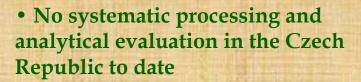

AN ASSEMBLAGE OF MEDIEVAL ARCHAEOLOGICAL TEXTILES FROM PRAGUE: a Study of Current and Original Colours


David Kohout, The Institute of Chemical Technology, Prague Helena Březinová, Institute of Archaeology of the Academy of Sciences of the Czech Republic, Prague

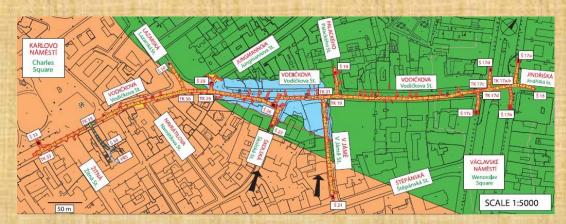
THE RESEARCH OF MEDIEVAL TEXTILES

IN THE CZECH REPUBLIC

• Remains of common textiles found in waste layers and features, mostly in the urban environment

• A large assemblage of 1,500 medieval textile fragments from the centre of Prague

• Modern analytical methods - liquid chromatography with mass spectrometry detection and X-ray fluorescence

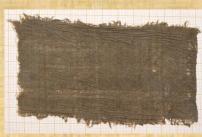


FIND CIRCUMSTANCES

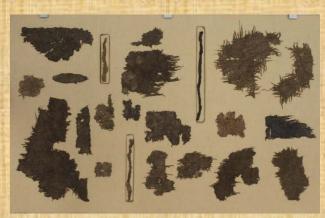
- Rescue archaeological excavations of the entrance shafts of collectors in the centre of Prague
- Prague's New Town (Jungmannova, Vodičkova and Skolská streets)
- In 2004-2007
- A thick formation of organic origin
- Remains of a dump for domestic waste from the nearby lots and for the construction waste from the reconstruction of houses during the 14th and 15th centuries
- Uncommonly large amount of artefacts made from organic materials – wood, textiles and leather

LABORATORY TREATMENT OF TEXTILE FRAGMENTS

- Specialised restoration laboratory
- Carefully disinfection and mechanical cleaning
- Stored flat containers on prestressed acid-free wood panels with a countersunk bed for individual fragments, lined with unbleached cotton fabric and covered with a pane of glass
- Dimensions of panels 80x50 cm



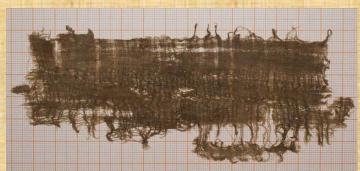
VARIABILITY OF THE TEXTILE ASSEMBLAGE


- 1,500 fragments
- 1,350 fragments from 500 different types of fabric
- Sewing thread, bands, twisted cord, felt, unprocessed animal fibre and horsehair

WOOL AND OTHER FIBRES OF ANIMAL ORIGIN

- Wool cloth with a plain weave (300 specimens)
- Wool cloth with a twill weave (100 specimens)
- Three-quarters of which shows signs of their original fulling

Other animal fibres - sheet felt, clumps of raw material, horsehair and the textiles made from them



- 30 monochromatic and colour patterned silk textiles
- More intricate weaves and patterns (samite, damask, lampas, atlas)
- The remnants of metal threads in the form of gold-plated membranes made from animal material wrapped around a flax core

SILK

PLANT MATERIALS

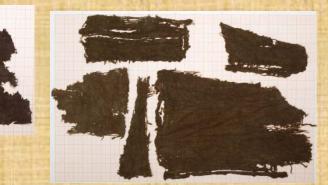
• Only fifty fragments of textile material made from fibres of plant origin were preserved in the form of the remains of sewing thread, twisted cords and bast fibres

TEXTILE TECHNIQUES AND TEXTILE PRODUCTS

- An important part of the entire assemblage is made up of textiles produced on a loom with various weaves
- Bands woven on tablet looms and looms without a shed
- Cords and string twisted in various ways
- Felt
- Small textile fragments that had already lost their function
- Holes from stitching, sewing thread, fixed side selvedges, overcast edges, hems with decorative trims, pleating, button holes, knots and braids

THE PROFESSIONAL ANALYSIS AND EVALUATION OF THE ASSEMBLAGE

 The project "Medieval Textile and Dyeing Technologies – Archeometry of Textile Finds" supported by the Czech Science Foundation



 Textile and dyeing technologies, description and interpretation of textiles from domestic and imported production

 Textile technology research, an identification of the used fibres, mordants, dyes and colouring sources

