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Asymptotic analysis of fluids

Motto:

Die Energie der Welt ist constant;
Die Entropie der Welt strebt einem Maximum zu

Rudolph Clausius, 1822-1888
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Physical background

Physical space

Ω ⊂ R3 - bounded regular (Lipschitz) domain
x ∈ Ω - reference spatial position

t ∈ I = [0,T ), T ≤ ∞ - time

State variables

% = %(t, x) - mass density

ϑ = ϑ(t, x) - (absolute) temperature

u = u(t, x) - velocity field
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Physical background

Thermodynamic functions

p = p(%, ϑ) - pressure

e = e(%, ϑ) - (specific) internal energy

s = s(%, ϑ) - (specific) entropy

Fundamental relation - Gibbs’ equation

ϑDs = De + pD

(
1

%

)
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Time evolution - balance laws

The bulk relative motion of the fluid can cause only
a small change in the statistical properties

of the molecular motion when the characteristic time
of the bulk motion is long compared

with the characteristic time of the molecular motion

G.K. Batchelor, 1965
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Time evolution - balance laws

Balance Law

d = d(t, x) - volumetric density

F = F(t, x) - flux vector

s = s(t, x) - source

∫
B

d(t2, x) dx −
∫

B
d(t1, x) dx

= −
∫ t2

t1

∫
∂B

F(t, x) · n(x) dSx dt +

∫ t2

t1

∫
B

s(t, x) dx dt
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Time evolution - balance laws

Integral formulation

V ≡ (t1, t2)× B

lim
ε→0

∫
V

[d(t, x);F(t, x)]·∇t,xϕε dx dt = − lim
ε→0

∫
V

s(t, x)ϕε dx dt

ϕε ∈ C∞
0 (V ), 0 ≤ ϕε ≤ 1, ϕε(x) = 1 for dist[x ; ∂V ] > ε

s - (signed) measure on [0,T ]× Ω
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Time evolution - balance laws

Alternative formulation

Balance law in integral form

∫ T

0

∫
Ω
[d(t, x);F(t, x)] · ∇t,xϕ dx dt = −

∫ T

0

∫
Ω

s(t, x)ϕ dx dt

ϕ ∈ C∞
0 ((0,T )× Ω)

Balance law in differential form

∂td + divxF = s
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Field equations

Mass conservation

∂t% + divx(%u) = 0

Balance of momentum - Newton’s second law

∂t(%u) + divx(%u⊗ u) = divxT + %f

Stokes’ law

T = S− pI

T - Cauchy stress

S - viscous stress

f - external force
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Field equations

Kinetic energy balance

∂t

(
1

2
%|u|2

)
+ divx

((
1

2
%|u|2 + p

)
u− S · u

)
= pdivxu− S : ∇xu + %f · u

Internal energy balance

∂t(%e) + divx (%eu) + divxq = S : ∇xu− pdivxu

Total energy balance

∂t

(
1

2
%|u|2 + %e

)
+divx

((
1

2
%|u|2 + e + p

)
u + q− S · u

)
= %f·u
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Field equations

Energetically insulated boundary conditions, I

Impermeability

u · n|∂Ω = 0

No-slip

[u]tangent|∂Ω = 0

Thermal insulation

q · n|∂Ω = 0
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Field equations

Energetically insulated boundary conditions, II

Impermeability

u · n|∂Ω = 0

Complete-slip

[S · n]tangent|∂Ω = 0

Thermal insulation

q · n|∂Ω = 0
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Field equations

Energetically insulated boundary conditions, III

Impermeability

u · n|∂Ω = 0

Complete-slip with friction

βutangent + [S · n]tangent|∂Ω = 0

Thermal insulation

q · n + β|u|2|∂Ω = 0
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Field equations

Total energy balance

d
dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx =

∫
Ω

%f · u dx

Conservative driving force

f = ∇xF , F = F (x)

d
dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
(t, ·) dx = 0
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Field equations

Internal energy and entropy
Internal energy balance

∂t(%e) + divx (%eu) + divxq = S : ∇xu− pdivxu

Gibbs’ equation

ϑDs = De + pD

(
1

%

)

Entropy balance

∂t(%s) + divx (%su) + divx

(q

ϑ

)
= σ

Entropy production rate

σ = (≥)
1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
≥ 0
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Navier-Stokes-Fourier system

Navier-Stokes-Fourier system - weak formulation

∂t% + divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp = divxS + %∇xF

∂t(%s) + divx(%su) + divx

(q

ϑ

)
= σ

σ ≥ 1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
d
dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
(t, ·) dx = 0
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Navier-Stokes-Fourier system

