INSTITUTE OF GEONICS OF THE CAS, OSTRAVA

SNA'17

SEMINAR ON NUMERICAL ANALYSIS

Modelling and Simulation
of Challenging Engineering Problems

WINTER SCHOOL

Methods of Numerical Mathematics and Modelling,

High-Performance Computing, Numerical Linear Algebra

OSTRAVA, JANUARY 30 — FEBRUARY 3, 2017



Programme committee:

Radim Blaheta Institute of Geonics of the CAS, Ostrava
Zdenék Dostal VSB - Technical University of Ostrava
Ivo Marek Czech Technical University, Prague

Miroslav Rozloznik  Institute of Computer Science of the CAS, Prague
Zdenék Strako$ Charles University, Prague

Organizing committee:

Radim Blaheta Institute of Geonics of the CAS, Ostrava
Jitl Stary Institute of Geonics of the CAS, Ostrava
Stanislav Sysala Institute of Geonics of the CAS, Ostrava

Dagmar Sysalova Institute of Geonics of the CAS, Ostrava
Hana Bilkova Institute of Computer Science of the CAS, Prague

Conference secretary:

Dagmar Sysalova Institute of Geonics of the CAS, Ostrava

Institute of Geonics of the CAS
ISBN 978-80-86407-64-7



Preface

Seminar on Numerical Analysis 2017 (SNA’17) is a continuation in a series of SNA events held
in different places in the Czech Republic and organized alternatively by Ostrava and Prague
institutions. The SNA’17 is organized by the Institute of Geonics of the CAS in collaboration with
VSB - Technical University of Ostrava and I'T4Innovations National Supercomputing Centre.
Conference location is one of the lecture rooms in New Aula of the VSB-TU Ostrava.

Let us note that SNA 2016 was reshaped to EMS School in Applied Mathematics (ESSAM)
devoted to mathematical modelling, numerical analysis and scientific computing. The SNA’17
is turning back to more traditional winter event.

It provides opportunity for meeting and mutual information of the community working in com-
putational mathematics and computer science, but an important part of SNA is devoted to the
Winter School with tutorial lectures focused on selected important topics within the scope of
numerical methods and modelling.

This year, a part of the Winter School will be the course Parallel Linear Algebra (PLA) organized
by the European research infrastructure PRACE, particularly by the French PRACE Advanced
Training Centre — Maison de la Simulation. Winter school lectures will cover the ongoing topics
related to domain decomposition methods, interval computations and numerical verification. The
PLA course will provide lectures from the area of direct and iterative parallel solvers, as well as
practical training with selected programs.

We believe that the participants will enjoy the Winter School including the PLA course, as well
as programme of contributed presentations, posters and complementary social events.

On behalf of the Programme and Organizing Committee of SNA’17,
Radim Blaheta and Jifi Stary
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IgA based modelling of runner wheel flow
B. Bastl, M. Brandner, J. Egermaier, H. Hornikovd, K. Michdlkovd, E. Turnerovd

New Technologies for the Information Society, University of West Bohemia in Pilsen
Department of Mathematics, University of West Bohemia in Pilsen

1 Introduction

We focus on numerical solving of Navier-Stokes equations in 3D. We present a solver which is
based on a recently proposed approach called isogeometric analysis, which uses isoparametric
approach, i.e., the same basis functions are used for description of a geometry of a computa-
tional domain and also for representation of a solution. As isogeometric analysis is based on
NURBS objects, any real application requires to handle the so-called multipatch domains, where
a computational domain is composed of more parts and each part is represented by one NURBS
object. The solver is used for the simulation of the flow through the runner wheel of the water
turbine.

2 NURBS objects

NURBS surface of degree p, ¢ is determined by a control net P (of control points P; j,i = 0,...,n,
j =0,...,m), weights w; ; of these control points and two knot vectors U = (uo, ..., Untp+1),
V = (vo,...,Um+q+1) and is given by a parametrization

=22 Puli(w ). (1)

B-spline basis functions N; ,(u) and M; 4(v) of degree p are CP~!-continuous in general. See e.g.
[2] for details.

3 Nayvier-Stokes equations

The model of viscous flow of an incompressible Newtonian fluid in rotating domain can be
described by the Navier-Stokes equations in the rotating frame of reference (we mention the
stationary form here)

Vp4+ur-Vug+wxug —vAuy, = f, in €, @)
V-ug = 0, in €,

where  C R? is the computational domain, us = wa(x) is the vector function describing
absolute flow velocity and ur = ug(x) is the vector function describing relative flow velocity
such that

Ug =Up+wXxr, (3)



where 7 is the position vector and w = (w, 0,0) angular velocity vector (x-axis is assumed as the
axis of rotation). p = p(x) is the kinematic pressure function, v describes kinematic viscosity
and f additional body forces acting on the fluid.

The boundary value problem is considered as the system (2) together with the following boundary
conditions

u = w on 0Q2p (Dirichlet b. c.),
0
v% -np = 0 on 00y (Neumann b. c.), (4)
Uey = Rou027
Doy = Doy on 90¢ (cyclic b. c.),

where uw stands for both w4 and wg, R, is rotation matrix and c¢; and ¢ are corresponding
boundaries. If the velocity is specified everywhere on the boundary, then the pressure solution
is only unique up to a hydrostatic constant.

3.1 GGalerkin approach and nonlinear iteration

Because of non-linearity of Navier-Stokes equations, it is necessary to solve the problem iteratively
with linear problem in every step. One of the possibilities is to use the so-called Picard’s method

[1].
Let V be a velocity solution space and Vj be the corresponding space of test functions, i.e.,
V = {ue HY (D)%u=w on dQp},
Vo = {ve HY(Q)Yv=0ondQp}. (5)

We use Galerkin method and define finite dimensional spaces V" C V, V' € Vo, W" C Ly(9)
and their basis functions. Find up, € V" and p, € W" so that all functions v, € Voh and g, € Wh
satisfy

V/Vuiﬁl Vo, + /(u'};{h . Vuﬂl)'vh + /(w X u%l)vh — /pﬁHV ‘v, = /f -y,
Q Q Q

Q Q
/qhv-u’;;f = 0. (6)
Q

Isogeometric approach consists in taking the solution uy, as a linear combination of basis functions
RY € V" and the solution pj, as a linear combination of basis functions Rl e Wh, where R} and
RY are NURBS basis function obtained from a NURBS description of a computational domain.
In 3D, the solution has the form

ny ny nP
_ T pu * * * \T pu _ ¥4
up = E (w1i, ugi, uzi)” Ry + E (ug;, ud; uz)” Ry, Ph = E pilR;, (7)
=1 i:ng—&—l =1

where nj is the number of points where the Dirichlet boundary condition is not defined. Further,
we assume that f is written as a linear combination of velocity basis function, i.e.,

u
v

fn= Z(flz‘, fois f3i) T RY.

i=1

n

For general f, f, can be obtained with the help of Ly projection to a linear space spanned by
basis functions {R}'}1<i<nu-
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4 Navier-Stokes equations on multipatch domains

Theory of NURBS objects directly implies that it is not possible to describe an object of arbitrary
topology by one NURBS object. Thus, when isogeometric analysis is used for numerical solving
of partial differential equations it is usually necessary to decompose a computational domain into
subdomains, which are suitable for description by one NURBS object.

4.1 Conforming meshes

The simplest case of a multipatch domain is represented by the case where joining control nets
of different patches coincide and the corresponding knot vectors are the same. Then, exactly the
same meshes are obtained and we talk about a conforming mesh of the computational domain.
The easiest approach for joining such NURBS patches in the followup computation with the help
of isogeometric analysis is to identify the corresponding control points in the common control
nets of joining NURBS patches and reduce the number of degrees of freedom in the computation.

4.2 Non-conforming meshes

More complicated multipatch domains composed of patches with nested meshes or even more gen-
eral non-conforming meshes cannot be handled by identifying the corresponding control points.
In these cases, one can use discontinuous Galerkin method to join such a configuration of patches
into one computational domain. The main approach is to add several new terms into the weak
formulation of the problem which are considered on the common interfaces of the patches. More
details can be found in [3].

5 Test example

The simulation of the flow through the runner wheel region of the water turbine is presented. It is
the solution of the Navier-Stokes equations (2) in the cyclic periodic domain (part of multipatch
conforming mesh of this domain is depicted at the Fig. 1) with the following boundary conditions.

Figure 1: Part of multipatch conforming mesh of flow region in the runner wheel domain.

Inflow of the domain is set on left surface of blue and red patches, where velocity field is prescribed
by the flow through the guide vanes region with the flow rate Q = 5.54m3/s. Outflow of the
domain is set on the opposite side i.e., homogeneous Neumann boundary condition is prescribed
on this surface. The solid boundary surfaces of the domain are considered to be solid walls,
i.e., Dirichlet boundary condition with w = Om/s is prescribed. Cyclic boundary conditions are
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prescribed on the front and back surfaces of the patches. For pressure, homogeneous Neumann
boundary condition is prescribed on the whole boundary.

The kinematic viscosity v = 0.015m? /s and angular speed w = 56.3rad/s. Fig. 2 shows stream-
lines of velocity.

Figure 2: Streamlines of velocity.

6 Conclusion

This paper was devoted to the numerical simulation of the runner wheel flow. The solver based
on isogeometric analysis was successfully used to the solution of Navier-Stokes equations with
the rotation term. Complex region of the water turbine had to be decribed by the multipatch
domain.

Acknowledgement: This work was supported by the project LO1506 of the Czech Ministry of
Education, Youth and Sports.
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Gaussian random fields decomposition and sampling
M. Béres, S. Domesovd, R. Blaheta

Institute of Geonics of the CAS, Ostrava

1 Introduction

In mathematical modelling, we can encounter the need to analyze processes in some physical
domain D C R” with only stochastic knowledge about the material. We shall say that the ma-
terial properties are described as a random field. By the random field on D C R¢ we understand
a real valued function X (z,w), which for every fixed € D results in a random variable and for
every fixed w from the sample space €2 results in a function defined on D, e.g. a function from
L?*(D). A common and natural type of random field is a Gaussian random field (GRF). For GRF
Ve eD: X (x,w)~ N (u(x);o(x)).

GRF can be fully described by its mean value p(z) and auto-covariance function ¢ (x,y) =
E (X (z,w) — p(x)) - (X (y,w) — 1 (y))). Here we focus on isotropic GRF, which are specified
by an auto-covariance function that takes only physical distance of z and y as a parameter.

For numerical examples we use D = (0,1)%, p(z) = 0 and ¢ (z,y) = o2 - exp (—M) with
parameters A = 0.3, 0 = 2.

In typical applications, it is usually required

e to generate samples of the random field X (z,w) (a sample is understood as a realization of
X (z,w) for some w € Q) or

e to calculate the decomposition of the random field in the form of

N
X (z,w) = p(x) + ) ti(@) & W), (1)
i=1
where ||4; (z)]| should be rapidly decreasing with increasing value of i.

A random field is an infinite-dimensional object, therefore we first need to perform some dis-
cretization. Basically there are two ways of random field discretization:

e Point discretization, which is used, if we are interested only in some finite set of domain
points {x1,...,xx} C D. It leads to a random vector representation of the studied random
field.

e Discretization by the truncated Karhunen-Loéve decomposition (KLD), which leads straight-
forwardly to the aforementioned decomposition form (1) of the random filed.

In this article we mainly focus on KLD and techniques for its efficient calculation and broad field
of application, for other approaches we only present a review of suitable methods with references.
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2 Point discretization

The point discretization of a random field is the most straightforward way to obtain some in-
formation about it. In the case of GRF it leads to the multi-variate Gaussian distribution with
mean vector [z : (f1); = pt (x;) and covariance matrix C : C; j = ¢ (x4, x;). The covariance matrix
is generally symmetric and positively semidefinite, but in the case of the discretized random field
it can be assumed as symmetric positively definite (SPD).

First we examine sampling from the resulting multi-variate Gaussian distribution. Assume, that
we can simply generate samples of the random vector Y of independent and identically distributed
(i.i.d.) standard normal variables (zero mean, unit variance). Let X denote the desired multi-
variate Gaussian distribution given by the mean vector 7z and the covariance matrix C, than X
can be expressed as

X=p+AY,

where A satisfies C = A - AT. This formula specifies a direct approach to generate a sample z of
the random vector X as x =+ A - y, where y is sample of Y. There are several ways to obtain
A -y, that lead to different sampling methods.

In this section we mention four methods of sampling Y, which can be divided in the following
way:

e methods, that construct the matrix A
— construction using eigenvalue decomposition of C

— construction using Cholesky decomposition of C

e methods, that don’t require the matrix A to be explicitly constructed
— Krylov subspace sampling method

— Circular embedding method

Eigenvalue decomposition of C. The covariance matrix is decomposed as C = Q - A - QT
(note C is SPD). Than A is constructed as A = Q- v/A, where A is diagonal and v/A is element-
wise. This approach also offers the aforementioned decomposition form (1) of X (or X (z,w))
as

N
X=1+Y a Vi
=1

where g; are eigenvectors of C (or columns of Q), \; are eigenvalues and y; are i.i.d. standard
random variables.

Cholesky decomposition of C. The Cholesky decomposition factor can be used as A, because
Cis SPD. In comparison to the previous approach, the decomposition form (1) has bad properties
(low decrease in norm of summands in the decomposition form).

Krylov subspace sampling method. This iterative method is based on finding an approxi-
mation of v/C -y by projecting to Krylov space K(y, C) and using the Lanczos basis for approxi-
mation of the matrix square root. For the basic method see [2], for the preconditioned approach
see [3].

Circular embedding method. This method is based on fast Fourier transform and requires
a point discretization on a regular grid. It generates samples of random vector A -Y', but cannot
be interpreted as an operator on y in the aforementioned way, see [1].

14



3 Karhunen-Loéve decomposition

KLD is an alternative to the point discretization, but now we don’t constrain on a finite set
of domain points. KLD is based on a fact, that the L? (Q,L2 (D)) space (where the studied
GRF belong) is identically isomorphic with the tensor product of spaces L? () ® L? (D). The
existence and construction of KLD is given by the Karhunen-Loéve theorem, see [1, thm. 7.52].
It states, that KLD takes form

X (2,w) = p(x) + Y VA9 (@) & (W), (2)
j=1

where, in case of GRM, &; (w) are i.i.d. standard normal Variables and {)xj,lj)]} denote the
eigenvalues and eigenfunctions of the covariance operator (Cf) ( fD (y) dy.

For the construction of KLD we only need to calculate the solution of the following eigenvalue
problem

[ et i@y = vi@) vien,
D
which can be done using the Galerkin method.

For the Galerkin method consider a basis (¢1 (), ..., ¢n ()) = Vo, C L? (D), than the approxi-
mation of eigenvectors takes form v; () ~ >0, ¥i; - ¢; (x). We solve the following problem

Find@ERn X € RT Vo, () :
Jo5@)- Je()- (Siaaty ;@) dyde =X [, @) vi(@yar 0

D

which can by formulated as a generalized eigenvalue problem
Ay =X Wy, Ajj = //c(x,y) < 9i (y) - ¢ (x) dydz, Wi; = /¢z‘ () - ¢j (x)dz.  (4)
D D D

The difficult part is the choice of the basis V,,. Before we specify the basis functions, let state
some general properties, which simplify the solution of the problem 4. One of such properties
is the orthonormality of V;,, which leads to the standard eigenvalue problem (matrix W become
identity matrix). Another useful property is that each of the basis functions is either “odd” or
“even” with approximately equal number of “odd” and “even” functions (here parity is understood
with respect to the middle of the domain D). This property allows us to permute the matrix A
into block diagonal form of 2¢ blocks (d is the dimension of D).

Specific bases tested in this article are three and were constructed as tensor product of 1d bases
of piece-wise constant functions, normalized Legendre polynomials or goniometric basis of 1d
solution of the equivalent problem (see [5]).

For experimental purposes, the calculation of A;; is done numerically by the Gauss-Legendre
quadrature of 100 points per dimension. Note, that this is very computationally expensive,
we need to evaluate the integrand in 100* points for each non-zero entry of A. The sample
calculation using goniometric basis with 400 basis function (20 in one dimension) can be seen in
the Figure 1. Note the very fast decay of eigenvalues, which assures low approximation error of
the truncated KLD.

Next we compare the approximation error of the tested bases. We don’t know the exact eigenfunc-
tions, so we take the approximation obtained using the piece-wise constant basis of 500 x 500 =

15



Figure 1: Results for goniometric basis with 400 basis function.

250000 functions as “precise” solution. We measure the error as L? (D) norm of the difference
between the “precise” solution v; (x) and the Galerkin approximation 1/1,? (x), both multiplied by
square roots of the corresponding eigenvalues, err (A - ¢! (z)) = H)‘l i () — Al () HLQ(D).
The resulting approximation errors for 1st and 13th eigenvector can be seen in the Figure 2. The
results show, that the polynomial basis has the best approximation property. In the case of the
polynomial basis, the convergence (in the Figure 2) stagnates for the number of basis functions
over 100, which is caused by the choice of the “precise” solution and arithmetic instability of the
evaluation of the higher order Legendre polynomials. Note, that the convergence of the Galerkin
method can be sensitive to the precision of the numerical integration, which is more difficult
for fast oscillating functions, such as polynomials or goniometric functions. On the other hand,
the piecewise constant basis needs lower number of integration points with increasing number of
basis functions.

Figure 2: Convergence of tested bases.
The sampling of GRF, when we have KLD (2), simply means to sample the i.i.d. standard

normal variables &; (w). Note the similarity with the “eigenvalue decomposition of C” method.

4 Sample usage of sampling and decomposition of GRF

Finally we list some applications of decomposition/sampling of GRF. Our research mostly con-
cerns PDEs with unknown material parameters (e.g. permeability), for which only statistical
behaviour is known. In the case of many natural materials, the statistical behaviour (of loga-
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rithm) of their properties has Gaussian random field distribution. Our current research topics,
that involve GRF, are:

Multilevel Monte Carlo approximation of the Darcy flow problem solution with random
material field, where we only need to generate samples of GRF (see [4]).

Stochastic Galerkin method for solving the same problem, where the decomposition form of
GRF is used (see [6]).

Bayesian inverse approach to a material field estimation using noised point measurements of
the pore pressure and the Darcy’s velocity (see [7]).

Study of robustness of iterative solvers for problems with stochastic, oscillating coefficients.
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Reseni 3D tloh mechaniky tekutin metodou lattice Boltzmann

J. Blahos, T. Kardsek, T. Brzobohaty

IT4Innovations, VSB - Technické univerzita Ostrava

1 Uvod

Metoda lattice Boltzmann (LBM) je jednou z numerickych metod pouZivanych pro fegeni tloh
proudéni. Pocétek jejtho vyvoje se datuje nékdy do 70. az 80. let.

Ptedchidcem LBM je metoda lattice gas. Ta pfisla s jednoduchou myslenkou simulace chovéni
jednotlivych molekul tekutiny. Nékdy se mluvi o simulaci na mikroskopické tirovni. Vypocetni
oblast se diskretizuje do pravidelné miizky. V kazdém uzlu miizky se nachéazeji fiktivni Cés-
tice, které se po mfiizce pfesouvaji a navzijem interaguji podle danych pravidel. Castice nikdy
nemize skoncit jinde neZ na jednom z uzli miizky. Z toho plyne vedle prostorové diskretizace
i diskretizace rychlosti.

Obrézek 1: Schéma kroku algoritmu metody lattice gas

Metoda lattice Boltzmann vychézi ze stejnych principi. Po pravidelné miiZzce se pohybuji ¢as-
tice s diskrétnimi rychlostmi do sousednich uzli. Dale dochézi ke kolizi (tipravé sméru pie-
sunu), s omezenim na zachovani hmoty a hybnosti. Zaroven metoda LBM pfinasi nékterd
vylepSeni, které odstranuji nedostatky metody lattice gas. Klicovy je fakt, Ze metoda LBM
na makroskopické trovni fesi Navier-Stokesovy rovnice.

2 Algoritmus

Podstata metody LBM spociva v manipulaci se sadou redlnych c¢isel v kazdém uzlu miizky.
Tyto ¢isla byvaji obvykle oznacovany za hodnoty distribu¢ni funkce, pficemz kazda hodnota
popisuje mnozstvi ¢astic majici jednu z mnoziny moznych rychlosti. Makroskopické veli¢iny jako
je hustota a rychlost proudéni tekutiny lze pro dany uzel ziskat pomoci jednoduchych operaci.

Samotny vypocet jednoho C¢asového kroku sestdva ze dvou ¢asti - propagace a kolize. Propagace
znamend prosty posun hodnot distribu¢nich funkci k sousednim uzlim ve sméru odpovidajici
rychlosti. V kolizni ¢asti se vyuziva tzv. Bhatnagar-Gross-Krookuv operétor, ktery z fyzikalniho
hlediska predstavuje relaxaci k rovnovaznému rozdéleni ¢astic. Toto rozdéleni je definovano jako:

9 3
f~€q = pW; 1+ 3’U/Ui + E(uvi)Q — Euu (1)

(2

18



Jedn4 se o aproximaci Maxwell-Boltzmannovy distribuéni funkce Taylorovym polynomem druhé-
ho fadu.

124 5/).,11
2 g [ >e1
140 | ¢ 13

Obrézek 2: Miizka D3Q19 - nejcastéjsi miizka pouzivand ve 3D, vyuzivajici 19 sméria piesunu

3 Paralelizace

Klicovou otazkou v oblasti HPC je moznost a efektivita paralelizace. V tomto ohledu je LBM
velice zajimava, diky povaze pouzitého algoritmu. V propagacni ¢asti dochézi k prostému
kopirovani hodnot na sousedni uzly. V kolizni ¢asti je pak vypocet v rdmci uzlu zcela nezavisly.
V dne$ni dobé paralelniho pocitani na ¢im dal vykonnéjsich superpocéitac¢ich ma proto tato
metoda velky potenciél.

4 ZAavér

V soucasné dobé je naimplementovana zakladni funkéni LBM v jazyce C++, vyuzivajici hybridni
paralelizaci (MPI a OpenMP). Dalsi vyzkum se bude soustiedit na optimalizaci implementace,
a vyuzitelnost pro FeSeni tloh s tzv. volnou hladinou a pro feSeni rovnice "shallow water".

Obréazek 3: Vizualizace vystupu - fez obtékani vélce ve 3D

Podékovani: Tato prace je podporovana z projektu SGS - Numerické metody pro modelovéani
environmentélnich procesia SP2017/167
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Balancing discretization and algebraic errors in goal-oriented
error estimates for nonlinear problems

V. Dolejsi, F. Roskovec

Faculty of Mathematics and Physics, Charles Universityin Prague

1 Introduction

Employing the Dual Weighted Residual method (DWR) for the goal-oriented error estimation,
see e.g. [1], we propose an adaptive algorithm for solving nonlinear elliptic boundary value
problems. Rather than measuring the error in a norm coming from the mathematical formulation
of the solved problem, the error is estimated with respect to the so-called target functional,
which represents some quantity of special interest. This is achieved by solving an additional
(dual) problem having the target functional in its right-hand side. That enables us to adapt
the computational mesh directly with respect to this goal, which may fasten the computation
dramatically in many cases. On the other hand, the the necessity of solving the adjoint problem
brings additional computational costs and also possible errors. Based on the design published
in |2] and |3], we propose an adaptive algorithm, which keeps the linear and nonlinear algebraic
errors under the level of the discretization error — all of these measured with respect to the target
quantity.

2 DWR method for nonlinear problems

We consider the following abstract primal problem: Determine J(u) = [ jo(u)dz+ [ jr(u)dS
Q o0
given that

A(u) =0 in Q, u=up on 0F, (1)
where Q C R? is a bounded domain and up, jo,jr : R — R are given functions.

We discretize the problem (1) by the discontinuous Galerkin method (dG). Then we say that
up, € Vi C V is the dG solution of the primal problem if it satisfies

ap(up;on) =0 Vo € V. (2)

We assume that the discretization is consistent, i.e. ap(u;pp) = 0 Vo, € V. This property gives
us the Galerkin orthogonality of the approximate solution.

2.1 Newton method

The problem (2) results in a nonlinear system of algebraic equations and it is further solved by

an inexact Newton method. We introduce the damped Newton method for the problem (2). In
(n+1) (n)

every step of the method the next approximation is computed as u,, =y, + A"d", where
d" is the exact solution of
aj(uy”s d", ) = —an(ufl”; ), ¥ € Vi (3)
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where a’h(u,(ln); d"™,-) denotes the Fréchet derivative of aj, with respect to its first variable at ugln)

along the direction d" and A" € (0,1] is a parameter which improves the convergence of the
method in early iterations.

In each step of the Newton method, the linear system (3) is solved by some iterative method
(e.g. GMRES). Due to the error of this iteration method we do not get the exact d", but only

its approximation d%) and hence in every step of the inexact Newton method we obtain

uﬁfjl) = ugn) + /\”dff).

2.2 Dual problem

The dual (adjoint) problem cannot be obtained directly in the nonlinear case. Therefore, accord-
ing to [1] we employ the Euler-Lagrange equations. That gives us the linearized discrete dual
problem

ap(uns pns zn) = J' (un; on) Vo € Vp, (4)

where J'(up; ¢p) denotes the Fréchet derivative of J at uy, along the direction ¢y, and aj, (un; @p, -)
is the Fréchet derivative of aj with respect to its first variable at wj; along the direction y,.

Exploiting the dual problem (4) we obtain the error representation of the target quantity

T = ) = 5 Irulma)(z — 2£) + 75w, ) — )] + 7l 2) (o5) + R, (5)

where rp,(upa)(@) = —an(up,a, ), r(una, 28) () = J' (up)(¥) — aj,(up)(¢, 2) are the primal
and dual residual, respectively, and Rgs) is a remainder, cubic in the error, which will be ne-
glected.

Unlike the approach presented in [1| we take into account here also the inexact solution of the
nonlinear algebraic problem. We note that, if uj and z;, would be the exact solutions of the primal
and dual discrete problems, respectively, then ry,(up)(¢n) = 75 (un, 2n)(pn) =0, Vep, € V.

This property cannot be achieved in real computations. Moreover we do not even intent to
obtain algebraically precise solutions, since it would increase the computational cost needlessly
when the discretization error is still large. On contrary, we monitor the decrease of the algebraic
error and stop iterating when the error is under the level of the discretization error up to a safety
parameter x € (0, 1].

We solve both of the linear systems (3) and (4) by a Krylov iterative solver. Then for each inner
iteration ¢ = 1,..., imax We introduce

the primal linear algebraic error identity

ha() = ah () (@5 ) + an(w”s ) (6)
and the dual linear algebraic error identity

aha() = ag () Co2p) = () (), (7)
If J : V — Ris alinear functional and we denote u&jl) = ugn)—i—)\”dff) and ugnﬂ) = ugbn)—i-)\”d(”),

the inexact solution (due to errors of the linear solver) and the exact solution of one step of the
Newton method, respectively, then we get the following error identity (see [3])

™) = I YY) = X (4G + a ™ - ). (8)
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2.3 Reconstruction

Unfortunately, the error identity (5) contains the exact solutions u and z, hence is not practically
applicable. Therefore, these exact solutions have to be approximated. We can either compute
those in some richer discrete space (on finer mesh and/or with higher polynomial degree), see
e.g. |4], or we can reconstruct those from wuy and zp. The method from [4] is very precise, but it
increases the computation price significantly.

Therefore, we apply the weighted least-squares reconstruction, which was presented in [5]. For
each element K of the triangulation 7p this method constructs a function u}'{ € PPT(K), which
is a solution of the weighted least-squares method on the patch of elements having at least
a common vertex with the element K. In this way we construct ”Z ~ u and z]‘f SE2

3 Adaptive algorithm

Altogether, we define the estimate of the total error in the following way

n—1
n 1
T(u) = T(u)) & 5 (s +08) + = D N + 03, (9)
=0

where we use the following error estimators:

primal discretization error estimate ns = rp(u 1)4)( NS
(u

")

dual discretization error estimate 1§ = (2 }(Z )

e non-linearity estimate NN = rh(uén%)(z,(ﬁz‘)

primal algebraic estimate 1’y = thA(zg)A)

dual algebraic estimate nz’z = q}LA(dX))

Finally, with all of these error estimators in hands we introduce the adaptive algorithm. The
constants C% € (0, 1] should reduce the number of calculations of the particular estimates and
suppress the inexactness of the estimates. We usually set those from [1073,1071].

REPEAT UNTIL (s + %) < TOL :

initialize u( ) z,(l ) and ng from previous mesh , k:=0

FOR n=0,...,nmax:
r:=k
REPEAT UNTIL nx(ul®, 2{7) < Chins(u”, 27) : %Newton iterations
perform GMRES iterations for (3) with tol. nA(ué ), z}(:), diy) < CAnx (ugk), z,(:))
find the optimal damping parameter \*, set ugkjl) and k:=k+1
perform GMRES iterations for (4) with tol. n}y (u,(lk), z,(f Z)) < C3nN (ugk), z}(;))
compute reconstructions u;, z;", update ng = ng(k) and n§ = n§(k)
IF na (ul?, =¥y < Clng : EXIT FOR loop
set up 4 1= uiA and zj = z,’j,A

IF %(ns +n%) > TOL :

refine elements with local error estimate nsx > TOLg = ToL

F#elements
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4 Conclusion

We presented a robust adaptive algorithm, which is designed to keep discretization and algebraic
errors balanced and hence enable efficient computation of various nonlinear elliptic problem
solved by dG method. Our experiments document stable and reliable performance of this al-
gorithm. Nevertheless, we should not cover the fact that the algorithm is partly heuristic. We
neglect the part of the error corresponding to u—uz and z —z;{ and also some terms coming from
the linearization of the problem. This is a common problem in DWR methods. As far as we know
there are some guaranteed estimates for linear problems using equilibrated flux reconstructions,
but the extension to nonlinear problems is still unclear.

Acknowledgement: The research of V. Dolejsi was supported by Grant No.: 13-00522S of the
Czech Science Foundation. The research of F. Roskovec was supported by the Charles University,
project GA UK No. 92315.
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Investigating finite-precision Krylov subspace methods
via rank-deficiency of the computed subspaces

T. Gergelits, I. Hnétynkovd, M. Kubinovd, Z. Strakos

Faculty of Mathematics and Physics, Charles University in Prague

1 Short-recurrence Krylov subspace methods

Krylov subspace methods represent a computationally attractive way of solving large and sparse
linear algebraic problems of a general form

Az = b, AeR™"™ beR" (1)

Many of these methods rely mathematically on computation of an orthonormal basis of the
Krylov subspaces

Kr(A, 7o) = span{rg, Arg, ... ,Ak_lrg}, k=1,2,...,

where g = b — Axg. For a symmetric A, a sequence of orthonormal bases generating K (A, o),
k=1,2,..., can be computed by short recurrences, represented by the Lanczos tridiagonaliza-
tion [5]. However, in finite precision computations, the use of short recurrences inevitably leads
to the loss of global orthogonality and even the loss of linear independence among the generated
vectors. Consequently, the computed Krylov subspaces become rank-deficient, which may cause
a significant delay of convergence.

In this contribution, we investigate how the first k£ steps of the finite precision arithmetic com-
putation can be related to the first [ steps of the exact computation with the same matriz and
starting vector.! Such pairing allows to compare not only the convergence curves, but also the
computed approximations, corresponding residuals, or the generated subspaces.

2 A pairing strategy

We propose the following pairing based on the loss of linear independence in the kth computed
Krylov subspace: For each iteration [ in the exact computation, we aim at finding the corre-
sponding iteration k(l) in the finite precision computation as

k(1) = max{j| num_rank(V;) =}, (2)

where VJ is the matrix of the Lanczos vectors computed in finite precision arithmetic. The
definition of numerical rank is generally a subtle issue. In this contribution we investigate several
possible approaches.

Tt should be pointed out that the analyses of Greenbaum and coauthors [3, 4] and Paige and coauthors [6]
link the results of finite precision computations to exact computations for larger problems.
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3 Observed phenomena

When applying the Lanczos method [5] to the system (1) with a symmetric positive definite
matrix A, the quantity of interest is typically the energy norm (A-norm) of the error. Using the
pairing (2), we have observed that

21 = zl[a = [ Zeqy — ], (3)
see Figure 1. Moreover, typically we also have

lz1 — Tyl a

<1, Vi, 4
To = zla @

meaning that the trajectory of the computed approximations Zj) is enclosed in a shrinking
‘cone’ around the trajectory of approximations x; from exact arithmetic computations.

Figure 1: The matrix strakos with n = 100, Apin = 0.1, Apax = 1000, and p = 0.7, see 7], and
a random vector z. Convergence curves before (a) and after pairing (c).

While in the convergence curves of ||Z; — z||4, the loss of orthogonality causes plateaus, see
the typical staircase behavior in Figure la, in the convergence curves of ||7x| = [|b — AZg||, it
reveals itself in oscillations, see Figure 1b. Contrary to expectations, |74l and [|r]| cannot
be compared directly. We suggest to use the relation between residuals of norm-minimizing and
Galerkin methods, see [1], and compare the exact and finite precision residual norms as

k(1)

1 1
~ D) : 5
71 17511 ®)

j=k(l—1)+1

The resulting match of the associated curves is shown in Figure 2.

Using the relationship between the Lanczos tridiagonalization and the Golub-Kahan bidiagonal-
ization [2|, similar pairings can be applied to bidiagonalization-based methods such as LSQR,
Craig or LSMR. Here, however, the fact that solutions and residuals belong to different subspaces,
both loosing global orthogonality, represents additional difficulty.

The poster will present some recent results, discussion and illustrative experiments of the studied
topics.

Acknowledgment: This work was supported by Charles University, project GAUK 196216.
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Figure 2: The problem with matrix strakos from Figure 1. Residual convergence curves before
(a) and after pairing (b).
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Stokes system with solution dependent threshold slip boundary
conditions: approximation and numerical realization

J. Haslinger, R. Kucera, V. Sdtek

Charles University in Prague & Institute of Geonics of the CAS, Ostrava
IT4Innovations, VSB — Technical University of Ostrava

IT4Innovations, VSB — Technical University of Ostrava & Brno University of Technology

This contribution deals with an approximation of the Stokes system involving the threshold slip
boundary conditions of the Navier type. Unlike the classical Navier condition, this time a slip
may occur only when the shear stress attains a threshold bound represented by a function g. We
suppose that g is generally a nonlinear function of the tangential component of the flow velocity.
Such boundary conditions occur in many practical problems (modeling of polymer melts flow,
problems with multiple interfaces, flow of the fluid along hydrophobic surfaces). For the physical
justification we refer to [1, 2]. The mathematical and numerical analysis of such a type of
problems can be found in [3, 4, 5, 6], e.g. Using the fixed point approach we prove the existence
and uniqueness of the solution to this problem for an appropriate class of threshold bounds g.
The discretization will be done by P1-bubble/P1 elements which satisfy the LBB-condition. The
mesh independent conditions under which the discrete problems have a (unique) solution will be
presented and convergence results will be established. Finally, computational experiments will
be shown.
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Reseni sdruzeného transportu tepla vodou
a horninou v kombinaci puklina-matrice

M. Hokr, P. Ralek

Technické univerzita v Liberci

1 Uvod

Regena je sdruzend tuloha proudéni podzemni vody a transportu tepla v horniné. Modelova oblast
se sklada ze dvou ¢asti, malo propustné horniny, kde je dominantni transport tepla vedenim
a propustné zoény (pukliny), kde je dominantni transport tepla advekei.

Proces je reprezentovan standardnimi rovnicemi, které jsou numericky feSeny existujicimi meto-
dami v pfevzatém softwaru [1, 2]. Specifika tlohy vyplyvaji z geometrické konfigurace a propo-
jeni procesii mezi sebou. Uloha je postavena na datech realné lokality a vysledky modelu jsou
porovnany s terénnim méteni. Model tak pfispiva k identifikaci vlastnosti horninového prostiedi,
i kdyz samotné feSeni inverzni tlohy neni predmétem prezentované préce. Regenf navazuje na
praci [3].

2  Uloha

Model reprezentuje situaci v okoli tunelu, do kterého pfitékd voda svislou puklinou a ziroven
vlivem vyuZziti tunelu v ném sezénné kolisé teplota vzduchu. Situaci je moZzné popsat bud ve
vétsim méritku, s celym objemem horniny mezi povrchem a tunelem, kdy model musi byt 3D,
nebo v mensim méfitku okoli tunelu, kdy na zakladé osové symetrie je mozné pouzit 2D model.
Takovy pfipad je zndzornén na Obr. 1 — vychozi koncept je uveden v levé ¢asti (predpokladéame
ustaleny stav daleko od tunelu a ovlivnéni horniny v blizkosti tunelu) a modelova tloha s okra-
jovymi podminkami pro obé rovnice v pravé ¢asti. Zatimco méfeny pribéh teploty na sténé
tunelu je zadan jako okrajovd podminka modelu, teplota vyvérajici vody je ziskdna jako post-
procesing vysledného pole teploty a je porovnévana s méfenim.

T, stable

..................... rock g =
<> £ - —
Ui, <>| |«> Rock - ¥ 0} ‘3
m <5||l<>  massif 3 o K_rock S 5
sllles 2 c n_rock 9 IS
"""""""""""" o 0 ollle |9
/')On‘@ ' . :E - = g 2>* S =
Wi, 93 RIER
um |12 D A1 H=0m || |1
<> |||<=> Measured Q 1
T (t I T <Hedsued
<> @W Tun( ] d BC d fract K fract
Tunnelwall T (1) - B n_fract

Obréazek 1: Schéma FeSené tulohy proudéni a transportu tepla a zadanych okrajovych podminek:
H je hydraulickd vyska, T je teplota, K je hydraulickd vodivost, n je pérovitost, @) je prutok,
d oznacuje rozdilnou §ifku odpovidajici pukliné nebo umisténi okrajové podminky.

Zatimco bé&zné uvazované rovnice sdruzeného procesu vychéazeji z predpokladu lokalni rovnovahy
mezi teplotou vody a teplotou pevné faze (zrna horniny), v feSené tuloze vznika nerovnovaha ve
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vétsim méFitku (decimetry-metry) v disledku nehomogenity rozlozeni toku vody, p¥i uplatnéni
stejnych pfedpokladt rovnovihy v lokalnim métitku.

3 Vysledky

Regenf tlohy ustaleného proudéni je mozné jednoduSe kalibrovat volbou hydraulickych vodi-
vosti (K') pro blok horniny a puklinu, na zakladé méfenych tokt pies hranici (prisak to tunelu).
Tepelné parametry jsou nékteré znamé z literatury, jiné jsou odhadnuty az na zakladé kalibrace
modelu na métfeny pribéh teploty vyvérajici vody. V tloze je nejistota vyplyvajici z abstrakce
realnych podminek — ostré rozhrani mezi hranici se zadanou teplotou (sténa tunelu bez vyvéru)
a hranici s vyhodnocovanou teplotou (vyvérajici vodou) (Obr. 1 vpravo).

Piiklad porovnéni pro ¢astecné kalibrovany model je na Obr. 2, ktery ukazuje identifikaci hodnoty
ustalené teploty uvnit¥ masivu (rock b.c.). Model kvalitativné i kvantitativné vystihuje méfeny
prubéh teplot, pficemz odchylky jsou pfiméfené nejistotam ve vlastnostech horninového prostiedi
a nepfesnosti méfeni. Potvrzuje, Ze je mozné teplotu vody vyuzit jako indikdtor nehomogenniho
toku prostorového rozlozeni toku vody v horniné.

V prispévku bude rozebrano, které jednotlivé vlivy odpovidaji riznym fyzikdlnim podminkam
v horniné, a které jsou jen dusledek diskretizace nebo abstrakce modelu.
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Obrézek 2: Porovnéni méfeného ¢asového pritb&hu teploty vyvérajici vody a dvou variant modelu
s riznou hodnotou nezndmé okrajové podminky.

Podékovani: Prace vznikla z¢dsti v rdmci instituciondlni podpory CxI TUL a zcasti je vysled-
kem teSeni projektu Spravy ulozist radioaktivnich odpadii “Vyzkumné podpora pro bezpetnostni
hodnoceni hlubinného tlozist&”.
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Numerical pricing of two-asset European-style
arithmetic Asian options

J. Hozman, T. Tichy

Technical University of Liberec
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1 Introduction

Options are the most interesting financial derivatives worldwide, both from the mathematical
point of view and the range of financial applications. Therefore, an important part of activities at
financial markets consists of using option pricing models, often formulated in the form of partial
differential equations (PDE). These models have analytical solutions only under very strong
simplifications and in the rest of cases an efficient, robust and accurate numerical approach is
needed, cf. [1].

In this paper, we are concerned about pricing of one particular subclass of path-dependent
options — continuous arithmetic Asian option contracts on two assets. The corresponding pricing
model is formulated by a convection-diffusion-reaction equation, derived in a similar way as the
multidimensional Black-Scholes equation for European basket options, see |2].

The numerical approach listed below arises from the concept of the discontinuous Galerkin (DG)
method, for survey see [9]. This technique uses higher order piecewise polynomial discontinuous
approximation on arbitrary meshes, without any requirement on inter-element continuity. There-
fore, it is more suitable for numerical pricing of such exotic options than standard continuous
treatment based on finite element methods, see [4].

We proceed as follows. First, we formulate the PDE system for Asian options on two assets
and incorporate a dimensionality reduction. Secondly, we realize its discretization and finally,
an illustrative numerical experiment is presented.

2 PDE models for two-asset Asian options

We recall the pricing model from [5|. Let V denote the value of two-asset European-style Asian
option. This price function V' = V(S1,S2, A,t) depends on the actual time ¢, two asset prices
S1(t), Sa(t) and the continuous arithmetic average

1

At) = t/o (o151 (u) + azS2(u))du (1)

with positive weights a; and «y satisfying a; + ag = 1.

Using the standard market assumptions and following a common approach based on multidi-
mensional Ito’s lemma, construction of a risk-free portfolio and elimination of the randomness
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(cf. [5]), we solve the following deterministic parabolic partial differential equation

ov 1 @V 82V 1 22OV
Bt T35 gge TrnoSiSggae 5025 e
oV ov a151 + a9Sy — AV
— )5 2 Py = 2
Hr—a)Sige 4 (r = a)Sze + : g1 V=0 2)

for t € (0,7), S1 >0, S2 >0 and A > 0. The pricing equation (2) has the following (piecewise)
constant parameters: p € (—1,1) — correlation, r > 0 — risk-free interest rate, o; > 0 — volatility
of the i-th asset and ¢; > 0 — dividend yield of the i-th asset, ¢ = 1,2. The detailed description
of these market parameters can be found in [2].

The specific feature of all Asian options is the way in which the average is incorporated into the
payoff function. If we denote the strike price K and maturity 7', then we distinguish four basic
grouping introduced in Table 1.

payoffs call put
fixed strike max(A — K,0) max(K — A,0)
floating strike max (151 + @282 — A,0) | max(A — o151 — a252,0)

Table 1: Payoff functions for four basic types of Asian options.

Let us note that (2) with one of the terminal data from Table 1 represents a linear backward
Cauchy problem with the parabolic operator degenerated in variable A. This undesirable feature
of (2) can be overcome by a suitable dimensionality reduction possible for European-style options
only.

In what follows, we consider only Asian options with floating strike. Inspired by approach
from |7], we introduce new spatial variables x = [z, z2] as z1 = S1/A and x2 = S2/A together
with the reversal time transformation { = T'— ¢ (f is time to maturity). Then easy calculation
(cf. [5]) leads to the transformed forward pricing equation

. Ou a1x] + agrg — 1 B
Z 83:1 ) - Vu) + sz(x,t) o7, + <7" - T3 ) u =0, (3)

i=1

where u(x,t) is the new pricing function, ID denotes the symmetric positive semi-definite matrix

1 022 0109T1L
e 1 1y pO102T1T2
ID(x) = {D%J}z‘,jzl 2 <Pd1a2x1$2 0535% ) ’ o

and vector (by,bz)T represents a field induced by physical fluxes, component-wisely written as

. 1 a1x1 + opxg — 1
bi(:v,t): <JZ~2+2,0010'2—?"—|—Q1'+ T >.CIJ1 (5)

Finally, the equation (3) is equipped with the initial condition u" defined as

ud(z) =

{ max(a1x] + aexg — 1,0), for call, ©)

max(1l — ayx; — agxe,0), for put.

In order to numerically solve Cauchy problem (3)-(5) with (6), it is necessary to localize it on
bounded domain Q := (0, z7"*) x (0, 25"*"), where x]"** stands, in fact, for the maximal price
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of the scaled i-th asset. We distinguish three parts of the rectangular boundary 02 defined as
Iy = {0} x (0,25%%), Ty = (0, 27"*) x {0} and I's = 9Q N IR%. According to [5], for put options,
we prescribe the boundary conditions of a mixed type in the following sense

(D-Vu(m,f)) -i=0onTy,i=1,2, u(z,t) = 0 on T, (7)

where 77 is the outer unit normal to I';. Note that the generalization of all conditions for call
options can be done straightforwardly with the aid of the so-called put-call parity, see [2].

Analogously to the afore-mentioned approach, the similar initial-boundary value problem can
be formulated (with slight modifications) also for the case of two-asset Asian options with fixed
strike. For both cases it is possible to derive the variational formulations and treat their solvability
in weighted Sobolev spaces, see [8].

3 DG solver and numerical experiments

Since the governing equation (2) does not have a closed-form solution of Black-Scholes type,
the exact solution of the problem (3)-(7) is difficult to find. Therefore, we use a numerical
approach based on the DG framework, where the approximate solution is sought in the finite
dimensional space S} consisting from piecewise polynomial, generally discontinuous, functions
of the p-th order defined on the domain . Similarly as in [6], we introduce the semi-discrete
solution uy, = uy(t) represented by the system of the ordinary differential equations

(Zg(uh,vh)  An(unson) = (o) () Von € STV € (0,T), (8)
where uy (0) is given by (6), (-,-) denotes the inner product in L?(€2) and the bilinear form Ay (-, -)
stands for the DG semi-discrete variant of diffusion, convection and reaction operator from (3)
accompanied with penalties and stabilizations. Finally, the right-hand side form I;,(-)() contains
terms arising from boundary conditions The detailed description of the afore-mentioned forms
can be found in [9].

Further, to obtain the fully time-space discrete DG formulation, we discretize in temporal vari-
able £. Here, we consider Crank-Nicolson scheme, which is practically unconditionally stable and
gives the second order convergence in time. It is equivalently written as the weighted average of
forward Euler and backward Euler methods.

Let 7 be the constant time step of partition (0,7), then the DG approximate solution u}" of
problem (8) at time level #,, is computed according to the following numerical scheme

T T T ~ ~
(a1 o) + 2 An (™ on) = (gt vn) = 5 An (i vn) + 2 (16 (08) () + (00) ()
Vo €Sy, m=0,1,...(9)

with the starting data u% ~ ul.

Moreover, one can easily identify that the discrete scheme (9) corresponds to the system of linear
equations. More precisely, this system matrix is a composition of particular sparse matrices and
has a matrix inverse, which implies the solvability of the discrete problem (9), i.e. the existence
and uniqueness of the DG solution.

In conclusion, our aim is to demonstrate the usage of the DG method on the simplified prob-
lem of pricing of Asian put options on two underlying assets — exchange rates of EUR and
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USD, both with respect to GBP (60% EUR and 40% USD), see Figure 1. All computations
are carried out with an algorithm implemented in the solver Freefem+-, from a mesh genera-
tion/adaptation, over the DG discretization and assembly of a linear algebraic problem to the
basic post-processing. The detailed description can be found in [3].

Figure 1: The adaptively refined domain (left) and the corresponding discrete solution at the
month maturity (right), zoomed on [0, 3] x [0,4]. The model parameters: p = 0.45, o1 = 0.1,
02:0.15,7’:q1:q2:0.
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Fuzzy set of functions defined with the help of an auxiliary
membership function: A comparison of two approaches

J. Chleboun

Department of Mathematics, Faculty of Civil Engineering, Czech Technical University in Prague

1 Introduction

The contribution deals with integral membership functions defining fuzzy sets of functions.

It is quite common in the application oriented mathematical modeling that some input functions
are not known exactly, but are burdened by uncertainty. Take, for instance, a differential equation
and its coefficient-function or right-hand side function.

Although stochastic approaches are highly popular among the analysts dealing with uncertainty
quantification, see [1, 4, 6, 8], for instance, not all problems involving uncertainty are suitable
for the application of stochastic methods. If this is the case, a fuzzy set approach can be beneficial
because weaker assumptions are necessary that in the case of stochastic methods.

Nevertheless, two different approaches are used to fuzzify functions. One option is to consider
functions with fuzzy values and to generalize the notion of the derivative of such functions, see,
for example, 2, 5]. In the other approach, the uncertainty in a function is represented by a set
of crisp functions that, in the case of differential equations, can enter the modeled problem
as coefficients or right-hand side functions. The set is made fuzzy by a membership function that
determines the amount of uncertainty through an a-level value between zero and one. In the latter
approach, the differential equation is not generalized, but all the input functions belonging
to an a-dependent set (a-level set) has to be taken into account in the analysis of the uncertainty
in the model output, see [7], for instance.

In the contribution, two types of membership functions are presented. Both are defined by means
of a definite integral and an auxiliary function p, but differ in the properties of the auxiliary
function. A general framework was sketched in [3| but without any application, algorithmization,
and calculations. These are the subject of the current contribution.

2 Membership function

Let £ =29 < 21 < -+ <, = ¢ be mesh points in an interval [{, (] and let ajow, Gupp, and ayunc
be three functions continuous on [£, ] and linear on I; = [z, x;41], i =0,1,...,n— 1. Moreover,
let

Vz € [§,¢]  alow(z) < aunc(z) < aupp(z).
Let us define
I B (TN ET)

i=0,1,...n—1 | z€(zi,Tit1)

and let us choose Ly > 0.
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We are ready to introduce the set of admissible functions that will represent the uncertainty
in the function aync:

Usg = {a e C([&, Q)| aly, is linear,

a"IJSLa,’(a’ Appe ‘I’<L2,’L—0 n—l},

where C([¢,(]) stands for the continuous functions on [§,(] and L, > Lj. In the modeling
of the uncertain function ay,e, a set of functions a will be considered instead of a unique func-
tion ayne that nevertheless remains included in U,q as its “backbone.” The functions from U,q are
continuous, piecewise linear, bounded from below and above by given functions aigy and aypp,
the derivative of a is bounded too and, moreover, it cannot deviate from the derivative of aync
by more than L.

To fuzzify the set Upg, we first define Q = {(z,y) € R?| 2 € [£,(], ¥ € [alow(T), aupp(x)]}
and introduce a continuous auxiliary function p : © — [0,1] such that p(z,aw(z)) = 0,
p(z, aumc(z)) = 1, p(x,aypp(x)) = 0, and p(x,-) is concave for each = € [¢,(]. The function
Ype = p(z,-) can be interpreted as the membership function of the fuzzified quantity aunc(x).

Finally, a membership function associated with Uy,q is defined

luuad C § / ZL’ (I (1)

where a € Uyq. Tt is obvious that 1y, (alow) = 0 = piz4,, (Gupp) and pus,, (aunc) = 1.