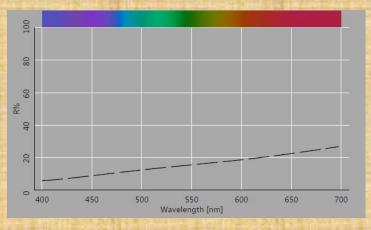
MEDIEVAL TEXTILE COLOUR: DYEING AND MORDANTING

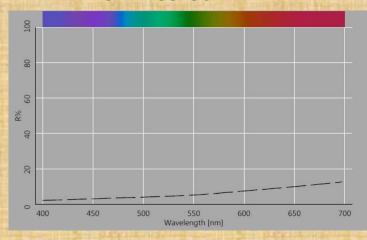
• Original colour: Organic dyes and Inorganic mordants

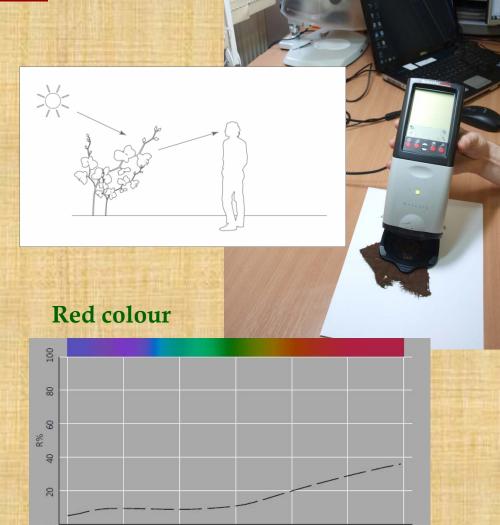
Dyes: Liquid Chromatrography- Mass Spectrometry (LC-MS)

• Mordants: X-ray fluorescence (SEM-EDX)

Current colour: Visible Spectroscopy (CieLAB 1976)