Weak + Regularity = Strong

σ =
1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
as soon as

0 < % ≤ %(t, x) ≤ %, 0 < ϑ ≤ ϑ(t, x) ≤ ϑ

|u(t, x)| ≤ U

∇x% ∈ L2((0,T )× Ω; R3)
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Navier-Stokes-Fourier system

Constitutive equations

Newton’s rheological law

S = µ

(
∇xu +∇t

xu−
2

3
divxu

)
+ ηdivxuI

µ > 0, η ≥ 0

Fourier’s law

q = −κ∇xϑ

κ > 0
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Mathematical issues

Well posedness

Jacques Hadamard, 1865 - 1963

Existence. Given problem is solvable for any choice of
(admissible) data

Uniqueness. Solutions are uniquely determined by the data

Stability. Solutions depend continuously on the data
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Mathematical issues

Jacques-Luis Lions, 1928 - 2001

Approximations. Given problem admits an approximation
scheme that is solvable analytically and, possibly,
numerically

Uniform bounds. Approximate solutions possesses uniform
bounds depending solely on the data

Stability. The family of approximate solutions admits a
limit representing a (generalized) solution of the given
problem
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Mathematical issues

A priori bounds. Natural bounds imposed on exact
solutions by the data

(Weak) sequential stability. Closedness of the family of
solutions bounded by a priori bounds in the framework of
weak formulation.

Consistency. Qualitative properties of solutions coincide
with the expected ones.
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A priori bounds, static states, thermodynamic stability

Equilibria - static states

ustatic ≡ 0, ϑstatic = ϑ > 0, %static = %̃(x)

∇xp(%̃, ϑ) = %̃∇xF in Ω

lim inf
%→0

∂p(%, ϑ)

∂%
> 0 for any ϑ > 0 ⇒ inf

Ω
%̃ > 0

F = P(%̃, ϑ) + const,
∂P(%, ϑ)

∂%
=

1

%

∂p(%, ϑ)

∂%
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A priori bounds, static states, thermodynamic stability

Thermodynamic stability hypothesis

Positive compressibility:

∂p(%, ϑ)

∂%
> 0

Positive specific heat at constant volume:

∂e(%, ϑ)

∂ϑ
> 0
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A priori bounds, static states, thermodynamic stability

Helmholtz function-ballistic free energy

H(%, ϑ) = %e(%, ϑ)− ϑ%s(%, ϑ)

∂2H(%, ϑ)

∂%2
=

1

%

∂p(%, ϑ)

∂%
> 0

% 7→ H(%, ϑ) is strictly convex

∂H(%, ϑ)

∂ϑ
=

%

ϑ
(ϑ− ϑ)

∂e(%, ϑ)

∂ϑ

ϑ 7→ H(%, ϑ) attains its strict local minimum at ϑ
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A priori bounds, static states, thermodynamic stability

Coercivity of Helmholtz function

H(%, ϑ)− ∂H(%̃, ϑ)

∂%
(%− %̃)− H(%̃, ϑ)

≥ c(B)
(
|%− %̃|2 + |ϑ− ϑ|2

)
provided %, ϑ belong to a compact interval B ⊂ (0,∞)

≥ c(B)
(
1 + %e(%, ϑ) + %|s(%, ϑ)|

)
otherwise

as soon as %̃, ϑ belong to int[B]
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A priori bounds, static states, thermodynamic stability

Corollary: Principle of maximal entropy

%̃, ϑ static state ⇒ ∂H(%̃, ϑ)

∂%
= F + const ⇒∫

Ω

(
H(%, ϑ)− ∂H(%̃, ϑ)

∂%
(%− %̃)− H(%̃, ϑ)

)
dx =∫

Ω

((
%e(%, ϑ)− %F − %̃e(%̃, ϑ) + %̃F

)
− ϑ%s(%, ϑ) + ϑ%̃s(%̃, ϑ)

)
dx

as soon as∫
Ω

% dx =

∫
Ω

%̃ dx
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A priori bounds, static states, thermodynamic stability

Principle of maximal entropy - conclusion

Given the total mass and energy, there is a unique static state
%̃, ϑ

The static state %̃, ϑ̃ maximizes the entropy among all
admissible states %, ϑ with the same total mass and energy
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A priori bounds, static states, thermodynamic stability

Total dissipation balance

d
dt

∫
Ω

(1

2
%|u|2 + H(%, ϑ)− ∂H(%̃, ϑ)

∂%
(%− %̃)− H(%̃, ϑ)

)
dx

+ϑ

∫
Ω

σ dx = 0

σ ≥ µ

ϑ

∣∣∣∇xu +∇t
xu−

2

3
divxuI

∣∣∣2 +
κ

ϑ2
|∇xϑ|2
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A priori bounds, static states, thermodynamic stability