Then, for a € [0, 1], an a-level set is defined by

Uaa = {a € Uaa| pus,4(a) > af . (2)

It is common in applications that an a-dependent state problem is to be solved and its solution
evaluated by ¢(a), a scalar quantity of interest. As a consequence of the fuzziness of Uyyq,
the quantity ¢(a) is fuzzy and its membership function can be obtained from the Zadeh extension
principle [9]. To this end, the extrema of g over “U,q have to be identified for each a € [0, 1].
Such a task can be solved approximately by numerical optimization over “U,q for a finite set
of a-values.

3 Two variants of ¢, ,

Cubic polynomials
In general,

Ppa(y) = co(@) +cr(@)y + ca(2)y? + es()y’,

where the values ¢;(x), j = 0,1,2,3, can easily be inferred from the properties of p listed above,
especially if a computer algebra system (such as Mathematica or Maple, for instance) is employed.
To get concave functions, however, aync(x) must be rather close to the center of the segment

[atow (), Qupp (T)]-

By using the linearity of aiow, Gupp, and a on I; and by further utilization of computer algebra
tools, the function p(x,a(x) can be expressed as a function of nodal values and x. In detail,

p(aj,a(az) = W(Ua,mx% (3)

where v, , = (ag,a1,...,a,) and a; stands for a(z;). The expression for the function v also
contains the nodal values of aiow, Gunc, and aypp, but, unlike v, ,, these are considered fixed
in the subsequent exposition.
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In view of (3) and (1), 4y, can be identified with p,, a function of n + 1 real variables;
(ran) = 2 [ (i) ()
Un(Van) = Y(Va,n; T)dx.
¢ =& Je

In the already mentioned optimization calculations related to the applications of the Zadeh
extension principle, the function pu, appears in a nonlinear constraint, as seen from (1)-(4).
As a consequence, the calculation of ji,,(vg ) and Opp(ve,n)/0ai, i =0, ..., n, is important.

It turns out that p,(v,,) can hardly be directly expressed in terms of general input parameters
even if a computer algebra system is used. By implementing computer algebra results combined
with numerical integration, parametric expressions defining ji,(ven) and Opp(ven)/0ai, i =

0,...,n, are available. If generality is sacrificed, that is, numbers instead of parameters are
employed in ajow, Gunc, and aypp, then direct formulae for py,(ven) and Opn(ven)/0a;, i =
0,...,n, can be inferred. In this case, however, a change in ajow, Gunc, Or aupp has to be followed

by the implementation of a piece of computer code (Matlab code, for instance) determined
by the new setting of ajow, Gunc, and aypp and generated by a relevant computer algebra tool.

Piecewise linear functions
A hat function for each x € [¢, (] is the simplest option:

(Y — alow())aunc ()
Aunc () — alow (7)
(aupp(x) — y)aunc(x)
aupp (%) — Gunc ()

y Y E [alow(qf')aaunc(x)]a
Poa(y) =

s Y € [aunc(T), aupp ()]

A parallel to (3) and (4) can be inferred and, unlike the cubic case, the integral corresponding
to (4) can be expressed by a formula comprising v, , and the nodal values of ajow, @unc, and
aypp- The same is valid for the first partial derivatives of ju,(ven). This benefit is, however,
to some degree impaired by the loss of differentiability at the points (x;, aync(x;)), which compli-
cates the optimization related to the Zadeh extension principle. This difficulty can by avoided
by decomposing the original optimization problem into a sequence of problems restricted to sub-
domains where ., is differentiable.

4 Conclusions

Both approaches have their advantages and disadvantages. The complexity of cubic (or even
higher degree) polynomials prevents obtaining fully analytic formulae for the membership func-
tion u, and its partial derivatives, but there is no problem with the differentiability of .
Piecewise linear functions allow for analytic formulae, but their piecewise features complicate
the algorithmization and coding. In describing fuzziness, on the other hand, piecewise linear
functions are more flexible than polynomials.
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CFD motivated applications of model order reduction
M. Isoz

University of Chemistry and Technology, Prague
Institute of Thermomechanics of the CAS, Prague

1 Introduction

The ongoing advances in numerical mathematics and available computing power combined with
the industrial needs promote a development of more and more complex models. However, such
models are, due to their complexity, expensive from the point of view of the data storage and
the time necessary for their evaluation. The model order reduction (MOR) seeks to reduce the
computational complexity of large scale models. We present an approach to MOR based on the
proper orthogonal decomposition (POD) with Galerking projection, which is well described for
example by [4] or [5]. The problems arising from the nonlinearities present in the original model
are adressed within the framework of the discrete empirical interpolation method (DEIM) of [1].

The main contribution of this work consists in providing a link between the POD-DEIM based
MOR and OpenFOAM |[3]. OpenFOAM is an open-source CFD toolbox capable of solving even
industrial scale processes. Hence, the availability of a link between OpenFOAM and POD-DEIM
based MOR enables a direct order reduction for large scale systems originating in the industrial
practice.

2 Model order reduction based on proper orthogonal
decomposition and discrete empirical interpolation

The proper orthogonal decomposition is a projection method for reducing the dimensions of
general large-scale ODE systems regardless of their origin [4]. However, within our work we
will restrict our interest to the systems obtained from the semi-discretization of time dependent
or parameter dependent partial differential equations (PDEs). Furthermore, given our interest
in OpenFOAM, which is a finite volume method (FVM) based solver for the problems of the
computational fluid dynamics (CFD), we will take a special interest in ROM of the large-scales
ODE systems generated by the FV discretization of the Navier-Stokes equations.

A scalar nonlinear PDE for an unknown function y : R x R? — R may be rewritten as
g+ Lty =0, (1)

where the operator £ represents all the terms of the original PDE apart from the temporal
derivative. After the FV semi-discretization of the equation (1) one obtains the system

AQM g+ L(t,y) =0, (2)

where £"(t,y) is the FV spatial discretization operator corresponding to the operator £ and
AQP = diag(6QF) € R™ ™ is a diagonal matrix in which the symbol 6Q? represents a volume
of one element of the computational domain discretization.
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In the OpenFOAM software, the operator £(t,y) has the structure £'(¢,y) = —A(t)y — b(t,y),
where the linear, implicitly discretized, members are lumped in the term fl(t)y and the explicitly
discretized nonlinearities are used for the construction of the vector b(t,y). The size of the
matrix A and of the vector b is determined by the number of the cells in the FV discretization
mesh, m. Because the matrix AQ" is diagonal, its inversion is cheap and one can rewrite the
equation (2) as a (large) system of ODEs,

g=A)y+0(ty), y(0)=yo, Alt)=(AQ") " A®), b(t,y) = (AQ") MD(ty).  (3)

As POD is a projection method, its main objective is to find a subspace approximating a given
set of data in an optimal least-square sense. In our case, the data is generated by sampling the
solution of the full order model (3) at given times, {y; := y(tj)}?zl , t; € (0,T]. These samples
are called snapshots. The details on the theory of POD may be found for example in [4]. We
will restrict our description to a sketch of the process of the reduced order model construction.

Let us denote the space containing the solution of the system (3) and its orthogonal basis as
V= span{wj}?zl. Then it is possible to rewrite the solution of (3) as

d
y(t) = an ¢j7 vt € [OvT]v Uj(t) = <y(t)>wj>Wa d= dlm(V), (4)
j=1

where by (-, )y we denote a W-weighted inner product in the L? space. The Fourier coefficients
nj, j =1,...,d, are functions that map [0,7] into R.

We arrange the members of the sum in (4) in descending order by the amount of information on
the original system they carry, take the first [ < d members of and introduce the ansatz

¢
y(t) =D miwy, VEE0,T] ni(t) == (' (0 wdw, 1<d, (5)
j=1
which is an approximation of y(t) provided ¢ < d. Inserting (5) into (3) and assuming that the
equality holds after projection of V on the ¢-dimensional subspace V¢ = span{; }gzl we obtain
the following system,

it = Ayt + fitn’), Ve (0,T), n'(0) =1, (6)
where we defined the reduced system matrix
A= (aly) € R ol = (A i) @

the ROM nonlinearities f* = (f/)T : [0,7] — R, fi(t,n) = <f (t, E?:l 77]'1,!1]') ,¢i>w, and the
initial condition n%(0) = 7§ = ((yo,%1)w, -, (Y0, ¥1)w)T. The dimension of the newly defined
system (6) is £ < d < m.

The quality of the approximation is largely dependent on the choice of basis functions {1); }5:1.
For the sake of brevity, let us only state (the proof may be found in [5]) that the columns
of the matrix ¥ € R™*! calculated via the Algorithm 1 are a suitable basis for the discrete
representation of the space V¥,

Furthermore, to make ROM completely independent of the full system dimension, it is necessary
to address two issues. The first issue is the time dependence of the matrix A, which would cause
the need to recalculate the matrix A¢ for each ROM evaluation.

A way to resolve the time dependence of the matrix A is to sample the system matrices the same
way as the full system solution and to interpolate between the full system matrix snapshots. If
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one uses the linear interpolation, it is possible to write the approximate system matrix as

A) = ()i + (L= () As, wlt) = 7

i=1,...,n. (8)
Substituting the approximation (8) of the matrix A into A’ matrix definition (7), one may define
an approximate time dependent matrix of the reduced system as

Alt) = TTWARY = w(t)UTWA; 10+ (1—w(t)) W AT = w(t)AL | + (1 —w(t)AL (9)

and the reduced order model, once it is created, stays fully independent on the full system
dimension.

The second problem arises when you look closely at the nonlinearities in (6). One may notice that
to evaluate the non-linearity in the reduced order model f(,7n%), it is necessary to evaluate the
function f at (t,y") and y*(t) = Z§:1 nf(t)v,bj € R™. This significantly increases the cost of the
evaluation of ROM. In this work, we address this problem via the discrete empirical interpolation
method of [1].

Algorithm 1 POD basis of rank ¢ Algorithm 2 DEIM
Require: Snapshots {y;}7_;, POD rank Require: p and F = [f1,..., f,] € R™*"?
¢ < d, symmetric positive-definite 1: Compute POD basis ® = [¢1, ..., ¢p] for F

matrix of weights W € Rm*™
Set Y = [y1,...,yn) € R™X™;
Determine Y = W1/2y ¢ Rm*n,
Compute SVD, [¥, %, V] = svd(Y); w i

Set 0 = diag(X); Solve Uzc = ugz;

2: idx + argmax,;_; . |(¢1) )5

3

4

5

6

Compute (1) :zle oi/ Z?:l 03; 7. r<+u—"Ug
8

9

10

: U = [¢1] and 7 = idx;
: for i =2 to pdo

Truncate W < [¢)y, ..., 1] € R™*; idx < argmax,;_, .|(r);3];
Compute ¥ = W_.l/Q‘I’ € Rm™x; U « [U,u] and 7 + [4,idx];
return POD basis, ¥, and ratio e(¢) . end for

11: return ® € R™*? and index vector, i € R?

DEIM is a combination of the greedy algorithm and POD. The reduction of the computational
cost of the system nonlinearity evaluation is achieved by reducing the size of the argument of the
function f (assuming it is point-wise evaluable). The details of the procedure may be found for
example in the aforementioned article by [1]. We give only the method algorithm summarized in
the Algorithm 2. The outputs of the Algorithm 2 may be used to approximate the nonlinearity
in ROM by

fe(tv 776) ~ f(tJ]e) = \I]TW(I)(PT(I))_If(ta PT\IJUZ) ) (10)

where the nonlinearity argument PTWn? is in R?, p < m. We would like also to emphasize that
using DEIM, the nonlinearity samples {f; := f(tj,yj)}?zl need to be included in the solution
snapshots.

3 Reduced order model construction for incompressible
Navier-Stokes equations

The application of the POD-DEIM based model order reduction to the systems originating in
the FV discretization of the incompressible Navier-Stokes equations is not completely straight-
forward. In the incompressible Navier-Stokes equations,

w+V-(u®@u)—V-wVu)+Vp = f, (1)
Veu = 0,
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the continuity equation V -« = 0 is pressure free. Thus, their discretization ultimately leads to
a system of linear algebraic equations of the form,

(Azg ]%T)(ZZ):W)’ (12)

where we denoted the discrete representations of the considered functions by the superscript h.
The matrix N coincides with a discrete representation of the V operator. The matrix M is
slightly more difficult. The Navier-Stokes equations for an incompresible isothermal flow (11)
are nonlinear. Hence, the nonlinear convective term V - u ® u, needs to be linearized during the
construction of the matrix M. If we apply the Newton linearization to the nonlinear convective
term,

V- @uw =~/ 'Vul +w/Vu/™!, ... current time step /iteration, (13)

we can define a linear operator
Mt ul) =0 + V- (V) + Pudh ud), (14)

where P represents the Newton linearization operator. Then, the matrix M is a discrete repre-
sentation of the operator M.

The matrices M and N are, as results of the FV discretization, large and sparse. The system (12)
is a so called saddle point problem and as such, it cannot be directly solved by the available
methods of numerical linear algebra.

However, if one assumes the matrix M to be regular, it is possible to explicitly express the
velocity from the first row of the system (12) and to substitute for it in the second one. Doing
so, the following system for one unknown p" € R™ is obtained

NM7INTY = NM7Lf, b= M! (f - NTph> . (15)

Nevertheless, as M is a large sparse matrix, its inverse is usually not obtainable and the sys-
tem (15) needs to be solved iteratively by alternatively updating the values of p" and u" (see
e.g. [2]| or any description of SIMPLE or PISO algorithms).

The natural variable for the solution techniques for the incompressible Navier-Stokes equations
based on the solution of the system (15) is the pressure. Thus, it would seem reasonable to
base the reduced order model directly on the equation (15). Unfortunately, the pressure time
derivative is not explicitly present in the Navier-Stokes equations and as a consequence neither
in the system (15). Hence, it is not possible to rewrite the equation (15) in the form of the
equation (1) directly.

To define the base system for the construction of ROM for the pressure we propose to split the
operator M as

M=Mi+ My, M) =1, My 1w)=V-@wVu)+ P!t uwl). (16)

Moreover, we will denote the implicitly discretized part of the operator M as M™™ and the
explicitly evaluated part of the operator M as M. Finally, the base system for the construction
of ROM for the pressure is defined as

P Alt)p +b(t,p), A(t) = Nm (Mivm)_l (vam)T, bt,p) = NI (MiVC) Troan

Please note, that the pressure derivative is defined only approximately as, at the moment, we
do not have the proof of equality. Also let us emphasize that because of the linearization, the
coefficients of the matrix M"™ are dependent on the current velocity field and as a consequence,
the matrix A is time dependent.
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4 Numerical examples

In order to validate the proposed method, we performed a series of numerical tests. The first
presented test is a creation of the reduced order model for a transient laminar flow in the vicinity
of a cylindrical obstacle. Such a flow develops an instability that leads to the formation of the
famous von Kérman vortex street. A comparison of the results of the full model (FVM simulation
of the full Navier-Stokes equations on approximately 18000 cells) and the created ROM (system
of 12 ODEs) is depicted in the Figure 1.

Figure 1: Qualitative comparison of the results of the CFD simulation and ROM results for the
case of the flow around a cylindrical obstacle (von Karman vortex street). Results of the ROM
are depicted in the top part of the figure, results of the full model are depicted in the bottom.
The left part of the image is colored according to the pressure field, the right part according to
the velocity magnitude.
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Figure 2: Comparison of the difference between the experimental data, CFD simulation and
ROM estimate is depicted on the left side of the figure. On the right side, it is shown the
qualitative comparison between the CFD result and ROM estimate for the velocity field.

The second selected test was a creation of ROM for a parametric study of the gas flow in
a structured packing of the distillation columns. In this case, we assumed the flow to be at
steady state and we studied the difference in pressure above and bellow the structured packing
relative to the height of the packing, Ap, in dependence on the gas inlet velocity.
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The results of the test are depicted in Figure 2. The full model corresponds to a FVM simulation
of Reynolds-averaged Navier-Stokes equations on approximately 5 - 106 cells. The created ROM
consisted of 11 linear algebraic equations.

5 Conclusions

We proposed and validated an approach to use the proper orthogonal decomposition and the
discrete empirical interpolation for the model order reduction of systems arising from the finite
volume spatial discretization of the incompressible Navier-Stokes equations. The presented ap-
proach is specifically designed for the pressure-based Navier-Stokes equations solution methods
(e.g. SIMPLE, SIMPLEC or PISO algorithms). We were able to link the proposed method
with the OpenFOAM software whereby the method could have been tested even on systems
with millions of cells and unstructured meshes. In the future, we plan to improve the mathe-
matical background of the proposed approach to the model order reduction of the Navier-Stokes
equations. Also, we would like to concentrate on the model order reduction for multiparametric
systems.
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1 Introduction

Many problems arising from mathematical modelling in science and engineering lead to solving
system of linear algebraic equations in the form

Az =0b, AcR™™, zecR", beR" (1)

where A is a large and sparse. Iterative methods based on Krylov subspaces such as the conjugate
gradient method represent a natural choice for solving such problems. Most often, in order to
be efficient, it is useful to employ an iterative method together with preconditioning.

The incomplete Cholesky factorization is often a preconditioner of choice. Application of this
preconditioner needs at every iteration backward and forward substitutions and thus represents
a bottleneck in parallel environment. We focus on a particular strategy to obtain the precon-
ditioner via the generalized Gram—Schmidt process which may avoid these steps as it has been
introduced in [1]. The approach originally uses a relative dropping strategy employing magni-
tudes of entries of the computed column vectors in the approximate inverse factor. Dropping
strategy has been later extended in [2] to adaptive strategy. Later in [3] it has been summarized
and accompanied by new theoretical results.

2 Approximate inverse preconditioning

In more detail we deal with approximate inverse factorizations for symmetric and positive definite
matrices in the form

(PTAP) ' = (UTU)y '~ 227,

which arise from the incomplete version of the generalized Gram—Schmidt proces with pivoting.
The permutation matrix P represents pivoting and forces the following inequalities for the entries
of the Cholesky factor U = [ ;]

Q11 20225 - % Qnpp >0, (2)
apk 2ok, k=1,...,n, j=k+1,...,n, (3)
which also implies
J
ai,ki aij, j=k+1,...,n. (4)
i=k
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It has been shown in [2, 3| that employing pivoting may significantly increase the robustness of

preconditioning and also often reduces sparsity of the factor Z in terms of nonzero entries nnz(Z2).

The goal of the incomplete algorithms is to deliver a sparse representation of the factorization,
which is close to the original factorization in some sense. Incomplete algorithms very often use
dropping rules that discard entries of small magnitudes. We deal with an extreme case of the
inverse of the upper triangular matrix with entries satisfying the inequalities (2), (3), and (4).
The parametrized matrix introduced by Kahan (1966)

1 —¢ —c ... —c
1 —¢ ... —c
Un(0) = diag[l,s,...,s" '] IR
—c
. 1 -

where s = sin® and ¢ = cos© is very useful in practice. For the entries of its inverse of
U, 1(©) = [Bi;] we can write

n

Bij=0, j<i, Bij=s8"7 i=j, Bij=s"Tc(1+e) 7 j>i (5)

It is easy to see that the entries in the strictly upper triangular part of U, !(©) for © € (0, %)
show an exponential growth when increasing their distance from the diagonal. For such problems
it is very hard to find a sparse approximation even if the original matrix is sparse. We hope that
this can be remedied by employing a multilevel framework that uses block densities to determine
the levels of the scheme. The framework then enables to store dense portions of the column
vectors in the preconditioner implicitly with a significantly less number of nonzeros. Let us also
mention that a matrix in the new level is formed as an approximate Schur complement.

3 Multilevel scheme in approximate inverse preconditioning

Assume that AM) = A is a symmetric and positive definite matrix. Consider the following
sequence of symmetrically permuted symmetric and positive definite matrices for £ = 1,..., lnax
using the notation

_ ) 40 RO
ONT & (0) B0 _
(POYTALI PO — [(B(e))T C(z)] ; (6)

where P} € R"*" is a permutation matrix, A®) e Rmxne B ¢ Rmexne and OO e Ruexne,
ng=mn— Ei:l ng. Let us note that ny plays the role of size of the problem at level ¢.
In exact arithmetic the Schur complement of the block A®) of the matrix (6) is equal to

AEFD — o _ (BT (4O)=1B®), (7)

Naturally, there are several ways to obtain the approximation of A1) when approximate inverse

factorization of A® is explicitly known. We studied three ways how to construct an approxima-
tion of A(+D) forming a matrix of the new level. The most simple of them is to compute

~ T .
AL = o) _ (( Z0)T B(f)) (ZTBO), (8)

which in terms of quantities of the Gram—Schmidt process corresponds to its classical variant.
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Alternatively we can approximate the block Ul(g ~ ~1(7€2) by the quantities of the modified Gram—

Schmidt process, i.e., as

Al = O — @10, (9)

mgs

where

(2")" [0 B

~(0) ,~(¢
(255))T [A(E) B(K)] <I - zi )(Zi ))T [A(K) B(z)]
0

)

~(g) . . : o
127 sy [A©) BO] J (I B [z,&, >(Z](~C NT [A© BO)]
1

)
)

Finally we can introduce a specific combination of the first approach with a correction

ng— ~(0)  ~(£
GO (40 BO) o (I_ [Zp(,z](g))T [A®  BO)]
0

ALED = A 4 (BO)T 7 <( Z0)T A0 Z(0) _ 1) (2T RO, (10)

cgss

These approaches have different numerical properties and also different computation costs.

4 Conclusion

The goal of this contribution is to present new results for multilevel approximate inverse precon-
ditioning, discuss differences among possible ways to form the approximate Schur complement
and present some relevant theory.

Acknowledgement: This work has been supported by the grant of the Grant Agency of the
Czech Republic 13-06684S.

References

[1] M. Benzi, C.D. Meyer, M. Tama: A sparse approzimate inverse preconditioner for the
conjugate gradient method. STAM J. Sci. Comput. 17(5), 1996, pp. 1135-1149.

[2] J. Kopal, M. Rozloznik, M. Tuma: Approzimate inverse preconditioners with adaptive drop-
ping. Advances in Engineering Software 84(1), 2015, pp. 13-20.

[3] J. Kopal, M. Rozloznik, M. Tama: Factorized approzimate inverses with adaptive dropping.
SIAM Journal on Scientific Computing 38(3), 2016, pp. A1807-A1820.

46
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1 Introduction

Radioactive waste generated mainly in nuclear power plants, but also in health care, has to be
safely dispose. For this purpose, deep geological repositories are designed and special attention
has to be devoted to the integrity of such structures in order to achieve their very high reliability.
High reliability requires multilevel barriers. The repositories are designed in stable rock host
environment several hundred meters below the surface. They resemble tunnels with chambers
where the radioactive waste is stored in special containers. The tunnels and chambers are
equipped with concrete lining which is further improved by layers of expansive clays, especially
bentonite is used. The bentonite has very large swelling or shrinkage capacity which is influenced
by water content.

Behaviour of soils, rocks and concrete is usually described by elasto-plastic material models with
hardening or softening. Sometimes, the models are combined with damage mechanics which
reduces the stiffness with the help of the damage parameter. Unfortunately, bentonites behave
strongly nonlinearly and the elasto-plastic models lead to unsatisfactory results. Therefore,
material models based on the theory of hypoplasticity were derived. They are based on the rate
form of stress-strain relationship which requires time integration.

2 DMaterial model and integration methods

Hypoplasticity can take into account nonlinear behaviour of soils, influence of barotropy and
pyknotropy and the history of deformation. Hypoplastic constitutive equation relates the stress
rate o and the strain rate € in the form

& = Mé, (1)

where M is the fourth-order constitutive tensor which depends on the stress tensor o, the
strain increments Ae and the state variables v. The stress has to be obtained by integration of
equation (1). Details about the constitutive tensor can be found in references [1] and [2].

Many integration methods (e.g. forward Euler method, Crank-Nicolson method, Runge-Kutta-
Fehlberg methods with substepping) were tested in connection with hypoplasticity material mod-
els. The performance of the low-order methods is generally unsatisfactory and it is suggested to
use the Runge-Kutta-Fehlberg (RKF) method of suitable order with substepping.

With respect to RKF method, the constitutive relationship (1) is rewritten into the form

o =Y(o,Ae,v) (2)
where W is a tensor function. The RKF method has the form
Oky1 = O'k—i-Athbi k; (O'k,A&?(tn_H),Atk), (3)
i=1
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where k; (o), Ae(t,+1), Aty) represents the function ¥ evaluated for the given strain increment
of the actual time step Ae(t,41) = €(tnt+1) — €(tn) and attained stress levels at the prescribed
points of time interval. In (3), dimensionless step length At € (0; 1] has been introduced in the
form

Aty = M (4)

tn-l—l —tn

In Runge-Kutta-Fehlberg method, the step length Aty is constructed according to the difference
between solution of two embedded Runge-Kutta algorithms of different order of accuracy

Oky1 = Gk+AthBi ki (o, Ae(tyny1), Atg), (5)
i=1
s+1 B

Gryt = Okt ALY biki(ok, Ae(tni), Aly) (6)
i=1

where k; represents values of function ¥ evaluated in selected times and corresponding stress
values.

Generally, the substep k + 1 is accepted if the relative error measure Ry41 of two solutions &1
and &4 is less than a given tolerance 9, i.e.

[0k+1 — Thra

(o2

Ry, = ~ <. 7
+ B @)

Several time integration RKF schemes have been implemented for the time integration of equa-
tion (2). Their description in the form of Butcher’s tables is given in Tables (1) and (2). Tt
should be noted that the algorithm RKF-23bs is the Bogacki-Shampine coefficient pairs and the
advantage of the method is that it provides better estimate of error with the minimum cost
because the k4 can be used as k; in the next step - First Same As Last (FSAL) concept.

0 0
1/2 | 1/2 1/2 | 1/2
1] -1 2 3/41 0 3/4
1/6 2/3 1/6 2/9 1/3 4/9
0 1 0 7/24 1/4 1/3 1/8

Table 1: Butcher table for RKF-23 (left) and RKF-23bs Bogacki-Shampine (right)

0
1/4 1/4
3/8| 3/32 9/32
12/13 | 1932/2197 -7200/2197  7296/2197
1| 439/216 8 3680/513  -845/4104
12| -8/27 2 -3544/2565  1859/4104  -11/40
16/135 0 6656,12825 28561/56430 -9/50 2/55
25,216 0 1408/2565  2197/4101  -1/5

Table 2: Butcher table for RKF-45
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3 Numerical experiments

The implemented hypoplasticity model was tested on simple benchmark examples with axisym-
metric specimen 1x1 m subjected to various loading path:

1. Triaxial drained test with constant confining pressure and gradually increasing axial load,
initial stress -200 kPa, constant suction -1.9 MPa.

2. Triaxial drained test with constant volume increment, initial stress -200 kPa, constant
suction -1.9 MPa.

Resulting diagrams from these examples can be seen in Figures (1) and (2), where evolution of
axial stresses (a) or degree of saturation (b) versus evolution of axial strains can be observed.

Test DRAINED Test DRAINED

Axial strain vs. axial stress Axial strain vs. degree of saturation
2000 : . | . . 0.74 . . : . .

1500

1000

sig_{ax}

500

L 1 —
01 0.15 0.2 0 0.05 01 0.15 0.2
eps_{ax} eps_{ax}

Figure 1: Triaxial drained test with constant confinig pressure - axial stress o4, vs. axial strain
€az (@), evolution of degree of saturation S, according to axial strain 4, (b)

Test CONSTVOLUME Test CONSTVOLUME

Axial strain vs. axial stress Axial strain vs. degree of saturation
3000 : : , ; . : T !

2500 — -

2000

1500 — & 0.72

sig_{ax}

1000

1 0.71

500

1 1
0 0.05 01 0.15 0.2 0 0.05 0.15 0.2

0.1
eps_{ax} eps_{ax}

Figure 2: Triaxial drained test with constant volume increment - axial stress o4, vs. axial strain
€az (@), evolution of degree of saturation S, according to axial strain 4, (b)

Comparison of integration schemes for various tolerances in benchmark example 1 (Triaxial
drained test with constant confining pressure and gradually increasing axial load) is summarized
in Table 3.
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V) RKF-23 | RKF-23bs | RKF-45
Oerr | 1.57e-2 | 2.08e-3 0
1077 | t[s] 34.6 21.1 84.7
Oerr | 1.85e-2 | 2.37e-3 | 1.89%¢-3
1076 | ¢ [s] 19.3 13.2 10.7
Oerr | 22362 | 5.78¢-3 | 2.97e-3
107° [ t[s] || 11.95 8.81 8.41
Oerr | 3.67e-2 | 9.45e-3 | 6.07e-3
1074 | ¢ [s] 7.70 6.44 8.11
Terr - 1.34e-2 | 8.92e-3
1073 | t [s] - 6.43 8.07

Table 3: Comparison of different integration schemes.

4 Conclusion

Suitable method for time integration in hypoplasticity models has to be selected with respect
to highly nonlinear functions used in the fourth-order constitutive tensor. Numerical tests show

that Runge-Kutta-Fehlberg method 23bs is the optimal choice.
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References

[1] D. Masin: A hypoplastic constitutive model for clays. International Journal for Numerical
and Analytical Methods in Geomechanics, vol. 29, 2005, pp. 311-336.

[2] D. Magin: Double structure hydromechanical coupling formalism and a model for unsaturated

expansive clays. Engineering Geology, vol. 165, 2013, pp. 73-88.

20
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1 Introduction

PERMON |5, 6] (Parallel, Efficient, Robust, Modular, Object—oriented, Numerical) is a scalable
software toolbox for solution of quadratic programming (QP) problems.

QP problems arise in various disciplines including elasto-plasticity, contact problems with friction,
shape optimization, vehicle routing problems, support vector machines, medical imaging, climate
modeling, least-squares regression, data fitting, data mining, control systems and many others.

Our recent efforts have been mainly aimed at problems of mechanics. These problems may be
described by partial differential equations (PDEs). To be solved with computers, they have to be
discretized, e.g. with the popular Finite Element Method (FEM). We typically get large sparse
linear systems of equations, but in case of constrained problems such as contact problems of
mechanics, QP problems arise.

Large scale problems necessitates the use of parallelization to get a good time to solution and
distribute the memory requirements. Domain decomposition methods (DDMs) solve the original
problem by splitting it into smaller subdomain problems that are independent, allowing for
a natural parallelization.

Finite Element Tearing and Interconnecting (FETI) methods [1, 2, 3, 4] form a successful subclass
of DDMs. They are non-overlapping methods and combine iterative and direct solvers. FETI
methods allow highly accurate computations scaling up to tens of thousands of cores.

Due to limitations of commercial packages, problems often have to be adapted to be solvable.
This is an expensive process and results reflect less accurately physical phenomena. Moreover,
it takes a long time before the most recent numerical methods needed for High Performance
Computing (HPC) are implemented into such packages. These issues lead us to establish the
PERMON toolbox.

2 PERMON toolbox

The PERMON toolbox makes use of theoretical results in QP algorithms, discretization tech-
niques, and DDMs. It incorporates our own codes, and makes use of renowned open source
libraries.

PERMON consists of several modules. PermonQP and PermonFLLOP form a solver layer.
PermonCube and PermonMembrane are benchmark generators used for tests of the solver layer.
PermonAIF provides a C interface. There are also several utility modules e.g., file interface.
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Figure 1: QP transformation chain: illustration of the PermonQP workflow

3 PERMON solver layer

The solver layer of PERMON depends on PETSc |7, 8, 9] and uses its time-proven coding
style. It is formed by the PermonQP and optionally PermonFLLOP modules. PermonQP
provides a base for solution of linear systems and QP problems. It includes data structures,
transformations, algorithms, and supporting functions for QP. PermonFLLOP is an extension of
the PermonQP package, adding support for DDM of the FETI type. This combination of DDM
and QP algorithms is what makes PERMON unique.

3.1 PermonQP

PermonQP is a package providing a base for solution of quadratic programing (QP) problems.
It includes data structures, transformations, algorithms, and supporting functions for QP. Its
programming interface (API) is carefully designed to be easy-to-use, and at the same time efficient
and suitable for High Performance Computing (HPC).

The solution process begins with QP problem specification. Then a series of QP transformation
is applied. Each QP transformation creates a new, usually simplified, QP problem. Moreover,
each new QP problem has a reconstruction function inserted by the QP transformation. This
series of QP problems is represented as a bidirectional chain, see Figure 1. After a sufficiently
easily solvable QP is obtained, an automatically or manually chosen solver is called. Then using
the reconstruction functions we obtain the solution of the original QP problem.

QP problems can be either unconstrained or have a number of different constraints including e.g,
equality, inequality, box, elliptical or conical constraints. PETSc KSP is usually used as a solver
for unconstrained QP problems. It provides both iterative and direct solvers. For unconstrained
or box constrained QP problems, PETSc TAO wrapper can be used. PermonQP also contains
several other solvers e.g., a variant of augmented Lagrangian method called SMALXE or active-
set methods like MPRGP [16, 17, 18].

PermonQP source code is freely available under BSD 2-Clause License.
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3.2 PermonFLLOP

PermonFLLOP (shortly FLLOP, FETI Light Layer on Top of PETSc) is an extension of the
PermonQP package, implementing the algebraic part of DDMs of the FETI type. The details of
the FETI methods can be found in [1, 2, 3, 4].

Minimal input for FLLOP consists of 12g mapping, subdomains stiffness matrices and load vec-
tors. These are generally obtained by volume-meshing the domain, that is then decomposed into
subdomains using a partitioning software like METIS [10]. Then virtually any FEM implemen-
tation can be used to generate subdomains stiffness matrices and load vectors. L2g mapping
assigns local degrees of freedom of each subdomain to the global degrees of freedom.

FLLOP is being prepared to be published under an open source license. Open source DDM
codes are relatively rare. Let us mention the Multilevel BDDC solver library (BDDCML) by
J. Sistek et al. [11], PETSc BDDC preconditioner implementation by S. Zampini [12], and codes
by P. Jolivet et al. [13] on top of FreeFem++ [14, 15].

4 Recent advances

Throughout the PERMON toolbox there were several improvements in both performance and
memory scalability. We implemented and thoroughly benchmarked Dirichlet and lumped FETI
precondtitioners. New matrix type that condense a local part of matrix into a sequential matrix
was developed and used to improve assembly process of FETT matrices. The support for mul-
tiple subdomains per core was improved and mainlined. Solution of FETI coarse problem was
investigated. Ability to assemble FETI gluing matrix and kernel of stiffness matrix was added.
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Circumradius condition: breakthrough or not ?

V. Kucera

Faculty of Mathematics and Physics, Charles University in Prague

1 Introduction

The finite element method (FEM) is perhaps the most popular numerical method for the solu-
tion of partial differential equations. Much work has been devoted to theoretical and practical
aspects of the FEM. Possibly the most basic question is, when does the sequence of approximate
solutions wuy converge to the exact solution w. Surprisingly this question is still far from being
answered even for the simplest problems in 2D. This can be seen from the interest that the
recently derived circumradius condition raised in the finite element community. This condition
derived in [4], [5] is a generalization of the well known mazimum and minimum angle conditions,
which are sufficient for O(h) convergence of piecewise linear finite elements. Here we comment on
the circumradius condition and its relation to previous work and the maximum angle condition.

2 Angle conditions

We consider Poisson’s problem in a 2D Lipschitz domain 2:
—Au=f inQ (1)

with (e.g.) homogenous Dirichlet boundary conditions. We consider a system of triangulations
{Th}heno) of € C R?, which defines the piecewise linear finite element space Vi, = {v;, €
C(Q);vp|lxk € PYK) forall K € T}, where P!(K) is the space of linear functions on the
triangular element K € 7. The convergence is then usually measured with respect to the
parameters hg = diamK and h = maxgeT, hi.

For (1), estimates on the finite element error are usually obtained via Céa’s lemma and estimates
for Lagrange interpolation on triangles. For v € C(K), let gu € P!(K) be the Lagrange
interpolation defined by the vertices of K. From this, we can construct the global interpolant
IIyu € Vj, such that (ITpu)|x = Hiu for all K € T,. The error of the finite element method is
then estimated by the error of the interpolant.

The first condition for O(h) convergence of IIu to u in the H'(£2)-seminorm is the so-called
minimum angle condition derived independently in [10], [11].

Lemma 1. Let v > 0 and let the minimal angle of K € Ty satisfy vk > o, then there exists
a constant C = C(vp) independent of u, hx such that

lu = gul12x < Chilul22 K. (2)

If we assume that yx > 9 > 0 for all K € T, and all h € (0, hg), we then obtain
lu — Hpuli 2,0 < Chlul22.0, (3)
which is an O(h) error estimate for the FEM in H'().

Later, a generalization of Lemma 1 was proved independently by [1], [2] and |3] leading to the
mazimum angle condition:
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Lemma 2. Let ag < 7 and let the mazimal angle of K € Ty satisfy ax < «ag, then for all
p € [1,00] there exists a constant Cp(cy) independent of u, hi such that

2,]),K : (4)

lu = gul1px < Cplao)hk|u

Again, assuming that ax < ap < 7 for all K € Tj, and all h € (0, hg), we obtain a W1P(Q)
version of (3).

3 Circumradius condition

Recently, a generalization of Lemmas 1 and 2 was given in [4] and [5].

Lemma 3 (Circumradius estimate). Let Rx < 1 be the circumradius of K. Then for all p €
[1,00] there exists a constant C), independent of u, K such that

ju—Tgulpx < CpRiclulop k- (5)

Assuming the circumradius condition

li Rk — 0 6

i e, a0 )
we obtain convergence (not O(h) convergence) of the finite element method similarly as in (3).
We shall refer to Lemma 3 as the circumradius estimate, although in [5] both (5) and (6) are
ambiguously called the circumradius condition.

The circumradius condition raised a lot of interest in the finite element community, as it was
the general opinion that such a well known and studied subject as the error of linear Lagrange
interpolation on a triangle was well established and no breakthrough was expected. The matter
of originality and correctness was also unclear due to the fact that the original paper [4] relied
heavily on numerical computations and was written in Japanese and the rigorous proof in the
subsequent paper [5] is rather technical. To clarify the matter, the author discussed these issues
in the paper [6].

3.1 The O(h)-case

The first observation is the following. Since ay is the largest angle in K, its opposing side has

length hg. By the law of sines,
hk

sinag

2Rk = (7)

If we substitute this expression into (5), we get an O(h) estimate if and only if the denominator
sin a g is uniformly bounded away from zero for all K € Tj, which is exactly the maximum angle
condition. Therefore, as far as O(h) convergence is concerned, the circumradius and maximum
angle conditions are equivalent.

3.2 Relation to the maximum angle condition
The observation in Section 3.1 indicates that there might be a deeper connection of the circum-

radius and maximum angle conditions. This is indeed the case, as demonstrated in |8]. Here we
only present the idea without going into technical details.
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B C

Figure 1: Dilation of a triangle K € Tj,.

The basic idea is to take the triangle K, which can be arbitrary, and scale it appropriately so
that the scaled triangle K satisfies the maximum angle condition with a given angle . Hence
Lemma 2 can be applied on K to obtain an O(hg) estimate of the interpolation error. By
transforming the O(hx) error estimate on K back to the original element K, one obtains an
O(R) estimate for the interpolation error on K.

The scaling (dilation) of K is defined as follows. Let K have vertices A, B, C, cf. Figure 1. Let
the maximal angle ax be at A, hence the side BC has length hx. We choose ag < 7 as in
the maximum angle condition. If ag > g, we find the unique triangle K with vertices A\, B,C
such that ap = /BAC = oo and A\, A have the same foot H of their altitudes to BC. This is
possible, since the set of all vertices A such that ZBAC = Qq is a circular arc, cf. Figure 1. In
other words, we have dilated the triangle K in the direction perpendicular to BC', such that the
dilated triangle K has maximum angle ap.

The dilation factor can be easily evaluated and moreover, since the dilation is only in one di-
rection, Sobolev (semi-)norms are transformed trivially from K to K and back using powers of
this factor. If one transforms the maximal angle estimate (4) using these relations, one obtains
the result of Lemma 3 without the technical assumption Rx < 1. Moreover, once all the nec-
essary quantities are evaluated, it is quite simple to apply the same technique to obtain similar
estimates for higher order Lagrange interpolation, which is otherwise very technical, as in [6].

3.3 Prior work

The case of p = 2 in Lemma 1 was proved already by A. Rand in his Ph.D. thesis [9], however this
result was not published in a journal. This case was then independently shown by K. Kobayashi
in [4] where it is claimed that the constant in (5) can be taken as Cy = 1. However, the proof
relies heavily on numerical computations and is therefore hard to verify. Finally, the case of
general p was proven by K. Kobayashi and T. Tsuchiya in [5] using the technique of [1].

As it turns out, Lemma 3 is already essentially proved in [7], although the final result is never
formulated since the paper only deals with O(h) convergence and the maximum angle condition.
However, estimates using Ry are used throughout the paper and Lemma 5 could have been
obtained in the following way. An intermediate step of (2.22) in |7] states

JkgrhK
det Bg| = ——— 8
dot Byc| = LESIRLC (8)
where det By is the Jacobian of the mapping from a reference triangle to K and fx, gx, hi are
the lengths of sides of K. An intermediate step of the chain of inequalities following (2.22) in [7]
is
v —Tgv|1px < 32C|det Br| ™! frgrchi|vlap s (9)
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Substituting (8) into (9) immediately gives (5). The reason this is not done in the paper is that
(8) is further estimated using the maximum angle condition, thus eliminating Ry from the final
estimate in order to obtain O(h) convergence.

Acknowledgement: This work was supported by the J. William Fulbright Commission in the
Czech Republic.
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The use of sequential quadratic programming
for solving reachability problems

J. Kurdtko
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1 Introduction

Complex technical systems that are modelled by a system of ordinary differential equations may
feature states that are considered unsafe. Any solution that originates from an initial state and
reaches an unsafe state represents a flaw, a dangerous scenario, which is to be avoided in the
design of the system. We address computing these solutions and our approach is based on solving
an equality constrained nonlinear programming problem [4].

To this end we use the Sequential Quadratic Programming method (SQP) [5]. The underlying
saddle-point matrix is sparse and may be solved either iteratively or directly [2]. In the poster
we show that when one applies LDLT factorization [3, Alg. 4. 1. 2] on the resulting saddle-point
matrix then the lower-triangular factor is again sparse and well-structured.

2 Problem formulation

The reachability problem we try to solve is described in [4] and we formulate it in this section.
Consider a dynamical system whose dynamics is modelled by a system of ordinary differential
equations of the following form

&= f(z(t), x(0)= o, (1)

where z : R — R” is an unknown function of ¢, and the right hand side f : R® — R" is
continuously differentiable. Denote the flow by ® : R x R™ — R" for which when an initial state
zo € R™ is fixed then ®(¢) : R™ — R™ represents the solution z(t) of (1).

The problem we try to solve can be formulated in the following way [4]: Consider a dynamical
system (1) and let Init and Unsafe be two sets of states in R"™. Find a solution of (1) such that
xo € Init and ®(t,zo) € Unsafe for some t > 0.

3 Solution approach

Our approach to finding solutions of dynamical system (1) from Init to Unsafe is formulated as
an equality constrained nonlinear programming problem

min F(x) subject to ¢(x) =0. (2)
Here the unknown vector x has the form

T
X = [xg)7tlvx(2)’t2a s 7xév7tN] € RN(n+1) : (3)
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Init Unsafe

Figure 1: N connected solution segments

We use the idea of multiple shooting [1], that is, we put together shorter solution segments of the
dynamical system (1) in order to compute one solution. Parameters (3) are initial states =}, € R™,
1 <4 < N, of solution segments and ¢;, 1 < ¢ < N, are their lengths. Here n denotes the state
space dimension and N the number of solution segments. One such solution is illustrated in
Fig. 1.

This equality constrained nonlinear problem (2) with the choice of the objective function (4) and
the vector of constraints (5) is described and analyzed in [4]. The objective function and the
vector of constraints we consider are of the form

N
F(x)=) 1, (4)
i=1

C(X) = [gIa 915---,9N—-1, gU] € R(N_l)n+2 ) (5)

where g1 = 3 (H:zc[l) - CI”QEI — 1) ER, gu =13 (H<I>(tN,xéV) - cU||2EU - 1) € R, and constraints
gi = 3;6“ — ®(t;,z)) € R" for 1 <i < N —1. Norms || - |5, and || - || g, are energy norms. Since
the sets Init, resp. Unsafe are ellipsoids their shape and size are given by symmetric positive

definite matrices Fi, resp. Ey. Vectors ¢ € R™ and cy € R" give centres of these ellipsoids.

4 Saddle-point matrix

We use the SQP method to solve the minimization problem (2). The underlying saddle-point
matrix is of the form
K— [H B}

BT 0

where H € RN HDxN(@n+D) 49 5 block diagonal symmetric positive definite matrix and B €
RN (D)X (N=1n+2 i5 3 handed matrix with full column rank [4].

We expand on the results in [4] with application of direct solvers and making use of sparsity of
the resulting saddle point matrix. Our main contribution thus lies in the computation of the
LDLT factorization of the saddle-point matrix K so that

H B] _ T
[BT 0} =LDL",
_{ Ly 0] [DH 0 HL}} DHlLHlB]
BT'L "Dy Ls|| 0 -Ds||O Ly ’
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and in describing the exact structure of sparse matrices Ly, BTL;ITD;I1 and Lg. Here we have
BTH B = LstLg that is the LDLT factorization of the Schur complement, and we put
H = LHDHLE. Note that the lower-triangular factors Ly and Lg have ones on the diagonal.
The structures of the saddle-point matrix K and its lower-triangular factor L are illustrated in
Fig. 2.

T T T
0 10 20 30 40

T T T T
0 10 20 30 40

Figure 2: On the left hand side: the structure of matrix K with the block-diagonal matrix H and
the banded matrix B; On the right hand side: the lower-triangular factor L of the saddle-point
matrix K
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Note on boundary conditions on artificial boundaries
for Navier—Stokes fluid’s flow

M. Lanzendorfer, J. Hron

Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague

It seems natural to our minds to separate the "inner" and "outer", despite of them being insep-
arable in essence. In the (computational) fluid dynamics it is often practical to consider the flow
problems in a bounded domain. In a majority of cases, certain parts of the domain’s boundary
are artificial: not related to any natural physical interface. The choice of boundary conditions
to be imposed on artificial boundaries is then a modelling issue, where neither the physics alone
nor the mathematical analysis alone give conclusive recommendations.

The talk will focus on the inflow and outflow boundary conditions for steady Navier—Stokes
equations

dive = 0 . o T
div (0 ©v)—divT — 0} in Q, T=—pl+v(Vv+(Vv)').
Namely, we will be interested in the case that the flow rate is not known a priori, i.e. in the case
that the (rather standard) choice

V = Vi, on some [, C 9N
is not practical.

To pick one part of the issue, we will discuss a particular set of examples demonstrating the
non-uniqueness and the (lack of) stability of steady solutions for the “do-nothing” b.c.’s and the
b.c.’s based on prescribed constant traction

m — (Vv)n = Pyn or —Tn = Pyn on some I' C 99, with Py € R.

For instance, if such conditions are prescribed on two opposite parts of the domain’s boundary, we
will observe two different steady solutions. (For Py = 0 this gives us, among others, an exemplary
non-trivial solution to steady Navier-Stokes problem with trivial data.) Such multiple solutions
can be easily obtained in standard numerical simulations. We will also show that one of them is in
certain sense asymptotically stable while the other one is unstable. In more complex geometries
more steady solutions can be found.
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Bifurcations in contact problems with Coulomb friction

T. Ligursky, Y. Renard

Institute of Geonics of the CAS, Ostrava
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1 Introduction

Let us consider static deformation of an elastic body whose reference configuration is the closure
of a bounded domain  C R2. Let the boundary 99 be Lipschitz-continuous and split into three
disjoint relatively open subsets I'p, I'y and ', (see Figure 1). The body is fixed along I'p whereas
an applied surface force of density h is prescribed on I'y. A flat rigid foundation supports the
body along I'., and the contact is modelled by unilateral conditions and the Coulomb friction
law. We suppose that there is no initial gap between the body and the foundation. We consider
that the surface force at a point € I'y depends on a real parameter v and it may depend on x
either, that is, h = h(v, ) in our model, v being a loading parameter. We seek equilibrium
states of the body for the values of v from an interval I of our interest.

Discretisation of this problem is done by applying a conforming Lagrange finite-element method
to a mixed variational formulation of the problem with Lagrange multipliers enforcing the Dirich-
let and the contact boundary conditions. The contact conditions are approximated nodally and
written in terms of projections. This gives the following discrete problem:

Find y := (v,u,Ap, Ay, Ar) € I X R2(etnptne) gych that
H(y) =0,

where H : I x R2(netnptne) _y R2(natnptne) g defined by

A(u) — L() — BJAp — BJ A, — B] A,
BDu
H = ;
w) s — (= rBow))), j=1, .

—+ (M = Pr(Ou—rBow)y)— - F(w—rBou),) | (Ar = Bru)j)), j=1,...,nc

Here, u € R?"® is the vector of nodal displacements, Ap € R?"? is the Lagrange multiplier cor-
responding to the Dirichlet condition, and Ay, A; € R" are the normal and tangential Lagrange
multipliers on the contact zone, respectively. Further, A(u) and L(vy) are the vectors of internal
elastic forces and external applied ones, respectively, and Bp is the kinematic transformation
matrix linking w with the Lagrange multiplier Ap. The matrices B, and B, associate the vector
of nodal displacements with the vectors of contact nodal displacements in the directions of the
unit inward normal v and the unit tangent 7 to the foundation, respectively. The notation (.)_
means the negative part (or equivalently, the projection onto (—o0,0]), and P, )(.) stands for the
projection onto an interval [a, b], a < b. The friction coefficient is represented by a non-negative
constant .# here and r > 0 is a fixed augmentation parameter.

Following [2|, we shall present the behaviour of bifurcations for different finite-element meshes
in two model problems from [1] in our talk.
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Figure 1: Geometries of the model problems.
2 Problem with a rectangular body

Firstly, consider deformation of a rectangular block that is 40 mm wide and 80 mm high from
Figure 1(a). A plane-strain approximation of the nonlinear Ciarlet-Geymonat constitutive law
is used for the material of the block. Namely, the first Piola-Kirchhoff stress tensor & is given
by

6(x,F)=(6(F))icij<2, F= <€ (1)

G (F) =2b(tr(F'F))I+2(a— bFF)F + (2cdet(F'F) —d)F~ ', Fe R,

> F c R2X2

where
A = 4000 N/mm?, p =120 N/mm? a =30 N/mm?
and \ N
o u
b=— — =——= d= = .
g~ ® Ty te g TH

We have prescribed h(vy,x) = v(—2,0.12(z1 —20)) (in N/mm?) on both lateral sides of the block,
r =10 and .% = 1. Discretisation is done by approximating the displacement and the Lagrange
multiplier for the Dirichlet condition with continuous piecewise bilinear functions on rectangular
meshes.

As described in [1], there are six solution branches intersecting at v = 0 for a uniform mesh
with 800 squares and 21 contact nodes, which are illustrated in Figure 2. Branches 1, 2 and 3
correspond to forcing the block to the right with no contact, contact-stick and contact-slip to
the right of the lower right vertex of the block. Branches 4, 5 and 6, which are symmetric with
respect to the axis z; = 20 of the block, correspond to forcing the block to the left with no
contact, contact-stick and contact-slip to the left of the lower left vertex.