CURRENT COLOUR: VISIBLE SPECTROSCOPY REFLECTION SPECTRA

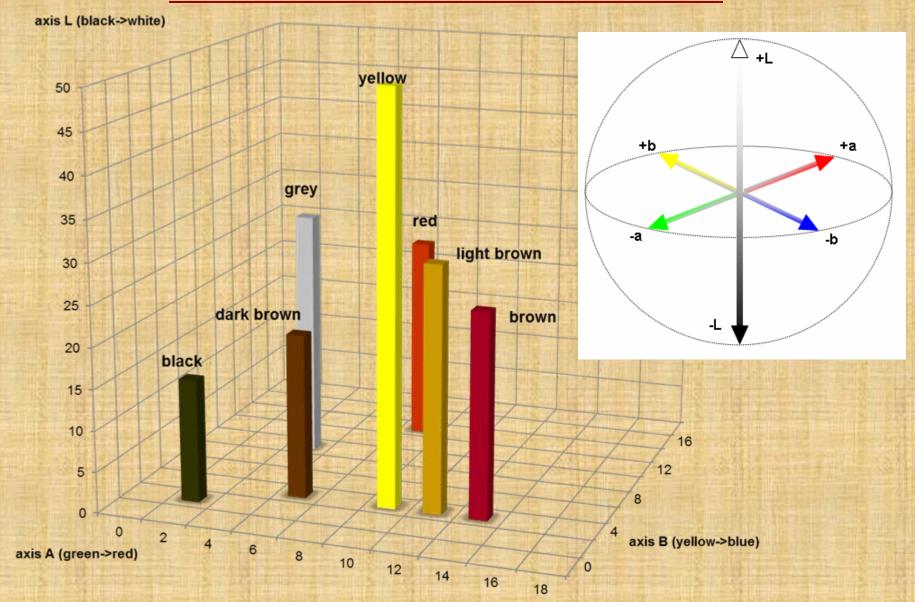
Yellow colour

Brown colour

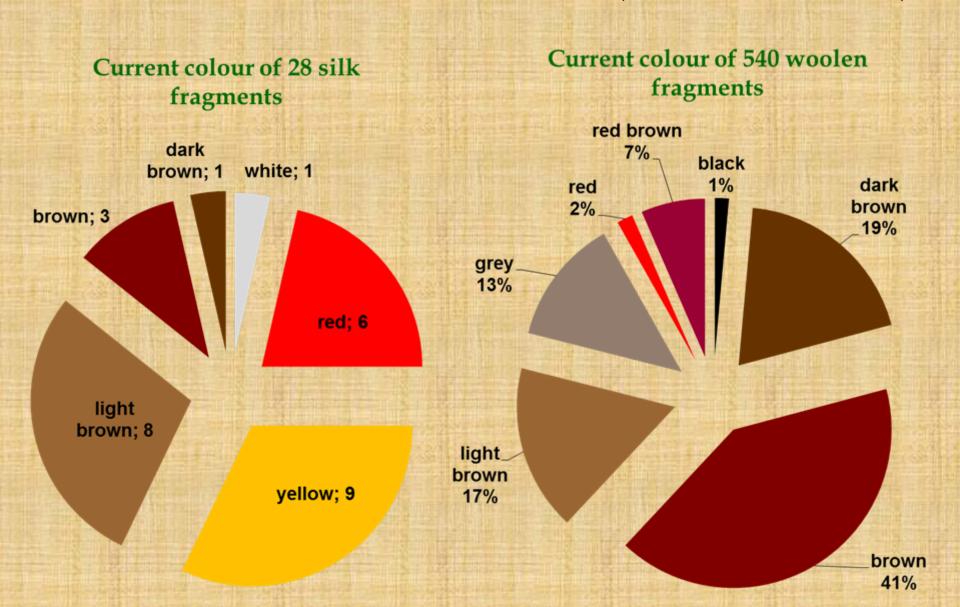
450

500

550


Wavelength [nm]

600


650

700

CIE LAB COLOUR SPACE EXACT COLOURS OF FRAGMENTS

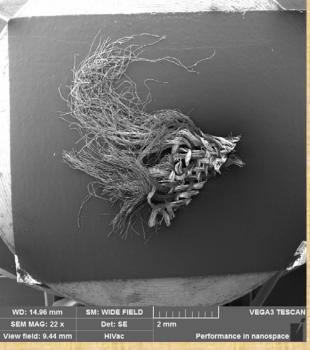
PRESERVED COLOUR DIFFERENCES OF PROTEIN FIBERS (SILK AND WOOL)

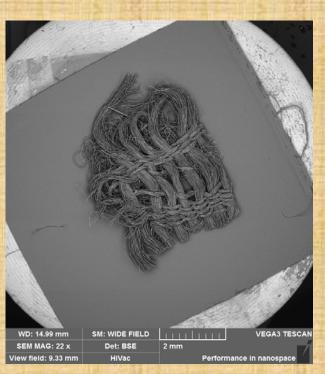
DYEING PROCESS

- Mordant dyes: most represented historical textile dyes red, yellow, brown/black mordants: central compound of complex bond ions of Al, Fe, Cu and organic tannins
- Vat dyes: blue indigo and Tyrian purple

Direct dyes: high affinity for a fiber, unstable


Fibre


Mordant


ΗĊ

EXTRACTION PROCESS OF DYES

- One step extraction: 100 μL 48% methanol, 48% dichloromethane, 4% formic acid
- Ultrasonic bath at 60°C for 30 minutes -> filtration of solid particles
- Dillution: by the follow condition of the analysis (starting mobile phase composion)
- Amount of consumption of samples viewed by SEM (1 mg of fibers)

MONITORING OF ORGANIC COMPOUNDS BY HPLC - MS

- **Separation:** High Performance Liquid Chromatography **-HPLC** mobil phase: acetonitrile (0,1%HCOOH) and water (0,1% HCOOH)
- Ionization: Electrospray -ESI
 atmospferic pressure soft ionization -negative mode- ions of molecule [M-H]-positive mode- ions of molecule [M+H]+
- Detection: Mass Spectometry -MS
 Orbitrap is monitoring high resolution mass to charge of ionizated molecules

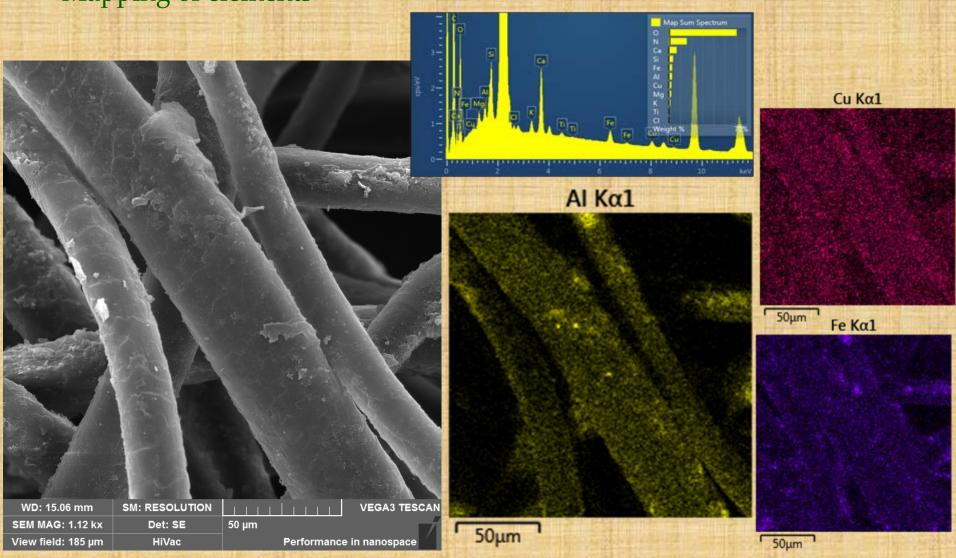
Chemical qualitity is determinated by retentions times of chromatografic parametrs (HPLC) and summary chemical structure is detected by mass spectrometry (MS)

