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Preface

Seminar on Numerical Analysis 2017 (SNA'17) is a continuation in a series of SNA events held
in di�erent places in the Czech Republic and organized alternatively by Ostrava and Prague
institutions. The SNA'17 is organized by the Institute of Geonics of the CAS in collaboration with
V�B - Technical University of Ostrava and IT4Innovations National Supercomputing Centre.
Conference location is one of the lecture rooms in New Aula of the V�B-TU Ostrava.

Let us note that SNA 2016 was reshaped to EMS School in Applied Mathematics (ESSAM)
devoted to mathematical modelling, numerical analysis and scienti�c computing. The SNA'17
is turning back to more traditional winter event.

It provides opportunity for meeting and mutual information of the community working in com-
putational mathematics and computer science, but an important part of SNA is devoted to the
Winter School with tutorial lectures focused on selected important topics within the scope of
numerical methods and modelling.

This year, a part of the Winter School will be the course Parallel Linear Algebra (PLA) organized
by the European research infrastructure PRACE, particularly by the French PRACE Advanced
Training Centre � Maison de la Simulation. Winter school lectures will cover the ongoing topics
related to domain decomposition methods, interval computations and numerical veri�cation. The
PLA course will provide lectures from the area of direct and iterative parallel solvers, as well as
practical training with selected programs.

We believe that the participants will enjoy the Winter School including the PLA course, as well
as programme of contributed presentations, posters and complementary social events.

On behalf of the Programme and Organizing Committee of SNA'17,

Radim Blaheta and Ji°í Starý
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IgA based modelling of runner wheel �ow

B. Bastl, M. Brandner, J. Egermaier, H. Horníková, K. Michálková, E. Turnerová

New Technologies for the Information Society, University of West Bohemia in Pilsen
Department of Mathematics, University of West Bohemia in Pilsen

1 Introduction

We focus on numerical solving of Navier-Stokes equations in 3D. We present a solver which is
based on a recently proposed approach called isogeometric analysis, which uses isoparametric
approach, i.e., the same basis functions are used for description of a geometry of a computa-
tional domain and also for representation of a solution. As isogeometric analysis is based on
NURBS objects, any real application requires to handle the so-called multipatch domains, where
a computational domain is composed of more parts and each part is represented by one NURBS
object. The solver is used for the simulation of the �ow through the runner wheel of the water
turbine.

2 NURBS objects

NURBS surface of degree p, q is determined by a control net P (of control points Pi,j , i = 0, . . . , n,
j = 0, . . . ,m), weights wi,j of these control points and two knot vectors U = (u0, . . . , un+p+1),
V = (v0, . . . , vm+q+1) and is given by a parametrization

S(u, v) =

n∑
i=0

m∑
j=0

wi,jPi,jNi,p(u)Mj,q(v)

n∑
i=0

m∑
j=0

wi,jNi,p(u)Mj,q(v)

=
n∑
i=0

m∑
j=0

Pi,jRi,j(u, v). (1)

B-spline basis functions Ni,p(u) and Mj,q(v) of degree p are Cp−1-continuous in general. See e.g.
[2] for details.

3 Navier-Stokes equations

The model of viscous �ow of an incompressible Newtonian �uid in rotating domain can be
described by the Navier-Stokes equations in the rotating frame of reference (we mention the
stationary form here)

∇p+ uR · ∇uA + ω × uA − ν∆uA = f , in Ω,
∇ · uA = 0, in Ω,

(2)

where Ω ⊂ R3 is the computational domain, uA = uA(x) is the vector function describing
absolute �ow velocity and uR = uR(x) is the vector function describing relative �ow velocity
such that

uA = uR + ω × r, (3)
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where r is the position vector and ω = (ω, 0, 0) angular velocity vector (x-axis is assumed as the
axis of rotation). p = p(x) is the kinematic pressure function, ν describes kinematic viscosity
and f additional body forces acting on the �uid.

The boundary value problem is considered as the system (2) together with the following boundary
conditions

u = w on ∂ΩD (Dirichlet b. c.),

ν
∂u

∂n
− np = 0 on ∂ΩN (Neumann b. c.),

uc1 = Rouc2 ,
pc1 = pc2 on ∂ΩC (cyclic b. c.),

(4)

where u stands for both uA and uR, Ro is rotation matrix and c1 and c2 are corresponding
boundaries. If the velocity is speci�ed everywhere on the boundary, then the pressure solution
is only unique up to a hydrostatic constant.