Technical hypotheses imposed on constitutive relations

What is needed...

integrability of all quantities in the weak formulation -
hypotheses of coercivity imposed on thermodynamic
functions p, e, s

bounds on the spatial gradients of u, ϑ - the transport
coefficients µ, κ depend on the temperature

compactness of the temperature field on the “vacuum”
zones - introducing radiation pressure
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A priori bounds, static states, thermodynamic stability

Thermodynamic functions

Monoatomic gas:

p =
2

3
%e ⇒ p = ϑ5/2P

( %

ϑ3/2

)
Third Law:

P(Z ) ≈ Z 5/3 for Z →∞

Radiation pressure:

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+

a

3
ϑ4



Asymptotic analysis of fluids

A priori bounds, static states, thermodynamic stability

Pressure-Energy-Entropy

Pressure:

p(%, ϑ) = p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+

a

3
ϑ4,

Internal energy:

e(%, ϑ) =
3

2
ϑ

(
ϑ3/2

%

)
P
( %

ϑ3/2

)
+

a

%
ϑ4

Entropy:

s(%, ϑ) = S
( %

ϑ3/2

)
+

4

3

a

%
ϑ3



Asymptotic analysis of fluids

A priori bounds, static states, thermodynamic stability

Transport coefficients

Shear viscosity:

0 < µ(1 + ϑα) ≤ µ(ϑ) ≤ µ(1 + ϑα), 1/2 ≤ α ≤ 1

Bulk viscosity:

0 ≤ η(ϑ) ≤ η(1 + ϑα)

Heat conductivity:

0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3)
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A priori bounds, static states, thermodynamic stability

A priori bounds

Uniform-in-time Lp−bounds:

√
%u ∈ L∞(0,T ; L2(Ω; R3))

% ∈ L∞(0,T ; L5/3(Ω))

ϑ ∈ L∞(0,T ; L4(Ω))
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A priori bounds, static states, thermodynamic stability

Gradient bounds:

u ∈ L2(0,T ;W 1,q(Ω; R3)), q =
8

5− α

ϑ ∈ L2(0,T ;W 1,2(Ω))

log(ϑ) ∈ L2(0,T ;W 1,2(Ω))

Pressure bounds:

p(%, ϑ)%β ∈ L1((0,T )× Ω) for a certain β > 0
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Weak sequential stability

Weak sequential stability

%ε → % weakly-(*) in L∞(0,T ; L5/3(Ω))

ϑε → ϑ weakly-(*) in L∞(0,T ; L4(Ω))

and weakly in L2(0,T ;W 1,2(Ω))

uε → u weakly in L2(0,T ;W 1,q(Ω; R3))
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Weak sequential stability

Div-Curl lemma [F.Murat, L.Tartar, 1975]

Lemma

Let
vε → v weakly in Lp,

wε → w weakly in Lq,

with
1

p
+

1

q
=

1

r
< 1.

Let, moreover,

div[vε], curl[wε] be precompact in W−1,s

Then
vε ·wε → v ·w weakly in Lr .
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Weak sequential stability

Weak sequential stability of convective terms

vε = [%ε, %εuε], wε = [ui
ε, 0, 0, 0], i = 1, 2, 3

Aubin-Lions argument (Div-Curl lemma) ⇒

%u = %u

%u⊗ u = %u⊗ u

%s(%, ϑ)ϑ = %s(%, ϑ)ϑ
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Weak sequential stability

Pointwise convergence of temperature, I

GOAL: Use monotonicity of s(%, ϑ) in ϑ
to show∫ T

0

∫
Ω

(
%εs(%ε, ϑε)− %εs(%ε, ϑ)

)
(ϑε − ϑ) dx dt → 0

⇒

‖ϑε − ϑ‖L4 → 0

STEP 1: Aubin-Lions argument (Div-Curl lemma) ⇒∫ T

0

∫
Ω

%εs(%ε, ϑε)(ϑε − ϑ) dx dt → 0
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Weak sequential stability

Pointwise convergence of temperature, II

STEP 2: Renormalized equation of continuity [DiPerna and P.-L.
Lions, 1989]

∂tb(%) + divx(b(%)u) +
(
b′(%)%− b(%)

)
divxu = 0

STEP 3: Aubin-Lions argument (Div-Curl lemma):

b(%)g(ϑ) = b(%) g(ϑ)
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Weak sequential stability

Fundamental theorem on Young measures
[J.M Ball 1989, P.Pedregal 1997]

Theorem

Let vε : Q ⊂ RN → RM be a sequence of vector fields bounded in
L1(Q;RM).
Then there exists a subsequence (not relabeled) and a family of
probability measures {νy}y∈Q on RM such that:
For any Carathéodory function Φ = Φ(y ,Z ), yinQ, Z ∈ RM such
that

Φ(·, vε) → Φ weakly in L1(Q)

we have

Φ(y) =

∫
RM

Φ(y ,Z ) dνy (Z ) for a.a. y ∈ Q.