To explore the bifurcation phenomenon in the contact problem thoroughly, we have performed
our method of piecewise-smooth numerical branching [2] for discretisations on different uniform
meshes, namely with 200, 800, 3200 and 12800 squares. As we shall show in our talk, we have
found six branches distinctly separated for all meshes. The branches seem to be stable and to
converge with the meshes.

3 Problem with a triangular body

Secondly, let us consider deformation of an isosceles triangle with legs 1 m long shown in Fig-
ure 1(b). Let us restrict ourselves to the small-deformation framework with Hooke’s law with
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(a) Branch 1. (b) Branch 2. (c) Branch 3.

(d) Branch 4. (e) Branch 5. (f) Branch 6.

Figure 2: Deformed bodies corresponding to the solutions with |y| = 1: (a), (b), (¢) v = —1;
(d), (e), (f) v =1.

the Lamé constants A = 100 GN/m? and p = 82 GN/m?, and let r = 10 and .% = 1.7. Both
the displacement and the Lagrange multiplier for the Dirichlet condition are approximated with
continuous piecewise linear functions over triangular meshes.

There are four solution branches intersecting at v = 0 for b = h(y) = y(—26, —7.5) GN/m? and
the discretisation with a uniform mesh with 4096 triangles and 64 contact nodes, see Figure 3 [1].
They correspond to a partial contact and slip of the triangle to the right (Branch 2), and to no
contact, contact-stick and contact-slip to the left of the lower left vertex of the triangle with
pulling the whole triangle to the left (Branches 1, 3 and 4).

To explore the bifurcation in this contact problem, we have taken uniform meshes with 4096,
16384, 65536 and 262144 triangles. We shall show that the bifurcation behaviour is more complex
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Figure 3: Deformed bodies corresponding to the solutions with |y| = 1: (b) v = —1; (a), (¢), (d)
v=1.

here. Branches 1 and 4 approach one another for finer meshes, and they disappear both for the
finest mesh. Nevertheless, regarding the branching of the corresponding contact problem with
forces h = (h1, h) over the plane hi—hg, one can find it stable and convergent, again.
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Elastodynamics of thin-walled structures
using 3D mixed finite elements
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1 Introduction

This is a joint work with Honeywell International s.r.o. in Brno.

Ultrasonic waves are important means for structural health monitoring (SHM) of aircrafts. De-
velopment of the SHM technology can benefit from fast and reliable computer simulations of
the elastic wave equation. There are several difficulties to deal with. First of all, due to energy
reasons the actuating pulse is short (5 periods) so that the Fourier transform cannot be efficiently
employed. The wave equation is approximated using an unconditionaly stable Newmark scheme
in time and finite elements in space. Secondly, a typical frequency is 10° Hz and the measurement
time is 1072 seconds, which leads to large numbers (10%) of time-steps. Finally, the structures
under consideration are thin so that the standard 3d displacement finite elements suffer from
the shear-locking effect. Namely, convergence of the method deteoriates when refining the dis-
cretization. The reason is a bad aspect ratio of the geometry under consideration. Therefore
various plate and shell models were introduced, e.g. the Kirchhoff and Reissner-Mindlin plate.
A main drawback of conventional shell models is that they include rotational quantities, which
cause difficulties for nonsmooth domains or when connecting shells to a structure. As a remedy
the Hellinger-Reissner mixed formulation can be employed.

2 Mixed TD-NNS finite elements

In the mixed finite element method we simultaneously search for both displacement and stress
field. The weak mixed formulation of the elastodynamic problem reads to find stresses o(x,t)
satisfying o, (z,t) = T(x,t) on the boundary I', and the displacements wu(z,t) such that

fQO’1T+deiVT-U = 0 VT,
[ di P (1)
odive-v—p [ 52 v = 0 Yo,

where : stands for the Frobenius inner product and 7(z), v(x) denote the stress and displacement
test functions, respectively, where 7,(x) = 0 on I'. The first equation in (1) represents the
Hooke’s law, the second equation describes the Newton (force equilibrium) law. The key point is
now choosing proper regularity of the stresses and displacements. In the standard mixed setting
one lefts the displacements piecewise discontinuous, u € L?(f2), and the stresses are symmetric
tensors with continuous normal components, o € Hgym(div; Q). However, a known stable finite
element discretization over tetrahedra [1] leads to 162 DOFs per element.

Here we follow another recent idea of Joachim Schéberl and Astrid Pechstein (born Sinwel) [2, 3]
who chose tangential-continuous displacements, v € H(curl;2), and normal-normal-continuous
stresses, o € H(divdiv; ), which leads to a tetrahedral finite element of only 36 DOFs. The
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Figure 1: Theoretical (solid lines) and numerical (crosses) SH/Lamb symmetric (red) and anti-
symmetric (blue) dispersion curves using TD-NNS anisotropic hexahedral elements.

method is referred to as TD-NNS. Note that in (1) the mixed terms, e.g., fQ divo - v, has to be
understood in the distributional sense.

In [3] prismatic triangular anisotropic elements allowing for discretizations of thin structures are
proposed and analyzed. Here we additionaly propose prismatic hexahedral elements with 2 DOFs
per edge, 4 DOFs per vertical face and 2 (bubble) DOFs per element as far as displacements are
considered. Concerning stresses we have 9 DOFs per face and 70 (bubble) DOFs per element.
We can get rid of the large amount of stress bubbles by hybridization so that the (face, normal-
normal) continuity of stresses is broken and reinforced again by Lagrange multipliers, which
act as normal displacements. Therefore we end up in the following purely displacement finite
element:

e 2 DOFs per edge representing tangential displacements,
e 4 DOFs per vertical face representing tangential displacements,
e 9 DOFs per (both vertical and horizontal) face representing normal displacements,

e and 2 DOFs per element (cell) representing tangential displacements.

The hybridized mixed finite element discretization of elastodynamics admits the standard primal
form, where both the mass and stiffness matrix are assembled elementwise, though, now they
are more involved. In Fig. 1 we present a good correspondence of the theoretical dispersion
diagram to the numerical simulations. The new TD-NNS elements are robust with respect to
the thickness. In Fig. 2 we depict simulation of ultrasonic elastic waves in a real-world thin-
walled structure. The system was numerically integrated in time by an unconditionally stable
Newmark scheme.

Acknowledgement: This work has been supported by the Technology Agency of the Czech
Republic under the grant TA03010140.
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Figure 2: Simulation of ultrasonic elastic waves propagating in a thin-walled structure using
TD-NNS tetrahedral elements.
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HTFETI pro ifeSeni nesymetrickych systémii

A. Markopoulos, T. Brzobohaty, V. Ryska

IT4Innovations, VSB - Technick4 univerzita Ostrava

1 Uvod

Metoda FETI (Finite Element Tearing and Interconnecting) [1] je ¢asto vyuzivand pro feSeni
problémi velkého rozsahu. Jeji algoritmus spo¢iva v eliminaci primarnich nezndmych zptsobem,
ktery umoznuje fesit dudlni systém linedrnich rovnic pomoci projektovanych variant Krylovov-
skych metod.

Prezentace se zaméiruje na piipady, kdy rozdéleni feSeného problému na piilis velké mnozstvi
podoblasti negativné ovliviiuje vykon metody FETI. Pomoci metody Hybridni FETI (HFETTI)
navrzené Klawonnem a spol. (viz napt. [2]) muZeme zredukovat tento efekt slepenim nékolika
sousednich podoblasti do clusteri. Tento postup upravuje strukturu algoritmu tak, ze n clustert
(n < pocet podoblasti) se chova jako n podoblasti ve standardni FETT metodé.

2 Skalarni advekéné-diftizni rovnice

Méjme ohrani¢enou oblast  C R? s po ¢astech hladkou hranici 9. Uvazujme nésledujici
okrajovou tlohu:

-V -(DVe)+a-Ve = fvQ
—_—
diftize advekce ( 1 )
¢ = g na 0,

D11 Do
D21 Do
a = (aj,a2)’ oznacuje vstupni vektorové pole rychlosti advekce, f = f(x1,x2) je zdrojovy ¢len
a g je okrajova podminka pifedepsana na 0f2.

kde ¢ = c¢(x1,x2) reprezentuje nezndmou skalarni funkci, D = ( ) je tenzor diftuze,

)T

V nagem piipadé advekce prevladd nad difazi, coz zpusobuje zna¢nou nestabilitu numerického
MKP feseni. Tuto nestabilitu fesime pomoci CAU metody blize popsané v ¢lanku [3]. Princip
této metody zjednoduSené spociva v pricteni tzv. ,numerické difaze“ k matici tuhosti, kterd
vyplyne z metody kone¢nych prvkia (MKP), jak ukazuje nasledujici rovnice

(Kaiff + Kago + Kcav)u=fg +foau . (2)
K £
K

Zde Kgifrr a Kyq, 0znacuji symetrickou a nesymetrickou matici korespondujici k diftznimu re-
spektive advekénimu ¢lenu. Soucet téchto dvou matic odpovida matici tuhosti vzniklé z MKP
stejné jako vektor fg. Matice Koay a vektor foay reprezentuji diive zminénou ,,numerickou
difazi“. Vektor nezndmych je oznacen jako u.
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3 Hybridni Total FETI metoda

Pro srozumitelnéjsi popis HTFETI metody pouzijeme hierarchicky dekomponovanou doménu
(viz obréazek 1).

o Hol
o™ f s I1u1 T
[ mEESTanm
2 N FEECioft
Il
DE'D
C,=3

Obrazek 1: Doménovéa dekompozice: Cp = 3, Cy =2, N, =1, N, = 3, n, = 10, and n, = 5.
Diskretizace a dekompozice sestava z 3 trovni:

e 1. tiroven - dekompozice na clustery. Kazdy z nich pfi vypoctu zaméstna 1 vypocetni uzel.
Parametry C, a Cy urcuji pocet clustert v z-ovém a y-ovém sméru.

e 2. turovei - kazdy cluster je dekomponovin na podoblasti. Parametry N, a IV, udavaji
pocet podoblasti ve smérech x a y.

e 3. urovei - kazd4 podoblast je diskretizovana uniformné 2D kone¢nymi prvky. Jejich pocet
v z-ovém a y-ovém sméru udavaji parametry ng,n,.

Implementace HTFETI se velice podobé klasické TFETI metodé. V obou algoritmech jsou
Lagrangeovy multiplikatory (LM) pouzity jak pro lepeni podoblasti dohromady, tak pro vynuceni
Dirichletovych okrajovych podminek. Z toho divodu jsou v8echny podoblasti plovouci, a proto
matice tuhosti na vSech podoblastech vykazuji defekt a lze na né pouzit stejny algoritmus, ktery
pocité se singularni matici.

Podékovani: Tato prace byla podpoiena Ministerstvem gkolstvi mladeze a télovychovy z Narod-
niho programu udrzitelnosti II (NPU II) v ramci projektu ,IT4Innovations excellence in science
- LQ1602¢ a dale také Vysokou §kolou banskou - Technickou univerzitou Ostrava z SGS projektu
SP2016/150 ,Modelovani povodni a znec¢isténi I1¢.
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On the optimal initial conditions for an inverse problem
of model parameter estimation

C. Matonoha, S. Papdcek

Institute of Computer Science of the CAS, Prague
Institute of Complex Systems, University of South Bohemia in Ceskée Budgjovice, Nové Hrady

1 Introduction

The aim of this contribution is to establish the link between experimental conditions (protocol)
and the accuracy of the results. The idea is presented in a simplified case study of FRAP (Flu-
orescence Recovery After Photobleaching) data processing |7, 3|. It serves as a paradigmatic
example of the inverse problem of the diffusion parameter estimation from spatio-temporal mea-
surements of fluorescent particle concentration. A natural question is how the experimental
settings influence the accuracy of resulting parameter estimates. There are many rather empiri-
cal recommendations related to the design of a photobleaching experiment, e.g., the bleach spot
shape and size, the region of interest (location and size), the total time of measurement, cf. [2].
However, we should have a more rigorous tool for the choice of experimental design factors. This
goal can be achieved through a reliable process model, the Fickian diffusion equation, and per-
forming the subsequent sensitivity analysis with respect to the model parameters. Thus, we can
define an optimization problem as the maximization of the sensitivity measure. The special focus
of this contribution concerns the search for the optimal bleaching pattern [2, 5], or, from the
more mathematical viewpoint, we show how to find an optimal binary-valued initial conditions
in a diffusion-parameter estimation problem.

2 Problem formulation

We consider the Fickian diffusion problem with a constant diffusion coefficient § > 0 and assume
a spatially radially symmetric observation domain, i.e., the data are observed on a cylinder
with the radius R = 1 and height 7" = 1. In FRAP, the simplest governing equation for the
spatio-temporal distribution of fluorescent particle concentration u(r,t) is the diffusion equation

ou O*u  10u
at—5<arz+rar>’ 1)
where r € [0, 1], t € [0, 1], with the initial and Neumann boundary conditions
ou
0) = —(1,t) =0. 2
U(’I”, ) UO(T)7 87“( ) ) ( )

The main issue in FRAP and related estimation problems is to find the value of the diffusion
coefficient J from spatio-temporal measurements of the concentration u(r,t), cf. [6, 7].

Obviously, the measured data are discrete and each data entry quantifies the variable u at
a particular spatio-temporal point (r,¢) in a finite domain, i.e.,

u(ri, tj), 1=0...n, 10=0, 7,=1,

]ZOTI’L, tOZO, tnzl,
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where ¢ is the spatial index uniquely identifying the pixel position where the value of fluorescence
intensity u is measured and j is the time index (the initial condition corresponds to j = 0).
Usually, the data points are uniformly distributed both in time (the time interval At between
two consecutive measurements is constant) and space, i.e., on an equidistant mesh with the
step-size Ar, cf. [4].

Given the data as above, the diffusion coefficient é can be computed numerically by solving the
inverse problem to (1)-(2). Because of unavoidable noise in the data, one obtains an estimated
value § which reasonably well approximates the true d. It can be shown |1, 4|, that for our case of
single scalar parameter estimation and white noise as data error assumed, the expected relative
error in § depends on the data noise and a factor, which we call the global semi-relative squared

sensitivity Sqrs, as follows
= 2
6—20 o?
El|— ~ , 3
< 4 ) Scrs ®)

where 02 denotes the variance of the additive Gaussian noise. The sensitivity measure Sgry is

n m 2
Sens =33 [t a

i=0 j=1

where %u(m, tj) is the usual sensitivity of the model output in the spatio-temporal point (r;, ;)
with respect to the parameter §. It is obvious from this estimate that if the noise level is fixed,
the estimation of § can only be improved by switching to an experimental design with a higher
sensitivity.

The sensitivity measure (4) involves several design parameters. If all the above parameters
R, T, Ar, At are fixed, there is only one way to maximize the sensitivity measure Sgrg: to
consider the initial bleach ugp in (2) as the experimental design parameter. By optimizing the
bleach design, we mean to select the initial conditions in such a way that Sgrs is maximized
and hence the expected error in d is minimized. In order to do so, we have to choose the class of
designs from which we select the initial conditions. Without loss of generality, we assume wug(7)

is a {1, 0}-function
1, reB,
ug(r) = { ()

0, else,

where B is an open subset of [0,1] (not necessarily continuous), which we call further as the
bleaching pattern or the bleach shape. The set B determines the initial condition ug(r) and thus
the value Sgrs. The goal is to find such a set B,y determining the non-zero sub-vector of ug(r),

and thus the optimal initial condition ug" *(r), where Sqrg reaches its maximum:
By, = arg max S . 6
opt g BClo] GRS ( )

Depending on the different restrictions imposed on the initial bleach, we can study problem (6)
not only with a fixed bleach depth (ug(r) is a {1, 0}-function) but also with a fixed energy, i.e.
with an additional restriction

[ ulryar = 7)
where ¢ > 0 is a given constant.

The function ug is discontinuous, so the problems with definition and existence of a solution to
(1)-(2) occur. This drawback is partially restricted by the fact that B is an open subset. Thus,
we keep a classical formulation of the initial boundary value problem (1)-(2) and use a finite
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difference Crank-Nicholson (CN) scheme to compute a numerical solution u(r;, ¢;), i =0...n—1,
j = 1...m. Replacing the derivative with a finite difference, the sensitivity measure Sgrg can
be approximated with a value S, as follows

n

SGcrs & Sapp = 232 Z [u(ri’tj) - u(ri7tj—1)]2 : (8)

j=1  i=0

The values u(r;,t;) are computed from w(r;,t;—1) using the CN scheme, thus no extra work is
necessary.

3 Numerical example

To demonstrate the optimal configurations of the initial condition let us choose n = 30, m = 200
and find such an initial condition (ug(ro),...,uo(rn))? € R™ 1 in form of a {1,0}-function,
cf. (5), that maximizes the value S,p, (8) for 1/6 =1,2,...,120 (notice the inverse values of J).
For the sake of simplicity we consider four types of shapes (or patterns) of the initial condition?
(the sets B in (5)):

1,...,10,...,0D7

disk : up = (
annulus : uoz(O,...,O,l,...J[,O,...,O])T
disk+annulus : wy=(1,...,1,0,...,0,1,...,1,0,...,0D)T
double annulus : uo = (0,...,0,1,...,1,0,...,0,1,...,1[,0,...,0)T

Figure 1 shows the result of the optimization problem (6), i.e., the vertical lines visualize both
the shape and size of the initial condition ug leading to the maximal value of S,p,. Figure 2
shows the maximum values of Sy, vs. 1/0 for the four different classes of the initial shapes of
bleaching patterns. There are intervals of 6 where the value S, is maximal for disk (6 > 1/17),
annulus (0 > 1/44), disk+annulus (1/82 < § < 1/18), and double annulus (1/120 < § < 1/45).
For 6 — 0 we can find more complicated shapes as optimal initial conditions.

Optimal initial conditions uo(ri) Maximum Sapp for various types of IC
30 ‘ ‘ -1.4
o
=]
: I
S 20 T e e
o S .'~ .....
> & -
o 15 2 1 N e
3 | R e
© 10 = —disk
N | e~ |
s 5 2 == disk+annulus
z 0 - double annulus
0 50 100 0 50 100
1/5 1/5

Figure 1: The result of optimization Figure 2: Each curve indicates the
problem (6): each vertical line indicates maximum value of Sy, determined by
the non-zero sub-vector of ug for which initial conditions from the four groups
Sapp 18 maximal. listed above.

2The last zero sub-vector, marked in square brackets, can be empty in each wuo.
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4 Conclusion

Although the experimental devices for FRAP measurements allow an arbitrary bleaching pat-
tern, there is hardly any study concerning its influence on the accuracy of resulting parameter
estimates. Thus, we formulated the problem of the optimal initial condition for the further
identification of a constant diffusion coefficient. We set a sensitivity measure as the optimality
criterion to be maximized in order to have the expected error minimal, cf. (4). Our preliminary
numerical results indicate that there exist specific initial conditions ug that maximize the sensi-
tivity measure Sgp, and therefore minimize the error in the model parameter estimate (diffusion
coefficient §). The optimal initial shapes or bleaching patterns are functions of §. We found
not only disks of various radii (the usual bleach shape used in the FRAP community) but also
annuli and other more complicated radially symmetric patterns. These optimal initial conditions
depend not only on § but also on other parameters reflecting the experimental protocol. How
exactly these parameters as well as the restriction on a fixed energy influence the solution of our
problem of bleaching pattern optimization is the subject of ongoing research.

Acknowledgement: This work was supported by the long-term strategic development fi-
nancing of the Institute of Computer Science (RVO:67985807), by the OeAD within the pro-
gramme “Aktion Oesterreich-Tschechien (AOeCZ-Universitaetslehrerstipendien)", and by the
Ministry of Education, Youth and Sport of the Czech Republic — projects CENAKVA (No.
CZ.1.05/2.1.00/01.0024) and CENAKVA II (No. LO1205 under the NPU I program).
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Solution of contact problems for nonlinear beam and foundation
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1 Introduction

We will consider the following nonlinear beam model
EIw" — Ba(w)?w” + Puw” = f  in (0,L). (1)

The beam has a constant stiffness given by the elastic modulus of material £ and constant area
moment of inertia I. Its length is L and thickness is 2h. The width of the beam we consider as
a unit. The distributed transverse load is denoted by ¢(x) and w(z) describes the deflection of
the beam at a position z. Furthermore, in (1) we denoted

= §h3, a=3h(1—1?), p=(1+0)1-2?), f=(1-12q (2)

with v as the Poisson’s ratio. Finally, P is an external axial force applied on x = L which causes
compression for P > 0 or tension for P < 0. This mathematical model was developed in 1996
by D.Y. Gao (see [2]) and is successfully used since its publication.

The potential energy of this beam Ilg: V — R is defined by

1 L 1 (L 1 [T L
Ig(v) = / EI(v")%dz + / Fa(v')*dz — / P,u(v')Qd:L‘—/ fvdz, veV, (3)
2 Jo 12 Jo 2 Jo 0
where V' is the space of kinematically admissible deflections, so that essential boundary conditions

should be entered into V. It can be proved that this functional is coercive on V and for P < P,
strictly convex as well, where the critical load P, is determined by

(4)

This implies that for any f and P: P < P,. the variational problem

Find w € V such that
g(w) = mi‘l;l g (v) (5)
ve

has exactly one solution and the stationary condition Hé(w,v) = 0 leads to the governing
equation (1).

2 Normal compliance contact model

Now let us consider a foundation lying in the distance g < 0 below the Gao beam (see Fig.1).
We can distinguish two principal cases: deformable and undeformable (or rigid) foundation. Here
we will study only the first case with kr > 0 as the foundation modulus.
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Figure 1: Gao beam and deformable foundation.

Simple considerations (see [5]) lead to the enhanced equation
Elw" — Ea (w')*w” + Puw” = f+ T(w)  in (0,L), (6)
where contact force T' is given by
T(w) = crp(g—w)", cr = (1—v3kp, v7(z) = max{0,v(z)}. (7)

Such relation is usually referred as the so-called normal compliance condition. The first formu-
lation of contact problem using normal compliance condition was presented in [7].

Equation (6) is associated with the total potential energy Il7 of the whole system given by

L
Ty (v) = Tla(w) + /O e (8)

This functional has the same properties which have been mentioned above in connection with
the functional IIg. Hence the problem

Find w € V such that
7 (w) = min Hp(v) (9)
veV

has one solution if P < P... It is worth noting that we did not obtain variational inequality
what is usual in the case of Signorini conditions, which are relevant for rigid foundations.

3 Solution using optimal control

Our idea is that we transform the contact problem (9) into an optimal control problem. For
this purpose let us perform the variable transformation z = v’. Using the method of Lagrange
multipliers, we construct the Lagrangian

1 /b 1 b 1 (L L
L(v,z,\) = / El(v")2dx+/ Eaz4d$—/ Puszw—/ fodx +

2 Jo 12 Jo 2Jo 0

1 L 9 L
+2/ cr((g—v)™) dx—i—/ A — 2)dz, veV,zeZ e A, (10)
0 0
where V is the given function space, Z is the space of their derivatives and A = L2((0,L)).
Problem (9) is then replaced by
L(v,z,\) — stat, (11)

V,2,A

which investigates a stationary point of Lagrangian £ (for more details see [3]). After some
calculations we obtain (among other results)

L L L
/ Elw""dx —/ foda —/ updr = 0 YoeV, (12)
0 0 0
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where we have set
L L L
/ updr = / cF(g—w)+<pdx—/ ¢’ dx VoeV. (13)
0 0 0

From (12) we get the so-called state problem
For given u find w := w(u) € V such that

L "1 L (14)
; Elvw"¢"dx = ; (f+u)ypdr VoeV.
Next, using this relation, we rearrange functional (8) to the following form
e ~ e A e "2
Jw,u) = - [ ww—-w)dr+ — [ PFa(w)*dr— - [ Ppw)'dr+
2 Jo 12 J, 2 Jo
1 [t 12

+5 [ er((g—w)*) da, (15)

0

where function w solves the state equation for u = 0. Now we are able to define the optimal
control problem
Find a function v* € U,q such that
J(w(w'),u) = min J (w(u),u), (16)
u€Uyq

where w(u) € V' solves the state problem (14)

with admissible set of controls determined by
Ugg = {u € L*((0,L)) : |u(z)| < C a.e. in (0,L)} (17)

for some positive constant C, because we do not want to break the beam. More information on
the optimal control of differential equations can be find in monographs [4] and [10].

In our case it can be proved that under the assumption P < P,. problem (16) has just one
optimal pair (w*,u*) € V x U,q and the function w* = w(u*) solves variational problem (9).

4 Numerical realization

As we can see from (16), computational procedure will consist of two parts: evaluation of given
state problem (14) simultaneously with minimization of the transformed functional J. The first
task does not make much troubles, because the finite element solution for Euler—Bernoulli beam
is well-known, see e.g. [8].

k k

Hence for given control value u* we compute state w”* and then for the pair (w ,u’) we perform
one step of minimization process for functional J(w,u). For this purpose we used the condi-
tioned gradient method (see [10]). Descent directions was given by gradients of J(w,u) which
were evaluated by means of adjoint problem technique. Step lengths were determined by using
algorithms described in [6].

For illustrative purposes a simple example is given here. We consider the beam from Fig. 1 with
the following data:
L=1m, h=0.1m, F=21-10°Pa, I =0.666667-10"2m*, v = 0.3, ¢ = —5-10®N (constant).

From Fig.2 it is seen that the tougher foundation on the right enables significantly smaller
penetration into the foundation, hence the contact zone is smaller than the one on the left side.
The blue stars show deflection of the Euler-Bernoulli model, the red stars correspond to the Gao
beam and green crosses represent the foundation.
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5

Figure 2: kp =25-108Nm™3 kp=25-1010Nm™3

Conclusion

The idea used here is based on the original method applied in [9] and [1]. The authors call it
the control variational method. The subject of the papers was linear cantilever beam (Euler—
Bernoulli model) with foundation. Our research significantly generalized these works as we
consider nonlinear Gao beam in addition subjected to axial load and with all kinds of possible
boundary conditions. We have also expanded and refined numerical solution for this approach.
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1 Introduction

Several classes of numerical methods can be used for the solution of elliptic differential equa-
tions with randomly distributed data: the Monte Carlo methods, collocation methods and the
stochastic Galerkin method. In our contribution, we focus on the stochastic Galerkin method.
It is applied to the variational form of the problem with respect to both physical and random
variables. We assume that coefficients at the elliptic part of the equation depend on N random
variables y1, ..., yny which are independent and log-normally distributed with the joint probabil-
ity density p. Then the problem is to find u(x,y) € H = Hj(D) ® L3(R") such that

/ /exp(a(may))VU(x,y)W(w,y)p(y)dxdy=/ /b(x)v(x,y)p(y)dxdy, (1)
n JD nJD

where D € R?% d=1,2 or 3, x € D is a spatial variable and y is a finite dimensional random
field, y = (y1,...,yn), see, for example, [2].

The solution u(z,y) of (1) is assumed to be approximated by a generalized polynomial chaos
expansion and by finite element (FE) functions of the physical variable x

F M
u(w,y) =Y up i) (@),

r=1 j=1

where {tbj(y)}é\/il is a set of N-variate tensor product polynomials orthogonal with respect to
the scalar product of L%(RN). In particular, ®;(y) = Hfil ©;j,(yi), where @ (y;) is Hermite
orthogonal polynomial of order k. For approximation we use 0 < k; < P;, where P; are some
given constants. Assuming a linear expansion of a(z,y), we obtain a system of M x F' linear

equations with M x F' unknowns wu;,,
Au = B,

where
N
Arge = [ [ e (ao<x>+;ak<x>yk> V() Vi ()3 (1) 2, ()o0) i .

By - /R ) /D () (2) () (y) d dy

The matrix A is huge and usually poorly conditioned, and even if A is never constructed explicitly
in practical computation, it is worth to search for efficient preconditioning methods. These
methods are usually based on some natural block splitting of A [5] or use some hierarchy of
approximation subspaces [6, 7, 8, 9].
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2 Block and multilevel preconditioning

In our contribution, we present and study several block preconditioning methods and algebraic
multilevel (AML) methods [1, 3|, and prove guaranteed upper bounds for the resulting condition
numbers of the preconditioned matrix A. We focus on the following methods

(a) block diagonal preconditioning with Py + 1 blocks corresponding to approximation sub-
spaces which contain the approximation polynomials ¢, (yn) of orders 0,1,..., Py, re-
spectively

b) AML preconditioning in a form of a V-cycle with a hierarchical splitting of the approxi-
g g
mation spaces with respect to the degree of approximation polynomials ¢, (yn)

(¢c) AML preconditioning in a form of a W-cycle for the same hierarchy as in (b).

We introduce a tool for proving upper bounds for the resulting condition numbers for all of these
methods. Some of the proofs are based on estimating the strengthened CBS constants for the
hierarchical approximation subspaces and for the energy scalar product defined by the problem.
Our methodology is based on an "element-wise" approach, which is well known from the classical
AML theory [1, 3, 4]. We mention, that the guaranteed bounds for the CBS constants can be
employed for two-sided a posteriori error estimates and for adaptive algorithms as well.
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Abstract

Estimates of the distance of a function to the space of divergence free fields follow for example
from the well-known inf-sup condition for incompressible media [1, 7, 9, 10, 11] and contain
an LBB-type constant. This constant can be estimated by analytical methods only for specific
shapes of domains and the Dirichlet boundary conditions [4, 8]. Their semi-analytic extensions to
more general domains and mixed boundary conditions have been proposed in the recent papers
[10, 11, 12, 13] concerning a posteriori error estimates for incompressible flow problems.

In this contribution, we use such estimates in Hencky’s plasticity problem to analyze a limit
factor A* for a prescribed load [3, 15]. Finding A\* is one of the most important tasks in quan-
titative analysis of the Hencky problem since beyond this limit value no physically reasonable
solution may exist. Within the kinematical approach to limit analysis, A* can be defined as the
infimum of a nonsmooth and convex functional subject to the divergence free constraint imposed
on displacement fields. This minimization problem is called the limit analysis problem [3, 15]. Tt
can be solved, e.g. by the penalty method studied in [5, 6, 14| or by the augmented Lagrangian
method [2].

The presented estimates of the distance to the set of divergence free fields enable us to find
guaranteed and fully computable upper bounds of A* using functions which need not satisfy the
divergence free constraint. To get bounds which are close to A\* we utilize special functions,
namely solutions to a discrete penalized version of the limit analysis problem. We construct
a sequence of upper bounds that converges to \* as the discretization parameter tends to zero.
This result is very useful since the sequence of the discrete limit load parameters need not
converge to A* due to possible locking phenomena.
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1 Introduction

The Vehicle Routing Problem (VRP) deals with a delivering goods from one or more depots
to multiple customers by fleet of vehicles. The most studied type of VRP is the Capacited
Vehicle Routing Problem (CVRP). In CVRP, each customer requires a certain amount of goods
and each vehicle has its specified capacity. The aim is to minimize the total cost of the route.
Determining the optimal solution is an NP-hard problem. The exact solution can be found only
for a limited number of customers and vehicles. Therefore, research is mostly focused on heuristic
and metaheuristic algorithms which can find the approximate solution in an acceptable time.

2 MILP formulation

VRP is most commonly formulated using the (mixed) Integer Linear Programming (ILP, MILP)
model. VRP can be described by many ILP formulations. In this section, Vehicle Flow Model [1]
is described.

Let us have the following parameters:

N: number of customers

V: number of available vehicles

d;: demand of customer 3

T,: capacity of vehicle v

cij: distance between node 7 and node j

where the node with index 0 represents a depot and nodes with indices from 1 to N+1 are
customers. Variables 2 and y are binary and variable u is real. Variable z7; equals 1 iff the
vehicle v travels on arc (i,j). Variable y;; equals 1 iff the vehicle travels on arc (i,7). Our
problem reads

N N
minZZchm (1)

v=1 i=0 j=0

N N

ZZd-xfj<Tv, v=1,2...,V (2)
i=1 j=0

\%4

> w=yy, 4,j=0,1,..,N (3)
v=1
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N
Y wy=1, i=12..,N (4)

=05
N
Y yy=1 j=12..N 5)
i=0,i#j
N
Zy()j <V (6)
j=1
N
Y o<V (7)
=1
ui —u; +(N+ 1)y <N, 1<i#j<N (8)
N N
S oat= 3 4% i=1,2.N, v=1,2..N (9)
=05 =0

Constraints (2) ensure that capacity of the vehicle is not exceeded. Constraints (3), (4) and (5)
ensure exactly one visit for each arc and each customer by any vehicle. The number of available
vehicles is specified by constraints (6), (7). Constraints (8) are subtour elimination constraints
and constraints (9) ensure the continuity of the route. Other MILP or ILP formulations can be
found in [2].

The exact solution of this problem can be obtained by using algorithms such as Branch-and-
Bound, Column Generation, Branch-and-Cut or more recent Branch-and-Cut-and-Price algo-
rithms.

3 Binary QP formulation

In [3], the Binary Quadratic Programming (BQP) formulation was introduced. There is three-
index binary variable zj; introduced in this formulation. Variable zj, equals 1 iff vehicle v is
located in node 4 at step p. This formulation leads to following minimization problem

Vv N N N

min Z Z Z Z CijTinTpt1 (10)

v=1 i=0 j=0 p=1

vV N
dap =1, i=12.,N (11)
v=1 p=1
N N
fop:waH, p=0,1,.,N, v=12,.,V (12)
=0 =0
N N
dodiy ap, <T,, v=12.V. (13)
=1 p=1

Constraints (11) ensure that each customer is visited exactly once. The route continuity is
ensured by (12) and constraints (13) ensure that the capacity of the vehicle is not be exceeded.
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The main advantage of the BQP formulation is the reduction of number of constraints. Branch
and Bound algorithms can be used for this problem. The bounds of the objective function can
be obtained from the QP or SDP relaxation.
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Computing zeros of analytic functions by integral contour method
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1 Introduction

We present a numerical method for computing zeros of an analytic complex function. This ab-
stract relies on Master thesis of the first author, which is a compilation of a series of papers of
professor Sakurai and collaborators. We find the method particularly interesting for a forthcom-
ing research on locating eigenvalues of large-scale matrices, which we mention in Conclusion.

Let © be a simply connected domain in C, f : C — C be a function holomorphic in © and « be
a positively oriented curve in {2 that does not pass any zero of f. We consider the problem of
finding all zeros of f in the interior of 7. We use an integral contour method which is referred
to a concept relying on Cauchy’s residue theorem. Denoting by zi, ..., z, the mutually distinct
zeros and by aq,...,a, € N their respective multiplicities, we can calculate following Newton
sums by the residue theorem

n
1 f'(z)
. k- k
S 1= Zalzi =5 /z ) dz. (1)
=1 v
Note that IV := sg is the total number of zeros. We translate the problem of finding zeros of f
to searching for the same zeros of a polynomial
Py(z) := N ro N+ 4o,

the coefficients of which we get from Newton’s identities

1 0 0 o1 s1
S1 2 0 0 g2 52
SN—92 *°° S1 N -1 0 ON-1 SN—1
SN*]; DY DY 81 N O’N SN

The method of Newton’s identities is usually ill-conditioned due to bad conditioning of the
polynomial, i.e., small changes in the polynomial coefficients generate large changes in the zeros.
Moreover, the larger N the more accurate quadrature in (1) has to be employed.

2 Formal orthogonal polynomials

The method of formal orthogonal polynomials gives more accurate approximation of the zeros
of analytic function. This method has been introduced in [1, 2].

Let P be the linear space of polynomials with complex coefficients. We introduce bilinear form
() : PxP —Cby
1
(6, 0) = — [ d(2)¥(2)
¥

21

F'(Z) NS wed(o (o
f(Z) dz = Zz; zd)( z)w( z)'

87



Polynomial ¢; of degree t > 0 is called a formal orthogonal polynomial (FOP) if it is monic and
satisfies
<zk,got(z)> =0 forallke{0,1,---,t—1}, 2)

If ¢4 is uniquely determined by (2), then it is referred to as a regular FOP and t is a regular index.

The regular FOP of degree ¢t > 1 exists if and only if matrix H; := (serq);_ql:O = ((1, zp+q>);_ql:0

is nonsingular. The zeros of a regular FOP are eigenvalues of matrix pencil Ht(l) — AH;, where
Ht(l) = (serqH);;l:O. The problem of finding zeros z1, ..., z, of f is now equivalent to finding
a regular FOP gonj The respective multiplicities a1, . . . , au, solves following Vandermonde system,
for which there is a stable method relying on Newton polynomial interpolation,

1 tee 1 aq S0
Z1 tee Zn (%) S1
z{l_l P o Sp—1

Unfortunately, computing eigenvalues of HT(LI) —\H,, is still ill-conditioned. We replace it by a bet-

n—1

p,q=0
and Mr(bl) = ((pp, gplwq>);;i0 with ¢y being suitable monic polynomials. In case of H,, strongly
regular, i.e.; all its leading principal submatrices are regular, then all of ¢, 1, ..., @, are regular

ter conditioned problem of finding eigenvalues of pencil MY —AM,,, where My, := ({(¢p, ¢q))

FOPs. In this case M, and Mél) are diagonal and tridiagonal, respectively. Otherwise, if H,
not being strongly regular, we establish a set of regular indices {ix}, k = 0, ..., K, where K is
the number of regular blocks in H,. If n > 1, then ig = 0,41 = 1 and ix = n. We define the
sequence of {¢;}72, as follows: If ¢ is a regular index, then ¢, is the regular FOP. Otherwise,
@i(2) == 27" p,.(2), where r is the largest index less than ¢, and ¢y is called an inner polyno-
mial. The polynomials can be grouped into blocks such that every block starts with the regular
polynomial and the remaining polynomials in this block are inner.

In the practical algorithm there are two thresholds econq and est0p With eg40p < €cong- The value
€cond determines the length of blocks and €4, decides whether the algorithm is being stopped,
i.e. decides whether r = n and ¢, = ¢n. If [{¢r,©r)| > €cona for some regular index r, then

©r+1 18 being generated as FOP (if r is regular index, then |(¢,, p,)| = det Hﬁtl = det Gé—:”

Else we search for the smallest ¢t such that t < N —1 —r and ‘<zt<pr, cp,n>‘ > €eond- Then t+1
is being the length of block and t is being the number of inner polynomials in the block. If we
fail to find such ¢ and ‘<ztcpr,cpr>‘ < estop for all t € {0,--- ,N — 1 —r}, then n = r, compute
the zeros of ¢, and algorithm will be stopped. If we fail to find such ¢ and there exists some
t€{0,---,N —1—r} such that ‘<ztgor,g0r>{ > Estop, then the length of block will be m such

that [(z™¢,., o) = ooy Max ’<ztg0r, gor>| and algorithm continues until the last regular index r
<t<N—-1-r

is less than N.

3 Numerical examples

We give two examples. First of all, we consider

o =11 (2= 39) 210 = e

j=1
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By the method of Newton’s identities we obtain the following approximation of zeros z4 and zg:

z4 = +2.203620388030727 4 0.40326285242386677;
zg = +4.328112677568831 + 0.0000315934022037:.

After replacing Newton’s identities by eigenvalue problem H fé) — AH1( the approximations read

24 = +2.375661289285481 — 1.945767526 - 10~°4;
29 = +4.488679268520042 — 1.196308016 - 10~ %4i.

Finally, the method of FOPs gives the best approximation

24 = +1.999999975589223 + 2.338471947 - 10~ 74;
29 = +4.499999938630227 — 4.909355538 - 104,

In the second example we consider
f(z) = 3% + 2z cos (Z) -1, ’Y(t) .— 92Tt

If we set econg = 1 and egp0p = 10712, the algorithm decides that n = 4, generates g, @1 as
a regular FOP, 9 generates as an inner polynomial, 3 and ¢4 generates as a regular FOP. The
approximation of the zeros is obtained as follows:

21 = —1.844233953262216 — 3.189796250 - 10~ 165;
29 = +0.530894930292931 — 1.331791876751123;
23 = +0.530894930292938 + 1.331791876751128i:
24 = —1.21-1071 — 5.681456752 - 10~ 1%4.

4 Conclusion

The presented method can be further extended towards finding eigenvalues of both linear and
nonlinear operators, see the references. Our particular aim is to find eigenvalues \; of a large
real and symmetric positive definite matrix A € RM*M in a certain interval on the real axis,
where we expect n eigenvalues, n < M. Given a (random) nonzero vector v € RM we search for
poles of the function

Vi

M
f(z)=v(A—zI)"to= Z SV
j=1""

where v; are related to coordinates of v in an orthonormal basis of the eigenvectors of A. We can
employ the integral contour method, see Fig. 1. However, each evaluation of f involves a solution
to the large system with matrix A. Therefore, our further research shall address two essential
problems:

e We shall find a suitable quadrature method to minimize the number of evaluations of f.

e We shall find a reasonable way to update the solver when perturbing the matrix diagonal.
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Figure 1: Integral contour method
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Incremental estimation of the largest and smallest
Ritz values in the conjugate gradient method

P. Tichy

Faculty of Mathematics and Physics, Charles University in Prague

The (preconditioned) Conjugate Gradient (CG) method by Hestenes and Stiefel [2] is the iterative
method of choice for solving linear systems Ax = b with a real symmetric positive definite
matrix A. During the process, it is often desirable to get some information about Ay, and Apax,
the smallest and the largest eigenvalue of A. The information about the eigenvalues can then
be used, e.g., to approximate norms of errors, to estimate the ultimate level of accuracy, or, to
estimate the condition number of A. Note that since A is symmetric and positive definite, it
holds that Apay = ||A|| and AL = [|A7Y.

min
A natural way to approximate Api, and Apax during the CG computations is to use minimum
and maximum Ritz values that can be determined from the CG coefficients. The straightforward
approach would require storing the tridiagonal Jacobi matrices and computing their eigenvalues.
Such an approach would be expensive with increasing iterations. In this contribution we general-
ize results of [4] and present a very simple way to approximate the maximum and the minimum
Ritz value incrementally at a negligible cost.

The Lanczos and the CG algorithms. We briefly recall the Lanczos and Conjugate Gradient
algorithms as well as their relationships; see, for instance [3].

Algorithm 3 Lanczos algorithm
input A, v
Bo=0,v9=0
o1 = v/l
for k=1,... do
w = Avg — Br—1Vk—1
ap = vgw
wW =W — OV
Br = [|w]|
Vkg1 = w/ B
end for

—_
e

RNXN

Given a starting vector v and a symmetric matrix A € , one can consider a sequence of

nested subspaces
Kr(A,v) = span{v, Av, ... ,Akilv}, k=1,2,...,

called Krylov subspaces. The dimension of these subspaces is increasing up to an index n called
the grade of v with respect to A, at which the maximum dimension is attained, and IC,,(A,v) is
invariant under multiplication with A. Assuming that k < n the Lanczos algorithm computes an
orthonormal basis vy, ..., vg4+1 of the Krylov subspace Kpy1(A,v). The basis vectors v; satisfy
the matrix relation

AVy = ViTy, + Brr1vesier
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where Vj, = [v1 - - - vg] and T} is the k& x k symmetric tridiagonal matrix of the recurrence coeffi-
cients computed in Algorithm 3:

ar P
T = pr
Br—1

Br—1 o

The coefficients ; being positive, T} is a Jacobi matrix. The Lanczos algorithm works for any
symmetric matrix, but if A is positive definite, then T}, is positive definite as well.

Algorithm 4 Conjugate gradients
1: input A, b, xg
2: rg=b— Axg

3: po =To
4: for k=1,...,ndo
5: _ TE i Th—1

’ V-1 T opF  Apk—a
6 Tk = T—1 + Vk—1Pk—1
7: Tk = Tk—1 — Vh—14DPk-1
8 O = —pklE

k= Th A Th—1

9: Pk =Tk + OkDr—1
10: end for

When solving a system of linear algebraic equations Ax = b with symmetric and positive definite
matrix A, the CG method (Algorithm 4) can be used. CG computes iterates xj that are optimal
since the A-norm of the error is minimized over the manifold z¢ + Kp(A,r). The residual
vectors 1y are proportional to the Lanczos basis vectors v; and hence mutually orthogonal. It is
well-known (see, for instance [3]) that the recurrence coefficients computed in both algorithms
are connected via formulas which can be written in the matrix form as T} = Rng, where

1 o1
Nan) Yo
R p—
F Op—1
Vk—2
1
VVk—1

In other words, CG computes implicitly the Cholesky factorization of the Jacobi matrix T}
generated by the Lanczos algorithm. Therefore, it holds that

—1 —1
Tl = IRel?, T = 1R,
and to approximate [T and [|T}, *||, one can use algorithms that incrementally estimate the
maximum singular values of the upper triangular matrices Ry and R,;l.

Incremental estimation. Consider the problem of incremental estimation of norms of upper
triangular matrices extended in each update by one column; see, e.g., [1]. Let R € R* be an
upper triangular matrix and let z be its approximate maximum right singular vector. Let

R:[R )

., wveRF peRr
] :
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) . . . . . . T
We consider the new approximate maximum right singular vector in the form 2z = [ sz ¢ ] ,
where s2 + ¢? = 1 are chosen such that the norm of the vector
o R
Rs = [ sRz + cv ]
cp
is maximum. The numbers s, ¢, and the corresponding maximum norm of R can easily be

determined from the eigenvalue problem for a 2 x 2 symmetric matrix having the entries || Rz||?,
v Rz, and vTv + p2.

Specialization to bidiagonal matrices and their inverses. In general, the previous tech-
nique requires to store the matrix R, the vector z, and to perform O(k?) operations per update. In
this presentation, we apply the previous technique to the upper triangular matrices R; and R,;l,
which are available in CG. Thanks to their special structure (R is bidiagonal, R,;l is semisepa-
rable) we will show that the incremental estimates of || Ry|| and HR,;lH can be computed in O(1)
operations, without storing the corresponding matrices and the approximate maximum right
singular vectors. In other words, in each iteration of CG we just need to update a few scalars to
compute incremental estimates of | Ry|| and ||R,'|. Note that the incremental estimates provide
a lower bound on the largest Ritz value and an upper bound on the smallest Ritz value.

N
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/

The estimators have been suggested to be computationally cheap and efficient, but, on the other
hand, one cannot expect a very high relative accuracy of the estimates. Numerical experiments
predict that the incremental estimates agree with the approximated Ritz values to 2 or 3 valid
digits. If one needs to improve the accuracy, one can store Ry and compute, from time to time,
a better approximation of the minimum and the maximum right singular vector.
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Parallelization of the PragTic software
for an automated fatigue damage calculation

J. Tomcala, M. Pecha

IT4Innovations National Supercomputing Centre, VSB - Technical university of Ostrava

1 Introduction

Repeated service loading of machine parts leads to the reduction of their load-carrying capacity
and often to the fatigue failure. Because the experimental verification of their long-term func-
tionality is very expensive and time consuming, the engineers are interested in virtual modelling
and simulating fatigue failure. The quality of these simulations is limited by:

e reliability of phenomenological models - used prediction criteria, cyclic plasticity model
e involved numerical methods, algorithms, and their implementations

e computational resources being at disposal for the simulations.

Fatigue analysis requires very accurate results of the stress-strain calculation at critical locations
of the finite element (FE) model. After results are obtained, the fatigue analysis takes place,
being realized usually in another software. Omne of available tools for computational fatigue
analysis is PragTic.

PragTic software is developed at CTU in Prague. It serves as a fatigue analysis tool using the
computation results of the FE-solution. It is provided as a freeware on PragTicl. Many new
fatigue criteria and approaches have been implemented into this code during last fifteen years.
PragTic also has a direct connection to the large material and experimental databases FatLim
(Fatigue Limits) and FinLiv (Finite Lives). The major focus of PragTic is multiaxial fatigue
analysis. It is very important in cases where more load channels act on the component simul-
taneously. The analysis is therefore usually realized by evaluating stress or strain components
on various planes in the analyzed point. The damage parameter built from these components is
either maximized over all possible planes or integrated over them. Obtaining the single equiva-
lent stress or strain by some criterion gets complicated, because many candidate planes have to
be evaluated. In addition to it, the computation time is increased even more due the need to
correctly evaluate shear stress or strain components in cases of non-proportional loading, when
the shear stress or strain vector rotates. The current usual solution is to compute the position
and radius of the minimum circle circumscribed to the shear stress vector tip trajectory in each
load cycle.

The major feature of the PragTic software is the multiaxial fatigue analysis. This analysis type
is used if multiple load channels simultaneously act on a mechanical component. In these cases,
the analysis process is usually proceeded by the stress-strain component evaluation on various
planes, which go through the analyzed point. Then, the damage parameter is set up from these
components and further processed as follows: it is maximized or integrated over all evaluated
planes [1].
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The PragTic software predicts mechanical fatigue failure by generating large-scale computational
simulations. This approach demands extensive computational resources and large amount of the
time. By the parallelization of this software at the various levels, we can save a lot of the run
time. It allows to find much more detailed solution. In this paper we present the parallelization
at the node level.

2 Former version and its inefficiency

Former version of the PragTic software is accessing disc very often through the simulations.
Therefore, it wastes huge amount of the run time by writing, reading, writing, reading, ...etc.
of partial results to/from disc. The PragTic uses files on disc as the temporary buffers, which
cause significant slowdown of the program. These temporary buffer files are erased at the end of
the run.

Development of the PragTic fatigue solver was started by Jan Papuga in 2000, and various
institutions got involved throughout the past years - above all the Czech Technical University, the
Evektor company, or VSB-Technical University of Ostrava. Since the last two decades, a whole
range of new criteria and approaches on fatigue analysis have been implemented. Nowadays, it is
distributed as a freeware application, and it can be downloaded from the PragTic webpages [3].

3 Main idea

The PragTic sequentially generates simulations node by node. Main idea of our first paralleliza-
tion was to assign the particular subset of nodes to every parallel process, then compute partial
solutions and finally merge the results into the one result file. If we use for example 192 processor
cores, then the theoretical maximum speed up would be 192. Of course, there is always the run
time overhead cost, so the real speed up is lower. It is caused by distributing the particular
subsets of nodes at the beginning and then merging the results after the partial computations.

Further significant speed up can be reached by not saving the temporary buffers to the disc, but
keeping them just in the memory. It is a nowadays approach compared to the 20 years old one,
when computers had significantly less operating memory than today.

4 Implementation and results

First step was to compile the PragTic on Salomon cluster. Then we have parallelized the PragTic
using MPI and got the first results. And finally we optimized temporary buffers operations,
which was the hardest part, because this optimization required changes at circa 500 lines of the
PragTic’s source code.

We have chosen to test the small benchmark of 120 nodes on the Salomon cluster. The loading
was sin(t)+ sin(1000*t) where t means time.