ESI MS Square High-Pressure Electrospray Quadrupole with Quadrupole l ow-Liquid (+) S-Lens Neutral Blocker Octopole Ion Source Cell Mass Filter **HCD Collision Cell** Pressure Cell C-Trap Capillary Nebulise Gas-phase Ion Fused-Silica **New Detection** Electronics ESI Combination Model **New High-Field Orbitrap** Mass Analyzer

NATURAL DYES

dye type	analyte	formula	m/z	natural source
polyene	crocin	C ₄₄ H ₆₄ O ₂₄	975.3715	Crocus sativus, Gardenia jasmoides Ellis
indol	indigotin	C ₁₆ H ₁₀ N ₂ O ₂	261,0670	Isatis tinctoria, Indigofera tinctoria, Polygonum tinctorium
brom indol	dibromindigotin	C ₁₆ H ₆ Br ₂ N ₂ O ₂	414.8723	Murex trunculus, Bolinus brandaris , Stramonita haemastoma
naphthoquinone	juglon	$C_{10}H_{6}O_{3}$	174.0322	Juglans regia, J. cinerea, J. nigra
anthraquinone	alizarin	C ₁₄ H ₈ O ₄	239,0350	Rubia tinctorum, Rubia peregrina, Galium verum, Galium Odoratum
flavonoid	luteolin	$C_{15}H_{10}O_6$	285,0405	Reseda luteola, Genista tinctoria,Serratula tinctoria
neoflavonoid	brazilein	$C_{16}H_{12}O_5$	283,0612	Caesalpinia echinata, C. sappan
tannins	ellagic acid	$C_{14}H_6O_8$	300,9990	Quercus sp., Quercus infectoria

indigotin


anthraquinons

neoflavonoids

flavonoids

MONITORING OF INORGANIC COMPOUNDS BY SEM-EDS ELECTRON MICROSCOPY

- Scanning electron microscopy with energy dispersive detector
- Mapping of elements

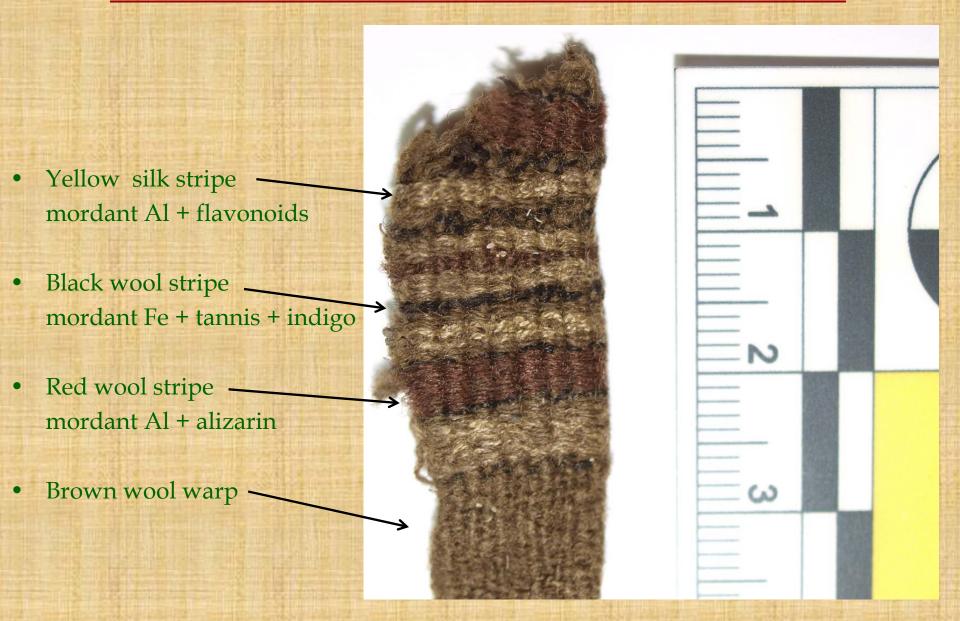
DYEING METHODS

• Basic colour : red, yellow, blue and brown

Composed colour: re-dyed methods

green: yellow + blue

orange: yellow + red


black: blue + brown + (red)

Mordants:

Al- alum - KAl (SO₄) .12H₂O Fe- blue vitriol/iron fillings Cu- green vitriol/verdigris Organic mordants - tannins

EXAMPLE OF THE INTERPRETATION SYNTESIS OF THE DATA: FRAGMENT 1-V31-27

Thank you for your attention!