3.1 Galerkin approach and nonlinear iteration

Because of non-linearity of Navier-Stokes equations, it is necessary to solve the problem iteratively
with linear problem in every step. One of the possibilities is to use the so-called Picard's method
[1].

Let V be a velocity solution space and V0 be the corresponding space of test functions, i.e.,

V = {u ∈ H1(Ω)d|u = w on ∂ΩD},
V0 = {v ∈ H1(Ω)d|v = 0 on ∂ΩD}. (5)

We use Galerkin method and de�ne �nite dimensional spaces V h ⊂ V, V h
0 ⊂ V0, W h ⊂ L2(Ω)

and their basis functions. Find uh ∈ V h and ph ∈W h so that all functions vh ∈ V h
0 and qh ∈W h

satisfy

ν

∫
Ω

∇uk+1
Ah : ∇vh +

∫
Ω

(ukRh · ∇uk+1
Ah )vh +

∫
Ω

(ω × uk+1
Ah )vh −

∫
Ω

pk+1
h ∇ · vh =

∫
Ω

f · vh,∫
Ω

qh∇ · uk+1
Ah = 0. (6)

Isogeometric approach consists in taking the solution uh as a linear combination of basis functions
Rui ∈ V h and the solution ph as a linear combination of basis functions Rpi ∈W h, where Rui and
Rpi are NURBS basis function obtained from a NURBS description of a computational domain.
In 3D, the solution has the form

uh =

nud∑
i=1

(u1i, u2i, u3i)
TRui +

nuv∑
i=nud+1

(u∗1i, u
∗
2i, u

∗
3i)

TRui , ph =

np∑
i=1

piR
p
i , (7)

where nud is the number of points where the Dirichlet boundary condition is not de�ned. Further,
we assume that f is written as a linear combination of velocity basis function, i.e.,

fh =

nuv∑
i=1

(f1i, f2i, f3i)
TRui .

For general f , fh can be obtained with the help of L2 projection to a linear space spanned by
basis functions {Rui }1≤i≤nuv .
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4 Navier-Stokes equations on multipatch domains

Theory of NURBS objects directly implies that it is not possible to describe an object of arbitrary
topology by one NURBS object. Thus, when isogeometric analysis is used for numerical solving
of partial di�erential equations it is usually necessary to decompose a computational domain into
subdomains, which are suitable for description by one NURBS object.

4.1 Conforming meshes

The simplest case of a multipatch domain is represented by the case where joining control nets
of di�erent patches coincide and the corresponding knot vectors are the same. Then, exactly the
same meshes are obtained and we talk about a conforming mesh of the computational domain.
The easiest approach for joining such NURBS patches in the followup computation with the help
of isogeometric analysis is to identify the corresponding control points in the common control
nets of joining NURBS patches and reduce the number of degrees of freedom in the computation.

4.2 Non-conforming meshes

More complicated multipatch domains composed of patches with nested meshes or even more gen-
eral non-conforming meshes cannot be handled by identifying the corresponding control points.
In these cases, one can use discontinuous Galerkin method to join such a con�guration of patches
into one computational domain. The main approach is to add several new terms into the weak
formulation of the problem which are considered on the common interfaces of the patches. More
details can be found in [3].

5 Test example

The simulation of the �ow through the runner wheel region of the water turbine is presented. It is
the solution of the Navier-Stokes equations (2) in the cyclic periodic domain (part of multipatch
conforming mesh of this domain is depicted at the Fig. 1) with the following boundary conditions.

Figure 1: Part of multipatch conforming mesh of �ow region in the runner wheel domain.

In�ow of the domain is set on left surface of blue and red patches, where velocity �eld is prescribed
by the �ow through the guide vanes region with the �ow rate Q = 5.54m3/s. Out�ow of the
domain is set on the opposite side i.e., homogeneous Neumann boundary condition is prescribed
on this surface. The solid boundary surfaces of the domain are considered to be solid walls,
i.e., Dirichlet boundary condition with u = 0m/s is prescribed. Cyclic boundary conditions are
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prescribed on the front and back surfaces of the patches. For pressure, homogeneous Neumann
boundary condition is prescribed on the whole boundary.