The result run times are shown in the Figure 1. The red color represents run time of the
version saving temporary buffers to the real disc (former version of the PragTic), the green color
represents run time of the version saving temporary buffers to the shared memory (/dev/shm)
and the yellow color represents run time of the version saving temporary buffers to the ramdisk
(/ramdisk). As the compute nodes do not see each other’s shared memory and ramdisk, their
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PragTic 120 nodes example on Salomon cluster
Loading: sin(t) + sin{1000%)

1000

100

logtime [s]

1 10 100 1000
log number of cores involved [-]
—— /scraich [s] —¥— /dew'shm [s] framdisk [s] —&— no temporary buffers on disc [s]

\Processor cores

/scratch [s] 663 379 212 128 03 73 4 34 19
/dev/shm [s] 178 88 58 30 20 19

/ramdisk [s] 168 100 50 30 21 18

no terporary buffers on 77 42 24 157 22 10,7 775 6.6 5,15

Figure 1: Result run times for 120 nodes simple example

run time graph line ends at 20 processor cores. The Salomon’s compute nodes contain just
24 processor cores [2]. The blue color represents run times of the optimized version with no
temporary buffers on disc (they are just in memory).

Another example is EV-55 airplane [7]. Its result run times are shown in the Figure 2. Black
color represents database copying time, which appeared as the main issue in parallelization of
this example. This figure also contains graph lines with lighter colors, they represents run times
without delay caused by database copying.

5 Conclusion

As it can be seen from the results, by the parallelization and optimization of the PragTic we
reached speed up 128 on 120 processor cores in first, simple 120 nodes example and speed up
64 on 192 processor cores in 239628 nodes EV-55 airplane example. We also can see, that using
bigger databases causes significant delay and that without this delay our version scales well.

It is obvious, that much higher speed up could be reached on bigger problem with more processor
cores. We also expect much higher speed up if we will be successful with the plane and method
parallelization.
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Figure 2: Result run times for EV-55 airplane example
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3D simulation of a wheel tracker test of asphalt concrete
described by the Burgers model

K. Tima

Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague

1 Introduction

Asphalt concrete is important for its usage in the construction of the roads, highways or run-
ways. When the cars are running over the surface of the road, the material is being repeatedly
compressed. Therefore, it is important to study how the response of the material depends on
the applied load and its speed.

This contribution reflects joint research with V. Prtsa, J. Malek and J.M. Krishnan who studied
the response of the asphalt concrete in a wheel tracker test. The experiment was performed
for asphalt concrete confined with 200 kPa and containing 2% of air voids. In this abstract we
present a numerical simulation of this experiment described by th Burgers model.

2 Description of the experiment

In the experiment, that is being simulated, the sample of the shape of a brick with the dimensions
30cm x 13.8cm x 5cm is subject to the applied stress that starts at ¢ = 0 at the top of the
brick according to Figure 1 and it moves to the right and then back (this is one cycle) with
a constant velocity. The dimensions of the contact area are equal to 2.5cm X 6cm and 1000
cycles are performed. The experiment is performed with two different applied stresses 540 kPa
and 800 kPa moving with two different speeds 1km/h and 10km/h. The experimental setup is
depicted in Figure 1, the dashed line shows the trajectory of the applied stress.

v /o/v 77777777777777777777777777777777777777777777777
q’c<—> N

2.5cm

5cm

30cm

Figure 1: Schematic description of the experimental setup.

3 Mathematical model

Asphalt concrete is simulated by the viscoelastic fluid-like Burgers model that is capable of
capturing two different relaxation mechanisms that appear in asphalt concrete. It is assumed
that the density p of the material is constant, then the balance of mass and balance of linear and
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angular momentum are in the form

divv =0, (1)
ov

p <8t + (v - V)v> =divT, T=TT, (2)

where v is the fluid velocity. Next, T is the symmetric Cauchy stress tensor in the form
T = —pl+ s (Vv + (Vv)T) + G1(B1 — 1) + Go(By — 1), (3)

where s is the solvent viscosity, G; and G are the elastic moduli and By, By are the additional
stress tensors. They satisfy the set of evolution differential equations (fully coupled through the
velocity field v)

v 1

B1 +—(B1 —1I) =0, (4)
Ty

v 1

B2 +—(B2—1I)=0, (5)
T2

v 0B
where B= v +v-VB - (Vv)B —B(Vv)" is the objective upper convected Oldroyd derivative

and 71, 7o are two relaxation times describing two different relaxation mechanisms of the material.

It is worth mentioning that the Burgers model can be derived using the framework of thermome-
chanics of continuum based on two notions that assure that the second law of thermodynamics
is automatically satisfied. The first notion is the principle of the maximum rate of entropy
production and the other one is the natural configuration that splits the total deformation into
the dissipative part and the purely elastic part that corresponds to that of the compressible
neo-Hookean solid. For more details see [1].

We obtain the material parameters us, G1, G2, 71, 72 by comparing the predictions of the model
to the simple compression experiment. The fitting procedure is based on the minimization of
the difference between the measured experimental data and the numerical simulation, for more
details see [2, 3|. Fitted material parameters us = 2.81 MPa s, G1 = 52.4 MPa, G2 = 9.81 MPa,
71 = 101.38, 79 = 109.3 s are then used in the simulation of the wheel tracker test.

4 Numerical implementation

In the present experiment the top boundary of the asphalt concrete brick was deforming. In order
to simulate it, the arbitrary Lagrangian-Eulerian (ALE) method is employed. By using a new
unknown — arbitrary deformation & — the standard weak formulation in deforming Eulerian
domain (), is transformed to a fixed ALE domain €2,. It is assumed that all points on the
boundaries are material points, i.e. the time derivative of 01 is equal to the fluid velocity v. For
more details on the transformation to the ALE domain see [4, 5], where this method is applied
in two spacial dimensions.

In three dimensional space the weak formulation in €2, € R3 is in the form
ﬁ‘zI—i—VXfL J =detF, / Jtr ((va)f‘fl)quzo,
QX

/ Jp | p o) (B (v 28 .qu+/ jTF*T.quxz/ £, - qdsS,,
o, ot ot o o0,

X

T = —pI+ p ((vxv)f‘*l + F*T(vxv)T) +G1(By — 1) + Go(By — 1),
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/ J {aBi + (VyBy) (F*l (v - %‘;)) — (VyVF'B, - B,F T(V,v)" + %(Bi - 1)} .Qidx =0, i=1,2,
2y i

/ Vya-Vrdyx =0,
QX

which holds for all admissible test functions ¢,q, Qi, Q2 and r. The vector t,, is used for pre-
scribing the time-dependent Neumann boundary condition, i.e. for prescribing the moving com-
pression on the top side of the domain. All other sides of the domain are fixed, i.e. described by
zero Dirichlet boundary conditions for v and .

The numerical implementation is based on this weak formulation and is has been performed
using AceGen/AceFFEM system [6, 7|. AceGen is a code generation system and AceFEM is
a finite element environment that uses the generated code. The system provides the automatic
differentiation to compute the exact tangent matrix from the residuum which implies the efficient
and robust implementation of the Newton solver.

Due to the symmetry of the problem with respect to the dashed line in Figure 1 only one half
is computed. The symmetric part of €2, is discretized by regular hexahedra, pressure p, parts of
the Cauchy stress tensor Q; and Q, are approximated by piecewise discontinuous linear P14is
elements, the velocity v is approximated by piecewise triquadratic H2 elements, and in order
to decrease the size of the problem the arbitrary deformation 1 is approximated by piecewise
trilinear H1 elements. The time derivatives are approximated by backward Euler method, non-
linearities are solved with the Newton method and the consequent set of linear equations are
solved with the iterative CGS solver with a LU decomposition used as a constant preconditioner
(MKL Pardiso). The linear iterations are stopped when the relative residuum reaches 10~* and
the stopping condition for the Newton iterations is 1077.

5 Results

The results are computed on the mesh containing 1680 hexahedra and described by 88052
degrees of freedom. The problem is calculated parallely with 24 threads on the system with
two Intel Xeon E5-2620 v2, the typical time of the assembly of the residuum and the tangent
matrix is 0.85s, LU decomposition that is needed only once takes 5.8 s and because the solution
between two Newton iterations is not changing a lot, usually it is enough to perform only two
CGS iterations which take 0.13s. One compression cycle is approximated by 200 time steps,
hence all together 200 000 time steps has to be performed to compute the whole simulation.

Figure 2 shows the snapshot in the 1000t cycle at the time when the 800 kPa compression is at
the top in the middle going to the left with the lower speed 1km/h. The pressure is localized
mainly under the compression area. The cumulated deformation of the domain is very small and
thus the dependence of the deformation on the cycle number Figure 3a) and also coordinate x
Figure 3b) are plotted. The graph in 3b) shows that the upper side is mostly depreciated at
2 = 16 cm which is on the right from the middle and which shows the inertia of the material.
The graph in 3a) shows that the deformation of the material is bigger when it is pressed with
higher stress or when it moves with a slower speed.

In the next step of our research the simulation will be compared to the experimental results.

Acknowledgement: This research is supported by the ERC-CZ project LL1202.
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Figure 2: A snapshot of the asphalt concrete pressed with 800 kPa and the speed 1km /h in cycle
1000 going to the left, displacement u, [m] (left) and pressure p [kPa] (right).
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Figure 3: Graph of the dependence of the displacement wu, on the number of the cycle measured
at the top in the middle for different speeds and applied pressures (left), and the dependence of
the displacement u, on the position = obtained for the applied pressure 800 kPa and the speed
1km/h (right).
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Lower bounds on eigenvalues of linear elliptic operators
T. Vejchodsky

Institute of Mathematics of the CAS, Prague

1 Introduction

Eigenvalue problems for linear second-order partial differential elliptic operators are often solved
by the conforming finite element method. This approach is a special case of the standard Galerkin
method and, thus, it yields approximate eigenvalues that are guaranteed to be greater or equal
to the exact eigenvalues. The natural question how to compute guaranteed lower bounds on
eigenvalues is much more difficult to answer. The problem of lower bounds has been studied for
decades and approached by many authors. Lower bounds of Weinstein [5] and Kato [1] belong
among the oldest.

In this contribution, we recall these two classical lower bounds and discuss their properties. A
straightforward application of these two bounds in the context of the finite element method can
be problematic, because the differential operator has to be applied in the strong (point-wise)
form. Therefore, we generalized Weinstein’s and Kato’s bounds to the weak setting [4], which
can be easily implemented within the standard conforming finite element method.

2  Weinstein’s bound

Let us consider a Hilbert space V, its dense subset D(A) and a linear symmetric operator
A: D(A) — V. Eigenfunctions u; € D(A) \ {0} and the corresponding eigenvalues \; € R of A
satisfy

Aui = )\Zul
We assume that eigenvalues form a countable sequence 0 < A1 < Ay < A3 < --- and that the

corresponding eigenfunctions {u;} form an orthonormal basis in V.

Theorem 1 (Weinstein 1934). Let u, € D(A) \ {0} and A\ € R be arbitrary. Let 6 = || Au, —
Atti||/||usl]. Then there exists \; such that A — 6 < A\j < A\ + 0.

Proof. Since eigenfunctions {u;} form an orthonormal basis, we use Parseval’s identity and the
symmetry of A to derive the estimate

At = A2 = (A = Aty ) = 3010y = Aty )? 2 min Ay = A2
j=1 j=1

Thus, there exists \; such that

| Aws — Auy|| _
[ |

|)\Z—)\*|=m1n|)\]—)\*]§ (S
J
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3 Kato’s bound

Weinstein’s lower bound is simple and elegant, but it does not provide the index information.
Having the approximation A, the corresponding )\; is the exact eigenvalue closest to A, but we
do not know which one it is, i.e. we do not know the particular value for the index . Moreover,
the accuracy of Weinstein’s bound is suboptimal, because it is linear in §. This is solved by
Kato’s bound, which is quadratic in 6.

Theorem 2 (Kato 1949). Let u, € D(A)\ {0} be arbitrary and let Ay = (A, us)/{Us, us). Let
0 = ||Aus — Mg/ ||usl| and p,v € R satisfy

Aic1 Spu < A <v < Ay1 for some i.

52 2
Sh<ht
v — A x — M

Then A —

Proof. For simplicity, we prove the lower bound only. Notice that (A; — \;)(A\; — v) > 0 for all
7 =1,2,.... Thus,

0> (= A)Ag = ) (ue,ui)? =D (AT = (N + )X + Niv) (u, 5)
j=1 j=1
= [[Aua]l? = (N 4+ 1) (At ) + Al P = (6% 4+ A7 = (N + 1) + Aw) [|ua1?,

where we use the fact that ||Au.||? = (6% + A2)||us||>. Consequently, we derived the inequality

0 <024+ A2 — (A + )\ + \iv and the claimed statement follows by expressing \;. O

The order of accuracy of Kato’s lower bound is optimal and it solves — in a sense — the index
problem as well. However, this is a consequence of the strong assumption of having a lower
bound v on the exact eigenvalue \; 1. This assumption cannot be verified unless we have an
additional knowledge about the spectrum. One possibility how to verify this assumption is the
homotopy method proposed in [2].

4 Weak setting

The weak formulation of an elliptic eigenvalue problem is based on two continuous bilinear forms
a(+,-) and b(+,-) defined on a Hilbert space V and reads: find u; € V' \ {0} and )\; € R such that

a(ug,v) = Aib(ui,v) Yo eV.

For example, in the case of the Laplace eigenvalue problem, we have V = H}(Q), a(u,v) =
(Vu, Vo) and b(u,v) = (u,v), where Q C R? is a domain and (-,-) stands for the L?(2) scalar
product.

In general, we assume the bilinear form a(-, -) to be symmetric and V-elliptic and the bilinear form
b(-,-) to be symmetric and nonnegative. We use the notation |[v||2 = a(v,v) and |v|? = b(v, v) for
the induced norm and seminorm, respectively. If the seminorm || - ||, is compact with respect to
|| - lo then we can use the spectral theory of compact operators to show that there is a countable
sequence 0 < A1 < Ao < A3 < - of eigenvalues, the corresponding eigenfunctions can be
normalized such that b(u;,u;) = &;;, and Parseval’s identity |[v||Z = > 52, [b(v, u;)|? holds true
forallve V.

Within this setting Weinstein’s bound can be generalized as follows.
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Theorem 3. Let u, € V \ {0} and A\, € R be arbitrary and let w € V' be the unique solution of
the problem
a(w,v) = a(us,v) — A\b(us,v) Yo € V.

If
VAi—1Ai <A <V AN (1)

and if there exists n > 0 such that ||w||q < n then

1 2
i < N, where l; = ——s (—77 +\/n? + 4>\*H“*H%> .
A [

Function w is a representative of the residual and its energy norm ||w||, cannot be obtain exactly,
in general. Therefore, we assume the existence of the computable bound 7. The quantity 1 can
be computed by the complementarity approach (or two-energy principle) using techniques of
a posteriori error estimates, in particular, a suitable flux reconstruction. This theorem is a
generalization of the result [3] and more details including the proof can be found in [4].

In a similar way, we can generalize Kato’s bound.

Theorem 4. Let u, € V' \ {0} be arbitrary and let A = ||us||?/||u]|?. Let there be v € R such
that
Aic1 < A < v < Ny1  for a fized indez 1. (2)

Let w € V be the same as in Theorem 3 and let there is n such that |w|, <n. Then

v n? -t
L; <X;, where L;= )\, (1 + ) .
A = A [

5 Numerical example

For illustration, we consider Laplace eigenvalue problem in the dumbbell shaped domain Q =
(0,7)2U [, 5w /4] x (37 /8,57 /8) U (57 /4,97 /4) x (0, ) with zero Dirichlet boundary conditions.
Upper bounds Ax = Aj; on eigenvalues are computed by conforming piecewise linear finite
elements based on adaptive triangular meshes. Lower bounds ¢;, L; with v = ¢;11, and L} with
v = L;y1 are computed as described above. Figure 1 presents convergence curves of eigenvalue
enclosures Ay ; — ¢; (squares), Ap; — L; (circles), and Ay ; — L, for i = 1 and 2. The curve for L;
is missing in the left panel, because eigenvalues A\; and Ao form a tight cluster close to 2 and A3
is close to 5. Consequently, /5 is below A; even on the finest mesh, the middle inequality in (2)
is not satisfied, and L; cannot be defined. Fortunately, Lo with v = ¢3 works well and L} with
v = Ly can be successfully computed.

6 Conclusions

Lower bound ¢; converges with a suboptimal rate, because it is based on the subotimal Weinstein’s
estimate. Lower bound L; converges with the optimal rate, however, its accuracy depends heavily
on the size of the spectral gap A;+1 — A; and on the choice of v sufficiently close to A;+1. As we
observed in the numerical example, if the spectral gap is small then the accuracy of the bound L;
is relatively low, unless the mesh is sufficiently fine and the small spectral gap well resolved. On
the other hand, if the spectral gap is relatively large then the bound L; produces very accurate
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Figure 1: Squares correspond to ¢;, circles to L; with v = ¢;11, and crosses to L; with v = L;11.

results. Since both lower bounds ¢; and L; are compute by simple formulas based on the same

quantities, we recommend to compute both of them and use the larger one as the final lower
bound.

Lower bound /; is guaranteed to be below \; if the relative closeness assumption (1) is satisfied.
A similar assumption for Kato’s bound is (2). These assumption are difficult to verify, but our
numerical experiments indicate that even if they are not satisfied the bounds ¢; and L; are very
often below the exact eigenvalue A;. A natural approach is to combine the bounds ¢; and L; and
use v = ¢;+1 to compute the bound L;.

The disadvantage of the bound L; is its dependence on the size of the spectral gap Ajy1 — A;.
This bound even fails in the case of multiple eigenvalues. However, a version of Kato’s bound
that improves this disadvantage and that is suitable for multiple eigenvalues is presented already
in [1] and it is generalized to the weak setting in [4]. In the future research we plan to prove the
convergence of the adaptive algorithm mentioned in Section 5.

Acknowledgement: This work has been supported by Neuron Fund for Support of Science,
project no. 24/2016.
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Overlapping domain decomposition preconditioners for elliptic
and parabolic problems in primal and mixed form

R. Blaheta

Institute of Geonics of the CAS, Ostrava

1 Introduction

In this lecture, we concern the numerical solution of PDE problems and describe overlapping
domain decomposition, which provides a tool for the construction of parallelizable Schwarz type
iterative solvers and preconditioners. The idea of using overlapping domain decomposition goes
back to Schwarz alternating method from 1870, see [1|. The analysis of this alternating iterative
method was evolved by great mathematicians, see e.g. S.L. Sobolev (1936), R. Courant and
D. Hilbert (1937), S.G. Michlin (1951), M. Préager (1958), I. Babugka (1958), F.E. Browder
(1958). The use of overlapping domain decomposition for parallel computations started in the
late eighties in the work of M. Dryja and O. Widlund [4], P.L. Lions [5, 6], S. Nepomnyaschikh [7]
and others and continue up to the present days. The origin of the alternating Schwarz method
is nicely described in [8].

The classical results about the Schwarz type methods are described in several domain decompo-
sition textbooks, see e.g. Chan and Mathew [9], Smith, Bjorstadt and Gropp [10], Toselli and
Widlund [11], Mathew [12], Brenner and Scott [13].

The Schwarz method is also for a long time investigated and utilized at the Institute of Geonics,
see e.g. [14, 15, 16, 17, 18]. The author would like to thank all co-workers contributed to
this work. The implementation for massively parallel and robust computations is nowadays
in progress starting collaboration with the PERMON team from IT4Innovations Centre at TU
Ostrava.

In this lecture, we shall repeat the classical results which provide necessary framework. Then we
touch new topics concerning robustness of additive Schwarz preconditioners as well as applica-
tions to mixed FEM and multiphysics problems.

2 Solved problems

In this paper, we are interested in numerical solution of boundary and initial-boundary value
problems for elliptic and parabolic PDEs of the form

~V-aVp=f inQ (1)

and

CO%—V-an:finQ, (2)

respectively. Above p is the unknown function and « and c¢g are coefficients which can vary in
the domain 2.

We assume that Q C R, d = 1,2,3 and that these problems are discretized by linear P; finite
elements from the space

Vi, ={v, € HY(Q): vplz € PLVE € Ty},



where 7, is a division of €2 into simplexes. The discretization in time can be done by backward
Euler or higher order Radau time integration methods. The FEM for elliptic problems and FEM
with backward Euler with timestep 7 for parabolic problems lead to linear systems with SPD
matrices A and M + 7A, respectively.

We shall also consider mixed formulation of the above PDE problems arising from introduction
of a dual variable v,

a v +Vp =0
V-wv =fin Q
and
a v +Vp =0
V.o —00% =—fin Q)

The discretization in space will use the same division 7 of §2, piecewise constant pressure
p = pp € L2(Q) and lowest order Raviart-Thomas elements for velocity v = vy, € H(div, Q).
The discretization in time provides differential-algebraic equations (DAE) which can be again
discretized by backward Euler or higher order Radau time integration methods. Discretization
provide saddle point systems with the matrices of the form

M, BT] [M, BT
B o |"| B -M,|

respectively.

3 Overlapping domain decomposition

Figure 1: Overlapping domain decomposition.

Let us consider a two step construction of overlapping domain decomposition of €2, see Fig. 1:

e first, decomposition into nonoverlapping subdomains QY, i = 1,...,m : Q = [J QY,
QY NQY =0 fori#j

e second, decomposition into overlapping subdomaing Qf, 1 =1,...,m, where § > 0, Qf =
{z € Q, dist(z, Q0) <6} D QY

In the case of finite element division 7} , we assume that all subdomains are aligned with the
finite element division

W=\ J{EcTh: EcCQ)+#0}, QﬁzU{ECﬁ: ECQ?*‘Z)}



Note that aligned extension is created by adding layers of elements,

QW= J{ECTh: ENQI#0}, etc.

Beside the parameters m - number of subdomains and d > 0 - size of the overlap, there is another
important parameter of the decomposition:

mo = max mo;, mgi:card{j: Q?OQ‘;#@}

i=1,....m

Theorem 1. Let us consider an overlapping domain decomposition {Qg}g”zl Then there 1s
a partition of unity 0;, j =1,...,m such that

suppt; C ﬁ? (3)
0< 0(x) < 1 a
I:ZBj(x) Vz e Q (5)

Moreover, all 0 are continuous in Q, V0, exists a.e. in Q and there is a constant C independent
on 0 and diam(§Y;) such that

IV0;le < C/5 Vj=1,---.m. (6)

Proof. The proof can be found in [11], see also [20, 10]. It is based on the construction

0i(2) = di(w) /3 dy(@),
k=1

where
di(x) = dist(z,000 \ 9Q)  for x € Q2
10 otherwise.
O
4 Function spaces and bilinear forms
We consider two types of bilinear forms. First,
a(u,v) = / aVu-Vu+ Buv, a=a«alx) >ay >0, f=0(x)> By >0. (7)
Q

This form is defined, bilinear and symmetric on a subspace V of H(Q). If 3y = 0, then we
consider such subspace V that the Friedrichs or Poincare inequalities guarantee the positive
definiteness of the bilinear form a on V. For simplicity we restrict to the case with Friedrichs
inequality, i.e. we assume that there is a constant cr independent on v € V,

||’UH270 <cp |U|2’1 YveV. (8)

If By > 0 then the bilinear form can be considered on V = H'(Q) where it is positive definite
and represents a weighted H'norm.



Second considered bilinear form is the following
a(u,v) = / ku - v+ Adiv(u) div(v) 9)
Q
k> ko>0, A> Ao > 0. Then ais an SPD bilinear form which defines a weighted H (div) inner

product in the space V = H(div, Q) of vector functions u: Q — RY, d = 2,3.

For the numerical realization, we use FE subspaces V;, C V. For example, we assume decompo-
sition of €2 into triangles/tetrahedra and consider spaces

Vi={veC@Q),vlgpeP, VEC€T,}CcVcH(Q), (10)
Vi ={veC(Q) v|p € RTy VE €T} C H(div,Q), (11)
where Pp is the set of polynomials of order les or equal of one, RT} is the set of vector functions

ve R e v(x)=ce+& xR ceRL

Using the bilinear form a, the space V" and a continuous linear functional b € V'’ we can consider
the variational problem,
findu e V: a(u,v) =bv) YveV (12)

Proposition 1. Let V' be a Hilbert space with the norm ||-||;, a be bounded and positive definite
on'V | i1.e. there are two positive constants g, y1 such that

la(u, v)| <mllullvlvllv - Yu,0 eV (13)

lluly < alu,u) YueV (14)

Then the Lax-Milgram theorem guarantees existence and uniqueness of the solution of (12).

The problem (12) can be rewritten into the operator form

Au=b A:V =V uweV,beV, (15)

where

(Au, v) = a(u, v) Yu, v €'V, (16)
(-,-) is the duality pairing.

The same construction is possible for the finite dimensional case V' = V},. Further, a basis {¢; }}
in V}, define an isomorphism u = u between V;, and R", and (15) become equivalent to the linear

algebraic system
Au=b, wu,be R", (17)

(Au, v), = a(u,v) Yu,v € R", u=u,v=v, (b,v), =b(v) Vv e R", v=v,

where (-, ), is the Euclidean inner product in R".



5 Space decomposition

Let us consider the space V of functions in €2 defined in Section 4 and domain decomposition
into Qf, 1 =1,...,m defined in Section 3. Then a stable decomposition means that

V=Vit -tV Vi={veV:v=0inQ\Q}

The existence of stable decomposition is crucial for the infinite dimensional case, see e.g. [5].
Note that due to the nonempty overlap, the decomposition of V' is not a direct sum. The inclusion
V; € V defines a natural operator S; : V; — V.

The bilinear form a and the operator A can be restricted to V;,
a;(ui, v;) = a(Siug, Siv;) Yug,v; € Vi,
(Ajug, vi) = a;(ug, v;) = a(Siug, Sivi) = (ASiug, Siv;) = (RiASiug, v;)
thus A; = R;AS; = R, AR}, where R; (a restriction) is the adjoint operator to S;, R; : V. — V; .

In the case of aligned FE discretization and domain decomposition and FE spaces with nodal
degrees of freedom, the decomposition

V=Vi+-+Vy, e V=V, +--+ V.

trivially exists. If Vj, = span{¢;, i € Nj,}, where {¢;, i € N} is a nodal FE basis, Nj =
{1....,n}, it holds that V},, = span {¢;, ¢ € N;}, N; C Ny, card(N;) = n;. Then the isomorphism
u = u between Vj, and R" = V can be completed by isomorphisms u; = wu; between V}, and
R" = V,;. The inclusion V}, C V}, and these isomorphisms define the prolongation operators
S;: R™ — R"™ and the restriction operators R; : R™ — R™.

Note that R = S,

(Si) = 1 if j € N; and k is the order (index) of j in Nj;
YR 0 otherwise ’

The decomposition now has the form

V=) RV,

and Ai = RZAS@ = RzARZT

6 Schwarz-type methods and preconditioners

Let us consider the problem
findu e V: a(u,v) =bv) YveV (18)

and note that if @ € V' is an approximation of w, which is the solution of (18), then a correction
from V}, can be computed as

wg € Vi, a(wg,v) =bv) —a(a,v) Y e V.



The corrected approximation to u has the form o = @ + wy. Note that wy is the a-orthogonal
projection of the error u — 4 to Vi because

a(u—u—wg,v) =0 Yv e V.

Schwarz algorithm, which uses the correction from all subspaces Vi, can be defined as follows

Let u° be given
for i =0,1,2,--- until convergence
w=0
fork=1,---,m
compute w”
a(wk,v) = b(w) — a(u’ + ow,v) Vv € Vj
w=w+ wk
end
it = ol + ww
end
The multiplicative algorithm uses the choice 0 = 1, w = 1 and it is convergent under described
setting. The additive algorithm uses ¢ = 0 and for convergence we need suitable damping by
0 < w < 1. Note that the multiplicative algorithm was suggested by H.A. Schwarz in 1870 for
proving existence of the solution on a composite domain, see Fig. 2.

Figure 2: A picture from the original paper by H.A. Schwarz published in 1870.

The Schwarz algorithm can be rewriten into the operator or matrix form

Operator form Matrix form
Let u” be given Let u® be given
for i =0,1,2,--- until convergence for i =0,1,2,--- until convergence
w=0 w=20
fork=1,---,m for k=1,--- ,m ‘
compute w* = A;' (b — A(u’ + ow)) compute w” = A;" (b— A(u’ + ow))
w=w+ wk w=w + wk
end end
wtl = ut + ww ut! = v +ww
end end

Application of one iteration of the Schwarz method starting from zero initial gues provides the
Schwarz preconditioner. We shall be especially interested in the additive Schwarz preconditioner.
In the operator form it provides B: V — V'’ where

B =) RyA 'Ry (19)

In the matrix form

B™'=) R{A;'R; (20)



Note that the local inverses represent solving local systems. It is possible to generalize the
Schwarz method in this respect that local systems are solved only inaccuratelly.

7 Tools for analysis of the additive Schwarz preconditioner
Let us consider the preconditioner (19) providing the preconditioned operator

BA=Y RIA'R A=Y R,
k k

where P}, are a-orthogonal projections. To get spectral information about B~!.A, which is sym-
metric in a-inner product, we shall investigate the form a(B~!'Av,v). A trivial upper bound for

is as follows
<[z

where m is the number of subdomains. A sharper estimate, not depending on m, is provided by
the following theorem.

a(B~1 Av, v)

[olla < mlfvllz,

a

Theorem 2. Let

a(vi, vj) < €ij\/m\/m

for allv; € Vi, v; € Vj, 0 <¢55 < 1. For € = (g45), let p(E) be the spectral radius of E. Then for
allv eV,

a(B ' Av, v) = a <Z Py, ’U> < p(€)a(v,v).
1

Proof. 1t holds

. 1/2 1/2
a (Z P, v) < a ZRU, ZP]’U a(v,v)"/? < Za(Pﬂ), Pjv) a(v,v)"/? <
1 i J i
1/2 1/2
< |2 el Pollal Polla | alv,0)!? < [ Z 1P| alv,0)'? <
ij
1/2
< (&)Y (ZPU v) / v, )12

Note that
p(€) < |[€]le = m?XZEij < mo

where my is the maximal number of overlapping subdomains (colouring). Thus

Amax (B~ 1A) < mg = K. (21)



Theorem 3. (Lions 1988, Nepomnyaschikh 1986) Let Ky be a positive constant such that
YVoeV v, eV v=v1+4+-+u; Za(vk, vg) < Koa(v, v).

Then
a(v, v) < Kga(B ' Av, v) YweV
and consequently

Amin(B71A) > 1/ K. (22)

Proof. 1t holds

a(v,v) = a (v, ka> = Za(v, Pyu) = Za(ka, vg) <
’ : 1/2 ’ 1/2
Za(ka, ka)} {Z a(vg, vk)}
k

k

a(v,v) < kga(B~ Av, v)

As a counterpart to this theorem, we also have

Theorem 4. (Bjgrstadt, Mandel 1991) Let us assume that there is a constant Ky such that
YweV Vo, eVitv=uv14+ +v, a,v) §K12a(vk, Ug)-

Then
a(BtAv, v) < Kya(v,v) Yo eV
and

Amax(B~1A) < K.

Note that K1 < (&) for € introduced in Theorem (2).
For the algebraic case, the preconditioned system has the form
B 'A= Z RIA'R A = Zpk,

where Pj are now A-orthogonal projections. All the above theorems are applicable to this case,
getting a bit modified form. As an example, we reformulate Theorem (3).

Theorem 5. Let Ky be a positive constants, such that
m
VeV, €V, v=>Y wvp: > [ Revp [A<Kollvlk, (23)
k=ko k

Then
Amin (B™'A) > 1/Ko, Amaz (B™'A) < K1 =my, cond (B™'A) < K(K.



8 Applications

The developed theory can be applied to analysis of particular cases. The condition number
estimate is not favourable for elliptic problems with bilinear form of the type (7) with § = 0. In
this case,

cond (B*IA) <2 (1 + 1amaXcF@> ,

92 Qmin
which is not favourable for two reasons. First, the estimate involve contrast in the coefficient «
over whole domain. Note that this can be localized into subdomains if the Friedrichs inequality
holds on the subdomains with uniformly bounded constant cz. Second, the term §~2 naturaly
increase if we increase number of subdomains.

This unfavourable dependence on =2 is usually compensated by introducing auxiliary global
coarse space into the space decomposition. Such space can be defined e.g. by a coarser finite
element grid [4], by agregations [22, 14] or by smoothed aggregations [20].

The situation is more favourable for the bilinear form of the type (7) with g = 8(z) > 5y > 0.
In this case )

cond (B_IA) <2 (1 + 52 max g) ,
where max% can effectivelly compensate the term 72 if & < 3, e.g. for parabolic problems
with small time step. See |15, 12].

The presence of Lo part in the H(div) norm has a similar effect. This enables to construct
efficient preconditioners for mixed FEM systems and apply one-level Schwarz preconditioning to
elliptic problems discretized by mixed FEM. See [16, 17|

9 Schwarz preconditioner for poroelasticity

The Biot model of poroelasticity arises from interconnecting elasticity and time dependent Darcy
flow in deformable porous media. The fluid pressure contributes to elastic stress, deformation
of porous space serves as a source or sink in fluid conservation. Frequently the elasticity is dis-
cretized in space by standard Lagrangian (Courant) finite elements and Darcy flow is discretized
by more accurate and conservative mixed elements (Raviart - Thomas). The combination with
time discretization by implicit Euler method then provides a time stepping scheme, when the
system with the matrix Ag or Ag

A o B 1 A 0 Bl
Ap=| 0 M, BT |, Ag= T Ag=10 M, 7BT|,
%Bu B —%C T B, B -C

is solved in each time step. The blocks are finite element matrices, A corresponds to elasticity
discretized by Lagrangian elements, M, is a weighted mass matrix corresponding to velocities
discretized by Raviart-Thomas mixed finite elements, C' corresponds to a weighted mass matrix
for piecewise constant finite elements, B, and B are constraint matrices from coupling of elasticity
and flow equations. For the iterative solution, it is favourable to scale the matrix Ag to get system
with symmetric matrix Ag. We can use GMRES or after symmetrization the MINRES iterative
methods with the following matrix P as an efficient positive definite preconditioner to Ag,

A 0 0
M, 0|, My=1M+?BTC'B.
0 C



More details can be founfd e.g. in [19, 18].

For implementation of the preconditioner P, we have to (approximately) solve the systems with
A and the augmented matrix M,. The solution of the elasticity block system can be done by two-
level additive Schwarz method. The solution of the system with matrix M, has been described
and analysed in [19]. The analyse shows that the use of one-level method is enough in this
case for several reasons. First is damping of the differential part of M, by the time step factor.
This is similar to application of the one-level Schwarz method to the systems appearing in the
implicit Euler solution of parabolic equations, which was mentioned earlier. Second reason is
that the matrix M, is weighted by inverse of permeabilities, which make it dominating over the
differential part of M, .

Acknowledgement: The work was done within the projects LD15105 “Ultrascale computing
in geo-sciences” and LQ1602 “I'T4Innovations excellence in science” supported by the Ministry
of Education, Youth and Sports of the Czech Republic.
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1 Introduction

The purpose of this lecture is to give an overview of the basic FETT (Finite Element Tearing and
Interconnecting) methods for the solution of extremely large (currently some hundreds of billions)
systems of linear equations arising from the discretization of the boundary value problems for
elliptic partial differential equations. In the first part of the lecture, we shall review the basic
algorithms and scalability results. We shall also briefly mention some interesting features of these
methods arising in the solution of more complex engineering problems including the problems
with plasticity, contact problems of elasticity with or without friction [7], shape optimization
including contact shape optimization, problems with varying material properties etc.

The FETT domain decomposition methods can effectively exploit the parallel facilities provided
by modern supercomputers. However, this task is far from trivial and straightforward. The
FETT methods appeared in the early 90s, when the parallel computers were not assumed to have
some tens or even hundreds of thousands of cores, and an immediate goal was to use them for the
solution of the problems discretized by a few millions of the degrees of freedom. Thus it is not
surprising that we face new problems. For example, the cost of the assembling of the projector
to the “natural coarse grid”, which is nearly negligible for smaller problems, starts to essentially
affect the cost of the solution when the dimension of the dual problem reaches some tens of
millions. New challenges are posed also by the emerging exascale technologies, the effective
exploitation of which has to take into account a hierarchical organization of memory, the varying
cost of operations depending on the position of arguments in memory, and the increasing role
of communication costs. Last but not least, it is important to exploit an up-to-date software,
either open-source or commercial, as the effective implementation of some standard steps, such
as the application of direct solvers, is highly nontrivial and affects the overall performance of
algorithms.

In the second part of the lecture we present some hints concerning the parallel implementation
of FETI-type algorithms for the solution of very large problems, including the implementation of
the action of a generalized inverse KT of the stiffness matrix K and the action of the projector
to the “natural coarse grid” P. We briefly discuss the possibility to overcome the bottleneck
by introducing the third level grid by a variant of HTFETI (Hybrid TFETT). The third level is
introduced by the decomposition of TFETI subdomains into smaller subdomains that are partly
glued in corners or by averages at the primal level as proposed by Klawonn and Rheinbach.
The presentation will use two packages developed at IT4Innovations, National Supercomputing
Center Ostrava, namely PERMON based on PETSc, and ESPRESO based on Intel MKL and
Cilk.



2 FETI methods

The basic FETI (also FETI-1) method was was proposed by Farhat and Roux [1] in 1990.
The FETI-1 method is based on the decomposition of the spatial domain into non-overlapping
subdomains that are "glued" by Lagrange multipliers. After eliminating the primal variables, the
original problem is reduced to a small, better conditioned system in Lagrange multipliers that
is solved iteratively. The original FETI-1 method became numerically scalable after introducing
the projectors to the natural coarse space (kernels of local stiffness matrices) by Farhat, Mandel,
and Roux [2|. The latter authors proved the bounds on the spectrum in terms of the ratio of the
decomposition and discretization parameters.

By projecting the Lagrange multipliers in each iteration onto an auxiliary space to enforce con-
tinuity of the primal solutions at the crosspoints, Farhat, Mandel and Tezaur obtained a faster
converging FETI method for plate and shell problems - FETI-2.

Similar effect was achieved by a variant called the Dual-Primal FETI method FETI-DP, in-
troduced by Farhat et al. The continuity of the primal solution at crosspoints is implemented
directly into the formulation of the primal problem so that one degree of freedom is considered
at each crosspoint shared by two and more adjacent subdomains. The continuity of the primal
variables across the rest of the subdomain interfaces is once again enforced by the Lagrange
multipliers. After eliminating the primal variables, the problem reduces to a small, relatively
well conditioned strictly convex quadratic programming problem that is again solved iteratively.

Implementation of the FETI-1 and FETI-2 method into general purpose packages requires an
effective method for automatic identification of the kernels of the stiffness matrices of the sub-
domains as these kernels are used both in elimination of the primal variables and in definition of
the natural coarse grid projectors. This problem motivated the development of FETI-DP (dual-
primal). FETI-DP manipulates with the subdomains joined in the some nodes called corners,
so that the stiffness matrices of the subdomains are invertible. However, even though FETI-DP
may be efficiently preconditioned so that it scales better than the original FETI for plates and
shells, the coarse grid defined by the corners without additional preconditioning is less efficient
than that defined by the rigid body motions, which is important for some applications, and the
FETI-DP method is more difficult to implement as it requires special treatment of the corners
which are not local variables associated with the subdomains.

An alternative solution was proposed in [3]. It is easier to implement and it preserves efficiency
of the coarse grid of the classical FETI-1. The basic idea is to use the Lagrange multipliers not
only for gluing of the subdomains along the auxiliary interfaces, but also for implementation
of the Dirichlet boundary conditions. The resulting TFETI method thus works with a priori
known kernels of the local stiffness matrices. Heuristic arguments and the results of numerical
experiments indicate that the new method is not only much easier to implement, but also more
efficient than the original FETI-1.

The parallel scalability of TFETI deteriorates with the increasing number of subdomains. The
reason is the increasing cost of the implementation of projectors to the coarse grid. It seems that
the most powerful tool for the solution of very large problems is a combination of TFETI and
FETI-DP that is called HTFETT (hybrid). A few subdomains are joined by nodes or averages
into so called clusters which have in HTFETT the same role as subdomains in FETI. The stiffness
matrix of each cluster shares the dimension with any of its subdomains, i.e., six in 3D elastic-
ity. Thus the dimension of the coarse space is reduced by tens, opening the way for effective
exploitation of tens or hundreds of thousands of cores. HTFETI is thus a powerful tool for the
exploitation of the hierarchical structure of modern supercomputers.



3 PERMON

PERMON (Parallel, Efficient, Robust, Modular, Object-oriented, Numerical) [5] is a software
package which aims at the massively parallel solution of problems of constrained quadratic pro-
gramming (QP). PERMON is based on PETSc and combines aforementioned TFETI method
and QP algorithms. The core solver layer consists of the PermonQP package for QP and its
PermonFLLOP extension for FETI. PermonQP supports the separation of QP problems, their
transformations, and solvers. It contains all QP solvers described in [7]. More can be found on
the PERMON website: permon.itdi.cz.

An example of numerical and weak parallel scalability of TFETI on model 3D linear elastic cube
up to 701 millions of unknowns and 10,648 subdomains with one subdomain per one computa-
tional core on Archer is demonstrated in the graphs in Fig. 1. The contact problem was solved
using SMALBE and MPRGP with our new adaptive expansion steplength which significantly im-
proved this scalability and reduced not only the number of expansion steps but also the number
of CG steps.

Figure 1: Scalability highlights - linear and contact 3D elastic cube problems

4 ESPRESO

ESPRESO [6] is an ExaScale PaRallel FETI SOlver developed at IT4Innovations. The main
focus is to create a highly efficient parallel solver. Apart from the algorithms used by MatSol and
PERMON, it also enhances the HFETI method, which is designed to run on massively parallel
machines with thousands of compute nodes and hundreds of thousands of CPU cores. The
algorithms can be seen as a multilevel FETI method designed to overcome the main bottleneck
of standard FETI methods, a large coarse problem, which arises when solving large problems
decomposed into the large number of subdomains. ESPRESO can exploit modern many-core
accelerators.

There are three major versions of the solver. ESPRESO CPU is a CPU version that uses the
sparse representation of system matrices. It contains an efficient communication layer on the top
of MPI 3.0 combined with the shared memory parallelization inside nodes. The communication
layer was developed specifically for FETI solvers and uses several state-of-the-art communication
hiding and avoiding techniques to achieve better scalability.



The ESPRESO solver can take advantage of many-core accelerators to speedup the solver run-
time. To achieve this, it uses a dense representation of sparse system matrices in the form of
Schur complements. The main advantage of using this approach in FETI solvers is the reduction
of the iteration time. Instead of calling a solve routine of the sparse direct solver in every iter-
ation, which by its nature is a sequential operation, the solver can use the dense matrix-vector
multiplication (GEMV) routine. The GEMV offers the parallelism required by many-core ac-
celerators and delivers up to 4x speedup depending on the hardware configuration. There are
two versions: ESPRESO MIC for Intel Xeon Phi and ESPRESO GPU for graphic accelerators.
More information can be found at the ESPRESO website: espreso.itdi.cz
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and Sports with reg. num. LM2011033; by the internal student grant competition project
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© Interval Linear Equations — Enclosure Methods
@ Regularity of Interval Matrices

@ Parametric Interval Systems

Next Section Interval Computation

e Motivation

What is interval computation

Solving problems with interval data
(or using interval techniques for non-interval problems)

What is not interval computation
@ stochastic computation
@ fuzzy computation

Take into account all possible realizations rigorously.

Interval paradigm J
Where interval data do appear

@ numerical analysis (handling rounding errors)

© computer-assisted proofs

© global optimization

@ modelling uncertainty

Numerical Analysis Computer-Assisted Proofs

Example (Rump, 1988)

Consider the expression

f = 333.7505 + a%(11a%h? — b® — 121b* — 2) + 5.5b% + 2—‘;,
with
a=77617, b= 33096.
Calculations from 80s gave
f~1.172603...
f ~ 1.1726039400531 ...
f ~ 1.172603940053178.. ..

f=-0.827386...

single precision
double precision
extended precision
the true value

Kepler conjecture

What is the densest packing of balls? (Kepler,
1611)

That one how the oranges are stacked in a shop.

The conjecture was proved by T.C. Hales (2005).

Double bubble problem
What is the minimal surface of two given volumes?

Two pieces of spheres meeting at an angle of 120°.

Hass and Schlafly (2000) proved the equally sized case.
Hutchings et al. (2002) proved the general case.
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Global Optimization Further Sources of Intervals

Rastrigin's function f(x) = 20 + x? + x3 — 10(cos(2mx1) + cos(27x2))

@ Mass number of chemical elements (sue to several stable isotopes)
@ [12.0096, 12.0116] for the carbon
@ physical constants
o [9.78, 9.82] ms2 for the gravitational acceleration
@ mathematical constants
@ T € [3.1415926535897932384, 3.1415926535897932385).
@ measurement errors
@ temperature measured 23°C £ 1°C
@ discretization
@ time is split in days
@ temperature during the day in [—8,3]°C for Ostrava in January
@ missing data
@ What was the temperature in Ostrava on January 31, 19997
@ Very probably in [-25,15]°C.
@ processing a state space
@ find robot singularities, where it may breakdown
@ check joint angles [0, 180]°.

Next Section Interval Computations

@ Interval Computations

Notation
An interval matrix
A= [AA] = {AcR™" | A<A<A}.

The center and radius matrices

A%:;Z+E,AA:%M7A)

The set of all m x n interval matrices: IR™*".

Main problem
Let f: R” — R™ and x € IR". Determine the image

f(x) ={f(x): x € x}.

10/49

Interval Arithmetic Next Section

Interval arithmetic (incl. rounding, |IEEE standard)

a+b=[a+ba+h],
a—b=[a—b,3— b
a- b = [min(ab, ab, ab, ab), max(ab, ab, ab, ab)],
a/b = [min(a/b, a/b,3/b,a/b),max(a/b,a/b,3/b,3/b)], 0¢&b.

Theorem (Basic properties of interval arithmetic)
@ Interval addition and multiplication is commutative and associative.

@ It is not distributive in general, but sub-distributive instead,

Va,b,c IR :a(b+ c) C ab+ ac.

Example (a =[1,2], b=1, c = —-1)

a(b+c)=[1,2]-(1-1)=[1,2]-0=0,
ab+ac=[1,2] 1+[12](-1) = [1.2] - [1.2] = [-1,1].

© Interval Functions
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Images of Functions Images of Functions

Monotone functions Notice

If f: x — R is non-decreasing, then f(x) = [f(x), f(X)]. J f(x) need not be an interval (neither closed nor connected).
Example Interval hull Of (x)

exp(x) = [exp(x), exp(X)], log(x) = [log(x), log(X)], ... J Compute the interval hull instead

Some basic functions

Of(x) =

n

velR": f(x)Cv

Images x?, sin(x), ..., are easily calculated, too.
2 [min(x2,%?), max(x?,%%)] if 0 & x, Bad news
X< =
x2 = [0, max(x2, x)] otherwise Computing Of (x) is still very difficult (NP-hard, undecidable).
But Interval enclosure
...what to do for more complex functions? J Compute as tight as possible v € IR" : f(x) C v.

J
I
J
J
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Interval Functions Natural Interval Extension

Definition (Inclusion isotonicity)

f: IR" — IR is inclusion isotonic if for every x,y € IR" :

x Cy = (x) C F(y).

Definition (Interval extension)

f:IR" — IR is an interval extension of f: R" — R if for every x € R" :
f(x) = f(x).

Theorem (Fundamental theorem of interval analysis)

If f: IR" — IR satisfies both properties, then

f(x) € f(x), VxelR"
Proof.
For every x € x, one has by interval extension and inclusion isotonicity
that f(x) = f(x) C f(x), whence f(x) C f(x). O
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Definition (Natural interval extension)

Let f: R” — R be a function given by an arithmetic expression. The
corresponding natural interval extension f of f is defined by that
expression when replacing real arithmetic by the interval one.

Theorem

Natural interval extension of an arithmetic expression is both an interval
extension and inclusion isotonic.

Proof.

It is easy to see that interval arithmetic is both an interval extension and
inclusion isotonic. Next, proceed by mathematical induction.

O
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Natural Interval Extension

Example
f(x)=x*—x, xex=[-1,2].
Then
x?—x=[-1,2? - [-1,2] = [-2,5],
x(x=1) = [-1,2)([-1,2] - 1) = [-4,2],

Best one?(x —3)2— 2 =([-1,2] - )2 - 2 =[-}.2].

Theorem

Suppose that in an expression of f: R" — R each variable x1, ..., X,
appears at most once. The corresponding natural interval extension f(x)
satisfies for every x € IR": f(x) = f(x).

Proof.

Inclusion “C" by the previous theorems.

Inclusion “D" by induction and exactness of interval arithmetic. O
1749

Matlab/Octave libraries

@ Intlab (by S.M. Rump),
interval arithmetic and elementary functions
http://www.ti3.tu-harburg.de/~rump/intlab/
Versoft (by J. Rohn),
verification software written in Intlab
http://uivtx.cs.cas.cz/~rohn/matlab/
@ Lime (by M. Hladik, J. HoradZek et al.),
interval methods written in Intlab, under development
http://kam.mff.cuni.cz/~horacek/projekty/lime/

(3

Other languages libraries

@ Int4Sci Toolbox (by Coprin team, INRIA),
A Scilab Interface for Interval Analysis
http://www-sop.inria.fr/coprin/logiciels/Int4Sci/

@ C++ libraries: C-XSC, PROFIL/BIAS, BOOST interval, FILIB-++,. ..

@ many others: for Fortran, Pascal, Lisp, Maple, Mathematica,. . .
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Solution Set

Interval linear equations
Let A€ IR™" and b € IR™. The family of systems
Ax=b, A€A, beb.

is called interval linear equations and abbreviated as Ax = b.

19/49

Solution set
The solution set is defined

Y:={xeR":3JAc€ Adbe b: Ax = b}.

Important notice
We do not want to compute x € IR"” such that Ax = b.

Theorem (Oettli-Prager, 1964)
The solution set ¥ is a non-convex polyhedral set described by
|Ax — b| < A%|x| + b2

Example of the Solution Set
Example (Barth & Nuding, 1974))

(&% B ()= (53)

X2

N2 3 4 x
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@ Interval Linear Equations — Solution Set
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Proof of Oettli-Prager Theorem (|A°x — b¢| < A2|x| + b2)

Let x € ¥, that is, Ax = b for some A€ A and b € b. Now,
[A°x — b°| = |(A° — A)x + (Ax — b) + (b — b°)| = |[(A° — A)x + (b — b°)|
< |AS — Allx| + |b— b°| < AR|x| + bA.
Conversely, let x € R" satisfy the inequalities. Define y € [-1,1]" as
e {g;gﬁg if (AA‘-X‘ +b2); >0,
1 otherwise.
Now, we have (Ax — b°); = y;(A2|x| + b2);, or,
Ax — b¢ = diag(y)(AL|x| + b2).

Define z := sgn(x), then |x| = diag(z)x and we can write

Ax — b¢ = diag(y)A® diag(z)x + diag(y)b®,
or

(A° — diag(y)A® diag(z))x = b° + diag(y)b™. O
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Example of the Solution Set

Example
B.5]  [1,3] —[0,2\ /a [-1.1
—-[0.2] [3,5] [0,2] x| =|[-11
( [0.2] -[0.2] [3:5]> (X3) ([—171




Topology of the Solution Set Interval Hull O0x

Proposition J Goal J

In each orthant, ¥ is either empty or a convex polyhedral set. Seeing that ¥ is complicated, compute [JX instead.