Asymptotic analysis of fluids

Weak sequential stability

Pointwise convergence of temperature, III

STEP 4: Since we already know from STEP 3 that

ν[%εϑε] = ν[%ε]⊗ ν[ϑε],

Fundamental theorem yields the desired conclusion∫ T

0

∫
Ω

%εs(%ε, ϑ)(ϑε − ϑ) dx dt → 0

Pointwise convergence of temperature

ϑε → ϑ a.a. on (0,T )× Ω
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Weak sequential stability

Pointwise convergence of density,I

STEP 1: Renormalized equation of continuity:

∂t(% log(%)) + divx(% log(%)u) + %divxu = 0

∂t(% log(%)) + divx(% log(%)u) + %divxu = 0

d
dt

∫
Ω

(
% log(%)− % log(%)

)
dx = −

∫
Ω

(
%divxu− %divxu

)
dx
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Weak sequential stability

Pointwise convergence of density,II

STEP 2: Effective viscous pressure [P.-L.Lions, 1998]

p(%, ϑ)b(%)− p(%, ϑ) b(%) = [R : S]b(%)− [R : S]b(%)

where

Ri ,j ≡ ∂xi ∆
−1∂xj

R : S = R : S−
(4

3
µ(ϑ) + η(ϑ)

)
divxu +

(4

3
µ(ϑ) + η(ϑ)

)
divxu
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Weak sequential stability

Commutator lemma[in the spirit of Coifman and Meyer]

Lemma

Let w ∈ W 1,r (RN), V ∈ Lp(RN ;RN) be given, where

1 < r < N, 1 < p < ∞,
1

r
+

1

p
− 1

N
< 1.

The for any s satisfying

1

r
+

1

p
− 1

N
<

1

s
< 1

there exists β > 0 such that

‖R[wV]− wR[V]‖W β,s(RN ,RN) ≤ c‖w‖W 1,r ‖V‖Lp .
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Weak sequential stability

Pointwise convergence of density,III

STEP 3: Effective viscous pressure revisited:

0 ≤ p(%, ϑ)%− p(%, ϑ)% = (
4

3
µ(ϑ) + η(ϑ))

(
%divxu− %divxu

)
yielding

% log(%) = % log(%)
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Weak sequential stability

Pointwise convergence of density - general case, I

STEP 1: Renormalized equation of continuity:

∂t(%Lk(%)) + divx(%Lk(%)u) + Tk(%)divxu = 0

∂t(%Lk(%)) + divx(%Lk(%)u) + Tk(%)divxu = 0

Tk(%) = min{%, k}
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Weak sequential stability

Pointwise convergence of density - general case, II

d
dt

∫
Ω

(
%Lk(%)−%Lk(%)

)
dx =

∫
Ω

(
Tk(%)divxu−Tk(%)divxu

)
dx

+

∫
Ω

(
Tk(%)divxu− Tk(%)divxu

)
dx

STEP 2: Effective viscous flux revisited:

p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

= (
4

3
µ(ϑ) + η(ϑ))

(
Tk(%)divxu− Tk(%)divxu

)
yielding
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Weak sequential stability

Oscillations defect measure

sup
k≥1

[
lim sup

ε→0

∫ T

0

∫
Ω
|Tk(%ε)− Tk(%)|q dx dt

]
< ∞

q = 5/3 + 1 = 8/3
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Weak sequential stability

Boundedness of oscillations defect measure guarantees:

The limit functions %, u satisfy the renormalized equation
of continuity

∫
Ω

(
Tk(%)divxu− Tk(%)divxu

)
dx → 0 for k →∞
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Weak sequential stability

Conclusion - pointwise convergence of density

% log(%) = lim
k→∞

%Lk(%) = lim
k→∞

%Lk(%) = % log(%)

%ε → % a.a. on (0,T )× Ω
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Long-time behavior

Conservative driving forces

Long-time behavior

Conservative driving forces

f = ∇xF , F = F (x)

Conserved quantities
Total mass:

M =

∫
Ω

% dx

Total energy:

E =

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
dx
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Long-time behavior

Conservative driving forces

STEP 1: Boundedness of total energy ⇒ boundedness of total
entropy:

S(t) =

∫
Ω

%s(%, ϑ)(t, ·) dx ≤ S∞

STEP 2: Boundedness of total entropy ⇒ finite integral of the
dissipation rate:

∫ ∞

0

∫
Ω

(
µ

2ϑ

∣∣∣∣∇xu +∇t
xu−

2

3
divxu

∣∣∣∣2 +
κ

ϑ2
|∇xϑ|2

)
dx dt

≤ σ[(0,∞)× Ω] dt < ∞
STEP 3: The velocity field u as well as the temperature gradient
vanish in the asymptotic limit t →∞ ⇒ any solution tends to a
uniquely determined static state

%̃ = %̃(x), ϑ > 0
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Long-time behavior

Conservative driving forces

STEP 4: Total dissipation balance:

d
dt

∫
Ω

(1

2
%|u|2 + H(%, ϑ)− ∂H(%̃, ϑ)

∂%
(%− %̃)− H(%̃, ϑ)

)
dx

+ϑ

∫
Ω

σ dx = 0

∫
Ω

(1

2
%|u|2+H(%, ϑ)−∂H(%̃, ϑ)

∂%
(%−%̃)−H(%̃, ϑ)

)
dx → 0 as t →∞
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Long-time behavior

Conservative driving forces

Conclusion:
Long-time behavior for conservative driving forces

f = ∇xF , F = F (x)

%(t, ·) → %̃ in L5/3(Ω) as t →∞

ϑ(t, ·) → ϑ in L4(Ω) as t →∞

(%u)(t, ·) → 0 in L1(Ω; R3) as t →∞
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Long-time behavior

Conservative driving forces

Attractors

∫
Ω

%(t, ·) dx > M, t > 0∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
(t, ·) dx < E , t > 0∫

Ω
%s(%, ϑ)(t, ·) dx > S0, t > 0

‖%(t, ·)− %̃‖L5/3(Ω) < ε for t > T (ε)

‖ϑ(t, ·)− ϑ‖L4(Ω) < ε for t > T (ε)

‖%u(t, ·)‖L1(Ω;R3) < ε for t > T (ε)
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Long-time behavior

Conservative driving forces

Uniform decay of density oscillations

d(t) =

∫
Ω

(
% log(%)− % log(%)

)
(t, ·) dx

∂td(t) + Ψ(d(t)) ≤ 0
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Long-time behavior

Non-conservative driving forces

General time-dependent driving forces

f = f(t, x), |f(t, x)| ≤ F

EITHER

E (t) ≡
∫

Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx →∞ as t →∞

OR

|E (t)| ≤ E for a.a. t > 0
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Long-time behavior

Non-conservative driving forces

In the case E (t) ≤ E , each sequence of times τn → ∞ contains
a subsequence such that

f(τn + ·, ·) → ∇xF weakly-(*) in L∞((0, 1)× Ω),

where F = F (x) may depend on {τn}
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Long-time behavior

Non-conservative driving forces

STEP 1: Assume that E (τn) < E for certain τn →∞ ⇒ total
entropy remains bounded ⇒ integral of entropy production
bounded

STEP 2: For τn →∞ we have ∇xp(%, ϑ) ≈ %f, ϑ ≈ ϑ, meaning,
f ≈ ∇xF

STEP 3: The energy cannot “oscillate” since bounded entropy
static solutions have bounded total energy
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Long-time behavior

Non-conservative driving forces

Corollaries:

f = f(x) 6= ∇xF

⇒

E (t) →∞

f = f(t, x) (almost) periodic in time, f 6= ∇xF , F = F (x)

⇒

E (t) →∞
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Long-time behavior

Non-conservative driving forces

Rapidly oscillating driving forces

f = ω(tβ)w(x),w ∈ W 1,∞(Ω; R3), β > 2

ω ∈ L∞(R), sup
τ>0

∣∣∣∣∫ τ

0
ω(t) dt

∣∣∣∣ < ∞

(%u)(t, ·) → 0 in L1(Ω; R3) as t →∞

%(t, ·) → % in L5/3(Ω) as t →∞

ϑ(t, ·) → ϑ in L4(Ω) as t →∞
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Singular limits

Motto:

However beautiful the strategy,
you should occasionally look at the results

Sir Winston Churchill, 1874-1965
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Singular limits

Scaling and scaled equations

Singular limits

X ≈ X

Xchar

Mach number Ma =
|u|char√

pchar/%char

Froude number Fr =
|u|char√

|x |char/|∇xF |char

Incompressibility: Ma ≈ ε → 0

Stratification: Fr ≈ εα/2 → 0
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Singular limits

Scaling and scaled equations

Scaled Navier-Stokes-Fourier system:

Sr ∂t% + divx(%u) = 0

Sr ∂t(%u) + divx(%u⊗ u) +
1

Ma2
∇xp =

1

Re
divxS +

1

Fr2
%∇xF

Sr ∂t(%s) + divx(%su) +
1

Pe
divx

(q

ϑ

)
= σ

σ ≥ 1

ϑ

(
Ma2

Re
S : ∇xu−

1

Pe
q · ∇xϑ

ϑ

)
d
dt

∫
Ω

(
Ma2

2
%|u|2 + %e − Ma2

Fr2
%F

)
= 0

u · n|∂Ω = q · n|∂Ω = 0, [Sn]tan = 0
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Singular limits

Scaling and scaled equations

Characteristic numbers:

� Symbol � Definition � Name

Sr lengthref/(timerefvelocityref) Strouhal number

Ma velocityref/
√

pressureref/densityref Mach number

Re densityrefvelocityref lengthref/viscosityref Reynolds number

Fr velocityref/
√

lengthref forceref Froude number

Pe pressureref lengthrefvelocityref

/(temperaturerefheat conductivityref) Péclet number
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Singular limits

Scaling and scaled equations

Low Mach number limit - weak stratification

Ma = ε, Fr =
√

ε

STRATEGY:

1 Existence theory for the primitive Navier-Stokes-Fourier
system

2 Uniform bounds independent of the singular parameter

3 Passage to the limit - analysis of acoustic waves

4 Identification of the limit system
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Singular limits

Scaling and scaled equations

Scaled Navier-Stokes-Fourier system

∂t% + divx(%u) = 0 in (0,T )× Ω

u · n|∂Ω = 0

∂t(%u)+divx(%u⊗u)+
1

ε2
∇xp(%, ϑ) = divxS+

1

ε
%∇xF in (0,T )×Ω

[Sn]× n|∂Ω = 0

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
= σ in (0,T )× Ω

q · n|∂Ω = 0

d
dt

∫
Ω

(
ε2

2
%|u|2 + %e(%, ϑ)− ε%F

)
dx = 0

σ ≥ 1

ϑ

(
ε2S : ∇xu−

q · ∇xϑ

ϑ

)
≥ 0
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Singular limits

Scaling and scaled equations

Total dissipation balance

∫
Ω

(
1

2
%|u|2 +

1

ε2

(
H(%, ϑ)− ∂%H(%̃ε, ϑ)(%− %̃ε)− H(%̃ε, ϑ)

))
(τ, ·) dx

+
ϑ

ε2

∫ τ

0

∫
Ω

σ dx dt =∫
Ω

(
1

2
%0|u0|2 +

1

ε2

(
H(%0, ϑ0)− ∂%H(%̃ε, ϑ)(%0 − %̃ε)− H(%̃ε, ϑ)

))
dx

∇xp(%̃ε, ϑ) = ε%̃ε∇xF ,

∫
Ω

%̃ε dx =

∫
Ω

%0 dx , %̃ε ≈ %
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Singular limits

Scaling and scaled equations

Ill-prepared initial data

%0 ≈ % + ε%
(1)
0,ε, {%

(1)
0,ε}ε>0 bounded in L1 ∩ L∞(Ω),

∫
Ω

%
(1)
0,ε dx = 0

ϑ0 ≈ ϑ + εϑ
(1)
0,ε, {ϑ

(1)
0,ε}ε>0 bounded in L1 ∩ L∞(Ω),

∫
Ω

ϑ
(1)
0,ε dx = 0

u0 ≈ u0,ε, {u0,ε}ε>0 bounded in L2(Ω; R3)
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Singular limits

Uniform bounds

Uniform bounds{
%ε − %

ε

}
ε>0

bounded in L∞(0,T ; L2 ⊕ Lq(Ω)), q < 2

{
ϑε − ϑ

ε

}
ε>0

bounded in L∞(0,T ; L2 ⊕ Lq(Ω)), q < 2{
%ε|uε|2

}
ε>0

bounded in L∞(0,T ; L1(Ω)){σε

ε2

}
ε>0

bounded in M+([0,T ]× Ω)

{∇xuε}ε>0 bounded in L2((0,T )× Ω; R3×3){
∇xϑε

ε

}
ε>0

bounded in L2((0,T )× Ω; R3)
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Singular limits

Uniform bounds

Convergence

%ε → % in L∞(0,T ; L2 ⊕ Lq(Ω))

ϑε → ϑ in L∞(0,T ; L2 ⊕ Lq(Ω))

uε → U weakly in L2(0,T ;W 1,2(Ω; R3))

ϑε − ϑ

ε
→ Θ weakly in L2(0,T ;W 1,2(Ω))
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Singular limits

