polyhedral domain, the existence of smooth solutions in the case of the no—slip boundary condition
may be a delicate task. To avoid this problem, one has to approximate a smooth domain by a
family of polyhedral domains exactly as in [9]. Note, however, this problem does not occur in the
case of periodic boundary conditions.

Remark 5.4. If, in addition, we assume the density is uniformly bounded, the results of Theo-
rems 5.1 and 5.2 remain valid on an unstructured grid as well. Indeed, the only difference of the
proof would be in showing the consistency of the convective terms in (4.4). More precisely, since
the discrete operators 5g)rh, 5(;)ql-7h and Ag)rh can not be defined on an unstructured grid, the
estimate of the error terms F;(op,) and Ej(onuy,) would be done without the discrete integration by
parts thanks to L°*°—bound on the density. Moreover, in view of the conditional regularity result
[20], we obtain the unconditional convergence to the strong solution as the (DMV) solution with

bounded density is regular. We leave the details to the interested reader.
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Conclusion

We have studied a finite volume method for the multi—-dimensional compressible isentropic Navier—
Stokes equations on regular quadrilateral mesh in a periodic domain. The main feature of the
scheme is the artificial diffusion in the numerical flux function (2.1), which provides more regularity
on the discrete density. The solutions of the scheme were shown to exist while preserving the
positivity of the discrete density. Moreover, we have shown the stability of the scheme by deriving
the unconditional balance of the discrete total energy in Theorem 3.3. Furthermore, we have
established the consistency formulation provided the artificial diffusion coefficient is large enough,
see Theorem 4.1. Finally, we have shown in Theorem 5.1 that the numerical solutions of the
scheme (2.3) generate a (DMV) solution of the Navier—Stokes system (1.1). In addition, using the
recent result on the (DMV)-strong uniqueness principle, we have proven the convergence to the
strong solution on its lifespan, cf. Theorem 5.2. To the best of our knowledge, this is the first
rigorous result concerning convergence of a finite volume method for the compressible isentropic
Navier—Stokes equations in the multi-dimensional setting.
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