Proof. First idea
Restriction to the orthant given by s € {£1}": Go through all 2" orthants of R”, determine interval hull of restricted sets
|ASx — b°| < AA|x| + b2, diag(s)x > 0. (by solving 2n linear programs), and then put together.

Since |x| = diag(s)x, we have Theorem

|ASx — b| < A2 diag(s)x + b2, diag(s)x > 0. If A is regular (each A € A is nonsingular), X is bounded and connected. J
Using |a| < b < a< b, —a < b, we get Theorem (Jansson, 1997)

A di A A g ;
(A® — A% diag(s))x < b, (—A° — A% diag(s))x < —b, diag(s)x >0. [ When ¥ # (), then exactly one of the following alternatives holds true:

Corollary © X is bounded and connected.
The solutions of Ax = b, x > 0 is described by Ax < b, Ax > b, x > 0. © Each topologically connected component of ¥ is unbounded.
Remark Second idea — Jansson's algorithm
Checking ¥ # () and boundedness are NP-hard. J Check the orthant with (A°)~1b¢ and then all the topologically connectgd}

Polynomial Cases Next Section

Two basic polynomial cases
Q A =1,
@ A is inverse nonnegative, i.e., A71 >0 VA€ A

Theorem (Kuttler, 1971)

A € TR™" s inverse nonnegative if and only if A~ >0 and Al > 0.

Theorem

Let A € IR"*" be inverse nonnegative. Then
QOxX= [ZflbyA—lg] when b >0, @ Interval Linear Equations — Enclosure Methods
© OX = [A~1b, A 'b] when b < 0,
© 0OX =[A'bh,A'b] when 0 € b.

Proof.
Q let AcAand beb. Sinceb>b>b >0 and
Al>A1>A >0 weget A 'b< Alb< A b, O

Preconditioning Preconditioning

Zud ot Example (Barth & Nuding, 1974))

Since X is hard to determine and deal with, we seek for enclosures
x € IR" such that X C x. [2,4]  [-2,1]\ (x _ [-2,2]
[-12] [2,4] ) \x [-2,2]

Many methods for enclosures exists, usually employ preconditioning. |

14
-

Preconditioning (Hansen, 1965)
Let C € R™". The preconditioned system of equations: 7
(CA)x = Cb.

Remark —L4 =7 7 axy
@ the solution set of the preconditioned systems contains ¥
@ usually, we use C = (A°)1

@ then we can compute the best enclosure (Hansen, 1992, Bliek, 1992,
Rohn, 1993) i
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Preconditioning Interval Gaussian Elimination

Example (typical case)

=

X2

P[ﬂ]) @ B (—[6[’787]90
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Interval Gaussian elimination = Gaussian elimination -+ interval arithmetic. |

Example (Barth & Nuding, 1974))
2,4 [-2,1]\ (x1\ _ [[-2.2]
([7112] [274] ) (X;> B ([72)2]>
Then we proceed as follows
( [2,4] [-2,1] [—2,2]) N ([2,4] [-2,1] [—2,2])
[-1,2] [2,4] [-2,2] 0 [1,6] [-4,4])"

By back substitution, we compute

x2 = [-4,4],

x1=([-2,2] - [-2,1] - [-4,4]) / [2.4] = [-5,5].
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Interval Jacobi and Gauss-Seidel Iterations Krawczyk lterations

Idea
From the ith equation of Ax = b we get

1 xniml e
Xi =5 (b, Y% = Y aUXJ) .
If x° D ¥ is an initial enclosure, then

Xj € aiﬁ(b,-fzj#,a,-jx?), Vx € .

Thus, we can tighten the enclosure by iterations

Interval Jacobi / Gauss—Seidel iterations (k = 1,2,...)

1: fori=1,...,ndo
2 xk=1 (b,- - Yz a;jxjf’l) nxkL
3: end for

Krawczyk operator
Krawczyk operator K: IR" — IR" reads

K(x):= Cb+ (I, — CA)x

Proposition

If x e xNX, then x € K(x). }
Proof.

Let x € x MY, so Ax = b for some A€ A and b € b. Thus CAx = Cb,
whence x = Cb+ (I, — CA)x € Cb+ (I, — CA)x = K(x). O

Krawczyk iterations
Let x° D ¥ is an initial enclosure, and iterate (k=1,2,...):

1 xk = K(xk=1) nxk=1;
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Next Section

Theorem
Let x € IR" and C € R™". If

K(x) = Cb+ (I — CA)x C intx,

then C is nonsingular, A is regular, and ¥ C x.

Proof.

Existence of a solution based on Brouwer's fixed-point theorem.
Nonsingularity and uniqueness based on the Perron—Frobenius theory. [

Remark
@ A reverse iteration method to the Krawczyk method.

o It starts with a small box around (A€)~1b¢, and then iteratively
inflates the box.

@ Implemented in Intlab v. 6.
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@ Regularity of Interval Matrices
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Regularity Regularity — Sufficient / Necessary Conditions

Theorem (Beeck, 1975)

Definition (Regularity) La
e~ .
A € IR"™" is regular if each A € A is nonsingular. l Ifp((A°)"1A) <1, then A is regular.
Proof.

Theorem Precondition A by the midpoint inverse: M := (A°)~1A. Now,
Checking regularity of an interval matrix is co-NP-hard. A il ol

M =1Ip, M =[(A°)7|A%,
Forty necessary and sufficient conditions for regularity of A by Rohn and for each M € M we have
(2010):

M — M| =M —I,| < MA.
@ The system |A°x| < A%|x| has the only solution x = 0.

. Ao ; ) o . From the theory of eigenvalues of nonnegative matrices it follows
Q det(A° — diag(y)A= diag(z)) is constantly either positive or negative

for each y,z € {+1}". p(M — 1) < p(M®) <1,

© For each y € {£1}", the system A°x — diag(y)A®|x| = y has a so M has no zero eigenvalue and is nonsingular. O
solution. .

° Necessary condition

If 0 € Ax for some 0 # x € R”, then A is not regular. (Try x := (A°);})

o

Next Section Parametric Interval Systems

Parametric interval systems

A(p)x = b(p),
where the entries of A(p) and b(p) depend on parameters
P1 € Py, PK € Pk-

Definition (Solution set)

Y, ={x € R": A(p)x = b(p) for some p € p}.

Relaxation

Compute (enclosures of) the ranges A := A(p) and b := b(p) and solve
@ Parametric Interval Systems Ax = b.

May overestimate a lot! |
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Special Case: Parametric Linear Interval Systems Parametric Linear Interval Systems — Example

Parametric linear interval systems .
2 Example (Displacements of a truss structure (Skalna, 2006))

A(p)x = b(p), The 7—.bar truss structure subject to c.lownward force.

The stiffnesses s;; of bars are uncertain.

The displacements d of the nodes, are solutions of the system Kd = f,

where f is the vector of forces.

where

K K
A(p)=>_ Awpis  b(p) =D bipk
k=1 past

. 5 K . 2¢ f 4
and p € p for some given interval vector p € IR", matrices
A1, ..., Ax € R™" and vectors by,...,b, € R".
Remark 1 5
It covers many structured matrices: symmetric, skew-symmetric, Toeplitz A S A

or Hankel.
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Parametric Linear Interval Systems — Example Parametric Linear Interval Systems — Example

Example

Example (Displacements of a truss structure (Skalna, 2006))
The 7-bar truss structure subject to downward force. (1 1 > x = <7p , 9) , pep=[0,1].

The stiffnesses s;; of bars are uncertain.
The displacements d of the nodes, are solutions of the system Kd = f,
where f is the vector of forces.

2 4p —1

3—-2p

s
e =2 % —3 0 0 0
21 21+ 53 21 — 923 23 23
T2 T e T2 2 T 0
o 21— 53 st 53 23 s o o 6 8 10x
’ % e i 4 kS E
2 2 32 + 53 4 = 532 4 34
Kk=| -s = s+ +s: - -
31 S ) 31 ) 35 i 5
9 = = LT LTEE o
: : : : e
43 43 43+ sas
o —sa2 0 == -5 St ——— 0
¥
9 o 0 _si3 i3 N 43 + 545
2 2 2
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Parametric Linear Interval Systems — Solution Set Parametric Linear Interval Systems — Enclosures

Theorem Relaxation and preconditioning — First idea

Evaluate A := A(p), b := b(p), choose C € R"*" and solve
2| AKx — bK|. (CA)x = Cb.

If x € X, then it solves

M=

[A(p®)x = b(p)| <

>
|

il

Relaxation and preconditioning — Second idea
Solve A’x = b’, where

Proof.

K K K K K
A(pS)x — b(p°)| = <(Akx — bF)| = <(Akx — bF) — Alx — bk
|A(P)x = b(p°)| ;Pk( X ) ;Pk( X ) ;Pk( X ) A = Z(CAk)ka b = Z(Cbk)Pk~
K K K k=1 k=1
= [ D0 (pk — (A = 5| < DT ok — pullAx = b4 < 37 p|A X — b OO

k=1

k=1 k=1 Second idea is provably better
@ Popova (2009) showed that it is the complete characterization of ¥, Due to sub-distributivity law,
as long as no interval parameter appears in more than one equation. K K
; : " ; : A= (CAYP C C[ Y Akpy ) = (CA).
@ Checking x € ¥, for a given x € R" is a polynomial problem via =1 =
linear programming.
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Special Case: Symmetric Systems Application: Least Square Solutions

The symmetric solution set of Ax = b Least square solution

{x € R": Ax = b for some symmetric A€ A and b € b}. Let A€ IR™", b€ IR™ and m > n. The least square solution of
Ax = b,

is defined as the optimal solution of

Described by 3(4" — 3" — 22" + 3) + n nonlinear inequalities (H., 2008)4J

Example min ||Ax — b||2,
Xx€ERM

A= ({é:ﬂ [(ila]) , b= (g) . A= ([:5’15] [751’ 5]> , b= <[1713]> . or, alternatively as the solution to

ATAx = ATb.
X2
6 Interval least square solution set
4 Let A€ IR™*" and b € IR™ and m > n. The LSQ solution set is defined
2 Y15 ={xcR":3Ac Adbec b: ATAx=ATh}.
0 8 10x Proposition
-2

Y/ sq is contained in the solution set to ATAx=ATbh.




Application: Least Square Solutions

Proposition
Y ;5@ is contained in the solution set to

(2 5)0)-6) w
Proof.

Let A€ A, beb. If x,y solve
ATy =0, Ax+y=b,

then
0=AT(b—Ax)=ATh— AT Ax,

and vice versa. O

Proposition

Relaxing the dependencies, the solution set to AT Ax = AT b is contained
in the solution set to (1).

49




Introduction to Interval Computation

and Numerical Verification
part Il

Milan Hladik

Faculty of Mathematics and Physics,
Charles University in Prague, Czech Republic
http://kam.mff.cuni.cz/~hladik/

Semind¥ numerické analyzy a zimni $kola — SNA'17
Ostrava, 30. ledna — 3. dnora 2017

@ More on Interval Functions

9 Application: Solving Nonlinear Equations
a Application: Verification

@ AE Solution Set

© Eigenvalues of Symmetric Interval Matrices

@ Conclusion

2/60

Next Section

e More on Interval Functions

Theorem
Let f :R"— R, x € IR" and a € x. Then

f(x) C f(a) + VF(x)(x - a),

Proof.
By the mean value theorem, for any x € x there is ¢ € x such that

f(x) = f(a) + VF(c)T(x — a) € f(a) + VF(x)T(x — a). O
Improvements

@ successive mean value form
f(x) C f(a) + £ (x1, a2, .., an)(x1 — a1)
+ fo(X1,X2,33 ., an) (X2 — 22) + ...

+ fx’,,(xlv <oy Xn—1,Xn)(Xp — ap)-

@ replace derivatives by slopes

4/60

Slope form enclosure

f(x) C f(a) + S(x,a)(x — a),

f(x)=f(a) -
Sxa) =4 xa if x # a,
f'(x) otherwise.

where a € x and

Remarks

@ Slopes can be replaced by derivatives, but slopes are tighter.

@ Slopes can be computed in a similar way as derivatives.

function its slope S(x, a)
X 1
f(x) £+ g(x) St(x,a) £ Sg(x,a)
f(x)-g(x)  Sr(x,a)g(a) + f(x)Sg(x,a)
ef) ef® S¢(x, a)

Example
f() = —x+14, x=[17).
f'(x) = [=3,3], Se(x,x%) = [3. 4]-
y
5
4
8
2
1
—1 0 X

Notice: Slopes cannot be used for monotonicity checking. |




Next Section Nonlinear Equations

9 Application: Solving Nonlinear Equations

Problem statement
Find all solutions to

i xa) =0, j=1,...J"

inside the box x° € TR".
Theorem (Zhu, 2005)

For a polynomial p(xi, ..

., Xn), there is no algorithm solving

n
(X1, .- Xn)? + Zsinz(ﬂx,-) =0.
i=1

Proof.
From Matiyasevich's theorem solving the 10th Hilbert problem. DJ

Remark

Using the arithmetical operations only, the problem is decidable by Tarski's
theorem (1951).

o

Interval Newton method Interval Newton method

Classical Newton method
...is an iterative method

XKL= xk _VF(xF) T (xK), k=0,...

Cons
@ Can miss some solutions

@ Not verified (Are we really close to the true solution?)

Interval Newton method — Stupid intervalization

XKL= Xk — VF(x¥) T (xK), k=0,...

Interval Newton method — Good intervalization
N(x, x¥) = xk — VF(x¥) 71 (x5),
XK= xk 0 N(x), k=0,...

Theorem (Moore, 1966)
If x,x° € x and f(x) = 0, then x € N(x°, x).
Proof.
By the Mean value theorem,

filx) = fi(x°) = Vfi(e) T (x = x%),
If x is a root, we have

—6(x®) = V() (x - x°).
Define A € R™" such that its ith row is equal to Vfi(c;)". Hence
—F(x%) = A(x — x%),

Vi=1,...,n.

from which
x=x0 — A (x%) € x° — VF(x) " (x0).
Notice, that this does not mean that there is ¢ € x such that
—f(x°) = VF(c)(x — x°). O

Interval Newton method Interval Newton method

Theorem (Nickel, 1971)
If0 # N(x° x) C x, then there is a unique root in x and Vf(x) is regular.

Proof.

“Regularity.” Easy.

“Existence.” By Brouwer’s fixed-point theorem.

[Any continuous mapping of a compact convex set into itself has a fixed point.]

“Uniqueness.” If there are two roots y; # y» in x, then by the Mean value
theorem,

fy1) = f(2) = Alya — y2)
for some A € Vf(x);. Since f(y1) = f(y2) =0, we get
Aly1—y2)=0

and by the nonsingularity of A, the roots are identical. O
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Practical implementation
Instead of

N(xK, xK) = xK — VF(x¥) 7L (x¥)
let N(x¥, x¥) be an enclosure of the solution set (with respect to x) of

VE(x)(x — x°) = —F(x°).

Extended interval arithmetic

So far
[12,15]
23 (=00, ).
Now,
a/b:={a/b:ac a0+ bec b}
So,
e = (—o0, 6] U4,00).




Interval Newton method Interval Newton method

Example

f(x) =x3—x+02
1.0

/\Q

N

-20 -15 £10 -05
-0.5

-1.0

In six iterations precision 107! (quadratic convergence).

Example (Moore, 1993)
y
f(x) = x% +sin(x73)
1.0
0.5

: M /\;/10
o5 [ 'W - '
-1.0
All 318 roots of in the interval [0.1,1] found with accuracy 10~ %0.
The left most root is contained in [0.10003280626, 0.10003280628].

Summary
@ N(x° x) contains all solutions in x
@ If x N N(x° x) = 0, then there is no root in x
o If § # N(x% x) C x, then there is a unique root in x
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Krawczyk method Krawczyk method

Krawczyk operator
Let x° € x and C € R™*", usually C ~ Vf(x°)~L. Then
K(x) == x° = CF(x°) + (I, — CVF(x))(x — x°).

Theorem
Any root of f(x) in x is included in K(x). J

Proof.
If x! is a root of f(x), then it is a fixed point of
g(x) :=x — Cf(x).
By the mean value theorem,
g(x") € g(x°) + Vg(x)(x* - x°),

whence

x' € g(x) € g(x%) + Ve(x)(x — x°)

=x% — CF(x%) + (I, — CVF(x))(x — x°). O

Theorem

If K(x) C x, then there is a root in x.

Proof.
Recall
g(x) = x — Cf(x).
By the proof of the previous Theorem, K(x) C x implies
g(x) C x.
Thus, there is a fixed point x° € x of g(x),
£0%) =0~ CF() = 2,

0'is a root of f(x).

SO X
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Krawczyk method More general constraints

Theorem (Kahan, 1968) J

If K(x) C int x, then there is a unique root in x and Vf(x) is regular.

Recall Theorem from “s-inflation” (for solving Ax = b)
Let x € IR" and C € R™*". If
K(x) = Cb+ (I, — CA)x C int x,

then C is nonsingular, A is regular, and ¥ C x.

Proof.
The inclusion K(x) C int x reads

—CF(x°) + (I — CVF(x))(x — x°) C int (x — x°)
Apply the above Theorem for
b:=—f(x%), A:=Vf(x), x:=x—x°

We have that V£(x) is regular, which implies uniqueness. O

Constraints
@ equations hi(x) =0,i=1,...,/
@ inequalities gj(x) <0, j=1,...,J
@ may be others, but not considered here

(#, quantifications, logical operators, lexicographic orderings, ...

)

Problem
Denote by ¥ the set of solutions in an initial box x° € TR"?
Problem: How to describe ¥?

Subpavings
Split x into a union of three sets of boxes such that
@ the first set has boxes provably containing no solution
@ the second set has boxes that provably consist of only solutions

@ the third set has boxes which may or may not contain a solution
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Subpaving Example
Example

x* +y? < 16,
x*+y2>9

Figure: Exact solution set Figure: Subpaving approximation

Subpaving Example

Example

(x=1>+(y —2)?
(E+y2=9Gx -y

3

£

Figure: Exact solution set Figure: Subpaving approximation

19/60

Subpaving Algorithm
Branch & Bound approach
@ divide x° recursively into sub-boxes,
@ remove sub-boxes with provably no solutions

@ contract sub-boxes

Some simple tests
@ Test for x C X:
@ no equations and g;(x) < 0V
® Test for xNX =
@ 0 ¢ hi(x) for some i
° gj(x) > 0 for some j

Also very important
@ Which box to choose (data structure fo £)?

@ How to divide the box? (which coordinate, which place, how many
sub-boxex)

TTT60
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A Simple Contractor — Constraint Propagation

Example
Consider the constraint
x+yz=17, x€l0,3], y€[3,5], z€[24].
@ Express x
x=T—yze7—[35]24 =[-13,1]
Thus, the domain for x is [0,3] N [—13,1] = [0, 1].
@ Express y
y=(7—-x)/z € (7-10,1])/[2,4] = [1.5, 3.5].
Thus, the domain for y is [3,5] N [1.5, 3.5] = [3, 3.5].
@ Express z
2= (7=x)/y € (7 [0,11)/[3, 35] = [2.1].
Thus, the domain for z is [2,4] N 1—72, %] =2, %]

No further propagation needed as each variable appears just once.

Other Techniques

Other techniques
@ Various kinds of consistencies (2B, 3B,...), shaving,... J

Example (thanks to Elif Garajova)
[ ]

iz ii

time: 0.952 s

=05
time: 2.224 s

e=0.125
time: 9.966 s

23 /60

Free constraint solving software

@ Alias (by Jean-Pierre Merlet, COPRIN team),
A C++ library for system solving, with Maple interface,
http://wau-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-C#+.htnl
Quimper (by Gill Chabert and Luc Jaulin),
written in an interval C++ library IBEX,
a language for interval modelling and handling constraints,
http://www.emn.fr/z-info/ibex

(]

©

RealPaver (by L. Granvilliers and F. Benhamou),

a C++ package for modeling and solving nonlinear and nonconvex
constraint satisfaction problems,
http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpave
@ RSolver (by Stefan Ratschan),

solver for quantified constraints over the real numbers,

implemented in the programming language OCaml,
http://rsolver.sourceforge.net/
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a Application: Verification
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introduction

Rigorous computation
What and why? J

Can we obtain rigorous numerical results by using floating-point
arithmetic?

Yes, by extending to interval arithmetic. Direct usage is however not
effective!

Example (Amplification factor for the interval Gaussian elimination)
n=20 n=250

10? 10°

n=100 n=170

1010 106

Advise
Postpone interval computation to the very end.
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Verification

Compute a solution by floating-point arithmetic, and then to verify that
the result is correct or determine rigorous distance to a true solution.

Typically, we can prove uniqueness (=the problem is well posed).
Therefore, verifying singularity of a matrix cannot be performed!

What we will do

As an example, we show a verification method for the problem of finding a
root of a function f: R” — R".

Problem statement

Given x* € R” a numerically computed (=approximate) solution of

f(x) =0, find a small interval 0 € y € IR” such that the true solution lies
in x*+y.

28/60

[llustration of Verification Ingredients

Example

lllustration of the verification of x* to be a solution of f(x) = 0.

X2
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Brouwer fixed-point theorem

Let U be a convex compact set in R” and g: U — U a continuous
function. Then there is a fixed point, i.e., 3x € U : g(x) = x.

Observation

Finding a root of f(x) is equivalent to finding a fixed-point of the function
g(y) =y — C-f(x* +y), where C is any nonsingular matrix of order n.

Perron theory of nonnegative matrices
@ If |A| < B, then p(A) < p(B).
(< is meant entrywise and p(-) is the spectral radius)
@ If A>0, x >0 and Ax < ax, then p(A) < a.

Lemma
If z+ Ry Cinty, then p(R) <1 for every R € R. J

Proof. |R|y® < y®, whence by Perron theory p(R) < 1. DJ




Theorem
Suppose 0 € y. Now if
—C-f(x*)+(I-—C-Vf(x*+y))-y Cinty,
then:
@ C and every matrix in Vf(x* + y) are nonsingular, and
® there is a unique root of f(x) in x* + y.

Proof.
By the mean value theorem,

f(x*+y) € f(x*)+ VF(x* +y)y.
By the assumptions, the function
gly)=y—-C-f(x*+y)e —C-f(x)+ (I — C-Vf(x*+y))y Cinty
has a fixed point, which shows “existence”.

By Lemma, C and Vf(x* + y) are nonsingular, implying “uniqueness’. [J

Implementation

@ take C ~ Vf(x*)~! (numerically computed inverse),
@ take y := C - f(x*) and repeat inflation

y = (— C-f(x*)+ (I — c.w(x*+y))~y> -[0.9,1.1] +10"%°[-1,1]

until the assumption of Theorem are satisfied.
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Verification of a Linear System of Equations Verification of a Linear System of Equations

Problem formulation

Given a real system Ax = b and x* approximate solution, find y € IR"
such that A1h € x* +y.

Example

X2

8

X1
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Given the system Ax = b and an approximate solution x*. J

Theorem
Suppose 0 € y. Now if
C(b—Ax*)+ (I — CA)y Cinty,
then:
@ C and A are nonsingular,

@ there is a unique solution of Ax = b in x* + y.

Proof.
Use the previous result with f(x) = Ax — b. DJ
Implementation

@ take C ~ A1 (numerically computed inverse), J
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Verification of a Linear System of Equations Verification of a Linear System of Equations

e-inflation method (Caprani and Madsen, 1978, Rump, 1980)
Repeat inflating y := [0.9,1.1]x 4+ 10~2°[—1,1] and updating

x = C(b— Ax*) + (I — CA)y
until x C inty.

Then, ¥~ C x* + x.

Results

@ Verification is about 7 times slower than solving the original problem
(for random instances of dimension 100 to 2000).
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Example

Let A be the Hilbert matrix of size 10 (i.e., aj = Iﬂ%l) and b := Ae.

Then Ax = b has the solution x = e = (1,...,1)7.

Approximate solution by
Matlab:

Enclosing interval by e-inflation method (2 it-
erations):

0.999999999235452
1.000000065575364
0.999998607887449
1.000012638750021
0.999939734980300
1.000165704992114

[ 0.99999973843401, 1.00000026238575]
[ 0.99999843048508, 1.00000149895660]
[ 0.99997745481481, 1.00002404324710]
[ 0.99978166603900, 1.00020478046370]
[ 0.99902374408278, 1.00104070076742]
[ 0.99714060702796, 1.00268292103727]

0.999727989024899 [ 0.99559932282378, 1.00468935360003]
1.000263042205847 [ 0.99546972629357, 1.00425202249136]
0.999861803020249 [ 0.99776781605377, 1.00237789028988]

1.000030414871015 [ 0.99947719419921, 1.00049082925529]
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Verification of a Linear System of Equations

Challenge

@ verification for large systems
(one cannot use preconditioning by the inverse matrix)

References

[ S.M. Rump.
Verification methods: Rigorous results using floating-point arithmetic.
Acta Numerica, 19:187-449, 2010.

@ AE Solution Set
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Tolerable Solutions Tolerable Solutions

Motivation
So far, existentially quantified interval systems

Y:={xeR":3Ac Adbe b: Ax = b}.

Now, incorporate universal quantification as well!

Definition (Tolerable solutions)

A vector x € R" is a tolerable solution to Ax = b if for each A € A there
is b € b such that Ax = b.

VAc Adbe b: Ax=b.

In other words, J

Equivalent characterizations
o Ax C b,
@ |Ax — bS] < —AB|x| + bA.

Theorem (Rohn, 1986)
A vector x € R" is a tolerable solution if and only if x = x; — xa, where

Ax; — Axy < b, Ay — Axy > b, x1,x2 > 0.

Proof.
"<" Let A€ A. Then
Ax = Ax; — Axo < Axy — Axo < b,
Ax =Ax; — Axo > Axi — Axo > b
Thus, Ax € b and Ax = b for some b € b.

“=" Let x € R" be a tolerable solution. Define x; := max{x,0} and
xp := max{—x,0} the positive and negative part of x, respectively. Then
X =x1 — X2, |x| = x1 + x2, and |A°x — bS| < —AL|x| + b2 draws

AS(x1 — xp) — bS < 7AA(X1 +x2) + b2,
7AC(X1 — Xz) + b < 7AA(X1 + X2) + b2,

O
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Tolerable Solutions — Application AE Solutions

Example (Leontief’s Input—Output Model of Economics)

@ economy with n sectors (e.g., agriculture, industry, transportation,
etc.),

@ sector i produces a single commodity of amount x;,

@ production of each unit of the jth commodity will require aj;
(amount) of the ith commodity

@ d; the final demand in sector /.
Now the model draws
Xj = aj1x1 + -+ + ainXn + d;.
or, in a matrix form
x=Ax+d.
The solution x = (I, — A)~*d = 322, A¥d is nonnegative if p(A) < 1.
Question: Exists x such that for any A € A there is d € d: (I, — A)x = d?
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Quantified system Ax = b
@ each interval parameter a;; and b; is quantified by V or 3
o the universally quantified parameters are denoted by A, b”,
@ the existentially quantified parameters are denoted by A7, b>
o the system reads (A" + A%)x = b” + b?

Definition (AE solution set)

YaE = {x eR":
VA" € A'VbY € bYIAT € A73bT € b 1 (A + A)x = b7 + b}

42
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AE Solutions

Theorem (Shary, 1995)

Yae = {x €R": A% — b" C b7 — A’x}. (1

—

Proof.
Yae={x€R": VA" € A'Vb" € b"IA7 € A7Ib € b7 : Ax — b = b7 — A’x}
={x€R": VA" € A'Vb' € b" : A'x— b’ € b’ — A’x}
={x€R":Avx—bvgb3—A3x}. [}

Theorem (Rohn, 1996)
Tae = {x €R": |Ax — b°| < ((AY)2 — (A")2)|x| + (bF)2 — (b))

Proof.
Using (1) and the fact pC q¢ < |p€ — q°| < g® — p”, we get
[(A%x — BY)< — (b° — A%x)| < (A%x — b°)° — (b — A%x)"
= (A2 x| + b2 — (AY)2x| — b2, 0

AE Solutions
Example
[374]3 [72,1]3 — [7475]3 [314]V [721 l]v — [74,5‘-’]3
([oA, 2 [3,4] ) = ([—4,5]3> : ([0,2]V 3,4)" )X = ([_4,5]3) :

3 3

AE solution set.

Tolerable solution set.
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Next Section Eigenvalues of Symmetric Interval Matrices

@ Eigenvalues of Symmetric Interval Matrices
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A symmetric interval matrix
AS={AcA:A=AT}.
Without loss of generality assume that A= AT, A=A, and AS # .

Eigenvalues of a symmetric interval matrix
Eigenvalues of a symmetric A € R™": \{(A) > --- > Ay(A).
Eigenvalue sets of A are compact intervals

Ai(AS) = {,\,»(A);AEAS}, i=1,....n.

Theorem
Checking whether 0 € \;j(A®) for some i =1,...,n is NP-hard. J
Proof.
0o a\°
A is singular iff M5 .= (AT 0) is singular (has a zero eigenvalue). [J
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Eigenvalues — An Example Eigenvalues — Some Exact Bounds

Example
Let

L2 o 0
AcA=| 0 [718] o0
0 0 [410]

What are the eigenvalue sets?
We have A1(A°) = [7,10], A\2(A°) = [4,8] and A3(A°%) = [1,2].

— —
0 1 2 3 4 5 6 7 8 9 10 g
Ai(A) Aa(A) A3(A)

Eigenvalue sets are compact intervals. They may intersect or equal.
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Theorem (Hertz, 1992)

We have
M(A%) = max (A + diag(z)A® diag(z)),
ze{£1)"
A (A%) = min A, (A€ — diag(z)A diag(z)).
ze{£1}"
Proof.

“Upper bound.” By contradiction suppose that there is A € AS such that
A1(A) > max Ai(Az), [where A, = A° + diag(z) A% diag(z)]
ze{£1}"
Thus Ax = A\1(A)x for some x with ||x[]> = 1.
Put z* := sgn(x), and by the Rayleigh-Ritz Theorem we have
M(A) = xTAx < xTAzex

< max yT Ay =Ai(Az). o
yillyll=1
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Eigenvalues — Some Other Exact Bounds Eigenvalues — Enclosures

Theorem

A1(A%) and X,(A®) are polynomially computable by semidefinite
programming with arbitrary precision.

Proof.
We have
Xn(A%) = maxa subject to A — al, is positive semidefinite, A € A°.
Consider a block diagonal matrix M(A, o) with blocks
A—aly,, ajj — aj;, 3j — ajj, i <j.
Then the semidefinite programming problem reads

An(A%) = maxa subject to M(A, ) is positive semidefinite.
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Theorem
We have

M(A) € [N(A) - p(A%), N(A) + p(A%)]. i=1.....n.

Proof.
Recall for any A, B € R™",

AI<B = p(A) <p(|A) < p(B),
and for A, B symmetric (Weyl's Theorem)
Ai(A) + An(B) < Ai(A+ B) < Xi(A) + A\i(B),
Let A€ AS, so |[A— A°| < A2, Then
A(A) = M(AS + (A= A)) < M(A) + (A - AY)
< N(A9) + p(|A = A%]) < Ai(A%) + p(A2).

Similarly for the lower bound. O

i=1,...,n.
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Eigenvalues — Easy Cases Positive Semidefiniteness

Theorem
@ If AC is essentially non-negative, i.e., Ag- >0 Vi#j, then
M(A%) = M (A).
@ If A2 is diagonal, then

M1(A%) = M1(A), AL (A%) = Mn(A).

Proof.

@ For the sake of simplicity suppose A€ > 0. Then VA € A° we have
|A] <A, whence

M(A) = p(A) < () = M(A).
Q By Hertz's theorem,
M(A%) = max M\(AS + diag(z)A2 diag(2)),
ze{t1}n

= M(AS + A%) = A (A). O
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AS is positive semidefinite if every A € AS is positive semidefinite. J

Theorem
The following are equivalent

Q@ AS s positive semidefinite,

Q A, = A° — diag(2)AA diag(z) is positive semidefinite Vz € {£1}",

© xTAx — |x|TA2|x| > 0 for each x € R".
Proof.
“(1) = (2)" Obvious from A, € AS.
“(2) = (3)" Let x € R" and put z := sgn(x). Now,

xTAx — |x|TAB|x| = xT Ax — xT diag(2)A® diag(z)x = xT A,x > 0.
“(3) = (1)" Let A€ AS and x € R". Now,

xTAx = xTAx + xT(A — A%)x > xT Ax — |xT (A — A%)x|
> xTAx — |x|TA2|x| > 0. O

Positive Definiteness Complexity

AS is positive definite if every A € A% is positive definite.

J

Theorem
The following are equivalent
Q AS s positive definite,
Q A, = A° — diag(z)A2 diag(z) is positive definite for each z € {£1}",
Q xTAx — [x|TAB|x| > 0 for each 0 # x € R”,
©Q AC is positive definite and A is regular.

Proof.

‘(1) & (2) < (3)" analogously.

“(1) = (4)" If there are A € A and x # 0 such that Ax = 0, then
0=xTAx=xT3(A+AT)x,

and so 3(A+ AT) € A® is not positive definite.

“(4) = (1)" Positive definiteness of A¢ implies \;(A°) > 0 Vi, and

regularity of A implies X;(A%) > 0 Vi. 0

Theorem (Nemirovskii, 1993)

Checking positive semidefiniteness of AS is co-NP-hard.

Theorem (Rohn, 1994)
Checking positive definiteness of A is co-NP-hard.

Theorem (Jaulin and Henrion, 2005)

Checking whether there is a positive definite matrix in A is a polynomial
time problem.

Proof.

There is a positive semidefinite matrix in AS iff X,(A%) > 0.
So we can check it by semidefinite programming. O
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Sufficient Conditions Application: Convexity Testing

Theorem
@ A is positive semidefinite if \,(A°) > p(AL).
@ A is positive definite if \o(A) > p(A®).
@ AS is positive definite if A is positive definite and
p(|(A9)H|A%) < 1.

Theorem

A function f: R R is convex on x € IR" iff its Hessian V2f(x) is
positive semidefinite Vx € int x.

Proof.
@ A is positive semidefinite iff A,(AS) > 0. Corollary
Now, employ the smallest eigenvalue set enclosure A function f: R" — R is convex on x € IR" if V2f(x) is positive
An(A%) € (A7) — p(A%), An(A%) + p(A%)]. Somideini
© Analogous.
© Use Beeck’s sufficient condition for regularity of A. O
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Application: Convexity Testing

Example [ M. Hiadik, D. Daney, and E. Tsigaridas.

Let Bounds on real eigenvalues and singular values of interval matrices.
SIAM J. Matrix Anal. Appl., 31(4):2116-2129, 2010
f(x,y,2) = x>+ 2x%y — xyz + 3yz% + 8y?, [@ M. Hiadik, D. Daney, and E. P. Tsigaridas.

. Ch terizi d imati i | ts of tric int |
where x € x = [2,3], v € ¥ = [1,2] and z € 2 = [0, 1]. The Hessian of £ ma:;:?ccesenzmg and approximating eigenvalue sets of symmetric interva
reads Comput. Math. Appl., 62(8):3152-3163, 2011

bx+4y 4x—z -y [@ L. Jaulin and D. Henrion.
Vzi"(x,y7 z)=| 4x—z 16 —x+ 6z Contracting optimally an interval matrix without loosing any positive
-y —x + 6z 6y semi-definite matrix is a tractable problem.
. . . ) . ) . Reliab. Comput., 11(1):1-17, 2005
Evaluation the Hessian matrix by interval arithmetic results in B J. Roh P )
. Rohn.
[16,26] [7,12] —[1,2] Positive definiteness and stability of interval matrices.
V2f(x,y, z)C | [7,12] 16 [—3,4] SIAM J. Matrix Anal. Appl., 15(1):175-184, 1994
—[12] [-3.4 [6.12] [@ J. Rohn.
- L. . . A h, k of | i I1i I .
Now, both sufficient conditions for positive definiteness succeed. andbook of results on interval finear problems .
. ) . Tech. Rep. 1163, Acad. of Sci. of the Czech Republic, Prague, 2012
Thus, we can conclude that f si convex on the interval domain. http://uivtx.cs.cas.cz/~rohn/publist/ | aahandbook. pdf

57 /60 58 /60

Next Section

Interval computation offers:
@ nice theory, methods and applications
@ many open problems

@ interdisciplinarity

Any feedback is welcome!

Thanks J

@ Conclusion
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INVENTORS FOR THE DIGITAL WORLD

+ Domain decomposition

PaStiX (Today)

* Sparse direct solver

* Supernodal method

Chameleon (Today)

FisERsEs s * Dense linear algebra

Dense linear algebra - From BLAS to
Chameleon

* Tile algorithms
PATC Parallel Linear Algebra @ IT4Innovations

* Heterogeneous distributed
February 2nd, 2017

architectures

Mathieu Faverge

JAZIZIN, \...c. Foverse - PRACE PL

Parallel Linear Algebra Program Parallel Linear Algebra Program

Thursday, February 2nd

09:00 - 09:15 Introduction to PLA, T. Kozubek Thursday, February 2nd

09:00 - 10:30 Introduction to dense linear algebra - From BLAS to 09:00 - 10:30 Krylov subspace methods, Z. Strakos
Chameleon, M. Faverge 10:30 - 11:00 Break

10:30 - 11:00 Break 11:00 - 12:30 Hybrid solvers, G. Marait
11:00 - 12:30 Sparse direct solvers - Analyze, M. Faverge 12:30 - 13:30 Lunch break

Pl = HHE) Cormein Bl 13:30 - 15:00 Hands-on PaStiX, M. Faverge, G. Marait, F. Pruvost
13:30 - 14:45 Sparse direct solvers - Supernodal Method, M. Faverge 15:00 - 15:30 Break

14:45 - 15:00 Hands-on Spack - softwares installation, F. Pruvost 15:30 - 17:00 Hands-on MaPHyS, M. Faverge, G. Marait, F. Pruvost
15:00 - 15:30 Break -

15:30 - 17:00 Hands-on Chameleon library, M. Faverge, G. Marait, F. Pruvost

YZZTZIN ... overge - PRACE YZZIZIN ... overge - PRACE

What is the purpose of linear algebra libraries? (1/2)

¢ Many simulations codes solves a problem:
- Ax=b
- Alis a matrix of size M — by — N
- x and b, two vectors (or set of vectors) of sizes N and M respectively
* Goal: provide the users with libraries able to do this operation in the most
efficient manner:
- The fastest time to solution as possible
- Numerical Accuracy

¢ Two major kinds of problems:
- A is dense, all entries are considered non-zeroes
- Ais sparse, high percentage of zero entries

Introduction

2428 | Mathieu Faverge - PRACE PLA - DLA 5 ieu Faverge - PRACE PLA - DLA



What is the purpose of linear algebra libraries? (2/2) What is the purpose of linear algebra libraries? (2/2)

« Can we compute A~'? + Can we compute A~'?
¢ Tow main classes of algorithms?

JZZT I ... covcrcc - PRACE PLA - DLA TZ N Mathieu Faverge — PRACE PLA

What is the purpose of linear algebra libraries? (2/2) What is the purpose of linear algebra libraries? (2/2)
« Can we compute A~'? « Can we compute A~'?
* Tow main classes of algorithms? * Tow main classes of algorithms?
- Direct or iterative methods - Direct or iterative methods

¢ When using direct methods, it also exists many factorization algorithms:
- For general matrices: A= LU
- For symmetric/hermitian definite positive matrices: A = LLt, or LL"
(Cholesky)
- For symmetric/hermitian non definite positive matrices: A= LDL?, or LDL"
- But also: A= QR

PITIN ,..iic. overge - PRACE PLA DLA Faverge - PRACE PLA

A little bit of history Computing in 1974 A little bit of history
¢ High Performance Computers: « But the BLAS-1 weren't enough
- IBM 370/195, CDC 7600, Univac 1110, DEC PDP-10, Honeywell 6030 - Consider AXPY (y = ax +y ): 2n flops on 3n read/writes

* Fortran 66 - '(I:'Z;n E:;a::)::; l::::‘ sp;?;l:sfe:?{%?e’?d?wzri/ti dominates)
* Trying to achieve software portability
* Run efficiently
* BLAS (Level 1)
- Vector operations
 Software released in 1979
- About the time of the Cray 1

V2RI ... coucrce - PRACE PLA - DLA VZZTZI \,...... coucrge - PRACE PLA - DLA




A little bit of history A little bit of history

* But the BLAS-1 weren't enough * But the BLAS-1 weren't enough
- Consider AXPY (y = ax+y ): 2n flops on 3n read/writes - Consider AXPY (y = ax+y ): 2n flops on 3n read/writes
- Computational intensity = (2n)/(3n) = 2/3 - Computational intensity = (2n)/(3n) = 2/3
- Too low to run near peak speed (read /write dominates) - Too low to run near peak speed (read/write dominates)
 So the BLAS-2 were developed (1984-1986)  So the BLAS-2 were developed (1984-1986)
- Standard library of 25 operations (mostly) on matrix/vector pairs

- Standard library of 25 operations (mostly) on matrix/vector pairs
- GEMV: y = aAx + fy, GER: A = A+ ax # y', - GEMV: y = aAx + fy, GER: A = A+ ax « y',
- Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC - Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
- Why BLAS 2? They do O(n?) ops on O(n?) data - Why BLAS 27 They do O(n?) ops on O(n?) data
rightarrow So computational intensity still just (2n%)/(n?) = 2

rightarrow So computational intensity still just (2n%)/(n?) = 2

- OK for vector machines, but not for machines with caches

PLLIZIN ,..\ic. roverse - PRACE PLA- DLA

LR Vathicu Faverge - PRACE PLA - DLA

Why higher level BLAS? How do we measure the code performance/efficiency? what is a
xflop/s?

BLAS Memory Refs | Flops | Ratio
Lvily=y+ax 3n 2n 2/3
Lvl2y =y + Ax n 2n 2
M3C=C+AB 4’ 27 | n)2

V2229 ... Faverge - PRACE PLA - DLA

How do we measure the code performance/efficiency? what is a How do we measure the code performance/efficiency? what is a
xflop/s? xflop/s?

« xflop/s is a rate of execution, some number of floating point operations
per second. Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or multiplication.

« xflop/s is a rate of execution, some number of floating point operations
per second. Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or multiplication.

« kilo 10°, mega 10°, giga 10°,

V2RI ... coucrce - PRACE PLA - DLA
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How do we measure the code performance/efficiency? whatis a
xflop/s?

 xflop/s is a rate of execution, some number of floating point operations
per second. Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or multiplication.

« kilo 10>, mega 10°, giga 10°, tera 10'?,

How do we measure the code performance/efficiency? what is a
xflop/s?

 xflop/s is a rate of execution, some number of floating point operations
per second. Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or multiplication.

o kilo 10°, mega 10°, giga 10°, tera 10'?,
exa 1015,

How do we measure the code performance/efficiency? what s a
xflop/s?

« xflop/s is a rate of execution, some number of floating point operations
per second. Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or multiplication.

« kilo 10°, mega 10°, giga 10°, tera 10'2,
exa 10'°, zetta 10'°,

JZZTEIN ..iicu Foverge - PRACE PLA_ DLA

How do we measure the code performance/efficiency? what is a
xflop/s?

« xflop/s is a rate of execution, some number of floating point operations
per second. Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or multiplication.

« kilo 10°, mega 10°, giga 10°, tera 10'2,
exa 10%°, zetta 10'®, yotta 10*

How do we measure the code performance/efficiency? whatis
the theoretical peak performance?

The theoretical peak is based not on an actual performance from a
benchmark run, but on a paper computation to determine the theoretical
peak rate of execution of floating point operations for the machine.

— FLOPs
Flops = cores x clock x e

For example, an Intel Xeon 5570 quad core at 2.93 GHz can complete 4
floating point operations per cycle or a theoretical peak performance of
11.72 GFlop/s per core or 46.88 Gflop/s for the socket.

A more recent example: an Intel Haswell architecture like the E5-2620v3
can complete up to 16 Flops per cycle (thanks to AVX2 and FMA3) at a
frequency up to 3.2 GHz per core. So the theoretical peak is 51.2GFlop/s
per core, and 201.6GFlop/s for the 6 cores (the frequency is limited to
2.1GHz when all cores are enabled with AVX2 and FMA3)

PAZTIN e overse - PRACE PLA_ DLA

Software evolution
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Example of the LU factorization

dgetf2
) E

Pan:
Factori

21

£ dtrsm
é [—Solve( A * )
. g
Software evolution i D“ D I-
Single core architectures 33 -

2/20 | Mathicu Faverge - PRACE PLA - DLA

Software evolution

Software evolution

PLITEWN, ... Foverse - PRACE PLA- DLA

PLIFIN, ... coverse - PRACE PLA- DLA

LAPACK

Summary for one single core

http://www.netlib.org/lapack/
LAPACK (Linear Algebra PACKage) provides routines for

- solving systems of simultaneous linear equations,
- least-squares solutions of linear systems of equations,
- eigenvalue problems,

—

. BLAS provides the basic linear algebra
subroutines in Fortran

X 2. CBlas provides a C interface to BLAS
- and singular value problems.

. . 3. LAPACK provides a more advanced set of linear
« it relies on BLAS X .

X . algebra routines on top of BLAS, and in Fortran
+ it uses Fortran column major layout 4. LAPACKE (since 2011) provides a C interface to
* it is sequential

LAPACK (Do not use CLapack)

it is a reference implementation
. . Provided by Netlib, OpenBLAS, IBM ESSL, Intel MKL, AMD ACML, ...
It handle dense and banded matrices, but not general sparse matrices .

In all areas, similar functionality are provided for real and complex
matrices, in both single and double precision.

PZZTEIN ... Foverge - PRACE PLA- DLA
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What about more complex architectures?

¢ Multiple CPUs in distributed memory
¢ Multi-core architectures

¢ Nodes enhanced with accelerators as GPUs
and/or KNL

Software evolution

Distributed memory

VLTI \,...... coucocc - PRACE PLA - DLA /22| Mathicu Faverge - PRACE PLA - DLA 20

Software evolution ScaL APACK Software evolution Scal APACK

¢ The problem is: how to distribute the data?
— 2D block cy layout

PLITEWN, ... roverse - PRACE PLA- DLA PLTFIN, ... coverse - PRACE PLA- DLA

2D block-cyclic layout 2D block-cyclic layout

VZZTIN ... coucrce - PRACE PLA - DLA




2D block-cyclic layout 2D block-cyclic layout

VLTI \,...... coucocc - PRACE PLA - DLA
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Example of LU factorization How distributed memory implementation works? 2D block-cyclic layout, Algorithm progression
1. Panel: Communications between
involved processors for each
H g column
I—Iu(l) 2. TRSM update:
B ; - Broadcast the triangle on the
£ i row
£ E [E—Solve( b * ) - Local TRSM updates are made
f;g s in parallel
iE . . 3. GEMM update:
&l - Broadcast the U part to the
column
- Local GEMM updates are made
in parallel

PAITIN ,..1ic. overse - PRACE PLA_ DLA Faverge - PRACE PLA - DLA 4

2D block-cyclic layout, Algorithm progression 2D block-cyclic layout, Algorithm progression
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2D block-cyclic layout, Algorithm progression

JLTIZIN, ,...ic. roverse - PRACE PLA- DLA

Parallelism in ScaLAPACK

¢ Level 3 BLAS block operations
- For all the reduction routines
* Pipelining/Look-ahead
- QR Algorithm, Triangular
Solvers, classic factorizations

¢ Redundant computations
- Condition estimators
« Static work assignment
- Bisection

PLITEWN, ... roverse - PRACE PLA- DLA

Example of LU factorization

I

L

H asm

H [—Solve( b * )
5% -
E-E-1

5] - -

53

V2RI ... coucrce - PRACE PLA - DLA

Task parallelism

- Sign function eigenvalue
computations
Divide and Conquer
- Tridiagonal and band solvers,
symmetric eigenvalue problem
and Sign function

Cyclic reduction

- Reduced system in the band

solver
Data parallelism

- Sign function

How to parallelize it

in shared memory?

Use fork-and-join
parallelism (Bulk
Sync Processing)

Simple and easy
to do in any
reasonable
software

Parallelize the
largest portion of
the Flops
Requires only to
link to
Multi-threaded
BLAS library such
as MKL

2D block-cyclic layout, Algorithm progression

JLTIZIN, ... roverse - PRACE PLA- DLA

25

Software evolution

Multi-core architectures (shared memory)

(2w | Mathieu Faverge - PRACE PLA - DLA

Software evolution
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PLASMA: 1) Memory layout PLASMA: 2) Dataflow scheduling

¢ Rethink algorithms as dataflow algorithms
 Express the algorithm as a directed acyclic graph (DAG) where nodes are
tasks, and edges data movements
¢ Rely on external runtime to:
- discover data dependencies
- schedule tasks in a coherent way

* Remove all possible synchronization points

lrrin Mathieu Faverge — PRACE PLA - DLA lroia. Mathieu Faverge - PRACE PLA - DLA

Example of Cholesky Inversion Example of Cholesky Inversion

PLITEIN ... coverse - PRACE PLA-

Which library to use for accelerators?

* Nvidia CuBLAS on Nvidia GPUs
- Cover the set of BLAS routines for Nvidia GPUs
- A few extra routines from LAPACK
- Set of Batched BLAS routines to apply many times the same operation of
multiple data
« Intel MKL on Intel MIC architectures
- Same coverage as classic MKL (with various efficiency)
- Set of Batched BLAS routines to apply many times the same operation of
multiple data

* MAGMA (ICL - UTK) for Nvidia GPUs and Intel MIC

Software evOlutiOn - Interface to BLAS routines + subset of internally implemented routines
- Cover partially LAPACK routines
Heterogeneous architectures - Set of Batched BLAS routines

« CULA, BLIS, cIBLAS, ...

2420 Mathieu Faverge - PRACE PLA - DLA 32 Faverge - PRACE PLA - DLA




MAGMA: Methodology overview

* MAGMA uses hybridization methodology
based on:

- Representing linear algebra as collections
of tasks and data dependencies among
them

- Properly scheduling tasks’ execution
over multicore and GPU hardware
components

* Applied to fundamental linear algebra
algorithms

- One and two-sided factorizations and
solver

- lterative solvers

- Eigensolvers

¢ Productivity

- High level

- Leveraging prior developments

- Exceeding in performance homogeneous
solutions

Mathieu Faverge ~ PRACE PLA - DLA

How to combine eveything?

. Distributed memory system with 2D block-cyclic (or not)
. New tile data layout for enhanced memory accesses

. Tile algorithms to reduce synchronization points

B W N R

. Exploit both CPUs and accelerators

Mathieu Faverge - PRACE PLA - DLA

Matrices Over Runtime Systems @ Exascale

Linear algebra
AX =B l

Sequential-Task-Flow Runtime systems

Direct Acyclic Graph

for (5= 0
Task (ALJ1)

Heterogeneous
platforms

(227N ...

MAGMA: Methodology overview

-

. Perform panel computations (Level 2 BLAS) on CPUs using
multi-threaded LAPACK

. Perform trailing matrix updates (Level 3 BLAS) on the accelerator using
look-ahead technique.