Target system

Oberbeck-Boussinesq system

divxU = 0

%
(
∂tU + divx(U⊗U)

)
+∇xΠ = divxS + r∇xF in (0,T )× Ω

U · n|∂Ω = 0, [Sn]× n|∂Ω = 0

%cp

(
∂tΘ+divx(ΘU)

)
−divx(GU)−divx(κ∇xΘ) = 0 in (0,T )×Ω

G = βF , ∇xΘ · n|∂Ω = 0

r + αΘ = 0, α > 0
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Singular limits

Target system

Available results
• Barotropic Navier-Stokes system - weak solutions, large
time interval
P.-L.Lions, N. Masmoudi, J. Math. Pures Appl., 1998
B. Desjardins, E. Grenier, P.-L. Lions, N. Masmoudi, J. Math.
Pures Appl., 1999
B. Desjardins, E. Grenier, Royal Soc. London, 1999

• Navier-Stokes-Fourier system, strong solutions, short time
interval
T. Alazard, Arch. Rational Mech. Anal., SIAM J. Math. Anal.,
2006
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Singular limits

Acoustic waves

Lighthill’s acoustic equation (F = 0)

ε∂tZε + divxVε = εdivxF
1
ε

ε∂tVε + ω∇xZε = ε
(
divxF2

ε +∇xF
3
ε +

A

ε2ω
∇xΣε

)
Vε · n|∂Ω = 0

Zε =
%ε − %

ε
+

A

ω
%ε

(
s(%ε, ϑε)− s(%, ϑ)

ε

)
+

A

εω
Σε, Vε = %εuε

< Σε;ϕ >=< σε; I [ϕ] >

I [ϕ](t, x) =

∫ t

0
ϕ(z , x) dz for any ϕ ∈ L1(0,T ;C (Ω))
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Singular limits

Acoustic waves

Helmholtz decomposition:

Vε = wε +∇xΦε, divx(wε) = 0, wε · n|∂Ω = 0

Wave equation:

ε∂tZε + ∆xΦε = εG 1
ε in (0,T )× Ω

ε∂tΦε + ωZε = εF 2
ε in (0,T )× Ω

∇xΦε · n|∂Ω = 0
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Singular limits

Acoustic waves

Abstract wave equation:

ε∂trε − A[Φε] = εh1
ε

ε∂tΦε + rε = εh2
ε

A[v ] = −ω∆xv , ∇xv · n|∂Ω = 0

A is a non-negative self-adjoint operator on the Hilbert space L2(Ω)

h1
ε , h

2
ε ∈ L2(0,T ;D(G (A)))
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Duhamel’s formula

Duhamel’s formula:

Φε(t, ·) = exp
(
i
t

ε

√
A
)[1

2
Φ0,ε +

i
2
√

A
[r0,ε]

]
+exp

(
−i

t

ε

√
A
)[1

2
Φ0,ε −

i
2
√

A
[r0,ε]

]
+

∫ t

0
exp

(
i
t − s

ε

√
A

)[
1

2
h2

ε(s) +
i

2
√

A
[h1

ε(s)]

]
ds

+

∫ t

0
exp

(
−i

t − s

ε

√
A

)[
1

2
h2

ε(s)−
i

2
√

A
[h1

ε(s)]

]
ds
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Local decay of acoustic energy

Local (weak) decay of acoustic energy:

{
t 7→

∫
Ω

Φε(t, ·)ϕ dx

}
→ 0 in L2(0,T ) as ε → 0

(∫ T

0

∣∣∣〈exp(i√A
t

ε

)
[Ψ], ϕ

〉∣∣∣2 dt

)1/2

≤ ω(ε, ϕ)‖Ψ‖L2(Ω)

for any Ψ ∈ L2(Ω),

ω(ε, ϕ) → 0 as ε → 0 for any fixed ϕ,
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Local decay of acoustic energy

Uniform decay:∫ T

0

∫ t

0

∣∣∣∣〈exp

(
−i
√

A
t − s

ε

)
[Gε(s)], ϕ

〉∣∣∣∣2 ds dt

≤
∫ T

0

∫ T

0

∣∣∣∣〈exp

(
−i
√

A
t − s

ε

)
[Gε(s)], ϕ

〉∣∣∣∣2 dt ds

≤ ω2(ε, ϕ)

∫ T

0

∥∥∥exp(i√A
s

ε

)
[Gε(s)]

∥∥∥2

L2(Ω)
ds

= ω2(ε, ϕ)

∫ T

0
‖Gε(s)‖2L2(Ω) ds.
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Local decay of acoustic energy