N

Chameleon

2422 | Mathieu Faverge - PRACE PLA - DLA 37

The Chameleon Library

Sequential Task Flow (STF) design of dense linear algebra tiles algorithms
(derived from PLASMA) on top of runtime systems

Tile matrix layout
STF PLASMA algorithms

wE 000 o 20 x 3 e
ot e i<, me
DDD TRSM (ALK] (K], Alm) (K1)

for (@ = kil; m < N; ) {

SYRK (A[) 0], Alm] [2));
for (m = n+l; m < N mee)

Runtime systems G0N (ADa] (], ACn] D], Alad [a]);

19 D
QUARK o ;‘_{; U
StarPU k4 i n Optimized kernels
~
PaRSEC She=> o BLAS, LAPACK
(2&)

OmpSS e o cuBLAS, MAGMA




Task Scheduling

The runtime maps the graph of tasks (DAG) on the hardware
¢ Allocating computing
resources
« Enforcing dependency
constraints
¢ Handling data transfers

Time

Adaptiveness

¢ A single DAG enables multiple
Chameleon scheduling strategies
¢ A single DAG can be mapped
on multiple platforms

Programming model: Sequential Task Flow

72420~ | Mathicu Faverge - PRACE PLA - DLA

Sequential Task Flow / StarPU Ex.: Sequential Cholesky Decomposition

* Express parallelism. . . for (j = 0; j < N; j++) {
. . POTRF ( A[GI0D);
... using the natural program flow for (i = j+13 i < N; i++)

TRSM ( A[i)[3),  ALGI0GD);
« Submit tasks in the sequential flow of the program... fms'vé; ? J#i;[ﬂl [;N; 1;3] {[j])-
e ... then let the runtime: for (k = j+1; k < i; k++)
- infer the dependencies and, GEMM (  A[il[x],
- schedule the tasks asynchronously Ali105],

AlkI[1)5
StarPU (http://starpu.gforge.inria.fr/) y

« Storm Team — Inria Bordeaux - Sud-Ouest

* Computes cost models on the fly

 Kernels can be scheduled on either the CPU, and/or the accelerators

¢ Multiple scheduling strategies: Mini Completion Time, Local Work
Stealing, user defined...

;o =——r=— it =
PLXT 2 |, ... coucrge - PRACE PLA- DLA PZZZZ BN \,..\ic. Foverse - PRACE PLA- DLA

Ex.: Task-Based Cholesky Decomposition Dynamic Task Graph Building

for (j = 0; j < N; j++) {

POTRF (RW,A[j1051);

for (i = j+1; i < N; i++)
TRSM (RW,A[i]1[j], R,A[31031);

for (i = j+1; i < Nj i++) {
SYRK (RW,A[i][i], R,A[i1[5D);
for (k = j+1; k < ij kt+)

GEMM (RW,A[i] [x],
, R,A[i1 (5], R,A[KI[31);
¥

__wait__Q;

. SsS——=v—
PZZT N \).1icu Foverge - PRACE PLA - DLA.

for (j =0; j < N; j++) {
POTRF (RW,A[j1[j1);
for (i = j+1; i < N; i++)
TRSM (RW,A[i1[j], R,A[31[51);
for (i = j+1; i < N; i++) {
SYRK (RW,A[i][il, R,A[i1[31);
for (k = j+1; k < i k++)
GEMM (RW,A[i] [k],
) R,A[L][5], R,ALKI (D)5
¥

__wait__Q);

* Tasks are submitted asynchronously

at run-time
* Data references are annotated
* StarPU infers data dependences...
o ... and builds a graph of tasks

;o SSs——
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Dynamic Task Graph Building

for (j = 0; j < N; j++) {

POTRF (RW,A[j1[31);

for (i = j+1; i < Nj i++)
TRSM (RW,A[i]1[j1, R,ALGILGD);

for (i = j+1; i < Nj i++) {
SYRK (RW,A[i][i], R,A[i][j1);
for (k = j+1; k < i; k++)

GEMM (RW,A[i] [k,
R,A[i1[31, R,ALkI[§]);
3

__wait__Q);
o Tasks are submitted asynchronously
at run-time
« Data references are annotated
o StarPU infers data dependences...

¢ ... and builds a graph of tasks

Dynamic Task Graph Building

for (j = 0; j < N; j++) {
POTRF (RW,A[31(31);
for (i = j+1; i < N; i++)
TRSM (RW,A[i][j], R,A[5][5D);
for (i = j+l; i < N; i++) {
SYRK (RW,A[i][il, R,A[i]1[3D);
for (k = j+1; k < i k+)
GEMM (RW,A[i][k],
R,A[LI (5], R,ALKI[GD);
}

__wait__Q);
¢ Tasks are submitted asynchronously
at run-time
¢ Data references are annotated
 StarPU infers data dependences...

¢ ... and builds a graph of tasks

7

Dynamic Task Graph Building

for (j =0; j < N; j+) {
POTRF (RW,A[j1[j1);
for (i = j+l; i < N; i++)
TRSM (RW,A[i] (3], R,A[31051);
for (i = j+l; i < N; i++) {
SYRK (RW,A[i]1[il, R,ALI[D);
for (k = j+1; k < i; k++)
GEMM (RW,A[i][k],
R,A[LI (3], R,ALKI[GD);
b3

__wait__Q);
¢ Tasks are submitted asynchronously
at run-time
¢ Data references are annotated
« StarPU infers data dependences...

¢ ... and builds a graph of tasks

Dynamic Task Graph Building

for (j = 0; j < N; j++) {

POTRF (RW,A[(3][51);

for (i = j+1; i < Nj i++)
TRSM (RW,A[i]1[j], R,ALGI05D);

for (i = j+1; i < N; i++) {

SYRK (RW,A[i][i], R,A[i][31);
for (k = j+1; k < i; kt+)
GEMM (RW,A[i][k],
R,A[i1 (3], R,ALk]I[j1);
¥

__wait__Q;
o Tasks are submitted asynchronously
at run-time
TRSM « Data references are annotated

e ... and builds a graph of tasks

]
. ¢ StarPU infers data dependences...
O
]

Dynamic Task Graph Building

for (j = 0; j < N; j++) {

POTRF (RW,A[31[31);

for (i = j+1; i < N; i++)
TRSM (RW,A[i](j], R,A[31031);

for (i = j+i; i < Nj i++) {

SYRK (RW,A[i][il, R,A[i][3D);
for (k = j+1; k < i; k++)
GEMM (RW,A[i] [x],
R,A[LI[5], R,ALKI[31);
}

_wait__Q;

¢ Tasks are submitted asynchronously
at run-time

TRSM ¢ Data references are annotated

¢ ... and builds a graph of tasks

7

]
. « StarPU infers data dependences...
O
=]

Dynamic Task Graph Building

for (j = 0; j < N; j++) {

POTRF (RW,A[j1[j1);

for (i = j+1; i < N; i++)
TRSM (RW,A[i]1[j], R,A[31[31);

for (i = j+i; i < Nj i++) {

SYRK (RW,A[i][i], R,A[i][j]);
for (k = j+1; k < i; k++)
GEMM (RW,A[i] [x],
R,A[i1 (3], R,ALKI[31);
b3

__wait__Q);
¢ Tasks are submitted asynchronously
at run-time
 Data references are annotated
¢ StarPU infers data dependences...

¢ ... and builds a graph of tasks




Dynamic Task Graph Building

for (j = 0; j < N; j++) {

POTRF (RW,A[j1[31);

for (i = j+1; i < Nj i++)
TRSM (RW,A[i]1[j1, R,ALGILGD);

for (i = j+1; i < Nj i++) {
SYRK (RW,A[i][i], R,A[i][j1);
for (k = j+1; k < i; k++)

GEMM (RW,A[i][k],
R,A[i1[3], R,ALkI[§1);
3

__wait__Q);
* Tasks are submitted asynchronously
at run-time
« Data references are annotated
o StarPU infers data dependences...
e ... and builds a graph of tasks

Dynamic Task Graph Building

for (j = 0; j < N; j++) {
POTRF (RW,A[31(31);
for (i = j+1; i < N; i++)
TRSM (RW,A[i][j], R,A[5]1[5D);
for (i = j+l; i < N; i++) {
SYRK (RW,A[i][i], R,A[i][j1);
for (k = j+1; k < i k+)
GEMM (RW,A[i] [k],
R,A[4][3], R,A[KI[31);
}
}

__wait__Q);

¢ Tasks are submitted asynchronously
at run-time

¢ Data references are annotated
 StarPU infers data dependences...

e ... and builds a graph of tasks

=

Dynamic Task Graph Building

for (j =0; j < N; j++) {
POTRF (RW,A[31[31);
for (i = j+l; i < N; i++)
TRSM (RW,A[i] (3], R,A[31051);
for (i = j+l; i < N; i++) {
SYRK (RW,A[i][i], R,A[i][31);
for (k = j+1; k < i; k++)
GEMM (RW,A[i][k],
R,A[LI (3], R,ALKI[GD);
b3
b

__wait__Q);
¢ Tasks are submitted asynchronously
at run-time
« Data references are annotated
¢ StarPU infers data dependences...
¢ ... and builds a graph of tasks

EOOM:

POTRF

TRSM

SYRK

Dynamic Task Graph Building

for (j = 0; j < N; j++) {
POTRF (RW,A[§1[j1);
for (i = j+1; i < Nj i++)
TRSM (RW,A[i] (5], R,A[51051);
for (i = j+1; i < Nj i++) {
SYRK (RW,A[i]1[i], R,A[i]1[3D);
for (k = j+1; k < ij kt+)
GEMM (RW,A[i] [k],
R,A[i1 (3], R,ALk]I[j]);
¥

__wait__QO;
e Tasks are submitted asynchronously
at run-time
« Data references are annotated
o StarPU infers data dependences...
e ... and builds a graph of tasks

=

Dynamic Task Graph Building

for (j = 0; j < N; j++) {
POTRF (RW,A[31[31);
for (i = j+1; i < N; i++)
TRSM (RW,A[i1(j], R,A[31051);
for (i = j+1; i < N; i++) {
SYRK (RW,A[i][i], R,A[i][j1);
for (k = j+1; k < i; kt+)
GEMM (RW,A[i] [x],
R,A[I (5], R,ALKI[31);
¥

__wait__Q);
¢ Tasks are submitted asynchronously
at run-time
¢ Data references are annotated
« StarPU infers data dependences...

¢ ... and builds a graph of tasks

=

Dynamic Task Graph Building

for (j = 0; j < N; j##) {
POTRF (RW,A[j1[j1);
for (i = j+i; i < Nj i++)
TRSM (RW,A[i][j], R,A[31051);
for (i = j+1; i < N; i++) {
SYRK (RW,A[i][i], R,A[i][j1);
for (k = j+1; k < i; k++)
GEMM (RW,A[i][k],
R,A[i1 (3], R,ALKI[31);
¥

__wait__Q;
¢ Tasks are submitted asynchronously
at run-time
 Data references are annotated
¢ StarPU infers data dependences...
¢ ... and builds a graph of tasks
¢ The graph of tasks is executed




Data Dependencies on Heterogeneous Nodes Data dependencies on distributed architectures

CPU GPUO

L] |

D Task <+ Node Mapping — -

* Provided by the

application node0 node? node2 | node3

« Can be altered
RaM dynamically

node3

Communications
¢ Inferred from the task
graph
- Dependencies

D o

CPU GPU1

* Automatic Isend and
Irecv calls

+ Handles dependencies

+ Handles scheduling (policy)

« Handles data consistency (MSI
protocol)

Showcase with QR factorization on heterogeneous node Showcase with Cholesky decomposition
Shared memory with accelerators Distributed memory with accelerators
100
T T e ==

oot dEHEE 2 5 200 Criops o

w b [ yd

o +12 CPUs
= s || 150 Glops K
5 J== g 1w
° 4 Lo = R
00 - =
- DGEMM peak
STF / Chameleon —&—
@ PTG / DPLASMA —e—
CPU-only DGEMM peak -
CPU-only STF / Chameleon -
T CPU-only PTG / DPLASMA -
s ; CPU-only MPI / Scal APACK -4
0 100000 200000 300000 400000
¢ QR decomposition on 16 CPUs (AMD) + 4 GPUs (C1060) Matrix order (N)

¢ 144 nodes of curie: 1152 cores + 288 Nvidia M2090

Goal: Separation of concerns Goal: Separation of concerns
o]0 |- ol o |-
2= |2 |- 2= |2 |-
o1 |- o1 |-
2 s ]2 | 2 s |z |

node0 nodel  node2

Main advantages:
1. Data distribution

node0 nodel node2 node3

Main advantages:
1. Data distribution ?
2. Algorithm §

H
13

POTRE

. POTRF
. TasM
SYRK D SYRK
Gemm . aemm

TRSM

EOOm




Goal: Separation of concerns Goal: Separation of concerns

ol ]o ] ol ]o ]
2 |s]:]s 2 ]s]2]s
ol ]o ] o]0 ]
c1-1: 1 Main advantages: 1.1
node0 nodel node2  noded 1. Data distribution node0 nodel node2  noded
. 2. Algorith
Main advantages: gorthm
3. Tasks distribution
1. Data distribution ? ?
2. Algorithm « Allow for simpler composition of
3. Tasks distribution . I algorithms (FActorization and solve, . o
Cholesky inversion, ... )
. TRSM * Allow to develop new algorithms without . RSM
the burden of the communications
D SvRK D SvRK
. =

Example of QR factorization

i dgeaf2 + diarft l
z I"qf‘l’ PN
Wi
 EEEITE |
ey
Advanced dense linear algebra algorithm 52
N7
&or2za | Matien Faverge - PRACE PLA - DLA 51
Tile QR Factorization Tile QR Factorization
First panel factorization and corresponding AR (e ;1 A4 (Hlles mgia
updates « Algorithm

- the same R factor as LAPACK (absolute values)

- different set of Householder reflectors

- different Q matrix

- different Q generation / application procedure
* Numerics

- same as LAPACK
* Performance

- comparable to vendor on few cores

- much better than vendor on many cores

VZZTI \...... covcrge - PRACE PLA - DLA

Z BN Mathicu Faverge - PRACE PLA - DLA 54



Communication Avoiding QR (CAQR) [Demmel et al.'08]

Tall and Skinny QR (TSQR)

PZZTEIN ..iicu Foverge - PRACE PLA_ DLA

Tile CAQR factorization

First panel factorization and corresponding updates (a & b).
(@), coneseonr core_ooRugR cone._oomon
N H:, N N
— L —
S S

(b) CoRe_DTSQRT coRe_orsssuoR CORE_DTSSSMQR

NEL] N N
L — L —

NE [ N N

PLTIZIN, ,..\ic. Foverge - PRACE PLA- DLA

Communication Avoiding QR (CAQR) [Demmel et al.'08]

Tall and Skinny QR (TSQR) CAQR

Tile CAQR factorization
First panel factorization and corresponding updates (c & d).

CORE_DTSQRT

=S =E
‘t: N N

@ CoRE_DTTQRT coRe_orTSsMoR CoRE DTSSR

L

CORE DTSSSMOR CORE_DTSSSMQR

_>ﬂ-

NN

HH
|

PLIT BN ,..\c. Foverse - PRACE PLA- DLA

Tile CAQR factorization

First panel factorization and corresponding updates.

[ZZXIN \.hicu Foverge - PRACE PLA - DLA

Tile CAQR factorization

Second panel factorization and corresponding updates.
@

N PARS
NG KNG
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Tile CAQR factorization

Final panel factorization.

———

Tile QR factorization performance (N=4480, M varies)

Theoretical Peak: 4358.4 GFlopis

3000
Scalapack ——
[BBD+10] -x---

[SLHD10] -+
2500 HQR o

2000

1500 E

Performance (GFlopls)

8
8

g
8

o 50000 100000 150000 200000 250000 300000
M (N=4,480)

°

2 Nehalem Xeon E5520 at 2.27GHz per node (8 cores)
* P=15, Q=4, MB=280
« Theoretical peak of 4.358 TFlop/s

PLITIN ,..iic. overge - PRACE PLA_DLA

Tile CAQR factorization

Final panel factorization.

P

Tile QR factorization performance (M=67200, N varies)

Theoretical Peak: 4358.4 GFlop/s

3000
3o i
2500 ?
3 *

g » -
2000 - n
8 ; [
2 ;
5 y L
$1500 [ —
§
g ;
s s
£ 1000
@ ¥ /

g
8

Scalapack ——
* 550110

[SLHD10] +-»-
¢ HOR o

0 10000 20000 30000 40000 50000 60000 70000
N (M=67,200)

* 2 Nehalem Xeon E5520 at 2.27GHz per node (8 cores)
* P=15, Q=4, MB=280
* Theoretical peak of 4.358 TFlop/s

conclusion

2422~ | Mathieu Faverge - PRACE PLA - DLA

Functionality coverage

« Covers classic four precisions (zcds):

double complex, single complex, double real, single real
« All BLAS 3 subroutines (CPU or GPU):

GEMM, TRSM, TRMM, HEMM/SYMM, HERK/SYRK, HER2K /SYR2K
* Some auxiliary subroutines:

- Matrix generation: random general (PLRNT), hermitian (PLGHE),
symmetric (PLGSY)

- Norms computation: Max, Infinite, One, Frobenius

- A few extra functions: LASET, LACPY, GEADD, TRADD

« Data distribution is 2D Block Cyclic in tile layout

[LZXIN e Foverge -




Functionality coverage Functionality under development

Cholesky (A= LL")

Factorization, solve, inverse (GPU: Cuda, MAGMA, KBLAS) ¢ Two-sided factorization

« LU factorization (no pivoting): Eigenvalue and Singular value problems
Factorization, solve (GPU: Cuda, MAGMA) LU factorization with pivoting

* QR factorization: ¢ Map functionality
Factorization, solve, application and generation of Q (GPU on updates

¢ LATMS-like matrix generators

only) )
* QDWH algorithm (On top of Chameleon)

Complex symmetric factorization (Specific to CEA: A = LL")
Factorization, solve, inverse (GPU: Cuda, MAGMA, KBLAS)

2] Mathicu Faverge - PRACE 2] Mathicu Faverge - PRACE

Other examples of dense linear algebra libraries

« DPLASMA (PaRSEC)

- ICL, University of Tennessee

- Use Parameterized Task Graph (PTG) programming model
¢ LibFlame, Elemental

- University of Austin, TACC
- Georgia Tech. ThankS !

« MAGMA

LR Mathieu Faverge - PRACE
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Sparse Linear Algebra

PRACE PLA, Ostrava, Czech Republic

Many thanks to Patrick Amestoy, Abdou Guermouche, Pascal Henon,

. and Jean-Yves |I'Excellent for their large contribution to these slides.
Mathieu Faverge

February 2nd, 2017

Sparse Linear Algebra Mathieu Faverge Sparse Linear Algebra EN

Introduc mputations Introduction to Sp: mputations

line A selection of references

» Duff, Erisman and Reid, Direct methods for Sparse Matrices,
Clarenton Press, Oxford 1986.

Dongarra, Duff, Sorensen and H. A. van der Vorst, Solving Linear
Systems on Vector and Shared Memory Computers, SIAM, 1991.
. Saad, Yousef, Iterative methods for sparse linear systems (2nd

* Sparse matrices edition), SIAM press, 2003

+ Gaussian elimination

+ Symmetric matrices and graphs
+ The elimination graph model

v

1. Introduction to Sparse Matrix Computations
+ Motivation and main issues

v

v

Gilbert and Liu, Elimination structures for unsymmetric sparse LU
factors, SIMAX, 1993.

Liu, The role of elimination trees in sparse factorization, SIMAX,
1990.

Heath and E. Ng and B. W. Peyton, Parallel Algorithms for Sparse
Linear Systems, SIAM review 1991.

v

v

Sparse Linear Algebra 3 Mathieu Sparse Linear Algebra

R e A R el Motivation and main issues R e S el Motivation and main issues

Qutline Motivations

* solution of linear systems of equations — key algorithmic kernel

Continuous problem
1
1. Introduction to Sparse Matrix Computations Discretization
+ Motivation and main issues
Solution of a linear system Az =b

* Main parameters:
> Numerical properties of the linear system (symmetry, pos. definite,
conditioning, ...)
» Size and structure:
* Large (> 1000000 x 1000000 ?), square/rectangular
* Dense or sparse (structured / unstructured)
* Target computer (sequential/parallel)

— Algorithmic choices are critical

Sparse Linear Algebra

Mathieu Faverge Sparse Linear Algebra Mathie




Introduction to Sparse T Motivation and main issues [ Il Motivation and main issues

Motivations for designing efficient algorithms Difficulties

* Access to data :
» Computer : complex memory hierarchy (registers, multilevel cache,
main memory (shared or distributed), disk)
> Sparse matrix : large irregular dynamic data structures.

* Time-critical applications — Exploit the locality of references to data on the computer

* Solve larger problems (design algorithms providing such locality)

* Decrease elapsed time (parallelism ?) * Efficiency (time and memory)

* Minimize cost of computations (time, memory) » Number of operations and memory depend very much on the
algorithm used and on the numerical and structural properties of
the problem.

> The algorithm depends on the target computer (vector, scalar,
shared, distributed, clusters of Symmetric Multi-Processors (SMP),
GRID).

— Algorithmic choices are critical

Sparse Linear Algebra 7 | Mathieu Faverge Sparse Linear Algebra

Introduction to Sparse Matrix Computations [T UEIIIe=s Introduction to Sparse Matrix Computations [T SUEeIoes

QOutline Sparse matrices

Example:
3z + 2 = 5
11 ion to Sparse Matrix C i S
. Introduction to Sparse Matrix Computations 2 1 + 323 = 0
- Sparse matrices can be represented as
Ax = b,
32 0 1 5
where A = 02 -5 |, x= To ,and b = 1
2 0 3 z3 0
Sparse matrix: only nonzeros are stored.
Sparse Linear Algebra 9 Mathieu Sparse Linear Algebra 10
Sparse matrices a Sparse matrices
Sparse matrix 7 actorization process (direct method)
Original matrix Solution of Ax = b
S * A is unsymmetric :
N . » A is factorized as: A = LU, where
0N« \‘ L is a lower triangular matrix, and
000 \‘\\\ U is an upper triangular matrix.
™ N \\l > Forward-backward substitution: Ly = b then Ux =y
Matrix dwt_592.rua (N=592, NZ=5104);
Structural analysis of a submarine
Sparse Linear Algebra Mathie Sparse Linear Algebra 12




Introduction to Sparse Matrix Computations [l RNEIHTS Introduction to Sparse Matrix Computations [l RNEILTS

Factorization process (direct method) Factorization process (direct method)

Solution of Ax = b Solution of Ax = b
* A is unsymmetric : * A is unsymmetric :
» A is factorized as: A = LU, where » A is factorized as: A = LU, where
L is a lower triangular matrix, and L is a lower triangular matrix, and
U is an upper triangular matrix. U is an upper triangular matrix.
» Forward-backward substitution: Ly = b then Ux =y » Forward-backward substitution: Ly = b then Ux =y
* A is symmetric: * A is symmetric:
» A=LDL" or LL" » A=LDL" or LL"

* A is rectangular m x n with m > n and min, |Ax — b2 :
» A = QR where Q is orthogonal (Q~* = Q" and R is triangular).
> Solve: y =Q"b then Rx =y

Sparse Linear Algebra Mathieu Faverge Sparse Linear Algebra 12

Introduction to Sparse Matrix Computations [T UEIIIe=s Introduction to Sparse Matrix Computations [T SUEeIoes

Difficulties Typical test problems:

* Only non-zero values are stored

* Factors L and U have far more nonzeros than A

* Data structures are complex

* Computations are only a small portion of the code (the rest is
data manipulation)

* Memory size is a limiting factor

— out-of-core solvers BMW car body,
227,362 unknowns,
5,757,996 nonzeros, Size of factors: 51.1 million entries
MSC.Software Number of operations: 44.9 x10°
Sparse Linear Algebra 3 Mathieu Sparse Linear Algebra

Sparse matrices Introduction to Sp: STl Sparse matrices

Introduction to Sparse Matrix Computations

Typical test problems: Sources of parallelism

Several levels of parallelism can be exploited:
* At problem level: problem can de decomposed into sub-problems
(e.g. domain decomposition)
* At matrix level arising from its sparse structure
* At submatrix level within dense linear algebra computations
(parallel BLAS, ...)
BMW crankshaft,
148,770 unknowns,
5,396,386 nonzeros, Size of factors: 97.2 million entries
MSC.Software Number of operations: 127.9 x10°

Sparse Linear Algebra

Mathieu Faverge Sparse Linear Algebra Mathie



Introduction to Sparse Matrix Computations [l RNEIHTS [l Sparse matrices

Data structure for sparse matrices Data formats for a general sparse matrix A

‘What needs to be represented ‘

) * Assembled matrices: MxN matrix A with NNZ nonzeros.
* Storage scheme depends on the pattern of the matrix and on the * Elemental matrices (unassembled): MxN matrix A with NELT
type of access required e :

. . elements.
> band or variable-band matrices

“block bordered” or block tridiagonal matrices * Arithmetic: Real (4 or 8 bytes) or complex (8 or 16 bytes)
general matrix

* Symmetric (or Hermitian)
row, column or diagonal access T et

— store only part of the data.
* Distributed format ?

>
>
>

* Duplicate entries and/or out-of-range values ?

Sparse Linear Algebra Mathieu Faverge Sparse Linear Algebra

Introduction to Sparse Matrix Computations [T uRItE

Introduction to Sparse Matrix Computations [Tt Ut

Classical Data Formats for Assembled Matrices Classical Data Formats for Assembled Matrices
* Example of a 3x3 matrix with NNZ=5 nonzeros * Example of a 3x3 matrix with NNZ=5 nonzeros
1 2 3 1 2 3
1 all 1 all
2 a22| a23 2 a22| a23
3 a3 a33 3| a3 a33
* Coordinate format * Coordinate format
IC [1:NNZ] = 1 3 2 2 3 IC [1:NNZ] = 1 3 2 2 3
JC [I:NNZ =1 1 2 3 3 JC [I:NNZ =1 1 2 3 3
VAL [1:NNZ] = a1 a3 a2 a3 ass VAL [1:NNZ] = a1 a3 a2 a3 ass
* Compressed Sparse Column (CSC) format
IA- [I:NNZ] = 1 3 2 2 3
VAL [1:NNZ] = an a3 a a3 a33
JA [I:N+1 =1 3 4 6

column J is stored in IA and VAL at indices JA(J)...JA(J+1)-1

Mathieu

Sparse Linear Algebra Sparse Linear Algebra
Intr Comp Wl Sparse matrices Int Sparse matrices
Classical Data Formats for Assembled Matrices Sparse Matrix-vector products
* Example of a 3x3 matrix with NNZ=5 nonzeros Assume we want to comute Y < AX.
1 2 3
' o Various algorithms for matrix-vector product depending on sparse ‘
9 = matrix format:
3| a3l a33 * Coordinate format:
* Coordinate format Y(1:N) =0
IC 1:NNZ] = 1 3 2 2 3 DO i=1,NNZ . . i
ic 1:NNZ] = 1 1 2 3 3 Y(IC(i)) = Y(IC(i)) + VAL(i) = X(JC(i))
VAL [1:NNZ| = an az; az a3 ass ENDDO
* Compressed Sparse Column (CSC) format * CSC format:
IA- [1:NNZ] = 1 3 2 2 3
VAL [1:NNZ] = a1 as ag a dass
A [:N+1 =1 3 4 6

column J is stored in IA and VAL at indices JA(J)...JA(J+1)-1
* Compressed Sparse Row (CSR) format:
Similar to CSC, but row by row

Spare Linar Al

Sparse Linear Algebra 20



Introduction to Sparse Matrix Computations [l RNEIHTS Tl Sparse matrices

File storage: Rutherford-Boein

Sparse Matrix-vector products

Assume we want to comute Y < AX.
Various algorithms for matrix-vector product depending on sparse

matrix format: * Standard ASCII format for files
* Header + Data (CSC format). key xyz:
* Coordinate format: > x=[rcp] (real, complex, pattern)
Y(1:N) =0 > y=[suhzr] (sym., uns., herm., skew sym., rectang.)
DO i=1,NNz > z=[ae| (assembled, elemental)
Y(IC(i)) = Y(IC(i)) + VAL(i) = X(JC(i)) > ex: M_T1.RSA, SHIP003.RSE
* Supplementary files: right-hand-sides, solution, permutations. . .
* CSC format: * Canonical format introduced to guarantee a unique representation
Y(1:N) =0 (order of entries in each column, no duplicates).
DOD(J) II;TA(J) JA(J+1)-1 Format description can be found at :
Y(IA(1)) = Y(IA(1)) + VAL(1)*X(J) http://math.nist.gov/MatrixMarket/formats.html
ENDDO
ENDDO

Spare Liner Al N T — Spare Liner Al

Sparse matrices

File storage: Ruther

DNV-Ex 1 : Tubular joint-1999-01-17

w1
1733710 o758 492558 1231394 0
rsa o757 97578 4925674 0
(1018) (1018) (3026.16)
9 9% 142 187 231 214 346 417 487
556 624 691 763 834 904 973 1041 1108 1180
1251 1321 1390 1458 1525 1573 1620 1666 1711 1755 . - .
1798 1870 1941 2011 2080 2148 2215 2287 2358 2428 1. Introduction to Sparse Matrix Computations
2497 2565 2632 2704 2775 2845 2014 2982 3049 3115
1 2 3 4 5 6 7 8 9 10
11 12 19 50 51 52 53 54 55 56
57 58 59 60 7 68 69 70 7 72 ° i iminati
223 224 25 226 227 228 220 230 231 232 Gaussian elimination
233 23 433 434 435 436 437 438 2 3
4 5 6 7 8 9 10 11 12 a9
50 51 52 53 54 55 56 57 58 59
-0 0. o. 11
0.337208 -0.48514301 108408 0.
o1 -o0. 110E+09  -0.7113520895891850E+10
0.1813048723097540E+08  0.2955124446119170E+07  ~0.2606931100955540E+07
o. 19180E407  -0.237 130E+08  -0.1105
o. 0. -0.1951280618776270E407
0.4498200951891750E408 0. 13
0.981. 108408 0.3881 -0.4624480! +08
ST

Sparse Linear Algebra 23

Gaussian elimination

Gaussian eliminati lation with A = LU factorization

A=AD b=bD AWx =pD):. * One step of Gaussian elimination can be written:
ail a1z ais 1 b1 AUH']) = L(k)A(k) , with
a1 azy a3 o =1 b 2+ 2—1xazi /a1

azl  azz  as3 3 b3 34 3—1xasz /a1 al®)
LF = 1 and I, = 5.
AR x = p2) —ley1ac Qpge
an a1z aiz 1 by . . ° a
0 afy a%? T | = b%z) b5 = by — aziby fars ... i ; o
0 o afd z3 b2 a{? = ags — azrarz/an - . * Then, AW =U =L LA, which gives
1 0
Finally A®x =b® with L = [LO]71 [Le-D]-1 = :
"B ()< Y
2 ol zz | = o . . .
o o) 2 % @ _ @ 2 (2, © * In dense codes, entries of L and U overwrite entries of A.
0 0 agy 3 by A(33) = %(33) ~ %32 323 fazy - ) . . = . (k)
G 0 O * Furthermore, if A is symmetric, | A = LDL" | with di; = a;,:
g q B . . +1) 5 a;ay :
Typical Gaussian elimination step k : |a;; " = a;;" — lu(k)f A=LU = At = UL implies (U)(L!)~' = L~'U* = D diagonal and
kk
U = DL, thus A = L(DL!) = LDL!
Sparse Linear Algebra
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[CRTETl Gaussian elimination QLUEECIN  Gaussian elimination

Factorisation LU (version Kl

Gaussian elimination and sparsity

Step k of LU factorization (ax pivot):
* For i > k compute ljp = ag/are (= afy),
* Fori>k,j>k

1 fork=1ton—1do
, Qik X Ak . J
a;=aj————— 2 fori=Fk+1 ton do —
Akk .
- 3 ik = ik / Opel; .
P 4 for j =k +1 ton do
aj; = aij — lip X ag; 4 — o
5 Qij = Qi — Qg * Qg
* If a;, # 0 et ag; # 0 then a;ﬁé() 6 end = s
* If a;; was zero — its non-zero value must be stored 7 end
j ko 8 end
k
i
fill-in
Sparse Linear Algebra Sparse Linear Algebra Ea

Introductio Gaussian elimination

Example

TNl Gaussian elimination

(version KlJ)

* Original matrix

1 fork=1ton—1do
2 for j =k +1 ton do
3 t: [L]'k/akk; X X X X X
4 for i = j ton do L X X
5 \ Qij 1= Qij — ik * 1 l X X
6 end Hpipt X X
7 ajp = t;; i X X
8 end . . A
o end * Matrix is full after the first step of elimination
* After reordering the matrix (1st row and column < last row and
column)
Sparse Linear Algebra 28 Mathieu Sparse Linear Algebra 29
Gaussian elimination Gaussian elimination
Example Efficient implementation of sparse solvers
* Indirect addressing is often used in sparse calculations: e.g. sparse
X X SAXPY
X X doi=1,m
X X A(C ind(i) ) = A(C ind(i) ) + alpha * w( i )
X X enddo
X X X X X * Even if manufacturers provide hardware for improving indirect
addressing
* No fill-in > It penalizes the performance
* Ordering the variables has a strong impact on * Switching to dense calculations as soon as the matrix is not sparse
> the fill-in enough

» the number of operations

Sparse Linear Algebra

Mathieu Faverge Sparse Linear Algebra 30 Mathie




I T 5 etric matrices and graphs

QOutline

1. Introduction to Sparse Matrix Computations * Assumptions: A symmetric and pivots are chosen on the diagonal

* Structure of A symmetric represented by the graph G = (V, E)

> Vertices are associated to columns: V = {1,...,n}
. _ > Edges E are defined by: (i,j) € E <+ a;; #0
+ Symmetric matrices and graphs > G undirected (symmetry of A)

Sparse Linear Algebra Mathieu Faverge Sparse Linear Algebra

mputations Introductio

metric matrices and graphs

Symmetric matrices and graphs The elimination graph model

line

* Remarks:

> Number of nonzeros in column j = |Adj(j)|
> Symmetric permutation = renumbering the graph

L s s a4 s 1. Introduction to Sparse Matrix Computations

XX X 1
: XX XX 3
’ x < ! The eliminati h |
LXX % . e elimination graph mode
s X X X 2
Symmetric matrix Corresponding graph
Sparse Linear Algebra 33 Mathieu Sparse Linear Algebra

[ R Tl The elimination graph model

[ e e I R e Tl The elimination graph model

Introducing the filled graph G(A) Modeling elimination by reachable sets

% Let F = L + LT be the filled matrix, * The fill edge (v4,v6) is due to the path (vs,v2,v6) in Gi.
and G(F) the filled graph of A denoted by G*(A). However (v2, vg) originates from the path (v2, v1, vg) in Go.

* Lemma (Parter 1961) : (v;,v;) € G if and only if (v;,v;) € G or * Thus the path (v4,.r2.2v1,v5) in the original graph is in fact
3k < min(i, ) such that (v;, v) € G* and (v, v;) € G+ responsible of the fill in edge (v4, v6).

* |llustration :

1x X 1x X
X2 Xx ot X2 XX o+
X3+ X+ X3+ X+
X+d4t+ X+ 4+ +
X+ 5 X X+ 5 X
X+ +t+X6 X+ t+X6
+
GA)=G(® F=L+L" F=L+L
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Tl e ciimination graph model e T e ciimination graph model

Fill-in theorem Exercise

Find the fill-in terms.

5 o 2
) ; f
. 4
Theorem
Any A;j = 0 will become a non-null entry L;; or Uj; # 0 in A= L.U if "
and only if it exists a path in GA(V, E) from vertex i to vertex j that 2
only goes through vertices with a lower number than ¢ and j. L 3|
.
s
f
5
9
Matrice 3x3 : lere numerotation Matrice 3x3 : 2eme numerotation
Sparse Linear Algebra Sparse Linear Algebra

A first definiti
S, R,
x o« x ® -« x +
. g . xx
i . as| % e xx | @ e e
* A spanning tree of a connected graph G is a subgraph T" of G 5 B0 ® ®:r
such that if there is a path in G between i and j then there exists Toag” e xx *@@x @1 x
) o x xx  x i ¥ Xou
a path between i and j in T -
o

* Let A be a symmetric positive-definite matrix, A = LL" its
Cholesky factorization, and G*(A) its filled graph (graph of ol
F=L+L7).

Definition
The elimination tree of A is a spanning tree of GT(A) satisfying the

relation PARENT]j] = min{i > j|li; # 0}. 0
o’
T(A)
Sparse Linear Algebra 39 Mathieu Sparse Linear Algebra 40
e e e elimination graph model e e e elimination graph model
Properties of the elimination tree Directed filled graph and its transitive reduction

* | Another perspective | also leads to the elimination tree
j i 10
1 3 0
@O=0=O g
8 ~\& 6
OO

L

* Dependency between columns of L :

1. Column i > j depends on column j iff I;; # 0
2. Use a directed graph to express this dependency Directed filled graph Transitive reduction ©
3. Simplify redundant dependencies (transitive reduction in graph
theory)
* The transitive reduction of the directed filled graph gives the
elimination tree structure

Sprse Liner Alebr Sprse Liner Alebrs



Introduction to Spars [CXTIEITIE The elimination graph model

Major steps for solving sparse linear systems

There are 4 steps :

1. Reordering :find a (symmetric) permutation P such that it
minimizes fill-in in the factorization of P.A.Pt. Furthermore, in a
parallel context, it should create as much as possible independent
computation tasks.

2. Symbolic factorization : this step aims at computing the 2. Ordering sparse matrices
non-zeros structure of the factors before the actual numeric - Objectives/Outline
factorization. It avoids to manage a costly dynamic structure and - Impact of fill reduction algorithm on the shape of the tree

allows to do some load-balancing.

3. Numerical factorization : compute the factorization by using the
preallocated structure from the symbolic factorization.

4. Triangular solve : obtain the solution of A.x = L.(U.x) =b.
Forward solve L.y = b then a backward solve U.x = y. In some
cases, it is required to use iterative refinements to increase the
accuracy of the solution.

Sparse Linear Algebra Mathieu Faverge Sparse Linear Algebra

Ordering sparse mat: Objectives/Outline e Sl Objectives/Outline

Three main classes of methods for minimizing fill-in during
factorization

2. Ordering sparse matrices * Selection of next best pivot (e. g. : minimum degree for
- Objectives/Outline symmetric matrices).

* Cuthill-McKee (block tridiagonal matrix)

* Nested dissections ( “block bordered” matrix).

Sparse Linear Algebra 45 Mathieu Sparse Linear Algebra 46

[ el Objectives/Outline

Cuthill-McKee and Reverse Cuthill-McKee

Objectives/Outline

hill-McKee algorithm

Consider the matrix:
* Goal: reduce the profile/bandwidth of the matrix

(the fill is restricted to the band structure)
A= B & & * Level sets (such as Breadth First Search) are built from the vertex

8 B
8 B
8
&

* v v of minimum degree (priority to the vertex of smallest number)
oo We get: S = {2}, 5, = {1}, 95 = {4,5}, 54 = {3,6} and thus
the ordering 2, 1, 4, 5, 3, 6.
The corresponding graph is The reordered matrix is:

S
Il
8 8
SRS
B8
B
S
&

8
8

Sprse Liner Alebr Sprse Liner Alebrs



Ordering =l Objectives/Outline Ordering Objectives/Outline

Reverse Cuthill-McKee [Hustration: Reverse Cuthill-McKee on matrix dwt_592.rua

Harwell-Boeing matrix: dwt_592.rua, structural computing on a

* The ordering is the reverse of that obtained using Cuthill-McKee submarine. NZ(LU factors)=58202

i.e. on the example {6,3,5,4,1,2}

B Original matrix Factorized matrix
* The reordered matrix is:
z z 100) 100}
xT x x
—_— o - .
A=
xT T xT xT
- o
x x T xT
r T 400] 00|
* More efficient than Cuthill-McKee at reducing the envelop of the o o
matrix.
B R NN T
Mathieu e Sparse Linear Algebra 49 Mathieu Faverge Sparse Linear Algebra 50

[ L eiell Objectives/Outline [ e il Objectives/Outline

Ilustration: Reverse Cuthill-McKee on matrix dwt_592.rua Nested Dissection

NZ(LU factors)=16924

Recursive approach based on graph partitioning.

Permuted matrix Factorized permuted matrix
(RCM) Graph partitioning Permuted matrix
AN

300] 2 300]
o P

W E W T E B R

= = et
Sparse Linear Algebra 50 Sparse Linear Algebra

Objectives/Outline

[ el Objectives/Outline

Nested Dissection : Algorithm Ordering|: efficient strategy

G(V,E) is the adjacency graph of A (V = vertices, E = edges).
In the recursive algorithm k is a global variable initialized to n =

card(G). ) The modern software (e.g.

It represented the next number to be given. METIS http://glaros.dtc.umn.edu/gkhome/views/metis/ or
1 NestedDissection(G) : ; SCOTCH http://www.labri.fr/perso/pelegrin/scotch/) are
2 if G non dissecable t_hen based on on the nested dissection algorithm but :
g Number the vertices of V from k to k := k — V| +1; * they use hybrid ordering ND + local heuristics (e.g. Minimum
gend degree) ;
5 else . . ;
a Find a partition V = A{JBJ S with S a separator of G; * they use multilevel approaches : gra_ph coarsening, reordering on
7 Number the vertices of S from k to k:=k — |S|+1; the reduced graph, graph uncoarsening.
8 NestedDissection(G(A)) : ;
9 NestedDissection(G(B)) : ;

10 end

Sparse Linear Algebra
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Impact of fill reduction algorithm on the shape of the tree Ordering sparse ma Impact of fll reduction algorithm on the shape of the tree

Impact of fill reduction on the shape of the

Reordénng Shape of the tree observations
technique
* Deep well-balanced
a . AMD * Large frontal matrices
2. Ordering sparse matrices -
Impact of fill reduction algorithm on the shape of the tree
* Very deep unbalanced
AME * Small frontal matrices

Figure: Shape of the trees resulting from various reordering techniques.

Spare Liner Al Spare Liner Al

Impact of fill reduction algorithm on the shape of the tree

Impact of fill reduction on the shape of the tree (

Reosrine Shape of the tr bservation g
technique ape of the tree observations Suppose that each node in the tree corresponds to a task that:
- consumes temporary data from the children,
+ decp unbalanced - produces temporary data, that is passed to the parent node.
PORD

* Small frontal matrices
* Wide tree
» Good parallelism

* Very wide y bock
SCOTCH @ well-balanced > Many temporary blocks to store
* Large frontal matrices > Large memory usage

* Deep tree
* Wide well-balanced > Less parallelism
* Smaller frontal > Smaller memory usage
METIS @ matrices (than
SCOTCH)
Sparse Linear Algebra 56 Mathieu Sparse Linear Algebra 57

Symboll

Symbolic factorization : column algorithm

3. Symbolic factorization 3. Symbolic factorization
Symbolic factorization : column algorithm - Symbolic factorization : column algorithm
+ Symbolic factorization : column-block algorithm

Sprse Liner Alebr Sprse Liner Alebrs



Symbolic factorization : column algorithm : column algorithm

Symbolic factorization

The goal of this algorithm is to build the non-zero pattern of L (and

For a sparse matrix A we will denote by:
U). We will consider the symmetric case (graph of A + A? if A has an > v

unsymmetric NZ pattern). In this case the symbolic factorization is Definition
really cheaper than the factorization algorithm. Row(As) = {k < i/As, # 0}, fori=1..n
Fundamental property Col(Avj) = {k > j/Ay; # 0}, for j =1.n

. L . L We will denote by SRow and SCol the sorted set.
The symbolic factorization relies on the elimination tree of A.

Mathieu e Sparse Linear Algebra Mathieu Faverge Sparse Linear Algebra

Symbolic factorization

Symbolic factorization :

Symbolic factorization : column algorithm DRl Symbolic factorization : column algorithm

Algorithm (2/3

Symbolic factorization : Algorithm (3/3)

1 forj=1ton—1do
2 Build SCol(A,;) i At the end of algorithm we have :
3 end R SCol(A,;) for j=1..n
4 ; The algorithm uses two loops :
5 for j=1 tQ n—1do Complexity
6 m; := first elt of SCol(A,;) ; . - —
7 SCol(Aum,) = ’ The complexity of the symbolic factorization is in O(||E*||) the
Mergezgléol(A ),SCol(Ayj) — mj) ; number of edges in the elimination graph.
wm;)s *j 3)
8 end
Sparse Linear Algebra 62 Sparse Linear Algebra 63
Symbolic Zation Symbolic factorization : column-block algorithm Symbolic io Symbolic factorization : column-block algorithm

Outline Block Symbolic factorization

The problem in the symbolic factorization is the memory needs.
It is of the same order than the factorization.
In fact, we can use the partition deduced from the ordering to compute

3. Symbolic factorization N
Y a block structure of the matrix.

+ Symbolic factorization : column-block algorithm Definition

A supernode (or supervariable) is a set of contiguous columns in the
factors L that share essentially the same sparsity structure.

Sprse Liner Alebr
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BLEIREEEZEENN  Symbolic factorization @ column-block algorithm BZLEIR TG ZUENI  Symbolic factorization @ column-block algorithm

Quotient graph and block elimination tree Quotient graph and block elimination tree

R
XD
[X[xR
[Xx[xbe BT L TS X Termes non nuls dans A
R Termesde remplissag dans L R Teamesde remplissage dans L
S 2
x[x]
X [X]|X X
XXX X[ R] R, * 00N
XX [X[X] R| RIX R
I N | FN
| X[X X [ X
/ KK X[X]
s !
{ X { T XD
1\ KK (XX
T [X[X[X] x[x[x
= XIX[X[XR[R ] © = XX IXIXTRIR R ©
X[X[X[X[R[R]X] XXX [X[R[R]X]
X[R[X R RIX[R[X[ ] } R[R X[R[X R RIX| R[X] R} R[R|
X[x[X] XX ’IX[ = X[r[XR ESOIES XIX[R[X&] X[e[XR
X IRR[RR[X] | [X[x[X #XKK}X‘R\R T X X[l [ X[ R[XIR[=[R[X[r[x]
X[ R[X[ /] X[ R X[’ [X[® | ] R] [ HENE X[ [X[R[X[R[®]
QRED XTw xR ] ] RLRIR[RIX]% 1 XTI Rl T T T [X[r[X[r[=[xlx]
G*/ P Arbre d'éliminatic G*/ P Arbre d'éliminatic
Sparse Linear Algebra Mathieu Faverge Sparse Linear Algebra 66
DTl Symbolic factorization : column-block algorithm DT Symbolic factorization : column-block algorithm

Quotient graph and block elimination tree Block Symbolic factorization : Algo

1 fork=1toN —1do
The block symbolic factorization relies on 2 ‘ Eit] 2, = i (fsi &7 Giloes Mdamels
3 end
Property of the elimination graph 4
N . 5 fork=1to N —1do
Q(G,P)"=Q(G", P) 6 my, :=n(k,1) (first extra-diagonal

block in k) ;
Imk = Merge(]mkv (Ik - [7nk])> i
8 end

~

Sparse Linear Algebra 67

Sparse Linear Algebra

Symbolic factorization : column-block algorithm BTl Symbolic factorization : column-block algorithm

Block Symbolic factorization : Algo Block Symbolic factorization : Algo

1 fork=1toN—1do L 1 fork=1toN—1do L
2 Build I, = the list of block intervals 2 Build I, = the list of block intervals
3 end 3 end
4; 4
s fork=1to N —1do 5 fork=1to N —1do
6 my, == n(k, 1) (first extra-diagonal 6 my, = n(k, 1) (first extra-diagonal
block in k) ; block in k) ;
7 Iy, = Merge(Ipn,, (I — [mx])) ; 7 Iy, = Merge(Ipm,, (I, — [mx])) ;
8 end 8 end

Mathieu Faverge Sparse Linear Algebra | 65 | Mathie
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INVENTORS FOR THE DIGITAL WORLD

PASTIX: A sparse direct solver based on
super-nodal method

PATC Parallel Linear Algebra @ IT4Innovations, February 2nd,
2017

M. Faverge

Introduction

Lozzin | . Faverge - paTC PLA 2017 - PasT:

Different solving methods

Problem dependent efficiency/controlled
accuracy

Robust/accurate for general problems

.
* BLAS- based implementation o iy

© Memory/CPU prohibitive for large 3D problems nly mat-vec required, fine grain computation
. Less memory consumption, possible trade-off

Limited parallel scalability with CPU

JATIZIN, |, coyorqe - patC LA

Outline
Introduction
Sparse direct factorization
Distributed architectures
Communication schemes
Data distribution
Heterogeneous architectures and runtime
systems
ILU(k) Factorization
H-Matrix compression
Summary and future works

Motivations

Solve linear systems of equations — key algorithmic kernel

audikw_1 matrix (University of Florida collection)

Main parameters

@ &r2Za—|| W Faverge - PATC PLA 2017 - PasTIX 677



Major steps for solving sparse linear systems Ordering

A, bﬁ Analysis }—‘—~)| Facto W Solve X Goals
« reduce fill-in during factorization

« increase parallelism

Direct methods steps

Graph theory
Steps of the factorization « Uses graph representation: 3(i,j) € G < a; # 0

1. Analysis (on the graph of the matrix): « Characterization theorem:

1.1 Ordering: minimize fill-in while maximizing parallelism

1.2 Symbolic factorization: predict the structure of the factorized matrix (i,j))e G

1.3 Data distribution: optimize the data distribution to accelerate the factorization Ij#0& or
2. Numerical factorization: decomposition of Ainto LU, LLT, or LDLT Japath (j, ki, ..., ki, i) such that Vp € [1, 1], k, < min(i, j)
3. Triangular systems solves: the solution x is computed by means of forward

and backward substitutions

lorion . | Faverge - PATC PLA 2017 - PASTIX @ looion . | Faverge - PATC PLA 2017 - PASTIX
Ordering example Nested dissection: a widely used algorithm in direct solvers
123 45 123 45 ‘?
1 3 1 3 4
: ! : (71 | .
3 21— —— 3 2@4 H Algorithm
: ‘a : & ! ~) ? 1. Find a list of vertices separating the graph
1 into two pieces
A G L G* T . . . P
2. Number this separator with higher indices
Without reordering 3. lterate on sub-graphs
123 45 123 45 Advantages
1 3 1 3
2 | 2 | 5 « There is no fill-in between two separated
j 2,‘574_,3 275‘;74 P graphs
4 3 1
5 1 5 1 « The two corresponding sub-parts of the
4 a L o T matrix can be computed independently

With reordering

PZITIN \, r..cigc —PaTC PLA 2017 - PASTIX @ PLITIN , coverqe  PaTG PLA 2017 - PASTIX

Symbolic factorization Symbolic factorization

The goal of this algorithm is to build the non-zero pattern of L (and U). We will
consider the symmetric case (graph of A+ A’ if A has an unsymmetric pattern).
In this case the symbolic factorization is really cheaper than the factorization
algorithm.

2Adjacency graph (G)7

Fundamental property
The symbolic factorization relies on the elimination tree of A.

1
1
1
I
Quotient graph (G*/P).  Elimination tree (T). Factorized matrix (L)

Columns are blocked into supernodes on which BLAS can be executed. 3

PZZTZIN . Foverge - PATC PLA 2017 - PASTIX.

PZZTZIN . Foverge - PATC PLA 2017 - PASTIX




Quotient graph and block elimination tree Supernodal methods

Property of the elimination graph : Q(G, P)* = Q(G*, P)
Definition

A supernode (or supervariable) is a set of contiguous columns in the factors L
that share essentially the same sparsity structure.

« All algorithms (ordering, symbolic factor., factor., solve) generalized to
block versions.

« Use of efficient matrix-matrix kernels (improve cache usage).

« Same concept as supervariables for elimination tree/minimum degree

ordering.
« Supernodes and pivoting: pivoting inside a supernode does not increase
fill-in.
X: Non-zero terms of A, R: Fill-in terms of L.
i | Faverge - PATC PLA 2017 - PASTIX @ looion . | Faverge - PATC PLA 2017 - PASTIX
Numerical factorization: super-nodal method Numerical factorization: multi-frontal method

Algorithm 1: Right looking blocked sequen-

tial factorization: A = LLT. W
for k = 1to N do S

/* Factorize the column block */
Factorize Ay in Lix-Lf 4
Solve L(Wfbk).k-LkT.k = Al-by.k
/* Trailling supernodes updates

*/
for j = 1to b, do

for i = 1to bx do

T
| Ao = Ano — Lok
nd

end
end

PITIN \, r..crc PaTC PLA 2017 - PASTIX S @ PAZTTIN \, r..cigc paTCPLAZ017 - PASTIX

Numerical factorization: multi-frontal method Numerical factorization: multi-frontal method

PZZTZIN . Foverge - PATC PLA 2017 - PASTIX PZZTZIN . Foverge - PATC PLA 2017 - PASTIX.




Numerical factorization: multi-frontal method Numerical factorization: multi-frontal method

PLTIZIN \, r.vcrqe paTC PLA 2017~ PASTIX - PATIZIN, \, r.vcrqe patC PLA2017- PASTIX

Numerical factorization: multi-frontal method

Distributed architectures

M. Faverge — PATC PLA 2017 - PASTIX

Distributed matrix example (Fan-out)

Fan-out
1. Column blocks are sent to target block’s owner
2. Target block’s owner performs the update

Communication schemes

&z2Zze | . Faverge - PATC PLA 2017 - PasTIX Faverge - PATC PLA 2017 - PASTIX



Distributed matrix example (Fan-out)

Fan-out
1. Column blocks are sent to target block’s owner
2. Target block’s owner performs the update

VZZIZIM |, :..coqc  PATC PLA 2017 - PASTIX

Distributed matrix example (Fan-out)

Fan-out
1. Column blocks are sent to target block’s owner
2. Target block’s owner performs the update

YZZIZIM |, :..c.qc _PATC PLA 2017 - PASTIX

PLZZBN , roverqe  PATG PLA2017- PASTIX

Distributed matrix example (Fan-in)

Fan-in
1. Contribution aggregated locally in a temporary buffer
2. Contribution sent to receiver when complete
3. Contribution added on receiver

PLITIN , roverqe  PaTC PLA 2017 - PASTIX

e}
or
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PZZTZIN . Foverge - PATC PLA 2017 - PASTIX.

YZZT BN | ;..o PATC PLA 2017 PASTIK

Distributed matrix example (Fan-out)

Fan-out
1. Column blocks are sent to target block’s owner
2. Target block’s owner performs the update

on
ar

Distributed matrix example (Fan-out)

Fan-out
1. Column blocks are sent to target block’s owner
2. Target block’s owner performs the update

=1
on

Distributed matrix example (Fan-in)

Fan-in
1. Contribution aggregated locally in a temporary buffer
2. Contribution sent to receiver when complete
3. Contribution added on receiver

G

oe
or




Distributed matrix example (Fan-in) Distributed matrix example (Fan-in)

Fan-in
1. Contribution aggregated locally in a temporary buffer
2. Contribution sent to receiver when complete
3. Contribution added on receiver

[}

Fan-in
1. Contribution aggregated locally in a temporary buffer
2. Contribution sent to receiver when complete
3. Contribution added on receiver

G

on
oe

on
e

Proportional Mapping [A. Pothen, C. Sun 93]
1..16

Data distribution « Top-down strategy to build candidate processor groups for each block
(ensure good locality of communications)
« Down-top mapping induced by a logical simulation of computations of the
block solver (models for factorization time, communication and
aggregation)

bﬂ"a’- M. Faverge — PATC PLA 2017 - PASTIX 2177 a2 M. Faverge - PATC PLA 2017 - PASTIX

Dynamic Scheduling : New Mapping Dynamic Scheduling : New Mapping

12345678 12345678

« Need to map data on MPI process

« Need to map data on MPI process

« Two steps : « Two steps :
- A first proportional mapping step to map data - A first proportional mapping step to map data
- A second step to build a file structure for the work stealing algorithm

- A second step to build a file structure for the work stealing algorithm

VZZTI |, ..coqc _ PATC PLA 2017 - PASTIX PRI I |, ..coqc - PATC PLA 2017 - PASTIX




Thread support inside MPI libraries

* MPI_THREAD_SINGLE
- Only one thread will execute.
* MPI_THREAD FUNNELED
- The process may be multi-threaded, but only the main thread will make MPI

calls
(all MPI calls are funneled to the main thread).
¢ MPI_THREAD_SERIALIZED
- The process may be multi-threaded, and multiple threads may make MPI calls,
but only one at a time: MPI calls are not made concurrently from two distinct
threads
(all MPI calls are serialized).
* MPI_THREAD MULTIPLE
- Multiple threads may call MPI, with no restrictions.

VZZIZIM |, :..coqc  PATC PLA 2017 - PASTIX

Communication schemes (Up to 10% efficiency)

L )

Heterogeneous architectures and runtime
systems

Lozzizn | . Faverge - PaTC PLA 2017 - PaSTIX 27777,

Numerical Factorization on GPUs: PaStiX (historical)
choices

« Supernodal method
« 1D updates
« Sequential BLAS

« Internal scheduler, or external
runtime to support
accelerators

VZZTI |, ..coqc _ PATC PLA 2017 - PASTIX

Numerical Factorization

Algorithm to eliminate the block column k
1.
2.
3.

Factorize the diagonal block
Solve off-diagonal blocks in the current column (TRSM)
Update the underlying matrix with the column’s contribution (GEMM)

Possible variants

N « One single update ~

LN e multi-frontal

| « 1D updates per block of
columns

« 2D updates ~ Dense
factorization

Faverge - PATC PLA 2017 - PASTIX

Advantages of using a task-based runtime system

@ PRI I |, ..coqc - PATC PLA 2017 - PASTIX

Several computing kernels can be associated with the task (¢, OPENCL,
NVIDIA CUDA)

Execute the task graph on the available resources

Address the whole computing units and the whole potential parallelisms
Insulate the algorithm from the architecture and data distribution
Automatic handling of data transfers

Finer parallelism handling




Runtime systems supported by PaStiX Runtime systems supported by PaStiX

STARPU STARPU
¢ Inria Storm Team ¢ Inria Storm Team
* Dynamic Task Discovery * Dynamic Task Discovery
* Computes cost models on the fly * Computes cost models on the fly
* Multiple kernels on the accelerators * Multiple kernels on the accelerators
* Multiple scheduling strategies: Minimum Completion Time, Local Work Stealing, * Multiple scheduling strategies: Minimum Completion Time, Local Work Stealing,
user defined... user defined...
PARSEC PARSEC
¢ ICL — University of Tennessee, Knoxville ¢ ICL — University of Tennessee, Knoxville
* Parameterized Task Graph * Parameterized Task Graph
* Only the most compute intensive kernel on accelerators * Multiple kernels on the accelerators
* Scheduling strategy based on static performance model * Scheduling strategy based on static performance model
. GPU multi-stream enabled 20 GPU multi-stream enabled

We consider only PARSEC runtime in this talk [

PLZI I | ;...qcPaTC PLAZ017- PASTIX werge — PATC PLA 2017 - PASTIX

Performance on Fermi architecture

Test platform

400
Mairix Size nnza [ nnzg TFiop [ Scotch 12 threads NN +1GPU BN +2GPUs BN +3GPUS
AfshellT0 | 156+6 576+6 | 610616 012 I HSL12threads [ +1GPU [Z] +2GPUs [ +3GPUs
Filterv2 0.66+6 12646 | 536046 36 350 =1 TSP 12 threads W +1GPU BN +2GPUs B +3GPUs
fault639 0.6e+6 29e+6 1234e+6 8.28
audi 0.9e+6 78e+6 1276e+6 5.12
boneS10 0.9e+6 55e+6 370e+6 0.29
inline 0.5e+6 37e+6 | 212e+6 0.14
Idoor 0.9e+6 47e+6 304e+6 1.08
nd24 0.07e+6 28e+6 335e+6 217

Matrices description from the Univ. of Florida collection

1. Fermi architecture
- 2 hexacore Intel(R) Xeon(R) CPU X5650 @ 2.67
- 3 Nvidia M2070
- 32 GB of memory
2. Kepler architecture
- 2 decacore Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 - 3.00GHz
- 3 Nvidia K40c (ECC=ON, no max boost)
- 32 GB of memory

Performance (GFlops/s)

PZITIN \, r..cigc —PaTC PLA 2017 - PASTIX

Performance on Kepler architecture

Performance of the hybrid 1D/2D DAG

1000 T T T T T T 1000

== CPUson) — " CPUsony
= pUs - ] Ka = P
== CPUs:2Ki0 == CPUs:3kiD
== CPUs+3K40
a0
800 R
600
600 9 H
o &
H 5
8 00
5

400

200

o
Faut Audi Bones niine

« First GPU improves the CPUs performance

« Extra GPUs give less improvement (except for nd24k)

« Switch size is 240 (Might create some slow down on the CPUs-only
version)

0
Faull Audi Bones Inline Ldoor Nozd

« Gives less improvement over the CPUs only version that on previous work
with Fermi architecture

PRI I |, ..coqc - PATC PLA 2017 - PASTIX
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Block ILU(k): supernode amalgamation algorithm

Derive a block incomplete LU factorization from the supernodal parallel
direct solver

« Based on existing package PaStiX

« Level-3 BLAS incomplete factorization implementation

« Fill-in strategy based on level-fill among block structures identified thanks
to the quotient graph

« Amalgamation strategy to enlarge block size

Highlights

ILU(k) Factorization « Handles efficiently high level-of-fil
« Solving time faster than with scalar ILU(k)
« Scalable parallel implementation

2420 | M. Faverge - PATC PLA 2017 - PASTIX 3677 Faverge - PATC PLA 2017 - PASTIX

Fill-in theorem Factorization ILU(k)

12345

level 1 level 1
Theorem 1(X X X
Any A; = 0 will become a non-null entry L; or U # 0 in A= iLU(k) if and only 2 X XX 5 ; N N
if it exists a shortest path of lengh k + 1 in Ga(V, E) from vertex i to vertex j 3 x x x . .
that only goes through vertices with a lower number than i and j. 1 3 2 4
’ 4] XOXNH
51X @ EX level 3

PLITIN . r.ovcrc - PATC PLA 2017 - PASTIX PAITTIN . r.icgc PaTCPLAZ017 - PASTIX

BILU(k): the amalgamation strategy BILU(k): the amalgamation strategy

Find the exact supernode partition Merge the couple of supernodes that add the less extra fill-in

[ZZXIN . rvcie - PATC PLA 2017 - PaSTIX [ZZXIN . raverge - PATC PLA 2017 - PaSTIX




Block ILU(k): some results on AUDI matrix Block ILU(k): some results on AUDI matrix
(N = 943,695, NNZ = 39,297, 771) (N = 943,695, NNZ = 39,297, 771)

Numerical behaviour Preconditioner setup time

'hua,. M. Faverge — PATC PLA 2017 - PASTIX '&t_ua,- M. Faverge — PATC PLA 2017 - PASTIX

Block ILU(k): some results on AUDI matrix Block ILU(k): some results on AUDI matrix
(N = 943,695, NNZ = 39,297, 771) (N = 943,695, NNZ = 39,297, 771)
Forward/Backward solution time Total solution time

'&Lfl[a/ M. Faverge - PATC PLA 2017 - PASTIX ﬁ '&Lu’a/ M. Faverge - PATC PLA 2017 - PASTIX 77]

o

Compression techniques of A

Write Aas UV!
e AisM—by—N
e UisM—by—r,VisN—by—r
- [|A~ UVY|| < tol]|A]

Tolerance
« Absolute tolerance: to/
« Norm of the block being compressed: ||A||2
« Relative tolerance: tols = v/tol x ||A|2

H-Matrix compression
Truncation method

« SVD: A = uov'. Keep k singular values such that o4 < tola
+ RRQR: A= QcRy. Stop when ||A(k + 1,k +1:)||2 < tola

&r2a|| W Faverge - PATC PLA 2017 - PaSTIX a Faverge - PATC PLA 2017 - PASTIX




Why using such techniques?

Dense matrix product updates
« C+=AxB
« Time complexity: ©(n®), with N the block size
« Memory complexiity: ©(n?) memory complexity

Low rank matrix product updates
¢ Ct=Unx Vix Up Vi
« Time complexity: ©(r? * n)
* Memory complexity: ©(r  n)

JZZTZIN |, ..o PATC PLA 2017 - Pa

Block-Low-Rank Compression — Symbolic Factorization

Large off-diagonal are low-rank, in the form uv'.

loroin 0 Faverge - PATC PLA 2017 - PASTI

Two different Scenarios: Scenario END

Scenario END: Compress L (similar to BLR-MUMPS: FCSU version)

1. Eliminate each column block
1.1 Factorize the dense diagonal block
1.2 Compress off-diagonal blocks belonging to the supernode
1.3 Apply a TRSM on LR blocks (cheaper)
1.4 LR update on dense matrices

2. Solve triangular systems with low-rank blocks

. EUntouched

EREAD
BREAD/WRITE

B CREATED

JZXY I |, ... pATC PLA 2017 - PASTIX

Why using such techniques?

Current solver — for 3D problems
+ ©(n?) time complexity
. e(n%) memory complexity
* BLAS 3 operations

Target solver — for 3D problems
. @(,ﬁ) time complexity
« ©(n log(n)) memory complexity
« BLAS 3 operations

Objective: build a black-box algebraic low-rank solver following the supernodal
approach of PaStiX, with block-data structures.

JZZT I |, ... _patc PLA 2017 PASTIX

Block-Low-Rank Algorithm

Approach
« Large supernodes are partitioned into a set of smaller supernodes
« Large off-diagonal blocks are represented as low-rank blocks

Operations
« Diagonal blocks are dense
« TRSM are performed on low-rank off-diagonal blocks

+ GEMM are performed between low-rank off-diagonal blocks. It creates
contributions to dense or low-rank blocks: this is the extend-add problem

Compression techniques
« SVD, RRQR for now
« Easily extension to any algebraic method: ACA etc...
 Possible extension to randomized techniques etc...

[2ZTW | ....ccPATC PLAZ017- PASTIX

Two different Scenarios: Scenario END

Scenario END: Compress L (similar to BLR-MUMPS: FCSU version)

1. Eliminate each column block
1.1 Factorize the dense diagonal block
1.2 Compress off-diagonal blocks belonging to the supernode
1.3 Apply a TRSM on LR blocks (cheaper)
1.4 LR update on dense matrices

2. Solve triangular systems with low-rank blocks

. EUntouched

EREAD
BREAD/WRITE

B CREATED
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Two different Scenarios: Scenario END Two different Scenarios: Scenario END
Scenario END: Compress L (similar to BLR-MUMPS: FCSU version)
1. Eliminate each column block
1.1 Factorize the dense diagonal block

Scenario END: Compress L (similar to BLR-MUMPS: FCSU version)
1. Eliminate each column block

1.1 Factorize the dense diagonal block
1.2 Compress off-diagonal blocks belonging to the supernode 1.2 Compress off-diagonal blocks belonging to the supernode
1.3 Apply a TRSM on LR blocks (cheaper) 1.3 Apply a TRSM on LR blocks (cheaper)
1.4 LR update on dense matrices

1.4 LR update on dense matrices

2. Solve triangular systems with low-rank blocks 2. Solve triangular systems with low-rank blocks

j EUntouched :ﬂ EUntouched
EREAD EREAD
EREAD/WRITE EREAD/WRITE
B CREATED B CREATED

SZIM M. Faverge - PATC PLA 201
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Two different Scenarios: Scenario END Two different Scenarios: Scenario BEGIN

Scenario END: Compress L (similar to BLR-MUMPS: FCSU version) Scenario BEGIN: Compress A
1. Eliminate each column block 1. Compress large off-diagonal blocks in A (exploiting sparsity)
1.1 Factorize the dense diagonal block 2. Eliminate each column block
1.2 Compress off-diagonal blocks belonging to the supernode 2.1 Factorize the dense diagonal block
1.3 Apply a TRSM on LR bloqks (cheaper) 2.2 Apply a TRSM on LR blocks (cheaper)
1.4 LR update on dense matrices 2.3 LR update on LR matrices (extend-add)
2. Solve triangular systems with low-rank blocks 3. Solve triangular systems with LR blocks

EUntouched :ﬂ EUntouched

EREAD EREAD
BREAD/WRITE BREAD/WRITE
B CREATED B CREATED

22l M. Faverge - PATC PLA 20
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Two different Scenarios: Scenario BEGIN Two different Scenarios: Scenario BEGIN

Scenario BEGIN: Compress A
1. Compress large off-diagonal blocks in A (exploiting sparsity) 1. Compress large off-diagonal blocks in A (exploiting sparsity)
2. Eliminate each column block 2. Eliminate each column block
2.1 Factorize the dense diagonal block 2.1 Factorize the dense diagonal block
2.2 Apply a TRSM on LR blocks (cheaper) 2.2 Apply a TRSM on LR blocks (cheaper)
2.3 LR update on LR matrices (extend-add)

2.3 LR update on LR matrices (extend-add)
3. Solve triangular systems with LR blocks 3. Solve triangular systems with LR blocks

Scenario BEGIN: Compress A

:ﬂ EUntouched :ﬂ EUntouched
EREAD EREAD
BREAD/WRITE BREAD/WRITE
BCREATED BCREATED

VZZT BN . Foverge - PATC PLA 20 @ leeiz
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Two different Scenarios: Scenario BEGIN

Scenario BEGIN: Compress A

1. Compress large off-diagonal blocks in A (exploiting sparsity)
2. Eliminate each column block

2.1 Factorize the dense diagonal block
2.2 Apply a TRSM on LR blocks (cheaper)
2.3 LR update on LR matrices (extend-add)

3. Solve triangular systems with LR blocks

EREAD

EREAD/WRITE

I EUntouched

B CREATED

Extend-add: RRQR Recompression

A low-rank structure uy v{ receives a low-rank contribution uzvzf.
uq and u; are orthogonal matrices

Algorithm

A=uvi+ wevh = ([ur, e]) % ([vi, val)'
Orthogonalize u, with respect to u; :

u; = up — i (Uie) O(mrir)

Form new orthogonal basis, and normalize each column :

t
[ur, te] = [ur, u3] x (é "‘,”2)

Apply a RRQR on :
L
((I) u‘/ug) x (v, ve])’

RRQR with truncation in ©(n(ry + r2)ry’) . Less stable?

Context

Machine: 2 INTEL Xeon E5-2680 v3 at 2.50 GHz
- 128 GB
.24 threads

3D Matrices from The SuiteSparse Matrix Collection
« Atmosmodj: atmospheric model (1270432 dofs)
« Audi: structural problem (943695 dofs)
« Hook: model of a steel hook (1498023 dofs)
« Serena: gas reservoir simulation (1391349 dofs)
+ Geo1438: geomechanical model of earth (1437960 dofs)
« + laplacian’s generator: Poisson problem

Parallelism is obtained following PASTIX static scheduling strategy for
multi-threaded architectures.

Extend-add: SVD Recompression

A low-rank structure u; v{ receives a low-rank contribution u, vz'.

Algorithm B "
—¢—
A= v + vk = ([ur, te]) x ([v1, vel)'
0
« QR: [ur, o] = Q1R O(m(r + r2)?)
« QR:[vi,v2] = QRe  O(n(r + r2)?) m “ v
« SVD: RiRY=uov™  O((ri +1)°)
0
A= (Quuo) x (Qv)'

Summary of both scenarios BEGIN and END

Memory consumption
« BEGIN scenario really saves memory

« END scenario reduces the size of L’ factors, but supernodes are allocated
dense at the beginning: no gain in pure right-looking
Update
« BEGIN scenario requires expensive extend-add algorithms to update
(recompress) low-rank structures
« END scenario continues to apply dense update at a smaller cost

Potential optimizations

« BEGIN: Merge similar contributions together before applying a single
recompression

« END: Use a left-looking algorithm to compress a block just before a
supernode is eliminated. This approach may reduce the level of parallelism

Parameters

Entry parameters
« Tolerance: absolute parameter (normalized for each block)
« Compression method: SVD or RRQR
« Compression scenario: BEGIN or END
« Blocking sizes: between 128 and 256 in following experiments

Scenario BEGIN
« Blocks are compressed at the beginning
« Each contribution implies a recompression

Scenario END
« Blocks are compressed just before a supernode is eliminated
« Those blocks are never uncompressed




Performance on general matrices: RRQR/END (24 CPUs) Performance on general matrices: RRQR/BEGIN (24 CPUs)

T T T T T T 6
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lap120 atmosmodj audi Geold3s

No iterative refinement. . . )
No iterative refinement.

Convergence of RRQR/BEGIN, tolerance=1e — 04 Memory on general matrices: BEGIN

10° T T T 14

T T T T T T
EEE RRQR tol=1e-04 N RRQR tol=1e-08 HEE RRQR tol=le-12
EEE SVD, tol=le-04  EEE SVD, tol=le-08  HEE SVD, tal=le-12

Memory BLR / Memory PaStiX

1
H
4
&

andi o
Geold38 a

Hook °
Serena e

Tap120 lap120 atmosmodj andi Geol438 Serena

0 *V +oe

atmasmodj

et T L
5 10 15

Number of GMRES iteratians
lrnria—

No iterative refinement.

Scaling on laplacians: Memory Consumption RRQR/BEGIN Toward low rank compressions in supernodal solver
su0
+  Factors size, dense
4 Real consumption, tol=1e-12
T™0H ¢ Factors size, tol=1e-12
- l:eal wnmn:ﬁluni ‘.‘,::h,us Many works on hierarchical matrices and direct solvers
sol| @  Factors sise, tol-1e-
+  Real consumption, tol=1e-04 « Eric Darve : Hierarchical matrices classifications (Building O(N) Linear
s Lt Fuetors size, tol71e-04 Solvers Using Nested Dissection)

Sherry Li : Multifrontal solver + HSS (Towards an Optimal-Order
Approximate Sparse Factorization Exploiting Data-Sparseness in
Separators)

o0 David Bindel : CHOLMOD + Low Rank (An Efficient Solver for Sparse
Linear Systems Based on Rank-Structured Cholesky Factorization)
Jean-Yves LExcellent : MUMPS + Block Low Rank

Mewory consumption (GB)
.




Symbolic factorization Nested dissection, 2D mesh/matrix

Computational cost (O(N?) for 3D PDE) Low-Rank Compression of Supernodes

FastLA associate team between INRIA/Berkeley/Stanford

Supernodal Solver - Hierarchical Matrices O(N.log?(N))

1. Check the potential compression ratio on top level blocks
2. Develop a prototype with:

- low-rank compression on the larger supernodes

- compression tree built at each update

- complexity analysis of the approach

3. Study coupling between nested dissection and compression tree ordering

Which algorithm to find low-rank approximation ?
SVD, RR-LU, RR-QR, ACA, CUR, Random ... [

Summary and future works

Which family of hierarchical matrix ?
H,H?, HODLR ... [
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Summary of the PaStiX 5.2.3 features Former version PaStiX 6.0 features

e LLt, LDLt, LU : supernodal implementation (BLAS3) Factorization
« Static pivoting + Refinement: CG/GMRES Real s/d | Complex c/z
« Simple/Double precision + Float/Complex operations POTRF LLT LL7
« Require MPI + Posix Thread (PETSc driver) PXTRF - LL!
HETRF - LDLF
. SYTRF LDL! LDL!
« MPI/Threads (Cluster/Multicore/SMP/NUMA) GETRF ] U

Centralized or Distributed interface
Dynamic scheduling NUMA (static mapping)
Support external ordering library (PT-Scotch/METIS)

Solve
« TRSM:-like interface (LLT, LLN, LUN only for now)
« DIAG operation for LDL!, LDL"

Multiple RHS (direct factorization)
Incomplete factorization with ILU(k) preconditionner

Schur putation (hybrid method MaPHYS or HIPS) Iterative refinement
« GMRES, BCG, CG

Out-of Core implementation (shared memory only)

2B . Faverge - PAT

LB 1. Faverge - PATC

PaStiX 6.0 Schedulers PaStiX 6.0
Which scheduler
Seq. P-Thread Runtime
Static Dyn | StarPU PaRSEC « Static pivoting + Refinement: CG/GMRES
POTRF [ SHW/ILR | SHMILR | - - SHMILR (GPU) « Multiple RHS (direct factorization)
PXTRF | Coming | Coming - - Coming « Schur computation (hybrid method MaPHYS or HIPS):

HETRF SHM SHM . . . - Improved parallelism
SYTRF SHM SHM = = ° - Solve operation on either interior and/or schur
GETRF | SHM/LR | SHMLR | - - SHM/LR (GPU) « Support external ordering libraries:
TRSM | SHM/LR | SHM/LR ° o o - Scotch, PT-Scotch, Metis, ParMetis (Under Dev.), Personal
DIAG SHMLR | SHM/LR - - - « Open source git repository: https://gitlab.inria.fr/solverstack/pastix
« Open to external contributions

Future development
« Integration of StarPU (SHM+GPU), similar coverage as PaRSEC
« Integration of MPI in all non runtime implementation

Softwares Softwares

Graph/Mesh partitioner and ordering :
Fast Multipole Method :

http://scotch.gforge.inria.fr
Sparse linear system solvers :
http://scalfmm-public.gforge.inria.fr/

Matrices Over Runtime Systems (with University of Tenessee):
http://pastix.gforge.inria.fr

I3
:* H 1 p S http://icl.cs.utk.edu/projectsdev/morse

http://hips.gforge.inria.fr
https://wiki.bordeaux.inria.fr/maphys/doku.php
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MaPHyS: a Massively Parallel Hybrid Solver

HiePACS team, Gilles Marait
PRACE 03/02/2017, Ostrava

Parallel sparse linear solver

Parallel sparse linear solver

Goal: solving Ax = b, where A is sparse, on distributed architectures

Usual trades off

Direct Iterative
« Robust/accurate for general e Problem dependent efficiency /
problems accuracy

BLAS-3 based implementations

Sparse computational kernels

Memory/CPU prohibitive for large .
3D problems

Less memory requirements and
possibly faster

Limited weak scalability

Possible high weak scalability

1/32

QOutline

Goal: solving Ax = b, where A is sparse, on distributed architectures

Usual trades off

Direct

Robust/accurate for general
problems

o BLAS-3 based implementations

Memory /CPU prohibitive for large
3D problems

Limited weak scalability

QOutline

Iterative

Problem dependent efficiency /
accuracy

Sparse computational kernels

Less memory requirements and
possibly faster

Possible high weak scalability

1/32

MaPHyS overview

Installation and current releases

1/32
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MaPHyS overview
MaPHyS step by step
PDSLin

Current software implementation

Features

Ongoing efforts

1/32

MaPHyS overview
MaPHyS step by step
Step 1: Algebraic domain decomposition
Step 2: Factorization
Step 3: Preconditioning
Step 4: Solve

Summary

1/32



Global Matrix A

MaPHyS overview
MaPHyS step by step

Step 1: Algebraic domain decomposition

o A is a general sparse matrix. We want to solve Ax = b.

1/32 2/32

Step 1: Domain decomposition (Analysis) Step 1: Domain decomposition (Analysis)

Global Matrix A Adjacency graph G Global Matrix A Adjacency graph G
e The adjacency graph of A (nxn) is used as an algebraic mesh: o A graph partitioner is used to split the graph (ND algorithm)
G=({L..., ny, {()), a5 #0 a5 #£0}) e node separator — I' = {interface nodes}

e disconnected sets of nodes — Z; = {interior nodes subdomain i}

e reordering: Z=(JZ; first and T last
e On the first row of A, 211, 212 and 2111 #0

= (1,1), (1,2) and (1,11) € G 2/32 2/32

Step 1: Domain decomposition (Analysis) Step 1: Domain decomposition (Analysis)

Global Matrix A Adjacency graph G Global Matrix A Adjacency graph G

br

Azz Azr) (x
Arz  Arr ) \xr

<b1> e A7z has a block diagonal structure suitable for parallel computation

2/32 2/32



Step 1: Domain decomposition (Analysis) Step 1: Domain decomposition (Analysis)

Global Matrix A Adjacency graph G Local Matrix A; Adjacency graph G

e How do we distribute Arr? o We assign each interface node to a neighboring subdomain

2/32 3/32

Step 1: Domain decomposition (Analysis) Step 1: Domain decomposition (Analysis)

Local Matrix A; Adjacency graph G Local Matrix A; Adjacency graph G

e We assign each interface node to a neighboring subdomain e We assign each interface node to a neighboring subdomain

3/32 3/32

Step 1: Domain decomposition (Analysis) (o]1]

Local Matrix A; Adjacency graph G
MaPHyS overview

MaPHyS step by step

Step 2: Factorization

o We assign each interface node to a neighboring subdomain

Azz; Az, = T fg
Ai = o o A= Ri AiRi
(Ar,-z,— Ar,—r,-) ;

e Parallel implementation: 1 subdomain < 1 MPI process 3/32 3/32



Step 2: Factorization Step 2: Factorization

Local Matrix A; Adjacency graph G Local Matrix A; Adjacency graph G
e We factorize Az,7, and compute S; = Ar;r, — Ar,.L.Ai_IL_AL.r‘. o We factorize Az,7, and compute S; = Ar;r, — Ar,.L.Ai_IL_AL.r,.
Az,z,  Azr; Az,z, Azr;
A= 1T il A= 1T il
(Ar,-l,— Ar,—r,—) <Ar,-1,- Ar,—r,—)
4/32 4/32

Step 2: Factorization Step 2: Factorization

Local Schur §; Adjacency graph G Local Schur §; Adjacency graph G
o We factorize Az,7, and compute S; = Ar;r, — Ar,—z,-Ai.lL.Az,-r,- o We solve the interface problem Sxr = f = by — ArIAEIlbI
with a preconditioned Krylov method

e Now, on each subdomain, the whole local problem is condensed onto
the interface (dense matrix)

4/32 4/32

e Schwarz (aS) Preconditioner

Assembled Local Schur S; Adjacency graph G
MaPHyS overview

MaPHyS step by step

Step 3: Preconditioning

e No overlap in S; = Ar,r, — Ar‘.z,.Ai_lL_Az,.r,. . S= Z,N:l ’RES;Rri
o Assemble S; = Rr,.SRrT‘_

N _
o Masjs = S RES 'Ry,
i=1

4/32 5/32



Step 3: Algebraic Additive Schwarz (aS) Preconditioner Step 3: Algebraic Additive Schwarz (aS) Preconditioner

Assembled Local Schur S; Adjacency graph G Assembled Local Schur S; Adjacency graph G

e No overlap in §; = Ar,r, — Arn AL A s S= oM, RELSRr, e No overlap in §; = Ar,r, — Arn ALy At S= =M, RESRr,
e Assemble S; = RriS’RF: e Assemble S; = Rr‘.S'RE
N N
o Mass = YRS 'R, o Mass = SRS 'R,
i=1 i=1
5/32 5/32

Step 3: Algebraic Additive Schwarz (aS) Preconditioner Assemble local schur computation

Assembled Local Schur S; Adjacency graph G
e Local Schur:

Skk gk
Si= (S-’k st

e Neighbor to neighbor communications:

Sl — 1l
St= 3% S
keadj

o Assembled local Schur:

GLNGH
Slk 51

e No overlap in S; = Ar;r; — Ar,.z,..Ai_IL_.AL.r,. : S§= Z,N:l R{Sﬂ?r,— o Algebraic Additive Schwarz Preconditionner:
o Assemble S; = Rr,.SR,-T,_

()}

N
N, _ _ TG-1
o Masis = R;;S\ "Re, vMaS/S = I_Z:IRF,-L\ Rr;
i=1 =

5/32 6/32

Local Schur S; Adjacency graph G
MaPHyS overview

MaPHyS step by step

Step 4: Solve

e on I': Krylov method
e Sxr=f preconditioned with M.s/s

6/32 7/32



Local Matrix A; Adjacency graph G
MaPHyS overview

MaPHyS step by step

Summary

e on I: Krylov method

e Sxr=f preconditioned with M,s;s
e on Z: Direct method

o sz, = Agl, (br, — Azr,sr,)

7/32 7/32

Step 1: Algebraic domain decomposition

MaPHyS overview
Az, Az,-r,-)

o A=XN RTAR; with A; =
=, R} ( o
PDSLin

Presentation

Step 2: Factorization

o Computation of A7} and S; = Ar,r, — Ar,, AZL Az,

Step 3: Preconditioning

o Assembly and factorization of S;

Step 4: Solve

e on I': Krylov method
e Sxr=f preconditioned with M,s/s = z,’il RF’;E{‘R“
e on Z: Direct method

o xz, = Az, (br, — Azroxr;) 8/32 8/32

Parallel Domain decomposition Schur complement based Linear Solver

MaPHyS overview
Hybrid solver developped in Berkley.

PDSLin Developers:
Presentation e Ichitaro Yamazaki
e X. Sherry Li

8/32 9/32



Global algebraic view

e Global hybrid decomposition:
Azz  Azr
A=
(Arz Arr)

e Global Schur complement

PSDLin domain decompo

Local Matrix A; Adjacency graph G

S =Arr — ArzAi;Azr

Analysis and domain decomposition like in MaPHyS:

Az, Azr, N 7
Ai = & i A= R; AiRi

10/32 11/32

Local algebraic view Dropping

o Local hybrid decomposition: o Direct / direct method?
- <AI,-1,- AI,-r,->
! Ar,z; 0
e Local pre-Schur complement:
Si= 7Ar,-1,-Ai_1L_Az,-r,-
e Global Schur complement:

N
S=Arr =Y RELSRr,

i=1

o Global preconditioner: M = St

12/32 13/32

Dropping Dropping

o Direct / direct method? o Direct / direct method?
e Three successive dropping techniques: e Three successive dropping techniques:
e local dropping on Az;r; e local dropping on Az;r;
e local dropping on S} e local dropping on S/
e global dropping on S e global dropping on S
« S5 5§ eS8

o M =51 direct/iterative method

13/32 13/32



Current software implementation

Parallelism
MaPHyS overview

e MPI: 1 subdomain < 1 MPI process
Partitioner
Scotch [F. Pellegrini et al.
Current software implementation © Bt it R el
Sparse direct solver
o MUMPS [P.R. Amestoy et al.]
e PaStiX [P. Ramet et al.]
Iterative Solvers
o CG/GMRES/FGMRES [V.Fraysse and L.Giraud]

Dense direct solver

o Your favorite BLAS and LAPACK implementations

13/32 14/32

MaPHyS overview MaPHyS overview
Features Features
Multi-threading Multi-threading

Sparsification / approximation on the interface
MaPHyS interfaces

Coarse grid correction

14/32 14/32

Multi-threading: implementation Multi-threading: advantage

Parallelism More flexibility to exploit multicore nodes

e MPI: 1 domain < 1 MPI process with multi-threading

Dense direct solver

e BLAS and LAPACK: multi-threaded MKL library

Sparse direct solver

o MUMPS [P.R. Amestoy et al.] with multi-threaded MKL library
e PaStiX [P. Ramet et al.] with internal multi-threading

Iterative Solvers

« CG/GMRES/FGMRES [V.Fraysse and L.Giraud] with multi-threaded eRicoclperdomainkdizldomaing

MKL library

15/32 16/32



Multi-threading: advantage Multi-threading: advantage

More flexibility to exploit multicore nodes

e 2 cores per domain = 16 domains

More flexibility to exploit multicore nodes

e 4 cores per domain = 8 domains

16/32

Multi-threading: advantage Multi-threading: experiment

More flexibility to exploit multicore nodes

e 8 cores per domain = 4 domains

Hopper plateform

e Bi-socket nodes 12-core AMD MagnyCours @ 2.1GHz
e 32 GB DDR3 per node

Matrices
Matrix  Matrix211  Nachos4M

order 801K 4.147K
nnz 129.4M 256.4M

17/32

Multi-threading: experiment Multi-threading: experiment

Hopper plateform

e Bi-socket nodes 12-core AMD MagnyCours @ 2.1GHz

e 32 GB DDR3 per node

Matrix211

Hopper plateform

e Bi-socket nodes 12-core AMD MagnyCours @ 2.1GHz
e 32 GB DDR3 per node

Nachos4M

19/32



S cation / apprOXimation of the interface - —

MaPHyS overview

Features

Sparsification / approximation on the interface

19/32

Local Schur complement S; dense
1. preconditioner 5,-’1 construction expensive as a dense matrix
2. computation / memory requirements for S; expensive

1. Sparsification of the local preconditioner

e dropping strategy to build Si ~ &; with §; sparse

)s

g ) 0 IS <e(lsul + 15y
& 5, otherwise

2. Approximation of the local Schur

o partial ILU(t,p) factorization of A; to compute approximate Schur

20/32

MaPHyS overview

Features

MaPHyS interfaces

20/32

Application
Analysis
Factorization
Preconditioner Setup
Solve

—
—
e
— - -
—

Centralized Matrix Input

e Application provides global matrix .4 on one MPI process

e MaPHyS performs algebraic domain decomposition and data
distribution on MPI processes

e Convenient, but does not scale

e problem size
e number of processes

21/32

Application A )
Factorization [ )
Preconditioner Setup F A A A
Solve d 4 & 04

Distributed subdomain interface
e Application performs domain decomposition and provides subdomain
connectivity and local matrices A; in a distributed way
e Algebraic domain decomposition is bypassed
e Naturally compliant with FEM, but also FV, HDG. ..
e Currently in use into TECSER ANR project, HPC4Energy project,

21/32

MaPHyS overview

Features

Coarse grid correction
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Motivation: Coarse Correction for MaPHyS Example: 2D Test problem

Need for Coarse Correction Heterogeneous diffusion Boundary conditions
e Good scalability of the direct part © o V(KVu)=gq o Dirichlet on the left
e 7 alternating conductivity o Neumann elsewhere

e The size and condition number of the iterative problem increases
with the number of subdomains ® layers e Source: =1
e Subdomain: 20 x 20 elements

A proved robust coarse space for a larger class of methods
prov " P E Conductivity K (N = 8 subdomains)

o Generalized Abstract Schwarz (GAS) methods
e Only works in the SPD case, with distributed input

Two implementations

o A python prototype, providing a framework for distributed GAS
methods

e Integrated in MaPHyS 0.9.4

22/32 23/32

Example: 2D Test problem Weak Scala

Heterogeneous diffusion Boundary conditions
e V(KVu)=gq e Dirichlet on the left
e 7 alternating conductivity e Neumann elsewhere
layers e Source: g =1

e Subdomain: 20 x 20 elements

Conductivity K (N = 8 subdomains)

Solution x* (N = 8 subdomains)

N 2 4 8 16 32 64 128 256 512

meer 1 7 13 21 33 54 92 169 325

23/32 24/32

Convergence Behavior Convergence Behavior

xry N =128, njte, =0 xry, N =128, njte, = 10

25/32 25/32



Convergence Behavior Convergence Behavior

Xre N =128, njge, = 20 xrs N =128, nje, = 30

25/32 25/32

Convergence Behavior Convergence Behavior

xr, N =128, nje, = 40 xr, N =128, nje, =50

25/32 25/32

Convergence Behavior Convergence Behavior

xry N =128, njte, = 60 xry N =128, njte, =70

25/32 25/32



Convergence Behavior Convergence Behavior

xrs N =128, nje, =70

Problem

s No global exchange of information

25/32

xrs N =128, nje, =70

Problem

» No global exchange of information

Solution

e Use an exact direct solve on a coarse space Vj

25/32

Convergence Behavior aS Step by step

xr, N =128, njye, = 70

Problem

» No global exchange of information

Solution

e Use an exact direct solve on a coarse space Vg

Contribution

e Coarse space for MaPHyS
e but also for a wider class of methods

e only in the SPD case
25/32

Step 1: Domain Decomposition
o« A=YN RTAR;
Step 2: Factorization

e Computation of Ai_lz,_ and S; = A, — Ar,.L.Ai.lL_AL.r,.

Step 3: Preconditioner Setup

S RL (RASRI) T Ry

e M,s =

Step 4: Solve
e on I: Krylov method Sxr=1f  preconditioned with Mg

e on I: Direct method  xz, = A7} (bz, — Azroxr;)

26/32

aS,2 Step by step 3D Test problem

Step 1: Domain Decomposition (Application level)

o A=Y RTAR;
Step 2: Factorization

o Computation of .Ai_lL_ and S§; = Ar;r; — Ar,.z,..Ai_lL_Az,.r,.
Step 3: Preconditioner Setup

o Masz = Mo+ X, RE (Rr,SRT) ' R,

Step 4: Solve

e on I: Krylov method Sxr=f preconditioned with M,s >

e on ZI: Direct method xz, = AEII (bz; — Az;r;xr;)

26/32

Heterogeneous diffusion

o V(KVu)=1

o Alternating conductivity layers of 3 elements (ratio K between

layers)

o Dirichlet on the left, Neumann elsewhere
Domain decomposition

e N x1x1 (1D decomposition)

o N/2x 2 x1 (2D decomposition)

o Constant subdomain size: 10 x 10 x 10 elements
Implementation

e python/MPI

27/32
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1. Data-sparse preconditioner: consider H-matrix for local Schur
complement representation (FASTLA with Stanford) - Funding Inria
Région Aquitaine - Y. Harness
2. Multiple RHS: Inexact Breakdown Block GMRES with Deflated
Restart standalone library IB-BGMRES-DR - Funding from
DGA-RAPID/HI-BOX - C. Piacibello

. Parallel algebraic domain decomposition for MaPHyS: consider input
in any distributed format and perform parallel domain decomposition
standalone library Paddle - Funding from ANR TECSER - M. Kuhn

MaPHyS overview

w

Ongoing efforts

29/32 30/32

Installing MaPHyS

e MaPHyS and its dependencies can be installed through spack in

Installation and current releases < 15 minutes + coffee break

morse.gforge.inria.fr/spack/spack.html

o From a laptop to an heterogeneous supercomputer

Bash

# Install and load spack

git clone https://github.com/fpruvost/spack.git
cd spack

. ./share/spack/setup-env.sh

# Install maphys

spack install maphys
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MaPHYyS versions

MaPHyS 0.9.3

e current version, multi-threading, distributed subdomain interface

MaPHyS 0.9.4

e integration of the Coarse Grid Correction
e already available through spack:
Bash
spack install maphys@0.9.4
MaPHyS 1.0 (work in progress)
e Redefinition of MaPHyS interface for current and future needs
o Integration of Paddle (Analysis step)
o Integration of IB-BGMRES-DR (multi-RHS iterative solver)
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Meaning of the words Meaning of the words

o Matriz iterative methods — Krylov subspace methods @ Matriz iterative methods — Krylov subspace methods

Matrices and operators in infinite dimensional Hilbert spaces.
P P Cornelius Lanczos, Why Mathematics, 1966

» Euler “In a recent comment on mathematical preparation an educator wanted to

+ Gauss characterize our backwardness by the following statement: "Is it not astonishing

> Jacobi that a person graduating in mathematics today knows hardly more than what Euler
¢ Chebyshev, Markov knew already at the end of the eighteenth century?”. On its face value this sounds a
» Stieltjes convincing argument. Yet it misses the point completely. Personally I would not

» Hilbert, von Neumann hesitate not only to graduate with first class honors, but to give the Ph.D. (and with
» Krylov, Gantmakher summa cum laude) without asking any further questions, to anybody who knew only
» Lanczos, Hestenes, Stiefel

one quarter of what Euler knew, provided that he knew it in the way in which Euler
knew it. 7

Meaning of the words Meaning of the words

@ Matriz iterative methods — Krylov subspace methods

o @ historical: Without understanding the history we are confused in the presence
@ Matriz iterative methods —  Krylov subspace methods and we will get lost in the future. This holds also for mathematics.
@ historical: Without understanding the history we are confused in the presence

: . X . " @ analytic: The progress in computing technology and the need for solving
and we will get lost in the future. This holds also for mathematics.

practical problems forces us to think algorithmically and do things fast.
Analytic view is by its nature slow and it does not keep up with the pace.
Cornelius Lanczos, Linear Differential Operators, 1961 But analytlc‘weu{ is absolutely crucial. It makes a little sense to progress fast
in a wrong direction.

“To get an explicit solution of a given boundary value problem is in this age of large

electronic computers no longer a basic question. The problem can be coded for the Cornelius Lanczos, The Inspired Guess in the History of Physics, 1964,

machine and the numerical answer obtained. But of what value is the numerical
answer if the scientist does not understand the peculiar analytical properties and

idi ies of th tor?” “Once the great mathematician Gauss was engaged in a particularly important
idiosyncrasies of the given operator?

investigation, but seemed to make little headway. His colleagues inquired when the
publication was to appear. Gauss gave them an apparently paradozical and yet
perfectly correct answer: ‘I have all the results but I don’t know yet how I am going
to get them’.”



©

Matriz iterative methods — Krylov subspace methods

©

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

©

analytic: The progress in computing technology and the need for solving
practical problems forces us to think algorithmically and do things fast.
Analytic view is by its nature slow and it does not keep up with the pace.
But analytic view is absolutely crucial. It makes a little sense to progress fast
in a wrong direction.

5 lives in an

3

application: Development and application of mathemati
unbreakable symbio: I do not believe in “pure” against “applied”
mathematics. This division is artificial, caused by proudness and ambitions.
As a malign disease it leads mathematics to fragmentation and the fields of
mathematics to dangerous isolation. Applications are like a fresh water.
Any application must, however, honor the assumptions of the theory.

Henri Poincaré, 1909, graduate of the Polytechnique

“The scientist does not study nature because it is useful; he studies it because he
delights in it, and he delights in it because it is beautiful. If nature were not
beautiful, it would not be worth knowing, and if nature were not worth knowing, life
would not be worth living. ...

I mean that deeper beauty coming from the harmonious order of the parts, and that
a pure intelligence can grasp.

Science has had marvelous applications, but a science that would only have
applications in mind would not be science anymore, it would be only cookery.”

©

Matriz iterative methods — Krylov subspace methods

¢

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

©

analytic: The progress in computing technology and the need for solving
practical problems forces us to think algorithmically and do things fast.
Analytic view is by its nature slow and it does not keep up with the pace.
But analytic view is absolutely crucial. It makes a little sense to progress fas
in a wrong direction.

©

application: Development and application of mathematics lives in an
unbreakable symbiosis. I do not believe in “pure” against “applied”
mathematics. This division is artificial, caused by proudness and ambitions. As
a malign disease it leads mathematics to fragmentation and the fields of
mathematics to dangerous isolation. Applications are like a fresh water. Any
application must honor the assumptions of the theory.

©

computational: Computing is a very involved process. Computers should serve
in solving properly mathematically formulated problems. Mathematics must
respect limitations of the computing technology.

Cornelius Lanczos, March 9, 1947

John von Neumann and Herman H. Goldstine, Numerical ... , 1947

“When a problem in pure or in applied mathematics is ‘solved’ by numerical
computation, errors, that is, deviations of the numerical ‘solution’ obtained from the
true, rigorous one, are idable. Such a ‘solution’ is therefore ingl

unless there is an estimate of the total error in the above sense.

Such estimates have to be obt d by a combination of several different methods,
because the errors that are involved are aggregates of several different kinds of
contributory, primary errors. These primary errors are so different from each other
in their origin and character, that the methods by which they have to be estimated
must differ widely from each other. A discussion of the subject may, therefore,
advantageously begin with an analysis of the main kinds of primary errors, or rather
of the sources from which they spring.

This analysis of the sour
completer

of errors should be objective and strict inasmuch as
s concerned, ....”

Albert Einstein, March 18, 1947

On (what are now called) the Lanczos and CG methods:

“The reason why I am strongly drawn to such
approzimation mathematics problems is ... the fact that
a very “economical” solution is possible only when it is very “adequate”.

To obtain a solution in very few steps
means nearly always that one has found a way
that does justice to the inner nature of the problem.”

“Your remark on the importance of

dapted appre ti thods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”




nt (CG) methc

“Your remark on the importance of

dapted appr methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”

Main principle behind Krylov subspace methods:

Highly nonlinear adaptation of the iterations to the problem.

Mathematical elegance of CG

Mathematical e

ro=>b— Axzo, po =ro. For n=1,... Nmax:
o Tho1Tn—1
n—1 = S
Pro1Apn—1
Tp = Tp-1+Qn-1pn—1, stop when the stopping criterion is satisfied
Th = Tn-1— an-14pn_1
ThTn
Bn = =
Tp—1Tn-1
Pn = Tnt Bupa-

Here ap—1 ensures the minimization of |z — zn||a along the line

z(a) = xn—1+apn-1.

ance of CG

@ Provided that

i3,
the one-dimensional line minimizations at the individual steps 1 to n result in
the n-dimensional minimization over the whole shifted Krylov subspace

pi Lapj,

z0 + Kn(A,10) = xo + span{po,p1,...,Pn-1}.

@ Provided that

i3,
the one-dimensional line minimizations at the individual steps 1 to n result in
the n-dimensional minimization over the whole shifted Krylov subspace

pi Lapj,

20 + Kn(A,10) = xo + span{po,p1,...,Pn-1}.

@ The orthogonality condition leads to short recurrences due to the relationship
to the orthogonal polynomials that define the algebraic residuals and search
vectors.

@ Provided that

piLapj, i#7,
the one-dimensional line minimizations at the individual steps 1 to n result in
the n-dimensional minimization over the whole shifted Krylov subspace

20+ Kn(A,r0) = 2o+ span{po,p1,...,pn-1}.

@ The orthogonality condition leads to short recurrences due to the relationship
to the orthogonal polynomials that define the algebraic residuals and search
vectors.

@ Inexact computation?

“I would not bid you pore upon a heap of stones, and turn them over and over, in
the vain hope of learning from them the secret of meditation. For on the level of the
stones there is no question of meditation; for that, the temple must have come into
being. But, once it is built, a new emotion sways my heart, and when I go away, I
ponder on the relations between the stones. ...

1 must begin by feeling love; and I must first observe a wholeness. After that I
may proceed to study the components and their groupings. But I shall not trouble to
investigate these raw materials unless they are dominated by something on which my
heart is set. Thus I began by observing the triangle as a whole; then I sought to
learn in it the functions of its component lines. ...

So, to begin with, I practise contemplation. After that, if I am able, I analyse
and ezxplain. ...