Reformulation via spectral measures:

〈
exp

(
i
√

A
t

ε

)
[Ψ], ϕ

〉
=

∫ ∞

0
exp

(
i
√

λ
t

ε

)
Ψ̃(λ) dµϕ(λ)

where µϕ is the spectral measure associated to the function ϕ

Ψ̃ ∈ L2(Ω; dµϕ), ‖Ψ̃‖L2
µϕ (Ω) ≤ ‖Ψ‖L2(Ω).
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Local decay of acoustic energy

Decay via RAGE theorem:

∫ T

0

∣∣∣〈exp(i√A
t

ε

)
[Ψ], ϕ

〉∣∣∣2 dt

=

∫ T

0

∫ ∞

0

∫ ∞

0
exp

(
i
(√

x −√y
) t

ε

)
Ψ̃(x) Ψ̃(y) dµϕ(x) dµϕ(y) dt

≤ e

∫ ∞

0

∫ ∞

0

(∫ ∞

−∞
exp

(
−(t/T )2

)
exp

(
i
(√

x −√y
) t

ε

)
dt

)
×

×Ψ̃(x)Ψ̃(y) dµϕ(x) dµϕ(y)

≤ eT
√

π

∫ ∞

0

∫ ∞

0
Ψ̃(x) Ψ̃(y) exp

(
−

T 2|
√

x −√y |2

4ε2

)
dµϕ(x) dµϕ(y).
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Local decay of acoustic energy

Cauchy-Swartz inequality:

∫ T

0

∣∣∣〈exp(i√A
t

ε

)
[Ψ], ϕ

〉∣∣∣2 dt ≤ ω2(ε, ϕ)‖Ψ‖2L2(Ω)

ω4(ε, ϕ) =
√

2

∫ ∞

0

∫ ∞

0
exp

(
−

T 2|
√

x −√y |2

2ε2

)
dµϕ(x) dµϕ(y)
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Local decay of acoustic energy

Decay via Kato’s theorem

[Kato, 1965]

Theorem

Let C be a closed densely defined linear operator and H a
self-adjoint densely defined linear operator in a Hilbert space X .
For λ /∈ R, let RH [λ] = (H − λId)−1 denote the resolvent of H.
Suppose that

Γ = sup
λ/∈R, v∈D(C∗), ‖v‖X =1

‖C ◦ RH [λ] ◦ C ∗[v ]‖X < ∞.

Then

sup
w∈X , ‖w‖X =1

π

2

∫ ∞

−∞
‖C exp(−itH)[w ]‖2X dt ≤ Γ2.
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Local decay of acoustic energy

Reformulation of the problem:

(∫ T

0

∣∣∣〈exp(i√A
t

ε

)
[Ψ],G (A)[ϕ]

〉∣∣∣2 dt

)1/2

≤ ω(ε, G , ϕ)‖Ψ‖L2(Ω)

ϕ ∈ C∞
0 (Ω), G ∈ C∞

0 (0,∞), 0 ≤ G ≤ 1
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Local decay of acoustic energy

∫ T

0

∣∣∣〈exp(i√A
t

ε

)
[Ψ],G (A)[ϕ]

〉∣∣∣2 dt

≤ eT
√

π

∫ ∞

0
|Ψ(x)|2

(∫ ∞

0
exp

(
−
|
√

x −√y |2

ε2

T 2

4

)
dµϕ(y)

)
×

×G 2(x) dµϕ(x)
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Local decay of acoustic energy

∫ ∞

0
exp

(
−
|
√

x −√y |2

ε2

T 2

4

)
dµϕ(y)

=
∞∑

n=0

∫
εn≤|√y−

√
x |<ε(n+1)

exp

(
−
|
√

x −√y |2

ε2

T 2

4

)
dµϕ(y)

≤ sup
n≥0

∫
εn≤|√y−

√
x |<ε(n+1)

1dµϕ(y)
∞∑

n=0

exp

(
−n2T 2

4

)
.
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Local decay of acoustic energy

Stone’s formula:

µϕ(a, b)

= lim
δ→0+

lim
η→0+

∫ b−δ

a+δ

〈(
1

A− λ− iη
− 1

A− λ + iη

)
ϕ, ϕ

〉
dλ
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Local decay of acoustic energy

Limiting absorption principle:



Operators

V ◦ (A− λ± iη)−1 ◦ V : L2(Ω) → L2(Ω),

V[v ] = (1 + |x |2)−s/2, s > 1

are bounded uniformly for λ ∈ [a, b], 0 < a < b, η > 0,



µϕ[I ] ≤ c(δ)|I | for any compact interval I ⊂ (δ, 1/δ), δ > 0
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