Little matter the actual things that are linked together; it is the links that I must
begin by apprehending and interpreting.”



Outline
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What are the Krylov subspace methods and what kind of mathematics is
involved?

[

Linear projections onto highly nonlinear Krylov subspaces

Model reduction and moment matching

Convergence and spectral information

Inexact computations and numerical stability

Functional analysis and infinite dimensional considerations
Operator preconditioning, discretization and algebraic computation

HPC computations with Krylov subspace methods?

© © ¢ ¢ ¢ ¢ e

Myths about Krylov subspace methods

ment and context

1. What are the Krylov subspace methods and what
kind of mathematics is involved?

1 Lanczos, Hestenes and Sti

b 1936157

RToos "™ | | s vt ||| g & s 1914

oy, sl acned operatos,Hibert space

kit ofthe ot proien
Steies 1894

Frobet 18

Chstofitl 1553/77

form o o frm

Grons quadarure

1650

1 Homework problem

Numerical analy:

Convergence analysis Rounding error analysis ~Cost of computations ~ Floating point computations
Iterative methods  Polynomial preconditioning  Stopping criteria  Data uncertainty

Least squares solutions Structure and sparsity

—— Cornelius Lanczos Gaussian elimination
Optimisation An iteration method for the solution

Vandermonde determinant
Comvex geomerry of the eigenvalue problem of linear
differential and integral operators, 1950

Matrix theory
Minimising functionals -
s Solution of systems oflnear equations
Ty miniaioed terations, 1652 Genera e proits
Orthogonal polynomials
Chebyshev, Jacobi and
Legendre polynomials

Chebyshev polynomials in the solution | ~C2uchy-Schwarz inequality
N Orthogonalisation
of large-scale linear systems, 1952
Projections
Green's function | Magnus R. Hestenes & Eduard Stiefel - -
Gibbs oscillation Methods of conjugate gradients for Functional analysis
— Solving linear systems, 1952

Differential and integral operators
Fourier series

Liouville-Neumann expansion
Trigonometric interpolation  Continued fractions  Sturm sequences  Fredholm problem
Gauss-Christoffel quadrature ~ Riemann-Stieltjes integral  Dirichlet and Fejér kernel

Real analysis

1 Homework problem

Consider 2n real numbers mo,m1,...,Man—1.
Solve the 2n  equations

Sy = me,  £=0,1,...2n-1,

j=1

for the 2n real unknowns ;5”7 >0, ()[/”) .

Consider 2n real numbers mo,m1,...,Man—1.
Solve the 2n equations

Y = me,  £=0,1,...,2n -1,

for the 2n real unknowns vug”> >0, ()</”') .

Is this problem linear?

Does it look easy?

When does it have a solution?

How the solution can be determined?
How the solution can be computed?



1 Positive definite linear functionals on polynomials

1 Stieltjes moment problem (1894) of order n

Linear functional £(x) is positive definite on the space of polynomials P, of
degree at most n if its first 2n + 1 moments

[:(.”I?e):m[‘ £=0,1,...,2n
are real and the Hankel matrix M, of moments is positive definite, i.e., An, >0,
where

mo mn
mi ma Mn+1
A, = M| =
Mn Mnt1 cc0 Mon

With the positive definite £(z) we can restrict ourselves to real polynomials of a
real variable and write, using a non-decreasing positive distribution function p
defined on the real axis having finite limits at +oo,

£() = [ @) duto),

with the inner product

(00) = L0@)ata) = [ ploate) dutz).

1e unknown

With the positive definite £(z) we can restrict ourselves to real polynomials of a
real variable and write, using a non-decreasing positive distribution function pu
defined on the real axis having finite limits at +oo,

£ = [ @) dnco),

with the inner product

() 1= L0()a(0) = [ ploae) dua).

Solution of the Stieltjes moment problem of order n exists
and it is unique if and only if (with some ma, > 0) we have A, >0 .

method!

@ Cholesky decomposition of the matrix of moments M, = L, Lt
@ The entries of the £th row of the the inverse L;' give the coefficients of the
£th orthonormal polynomial determined by the positive definite linear

functional L£(x) associated with the matrix of moments M, .

@ Roots of the £th orthogonal polynomial give the quadrature nodes 9;“ . The

weights wl?

;. are given by the formula for the interpolatory quadrature.

@ Computations are done differently
(Gragg and Harrod, Gautschi, Laurie, ...)
O’Leary, S, Tichy, On Sensitiity of Gauss-Christoffel quadrature, Numerische
Mathematik, 107, 2007, pp. 147 -174
Pranic, Pozza, S, Gauss quadrature for quasi-definite linear functionals, IMA J.
Numer. Anal, 2016 (to appear)

Distribution function w(A) associated with Az =b, ro = b — Azg, A SPD:

i, si are the eigenpairs of A, w; = |(si,w1)[*

I
I
I
[
An €

¢ At A2 A3

Symbolically

N b
wi Awy = w} (Z Ae s;s}‘) wy = wi (/ AdE(A)) wy

=1

N N b
:ZA[LU{QSRMZZMWZ/ Adw(A),
=1 =1 @

where dE(M\¢) = s¢s; and

N b
I= Z‘”SZ = / dE()).
=1 @

Hilbert (1906, 1912, 1928), Von Neumann (1927, 1932), Wintner (1929) .



2. Linear projections onto highly nonlinear Krylov
subspaces

References:

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 2

ce methods

@ The Krylov sequence generated by A € CV*Y and v € CV

v, Av, A%, ...
o The nth Krylov subspace generated by A € CV*¥ and v € CV
Kn(A,v) :=span{v, Av, ..., A7771v), n=12...

@ By construction,

K1(A,v) C K2(A,v) C -+ C Ka(A,v) = Kagpr(A,v) for all k > 1.

L

A A A A
eV NN
v Av Al Al

K1(A,v) K2(A,v) Ka-1(A,v)
V S~

A A

Ka(A,v)

2 Krylov subspace methods

@ Krylov subspace methods are based on a sequence of projections onto the
nested Krylov subspaces that form the search spaces.

@ Linear algebraic system Az =b:  xo (possibly zero), ro = b — Axzo.

Tn € 2o + Sn = z0 + Kn(A,r0) such that r, =b— Az, L Ch, n=1,2,...

@ n-dimensional constraints space C,, determines the different methods.

2 Examples of Krylov subspace methods for Az = b

@ Krylov subspace methods are based on a sequence of projections onto the
nested Krylov subspaces that form the search spaces.

@ Linear algebraic system Az =b: xo (possibly zero), ro = b — Axo.

Tn € To + Sp = w0 + Kn(A,70) such that 7, =b— Az, L Cn, n=12,...

@ n-dimensional constraints space C,, determines the different methods.

@ Eigenvalue problem Az = Az: v (nonzero), find (A, zn) such that

Zn € Kn(A,v) and r, = Azp — Apzn L Ch.

@ Examples: The Lanczos and Arnoldi methods, where C,, = K, (A, v).

2 Examples of Krylov subspace methods for Az = b

@ Method is well defined when z,, is uniquely determined for n =1,2,...,d — 1,
and z4 = x (in exact arithmetic).

@ Conjugate gradient (CG) method: S, = Cn = Kn (A, r0).
» Well defined for HPD matrices A; short recurrences.

» Orthogonality rn L Kn(A,v) is equivalent to optimality:

e —anlla = e ==l

min
z€xo+Kn(A,ro)

@ Method is well defined when z, is uniquely determined for n =1,2,...
and z4 = x (in exact arithmetic).

@ Conjugate gradient (CG) method: S, = Cn = Kn(A,ro).
» Well defined for HPD matrices A; short recurrences.

» Orthogonality rn L Kn(A,v) is equivalent to optimality:

e —anlla = & — 2]l

min
z€x0+Kn(A,r0)
® GMRES method: S, = K, (A,r0), Cr = AKn(A,10).

o Well defined for nonsingular matrices A; full recurrences.

» Orthogonality rn L AK,(A,v) is equivalent to optimality:

b= Aznlls = b= Azl

min
z€x0+Kn(Aro



2 Examples of Krylov subspace methods for Az = b

2 Conjugate gradients (CG), orthogonal projections and optimality

o Method is well defined when , is uniquely determined for n = 1,2, ...,d — 1,
and z4 = x (in exact arithmetic).

@ Conjugate gradient (CG) method: S, = Cn = Kn(A,r0).
o Well defined for HPD matrices A; short recurrences.

» Orthogonality rn L K, (A, v) is equivalent to optimality:

|z — znl|la = ||z = z[a.

min
z€x0+Kn(Aro)

@ GMRES method: S, = Kn(A,r0), Cn = AKn(A,10).
» Well defined for nonsingular matrices A; full recurrences.
» Orthogonality rn, L AK, (A, v) is equivalent to optimality:

b= Awall2 = b= Az].

min
2€20+Kn(A,r0)

@ Numerous other Krylov subspace methods. Some of them are not well defined

in the above sense (e.g. BiCGStab or QMR).

2 (Petrov-) Galerkin framework

e —@alla = & —ull.a

wenTin )
with the formulation via the Lanczos process, w1 = ro/||ro|,
AWn = Wy Tn + Spp1wnier, To = W (A r0) AWL(A,10),
and the CG approximation given by

Tnyn = [roller, xn = z0 + Woyn.

Ay = QuAQn = W Wi AW, W, = W, T, Wy,

Clearly, the projection process is very highly nonlinear in both A and ro.

2 (Petrov-) Galerkin framework

Projection idea in Krylov subspace methods is analogous to the Galerkin framework
in numerical solution of PDEs (here for convenience we take C = S).

Let S be an infinite dimensional Hilbert space, a(-,-): S8 xS — R be a bounded
and coercive bilinear form, f:S — R be a bounded linear functional.

2 Operator problem formulation - motivation for part 7

Projection idea in Krylov subspace methods is analogous to the Galerkin framework
in numerical solution of PDEs (here for convenience we take C = S).

Let S be an infinite dimensional Hilbert space, a(-,-):S xS — R be a bounded
and coercive bilinear form, f:S — R be a bounded linear functional.

@ Weak formulation: Find v € S with
a(u,v) = f(v)
@ Discretization: Find up € S, C S  with

a(un,vr) = f(va)

@ Galerkin orthogonality:

forall veS.
for all v, € Sp.

a(u—up,vp) =0 forall vy, € Sh.

2 CG in infinite dimensional Hilbert spaces - motivation for part 7

@ Equivalently, there exists a bounded and coercive operator A :S — S*, with
the problem formulated as the following equation in the dual space:

Au = f.

@ Or, using the Riesz map 7:S8% — S defined by the inner product in S, as the
following operator preconditioned equation in the function space

TAu=T1f.
@ Discretization then gives
ThArUun — Thfrn L Sh.
Krylov subspace methods (here CG for A self-adjoint with respect to the duality

pairing) can be formulated in infinite dimensional Hilbert spaces and extended to
Banach spaces.

ro=f—Auw €S*, py=7ro€S . For n=12,..

+y Tomax ©
_ (ra—1,mra)
(Apn—1,pn-1)

Un = Un—1+ Qn-1Pn-1,

Qn-1
stop when the stopping criterion is satisfied
Tn = Ta—1 = n—1Apn—_1

Bn =

(rn, 7Tn)
(Ppn—1,Trn-1)

P =Trn + Bapn-1

Superlinear convergence for (identity + compact) operators.

Karush (1952), Hayes (1954), Vorobyev (1958)

Here the Riesz map 7 indeed serves as a preconditioner.



¢

Krylov subspace methods for solving linear algebraic problems are based on

linear projections onto nested subspaces. 3. Model reduction and moment matching

3

Krylov subspaces and therefore the resulting methods are highly nonlinear in
the data defining the problem.

©

The nonlinearity allows to adapt to the problem as the iteration proceeds.
This is not apparent, e.g., from the derivation of CG based on the
minimization of the quadratic functional, and this fact has affected negatively References:
the presentation of Krylov subspace methods in textbooks.
J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
The adaptation can be better understood via the model reduction and moment University Press (2013), Chapter 3
matching properties of Krylov subspace methods.

©

3 The projecte em, A HPD, CG method

@ Let the columns of V;, = [v1,...,v,] form an orthonormal basis of Kn(A4,70).

@ Matrix formulation of z,, € zo + Kn(A,r0) and rn, L K, (A, 70):

Mo b
b Tn =20 + Vatn
T, = e and t, € C" is found by solving
s Vi AVitn = |Irollex-
On

is the Jacobi matrix of the orthogonalization coefficients and the CG method is
formulated by

Tutn = ||rol| €1, Tn =20 + Vatn .

3 The projected system, A HPD, CG method 3 Distribution functions and moments

@ Let A be HPD with spectral decomposition A = YAY™, where
0< A1 < A2 <--- < Ay (distinct eigenvalues for simplicity).

©

Let the columns of V,, = [v1,...,v,] form an orthonormal basis of Kn(A,70).
Matrix formulation of 2, € xo 4+ Kn(A,r0) and 7, L Kn(A,70):

¢

@ Suppose wi = |(v1,yx)|*> >0, k=1,..., N, and define the distribution function
Tn =x0 + Valn

0, if A < Ap,
and ¢, € C" is found by solving w(A) = Z::‘ Wiy, A <A< Agq, forb=1,...,N—1,
Vi AV tn = |Iroller. L Ay <A

@ The moments of w(\) are given by
N
This can be viewed as a model reduction from a (large) system of order N to a /)\kdu()\) — Z w[{)\[}k —uiAf, k=0,1,2,...
(small) system of order n. ' '

©

=1

©

Intuition: Projected system should capture fast a sufficient part of information
contained in the original data.

¢

Intuition: Powering the operator tends to transfer dominant information as
quickly as possible into the projected system.



3 Distribution functions and moments 3 Stieltjes recurrence and Jacobi matrix

@ Let A be HPD with spectral decomposition A = YAY™, where

0 <A1 < A2 <--- < Ay (distinct eigenvalues for simplicity). Let  ¢o(A) =1,¢1(N),...,dn(A) be the first n+1 orthonormal
@ Suppose wy, = |(v1,yx)> > 0, k = 1,..., N, and define the distribution function polynomials corresponding to the distribution function w(X) .
Then, writing  ®,(A) = [¢po(A),..., ¢n-1(N)]" ,
0, i A< Ap,
W) = b jwr (A< A< Ay, for £=1,...,N — 1, APn(N) = T0 ®n(N) + Sns1 dn(N) en
1, if Av <A

. represents the Stieltjes recurrence (1893-4), see Chebyshev (1855), Brouncker
@ The moments of w(}) are given by (1655), Wallis (1656), Toeplitz and Hellinger (1914) with the Jacobi matrix

N
/)\kdw()\) = ZW/{)\[}k —oviAfo, k=0,1,2,... v 6
=1

@ Analogous construction applied to T,, = VS AV,, yields a distribution function Tn 2 7
wm™ ; ; S O
w™(X) with moments given by .

//\kdu(")()\) =Y W =l Ther, k=0,1,2,...
=1

3 Fundamental relationship with Gauss quadrature 3 Continued fraction corresponding to w(

w™(A) is the distribution function determined by the n-node Gauss-Christoffel
quadrature approximation of the Riemann-Stieltjes integral with w(X).

1
Fn(A) = o
A=l e W), [0 A - i
’ A=y — 2
l l A=ys—... — =
» : A= - 3o
Hermitian Lanczos/CG Gauss-Christoffel quadrature A =N
l T:L The entries v1,...,yv and d2,...,0n represent coefficients of the Stieltjes
Th, €1 «— s W), ij")f(ﬁf”)) recurrence.
j=1

Fundamental rele i quadrature

PO A)"b B U du(p) B i Wi Ra() @ The first 2n moments of the reduced model match those of the original model
- A—p A=A N(A)
L ® J=1 7 Pr(3) @ The n-node Gauss-Christoffel quadrature has algebraic degree 2n — 1, hence
vid*v = el TFey for k=0,1,...,2n—1.
ReQ) — gy
Pn(N) @ Moment matching properties can also be derived for non-Hermitian matrices

using the Vorobyev method of moments
The denominator Pn(A) corresponding to the nth convergent . (A) of Fn(}), o For the infinite dimensional Hilbert spaces and self-adjoint bounded operators

n=1,2,... is the nth orthogonal polynomial in the sequence determined by it was described by Vorobyev (1958, 1965).
w(A); see Chebyshev (1855).



The problem of moments in Hilbert space

Let zo,21,...,2n be n+1 linearly independent elements of Hilbert space V' .
Consider the subspace V,, generated by all possible linear combinations of
20,21,...,2n—1 and construct a linear operator B, defined on V,, such that

21 = Bnzo,

z2 = Bpzi,

Zn—1 = Bnzn-2,

Enzp = Bnzn-1,

where FEnz, is the (orthogonal or oblique) projection of z, onto V, .

Let B be a bounded linear operator on Hilbert space V' . Choosing an
element 2o , we first form a sequence of elements zi,...,zn,...

2
20, 21 = Bzo, 22 = Bz1 = B’20, ... ,2n = Bzn-1=B"2n-1, ...

For the present zi,...,z, are assumed to be linearly independent. Determine a
sequence of operators B, defined on the sequence of nested subspaces V,, such
that

21 = Bzo = By.20,

22 = B%z0 = (BW)ZZLH

Zne1=B"""20 = (B.)" 20,

Enzn = EnB"20 = (Bn)" 20.

Using the projection E, onto V, we can write for the operators constructed
above (here we need the linearity of B)

B, = E.BE,.

The finite dimensional operators B, can be used to obtain approximate solutions
to various linear problems. The choice of the elements zg,...,zn,... as above
gives Krylov subspaces that are determined by the operator and the initial element
z0 (e.g. by a partial differential equation, boundary conditions and outer forces).

Challenges:

@ Convergence
@ Krylov subspace methods in infinite dimensional Hilbert spaces?

4 Convergence bounds for the CG method

4. Convergence and spectral information

References

@ J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 5, Sections 5.1 - 5.7

@ T. Gergelits and Z.S., Composite convergence bounds based on Chebyshev
polynomials and finite precision conjugate gradient putations, Numer. Alg.
65, 759-782 (2014)

4 Convergence bounds for the CG method

@ The CG optimality property

||z — znlla = min

[|# = 2[4 = min
2€x0+Kn (A,r) PEPR

1, Ip(A) @ = 20) |

yields the convergence bounds

llz — zn|la . .
TR ax |p(\;)| < a A
To—wolla = pdbifly 225 PO S min, | max ) IOV

<2 VE-1 R K:ﬂ.
VE+1 A

@ The CG optimality property

T — Tnlla = min T -z = min A)(z —
le—walla= _ min e—zla = min p(A)=o)la
yields the convergence bounds

||z — zn|la . .

T min max [p(A; < min max (A

lz —2olla ~ pePn(o)1<i<N ()] PEPR(0) A€[A1 AN] (VI

<2 VE—1 R R:&4
Ve +1 A

ase behavior of the method is completely determined by the
distribution of the eigenvalues of A.

@ The widely known k-bound is derived using Chebyshev polynomials on the
interval [A1, An]. It does not depend on any other properties of A, b, zo.

@ The x-bound is linear and it can not capture the adaptation of the CG method
to the problem!



Consider the desired accuracy €, ro(A)=Anv_s/A1 .

L —
T\/m(A)]

Then
k =s +
CG steps will produce the approximate solution

satisfying
lle = 2alla < € lla—wolla
This statement qualitatively explains superlinear convergence of

CG at the presence of large outliers in the spectrum, assuming
exact arithmetic.

For a given n find a distribution function with n mass points in such a way that
it in a best way captures the properties of the original distribution function

. oy
0 M A2 . AN
“f{”) Ldén) w,('u)
I ® ®
o o o o5

4 Gauss quadrature (CG) with tight clusters

@ Replacing single eigenvalues by tight clusters can make a difference;
see Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).

@ The point is obvious. Orthogonal polynomials can be very sensitive to certain
changes of the underlying distribution function.

@ Otherwise CG behaves almost linearly and it can be described by contraction.
In such case - is it worth using?

At any iteration step n,
Gauss quadrature of the R-S integral determined by

CG represents the matrix formulation of the n-point
A and 1o,

[ 1) = w50 + Rulh).

i=1

For f(A\)=A"" the formula takes the form

e = o|l%
lIroll?

11!”?—1
o>~

= n-th Gauss quadrature +

This has became a base for the CG error estimation (see above); see the surveys in
S and Tichy, 2002; Meurant and S, 2006; Liesen and S, 2013.

4 Sensitivity of the Gauss Quadrature

10°
10°
—— quadrature error — perturbed integrall
quadrature error - original integral

107

0 5 10 15 20

iteration n
o differenc

0 differenc
10°
107

0

iteration n



4 Simplified problem - only the largest eigenvalue is replaced 4 Theorem - O’Leary, S, Tichy (2007)

Consider distribution functions w(z) and @(z) . Let

10 q
w—w) and fula) = (& —51)...(0 - &)
pren e be the nth orthogonal polynomials corresponding to w and & respectively,
quadrature error — original integral X
—— quadrature error - perturbed integral (2) with
10 - ] — .

10 auadrature error - perturbed integral (4)] =(@—&).. . (2—¢&)

0 2 4 6 8 10 12 14 16 18 20

iteration n

their least common multiple. If f” is continuous, then the difference
10 . . . . . T T . . AL o =I5 — IZ| between the approximations I to [, and I5 to Is,
obtained from the n-point Gauss quadrature, is bounded as

lansl < \ [ tdao@ - [o@ri..... & dita)

original integral
erturbed integral (2)
o erturbed integral (4) + ‘/f(z)du(];) - /f(z)d@(r)
0 2 4 6 8 10 12 14 16 18 20 K

iteration n

4 Modified moments do not tell the y 4 Summary of the CG/Lanczos part

10% 107
& Gauss-Christoffel quadrature for a small number of quadrature nodes can be
. M@y Q) 1070 —MM 0y D) highly sensitive to small changes in the distribution function enlarging its
10 support.
10"}
10"} @ In particular, the difference between the corresponding quadrature
10" approximations (using the same number of quadrature nodes) can be many
1 . orders of magnitude larger than the difference between the integrals being
0 approximated.
10° 10° . P .
L 05 0 R e BN @ This sensitivity in Gauss-Christoffel quadrature can be observed

for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the distribution

Condition numbers of the matrix of the modified moments (GM) and the matrix of functions and with no singularity close to the interval of integration.

the mixed moments (MM). Left - enlarged supports, right - shifted supports.

4 Convergence results for the GMRES method 4 Convergence results for the GMRES method

¢ For diagonalizable A = YAY ™! the GMRES optimality property o For diagonalizable A = YAY ™! the GMRES optimality property
nll2 = i b— Azl = i A nll2 = i b— Azl = i A
lrnllz = wmin | Cllb = Azllz = min Cllp(A)rollz lrallz = mmin I ll2= min lip(A)roll2
yields the convergence bound yields the convergence bound
lralla <k(Y) min  max [p(};)| lrallz <k(Y) min  max [p(A;)].
[lroll2 = PEPA(0) 1SjEN [lroll2 = PEPA(0) 1SN

@ The eigenvalue distribution and the GMRES convergence are (closely) related
only when £(Y) is small (A is close to normal).

@ In general, the eigenvalues alone do not describe GMRES convergence:
@ Any non-increasing convergence curve is attainable by GMRES for a matrix
having any prescribed set of eigenvalues.



4 Any GMRES convergence with any sp

4 Any GMRES convergence with any

1° The spectrum of A is given by {\
residuals with the prescribed nonincreasing sequence

Av} and GMRES(A,b)
(x0 =0)

yields

Given any spectrum and any sequence of the nonincreasing residual norms, a
complete parametrization is known of the set of all GMRES associated matrices

> eaf > > fene Nl =0.
and right hand sides. [Iroll > [fr1]l = > flen—1ll > |len]f = C

The set of problems for which the distribution of eigenvalues alone does not
correspond to convergence behavior is not of measure zero and it is not pathological. 2° Lth C be vthc spcc’tral companion matrix, h = (h1,. .hA\v)T s
hi=|rial* = |ri|?, i=1,..., N. Let R be a nonsingular upper triangular

matrix such that with s being the first column of C~', and let

Rs=h with

@ Widespread eigenvalues alone can not be identified with poor convergence. W be unitary matrix. Then

@ Clustered eigenvalues alone can not be identified with fast convergence. A=WRCR 'W* and b=Wh

Equivalent orthogonal matrices; pseudospectrum indication.

Greenbaum, Ptak, Arioli and S (1994 - 98); Liesen (1999); Eiermann and Ernst
(2001); Meurant (2012); Meurant and Tebbens (2012, 2014); .....

TN 5. Inexact computation and numerical stability
. Gty
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@ J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 5, Sections 5.8 - 5.11

@ T. Gergelits and Z.S., Composite convergence bounds based on Chebyshev
polynomials and finite precision conjugate gradient putations, Numer. Alg.
65, 759-782 (2014)

Quiz: In one case the convergence of GMRES is substantially faster than in the
other; for the solution see Liesen, S (2005).

5 Delay of convergence and numerical rank of Krylov subsp

5 CG convergence behavior in finite precision arithmetic

ited FP computation|
- - - exact computation

exact computation with clusters
exact comp. with single eigenvalues|

computation
exact computation|

relative energy norm of the error

energy norm of the etor

dimension of the generated Krylov subspace

reaive energy norm of the error

® temionmumoer "
Rounding errors in finite precision CG
computations cause a delay of conver-
gence.

" teration umber
CG in finite precision corresponds to
an exact CG computation for a matrix,
where each eigenvalue is replaced by a
tight cluster.

ieraton number

The number of steps of the delay corre-
spond to the rank-deficiency of the com-
puted Krylov subspaces.

@ The statements above can be proven by

tank ofthe computed Krylov subspace

Shifting the finite precision curve by the
number of delayed iteration steps yields
the curve for the exact computation.

rigorous mathematical means!



CG in finite precision arithmetic can be seen as the exact arithmetic CG for the
problem with the slightly modified distribution function with larger support, i.e.,
with single eigenvalues replaced by tight clusters.

Paige (1971-80), Greenbaum (1989),

Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... , Druskin,
Kniznermann, Zemke, Wiilling, Meurant, ...

Recent reviews and updates in Meurant and S, Acta Numerica (2006); Meurant
(2006); Liesen and S (2013).

One particular consequence is becoming very relevant: In FP computations, the
composite convergence bounds eliminating large outlying eigenvalues at the cost of
one iteration per eigenvalue (see Axelsson (1976), Jennings (1977)) are not valid.

5 Optimality in finite precision Lanczos (CG) computations?

¢

In exact arithmetic, local orthogonality properties of CG are equivalent to the
global orthogonality properties and therefore also to the CG optimality recalled
above.

©

In finite precision arithmetic the local orthogonality properties are preserved
proportionally to machine precision, but the global orthogonality and therefore
the optimality wrt the underlying distribution function is lost.

<

In finite precision arithmetic computations (or, more generally, in inexact
Krylov subspace methods) the optimality property does not have any easily
formulated meaning with respect to the subspaces generated by the computed
residual (or direction) vectors.

@ Using the results of Greenbaum from 1989, it does have, however, a well
defined meaning with respect to the particular distribution functions defined
by the original data and the rounding errors in the steps 1 through n.

of the FP

G behaviour

Consider the following mathematically equivalent formulation of CG

AW, = WnTn + Snprwniren, To = W,i(A o) AW, (A,ro),

and the CG approximation given by

Tnyn = |roller, xn = x0 4+ Wayn.

@ Greenbaum proved that the Jacobi matrix computed in finite precision
arithmetic can be considered a left principal submatrix of a certain larger
Jacobi matrix having all its eigenvalues close to the eigenvalues of the original
matrix A.

@ This is equivalent to saying that convergence behavior in the first n steps of
the given finite precision Lanczos computation can equivalently be described as
the result of the exact Gauss quadrature for certain distribution function that
depends on n having tight clusters of points of increase around the original
eigenvalues of A.

5 Numerical stability of GMRES

Nk

Ax =b, FP CG, k step

5 Delay of convergence due to inexactness

@ In finite precision, the loss of orthogonality using the modified Gram-Schmidt
GMRES is inversely proportional to the normwise relative backward error
lb— Az |2
lollz + [[All2llwnl2

Loss of orthogonality (blue) and normwise relative backward error (red) for a
convection-diffusion model problem with two different “winds”:

Here numerical inexactness due to roundoff. How much may we relax accuracy of
the most costly operations without causing an unwanted delay and/or affecting the
maximal attainable accuracy? That will be crucial in exascale computations.
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Inexactness and maximal attainable accuracy in matrix computations?

6. Functional analysis and infinite dimensional
considerations

References

@ J. Mélek and Z.S., Preconditioning and the Conjugate Gradient Method in the
Context of Solving PDEs. SIAM Spotlight Series, STAM (2015), Chapter 9

Let V' be an infinite dimensional Hilbert space, B a bounded linear operator on
V' that has a bounded inversion. Consider the problem

Bu=Ff, feV.

@ The identity operator on an infinite dimensional Hilbert space is not compact.
@ Since BB~! =1, it follows that B can not be compact.

@ Approximation of B by finite dimensional operators
Bn:V —V,, V, is finite dimensional?

6 Invalid argument in convergence analysis

@ A uniform (in norm) limit of finite dimensional operators B, is a compact
operator.

@ Every compact operator on a Hilbert space is a uniform limit of a sequence of
finite dimensional operators.

@ A uniform limit of compact operators is a compact operator.

Bounded invertible operators in Hilbert (holds also for Banach) spaces can not be
approximated in norm to an arbitrary accuracy by neither compact nor finite
dimensional operators! Approximation can be considered only in the sense of strong
convergence (pointwise limit); for the method of moments see Vorobyev (1958, 1965)

[|Bnw—Bw| -0 YweV.

6 Finite dimensional approximations of infinite dimensional operators

Let Z;, be a numerical approximation of the bounded operator Z such that, with
an appropriate extension, ||Z — Z,| = O(h).

Then we have  [(A—2)"' — (A= 2,)7!] = O(h) uniformly for A\ € T', where
T' surrounds the spectrum of Z with a distance of order O(h) or more. For any
polynomial p

§(2) =920 = 3 [P = 2"~ (=207 i,

and it seems that one can investigate p(Z) instead of p(Zs).

But the assumption

|2 =24 = Oh), h—0

invertible infinite dimensional operator Z .

does not hold for any bounded

@ If the infinite dimensional linear operator is bounded with the bounded
inversion, then convergence of its finite dimensional approximations can be
considered onlu in a pointwise sense.

@ Spectral and norm equivalence of operators leads to bounds on the condition
number of the discretized problems that are independent of the (Galerkin)
discretization

V. Faber, T. Manteuffel and S. Parter, On the Theory of Equivalent Operators and
Application to the Numerical Solution of Uniformly Elliptic Partial Differential
Equations. Advances in Applied Math. 11, 109-163 (1990)



7. Operator preconditioning, discretization and
algebraic computation
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7 Functional analysis and iterative methods

R. C. Kirby, SIREV (2010):

“We examine condition numbers, preconditioners and iterative methods for FEM
discretization of coercive PDEs in the context of the solvability result, the
Laz-Milgram lemma.

Moreover, useful insight is gained as to the relationship between Hilbert space and
matriz condition numbers, and translating Hilbert space fized point ilerations into
matriz computations provides new ways of motivating and explaining some classic
iteration schemes. [ ... | This paper is [ ... | intending to bridge the functional

l techniq c in finite el ts and the linear algebra community.”

7 Functional analysis and iterative methods

K. A. Mardal and R. Winther, NLAA (2011):

“The main focus will be on an abstract approach to the construction of

preconditi s for tric linear systems in a Hilbert space setting [ ... | The
discussion of preconditioned Krylov space methods for the continuous systems will be
a starting point for a corresponding discrete theory.

By using this characterization it can be established that the conjugate gradient
method converges [ ... | with a rate which can be bounded by the condition number [
... | However, if the operator has a few eigenva far away from the rest of the
spectrum, then the estimate is not sharp. In fact, a few ‘bad eigenvalues’ will have
almost no effect on the asymptotic convergence of the method.”

O. Axelsson and J. Kardtson, Numer. Alg. (2009):

“To preserve sparsily, the arising system is normally solved using an iterative

lution method, con ly a preconditioned conjugate gradient method [ ... | the
rate of convergence depends in general on a generalized condition number of the
preconditioned operator [ ... |

@ if the two operators (original and preconditioner) are equivalent, then the
corresponding PCG method provides mesh independent linear convergence [ ...]

@ if the two operators (original and preconditioner) are compact-equivalent, then
the corresponding PCG method provides mesh independent superlinear
convergence.”

R. Hiptmair, CMA (2006):

“There is a continuous operator equation posed in infinite-dimensional spaces that
underlines the linear system of equations [ ... | awareness of this connection is key
to devising efficient solution strategies for the linear systems.

Operator preconditioning is a very general recipe [ ... ]. It is simple to apply, but
may not be particularly efficient, because in case of the

[ condition number | bound of Theorem 2.1 is too large, the operator preconditioning
offers no hint how to improve the preconditioner. Hence, operator preconditioner
may often achieve [ ... | the much ted mesh independence of the
preconditioner, but it may not perform satisfactorily on a given mesh.”

V. Faber, T. Manteuffel and S. V. Parter, Adv. in Appl. Math. (1990):

“For a fized h, using a preconditioning strategy based on an equivalent operator may
not be superior to classical methods [ ... | Equivalence alone is not sufficient for a
good preconditioning strategy. One must also choose an equivalent operator for
which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from the
analysis [ ... | asymptotic estimates ignore the constant ltiplier. Methods with
similar asymptotic work estimates may behave quite differently in practice.”




Let V be an infinite dimensional Hilbert space with the inner product

(4 )v:V xV =R, the associated norm |- ||v,
V#  be the dual space of bounded (continuous) linear functionals on V' with the
duality pairing
() :VF XV SR,

For each f € V¥ there exists a unique 7f € V' such that

(f,v) = (7f,v)v forall veV.
In this way the inner product (-,-)v determines the Riesz map

T VF V.

Let a(-,-) =V xV — R be a bounded and coercive bilinear form. For w €V
we can write the bounded linear functional a(u,-) on V as

Au=a(u,-) € v# e,
(Au,v) = a(u,v) forall ve V.

This defines the bounded and coercive operator

AV - VH inf  (Au,u) =a >0, |A|=C.

weV, [Jully=1

The Lax-Milgram theorem ensures that for any b€ V#  there exists a unique
solution z € V' of the problem

a(z,v) = (b,v) forallveV.

Equivalently,
(Az —b,v) =0 forallveV,

which can be written as the equation in  V# |

Az =b, A:VoVE zev, beVH,

We will consider A self-adjoint with respect to the duality pairing (-,-).

7 Computation

Preconditioning needed for accelerating the iterations is then often build up
algebraically for the given matrix problem, giving (here illustrated as the left
preconditioning)

M 'Ax=M'b.

Then the CG method is applied to the (symmetrized) preconditioned system, i.e.,
(PCG) (M-preconditioned CG) is applied to the unpreconditioned system. The
schema of the solution process:

A, (b,-) — A,b— preconditioning — PCG applied to Ax =b.

Let @, = (6!,
let ®f = (o‘i’”#‘

“)F\h)) be a basis of the subspace V;, C V,
. .o%ﬁ‘#) be the canonical basis of its dual V.

The Galerkin discretization then gives

Anzr=bn, an€Vi, b€V, AV VF.

Using the coordinates =, = ®px, by = @#b , the discretization results in the
linear algebraic system

Ax=b.

7 A bit different view

Real-world problem
and its mathematical

PDE analysis of
the mathematical
model

Real-world problem

Mathematical model

Preconditioned
= ce Discrotization

Iterative
computation

Computation

Formulation of the model, discretization and algebraic computation, including the
evaluation of the error, stopping criteria for the algebraic solver, adaptivity etc. are
very closely related to each other.



7 Operator formulation of the problem 7 The mathematically best preconditioning

With the choice of the inner product (-,-)v =af(-,-) we get
Recall that the inner product (-,-)v defines the Riesz map 7.

It can be used to transform the equation in  V# a(u,v) = (Au,v) = a(tAu,v)
_ v # - S# ie.,
Az=b, AV VT, zeV, bevrh. 7=A"", and the preconditioned system z=A"'b.
into the equation in V' The inner product can be defined using an operator
Br=A, (v = ()= (Bu,v).
TAr = Tb, TA: V=V, zeV, 1tbeV, A Gy ) = (Bu,v)
Then

7=DB"", and the preconditioned system B~'Az =B"'b.
This transformation is called operator preconditioning. What d " BrA?
at does it mean ~ A7

Concept of norm equivalence and spectral equivalence of operators.

7 CG in infinite dimensional Hilbert spaces etization of the infinite dimensional C

ro=b—Axo e V¥, po=1ro€V . For n=1,2,..., %max
Using the coordinates in the bases @, and be of V, and Vh#

Arn-1,7rno1) respectively, (Vi — AV),
(Apn—1,pn-1)
Tp = Tn-1+ @n—1Pn—1, stop when the stopping criterion is satisfied

Qn—1

Tn =Tn—1— Qn-1Apn—1 {fr0) = v*f.,

(o) (v — v Mu, (M) = (65, 00V), 20 s
el R Au— Au, Au=Au= 0 Aus (Ay) = ((d5,00),,00 x
Pn =TT + BnPn—1 f— M7'f,  7f=7df=3,Mf;

Hayes (1954); Vorobyev (1958, 1965); Karush (1952); Stesin (1954)
Superlinear convergence for (identity + compact) operators.
Here the Riesz map 7 indeed serves as the preconditioner.

we get with b:@#b , Tn=PpXpn, pp = PpPn, Th = @:rn
the algebraic CG formulation

salerkin discretization gives matrix CG in V} 7 Philosophy of the a-priori robust bounds

ro=b — Axg, solve Mzy=rg, po=20. For n=1,...,Nmax

" The bound
n1 = Zn—1Tn-1
' Pi_1Apn_1 o 4
Xn = Xp-1+0n-1Pn-1, stop when the stopping criterion is satisfied AM'A) = Amas (M7 A) < SUPwve, lully =1, olly =1 | (AU, V)]
Amin(MTTA) — infuev, ju)y=1(Au, u)
rn = Tp-1—n—1Apn_1
Mz, = ra, solve for z,
ZpTn
B = It
Zp—1Tn-1
P =zt fupo is valid independently of the discretization, see, e.g., Hiptmair (2006). If the bound

is small enough, then the matter about the rate of convergence and its monitoring
is resolved.
Giinnel, Herzog, Sachs (2014); Mélek, S (2015)



7 Observations

7 Algebraic preconditioning?

@ Unpreconditioned CG, i.e.
orthonormal wrt (-, -)v .

M =1, corresponds to the discretization basis @

@ Orthogonalization of the discretization basis with respect to the given inner
product in V' will result in the unpreconditioned CG that is applied to the
transformed (preconditioned) algebraic system. The resulting orthogonal
discretization basis functions do not have local support and the transformed
matrix is not sparse.

@ Orthogonalization is not unique. For the same inner product we can get

different bases and different discretized systems with exactly the same
convergence behaviour.

7 Change of the b

and of the inner product

Consider an algebraic preconditioning with the (SPD) preconditioner

M=LL ' =L(QQ")L"

Where QQ* =Q'Q=1.

Question: Can any algebraic preconditioning be expressed in the operator
preconditioning framework? How does it link with the discretization and the choice
of the inner product in V' 7

y, locality, ¢ ] transfer of information

Transform the discretization bases

2=0(LQ)") "

2*LQ.
with the change of the inner product in V' (recall (u,v)y = v'Mu)

(1, V) new,v = (BT, DY) pew,v = 'l = v'LQQ'L'u = v LL u = v Mu.

The discretized Hilbert space formulation of CG gives the algebraically
preconditioned matrix formulation of CG with the preconditioner M

(more specifically, it gives the unpreconditioned CG applied to the algebraically
preconditioned discretized system).

Sparsity of matrices of the algebraic systems is always presented as an advantage of
the FEM discretizations.

Sparsity means locality of information in the individual matrix rows/columns.
Getting a sufficiently accurate approximation to the solution may then require
many matrix-vector multiplications (a large dimension of the Krylov space).

Preconditioning can be interpreted in part as addressing the unwanted consequence
of sparsity (locality of the supports of the basis functions). Globally supported
basis functions (hierarchical bases preconditioning, DD with coarse space
components, multilevel methods, hierarchical grids etc.) can efficiently handle the
transfer of global information.

ment

PLFEM ; cond
P1FEM ichol ; cond =2.67+01
P1FEM lap!: cond =1.00e+02
P1FEM ichol(1e-02) ; cond =1.72¢+00)

PCG convergence: unpreconditioned; ichol (no fill-in); Laplace operator
preconditioning; ichol (drop-off tolerance 1e-02). Uniform mesh, condition numbers
2.5¢03, 2.6e01, 1.0€02, 1.7e00.

Discreization basis function: P1 FEM: iz = 1

Discretizaton basis funcion: P1 FEM ichol; nz =5

Original discretization basis element and its transformation corresponding to the
ichol preconditioning.
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Discretization basis unction: P1 FEM lapl nnz = 225 Discretizaton basis function: P1 FEM ichol(Le-02); nnz = 214

8. HPC computations with Krylov subspace methods?

References

@ E. Carson, M. Rozloznik, Z.S., P. Tichy, and M. Tama, On the numerical
stability analysis of pipelined Krylov subspace methods, (2016, submitted for
publication).

Transformed discretization basis elements corresponding to the lapl (left) and
ichol(tol) preconditioning (right).

<

Synchronized recursions.

Strakos, Z., Efficiency and Optimizing of Algorithms and Programs on the Host
Computer / Array Processor System, Parallel Computing, 4, 1987, pp. 189-209.

¢

Matrix-vector multiplication and vector updates are linear and (possibly) fast.
Preconditioning is expensive (substantial global communication).

@ Host Computer (0.2 MFlops) / Array Processor (up to 10 MFlops).

©

Scalar coefficients require inner products and synchronization points.

@ Large instruction overhead and slow data transfers.

©

Nonlinearity causes trouble. For the approximation power of the methods,
o Pipelining, several arithmetic units. nonlinearity is essential.

@ Possible overlap of data transfers and arithmetic.

4

Parallelization can lead to numerical instabilities.

@ Slow scalar operations.

¢

Algorithmic improvements are good, but a more general view is needed.
Is sity of the system matrix alw: yood? Is it time to reconsider the FEM
civilization with its technology and axioms?

llel (communication sensitive) algorithms 8 from HS CG towards pipelined CG

ro =b — Axg, solve Mz =rg, po=29. For n= oy Mimax
@ Block recursion in order to increase arithmetic/communication ratio. Zy_1Tn—1
Qn_1 = T ——
. P . 1 Apn-
@ Numerical stability is crucial. Pn—14Pn-1
Xn = Xn—1+Qn_1Pn—1, stop when the stopping criterion is satisfied
@ Stopping criteria can save the case. Size of the blocks?
rn = Tno1—Qn-1Apn-1
. R . .
@ Preconditioning means an approximate solution of a part of the problem. Mz, = ra, solve for zn
"
Zn Ty
Bn = S
Zy _1Tn—1
State-of-the-art in the algorithmic developments: L

E. Carson, Communication-Avoiding Krylov Subspace Methods in Theory and
Practice, PhD Thesis, UC at Berkeley, CA, 2015. In later CG variants we will not consider preconditioning
(for simplicity of presentation).



8 ST CG (see Rosser (1953)), the notation in Carson et al. (2016) 8 Pipelined CG (see Ghysels and Vanroose (2014))

e 1. . T0,T0
Initialization: ro, po = ro, so = Apo, wo = Aro, 20 = Awo, ao = 7( :70)
e (po:50)

Initialization: ro = b — Ao, po = ro, T—1 = @0, 71 =70, €-1 =0 Ti = Ti—1 + Qi—1Pi-1,

( ) TP =Tio1 — Qi-18i-1

rie1, Arioa Wi = Wi—1 — Qi1Zi—
qi-1 = 7( ) —€i-2 i i1 i—1Zi—1

Ti—1,Ti-1 evaluate the stopping criterion

1

T =Ti1+ ric1+ eio(zic1 — zi2)| qi = Aw;

Tiy
[=Ario1 +ei—a(rim1 — 1i-2)] Bi = (71(711—7“171)
evaluate the stopping criterion _ (ri, ri)

pi =T1i+ Bipi-1
si=wi + Bisi—1
Three-term recurrence, a single synchronization point per iteration, zi = qi + Bizio1
used in Strakos (1987).

di-1
1
i1

Ti =Ti-1+

(ri,

€i—1 = (qi-1 (
Ti1,

Auxiliary recursions for wj, s;, z; in order to reduce the synchronization points and
overlap the inner product computation with the matrix-vector multiplication.

8 Individual added sources of instabilities 8 Numerical illustrations

@ Three term recurrences are less stable than coupled two term recurrences.
@ Matrix besstk03 (HB collection), N = 112,20 = 0, [|b]| = 1.
@ Auxiliary recurrences do not recompute the recurrence coefficients. This harms . i o . X
the local orthogonality relations and it can possibly destabilize the whole @ The starting vector b has equal components in the individual invariant
computation. subspaces.
@ Modification of the computation of recurrence coefficients can have negative @ We concentrate on the delay of convergence.
effect to the rate of convergence.
@ Apart from some very particular cases, maximal attainable accuracy is not of
@ Residual replacement strategy is not well understood and it needs further practical importance.

substantial analysis.

8 Adding auxiliary recurrences

A-norm of the error

A-nomm of the error

400 500 B0 1000 1200 200 400 600 800 1000 1200
iteration number iteration number

HS CG, modified HS CG with the recursive update

—— (@i — wi—1) .
i1 Api = Ari+ BiApi—1, ie. si = Ari+ Bisioi,

can significantly change behavior in finite precision arithmetic. and GV CG.

Replacing  p; = ri + fBipi-1 by pi=ri+



Update of the coefficient a;_1 8 Residual replacement

10
=/ HS exact
. s
5 0 H HS replac. at 10, 30, 50
£ _wth
E 2wl 1
8 £ H
) 3 H
= Ewtl |
<l
10 :
200 40 60 80 1000 T 1w '
iteration number |
o 00 a0 G0 @0 1000 1200
o e e . s "  Tieat: teration number
HS CG and the modified HS CG with explicit matrix-vectors multiplications Ar;_i, "

Api=1, and ai—1 computed using the relation Residual replacement before and after the linear independence of the computed

. B residual vectors is lost.
i1

T Ar B

i—1]? aip’

8 Adaptivity and stopping criteria? Papez, S (2016) 8 L-shape domain, Papez, Liesen, S (2014)

Residual-based a posteriori error bound for the total error that accounts for inexact
algebraic computations, for arbitrary v, € Vj,

[ (u = vn)|* < 20F CF (T (vn) + 0s¢®) + 2 Ciep (, o) |V (ur — 0|,

where (using the linear FEM discretization basis functions)

Oon
one

1/2
Je(vn) = |E)M? J(vp) = JE vy
(on) = 1] P ) E; . (o) Exact solution u (left) and the discretization error u — up (right) in the Poisson
model problem, linear FEM, adaptive mesh refinement.

Quasi equilibrated discretization error over the domain.

8 L-shape domain, Papez, Liesen, S (2014)

9. Myths about Krylov subspace methods

Myth: A belief given uncritical acceptance by the members of a group especially in
support of existing or traditional practices and institutions.

Webster’s Third New International Dictionary, Enc. Britannica Inc., Chicago (1986)
Algebraic error uj, — ul™ (left) and the total error u —u{™ (right) after the
number of CG iterations guaranteeing

[[V(u—un)|| > |lz—an|a.



spread statements that are misleading or plainly incorrect 9 Clustering of eigenvalues in the SPD case

@ Minimal polynomials and finite termination property
M; M;
@ Chebyshev bounds and CG . 7 — -”

@ Spectral information and clustering of eigenvalues
@ Operator-based bounds and functional analysis arguments on convergence

@ Finite precision computations can not be seen as a minor modification of the single eigenvalue many close eigenvalues
exact considerations ) PN ~
Aj iy Ajas oo A

@ Linearization of nonlinear phenomenon without noticing that this eliminates
the main principle behind the phenomenon, i.e. the adaptation to the problem

@ Short term recurrences can not guarantee well conditioned basis due to Replacing a single eigenvalue by a tight cluster can make a substantial difference;
rounding errors. This is true even for symmetric positive definite problems, and Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).

it remains true also for nonsymmetric problems If it does not, then it means that CG can not adapt to the problem, and it

Q@ Sparsity can have positive as well as negative effects to computations converges almost linearly. In such cases - is it worth using?

9 Minimal polynomials, asymptotics 9 How the mathematical myths are c

4

@ It is not true that CG (or other Krylov subspace methods used for solving Rutishauser (1959) as well as Lanczos (1952) considered CG principally
systems of linear algebraic equations with symmetric matrices) applied to a different in their nature from the method based on the Chebyshev polynomials.
matrix with ¢ distinct well separated tight clusters of eigenvalues produces in
general a large error reduction after t steps; see Sections 5.6.5 and 5.9.1 of
Liesen, S (2013). This myth has been disproved more than 20 years ago; see
Greenbaum (1989); S (1991); Greenbaum, S (1992). Still it is persistently
repeated in literature as an obvious fact.

©

Daniel (1967) did not identify the CG convergence with the Chebyshev
polynomials-based bound. He carefully writes (modifyling slightly his notation)

“assuming only that the spectrum of the matrix A lies inside the interval
[A1,An], we can do no better than Theorem 1.2.2.”

¢

‘With no information on the structure of invariant subspaces

it is not true that distribution of eigenvalues provides insight into

the asymptotic behavior of Krylov subspace methods (such as GMRES)
applied to systems with generally nonsymmetric matrices; see Sections 5.7.4,
5.7.6 and 5.11 of Liesen, S (2013). As before, the relevant results Greenbaum, S Why we do not read the original works? They are many times most valuable
(1994); Greenbaum, Pték, S (1996) and Arioli, Ptk, S (1998) are (almost) sources of insight, that can be gradually forgotten and can be overshadowed by
twenty years old. commonly accepted myth ...

©

That means that the Chebyshev polynomials-based bound holds for any
distribution of eigenvalues between A; and A; and for any distribution of
the components of the initial residuals in the individual invariant subspaces.

<

9 Anal with a priori and a posteriori numerical PDE analysis 9 Concluding remarks and outlook

<

Krylov subspace methods adapt to the problem. Exploiting this adaptation is
the key to their efficient use.

©

Unlike in nonlinear problems and/or multilevel methods, analysis of Krylov

@ Think of a priori and a posteriori numerical PDE analysis!
subspace methods can not be based, in general, on contraction arguments.

©

@ The Chebyshev bound is a typical a priori bound; it uses no a posteriori Individual steps modeling-analysis-discretization-computation should not be
information. considered separately within isolated disciplines. They form a single problem.

Operator preconditioning follows this philosophy.
@ A priori bounds are useful for the purpose they have been derived to.

They can not take over the role of the a posteriori bounds.

©

Fast HPC computations require handling all involved issues.
A posteriori error analysis and stopping criteria are essential ...

©

Assumptions must be honored.

©

Historia Magistra Vitae



ank you very much for your kind patience!
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