The kinematic viscosity ν = 0.015m2/s and angular speed ω = 56.3rad/s. Fig. 2 shows stream-
lines of velocity.

Figure 2: Streamlines of velocity.

6 Conclusion

This paper was devoted to the numerical simulation of the runner wheel �ow. The solver based
on isogeometric analysis was successfully used to the solution of Navier-Stokes equations with
the rotation term. Complex region of the water turbine had to be decribed by the multipatch
domain.

Acknowledgement: This work was supported by the project LO1506 of the Czech Ministry of
Education, Youth and Sports.
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Gaussian random �elds decomposition and sampling

M. Bére², S. Domesová, R. Blaheta

Institute of Geonics of the CAS, Ostrava

1 Introduction

In mathematical modelling, we can encounter the need to analyze processes in some physical
domain D ⊂ Rn with only stochastic knowledge about the material. We shall say that the ma-
terial properties are described as a random �eld. By the random �eld on D ⊂ Rd we understand
a real valued function X (x, ω), which for every �xed x ∈ D results in a random variable and for
every �xed ω from the sample space Ω results in a function de�ned on D, e.g. a function from
L2(D). A common and natural type of random �eld is a Gaussian random �eld (GRF). For GRF
∀x ∈ D : X (x, ω) ∼ N (µ (x) ;σ (x)).

GRF can be fully described by its mean value µ (x) and auto-covariance function c (x, y) =
E ((X (x, ω)− µ (x)) · (X (y, ω)− µ (y))). Here we focus on isotropic GRF, which are speci�ed
by an auto-covariance function that takes only physical distance of x and y as a parameter.
For numerical examples we use D = 〈0, 1〉2, µ (x) = 0 and c (x, y) = σ2 · exp

(
−‖x−y‖λ

)
with

parameters λ = 0.3, σ = 2.

In typical applications, it is usually required

• to generate samples of the random �eld X (x, ω) (a sample is understood as a realization of
X (x, ω) for some ω ∈ Ω) or

• to calculate the decomposition of the random �eld in the form of

X (x, ω) w µ (x) +

N∑
i=1

ψi (x) · ξi (ω) , (1)

where ‖ψi (x)‖ should be rapidly decreasing with increasing value of i.

A random �eld is an in�nite-dimensional object, therefore we �rst need to perform some dis-
cretization. Basically there are two ways of random �eld discretization:

• Point discretization, which is used, if we are interested only in some �nite set of domain
points {x1, . . . , xN} ⊂ D. It leads to a random vector representation of the studied random
�eld.

• Discretization by the truncated Karhunen-Loève decomposition (KLD), which leads straight-
forwardly to the aforementioned decomposition form (1) of the random �led.

In this article we mainly focus on KLD and techniques for its e�cient calculation and broad �eld
of application, for other approaches we only present a review of suitable methods with references.
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2 Point discretization

The point discretization of a random �eld is the most straightforward way to obtain some in-
formation about it. In the case of GRF it leads to the multi-variate Gaussian distribution with
mean vector µ : (µ)i = µ (xi) and covariance matrix C : Ci,j = c (xi, xj). The covariance matrix
is generally symmetric and positively semide�nite, but in the case of the discretized random �eld
it can be assumed as symmetric positively de�nite (SPD).

First we examine sampling from the resulting multi-variate Gaussian distribution. Assume, that
we can simply generate samples of the random vector Y of independent and identically distributed
(i.i.d.) standard normal variables (zero mean, unit variance). Let X denote the desired multi-
variate Gaussian distribution given by the mean vector µ and the covariance matrix C, than X
can be expressed as

X = µ+ A · Y ,
where A satis�es C = A ·AT . This formula speci�es a direct approach to generate a sample x of
the random vector X as x = µ+A · y, where y is sample of Y . There are several ways to obtain
A · y, that lead to di�erent sampling methods.

In this section we mention four methods of sampling Y , which can be divided in the following
way:

• methods, that construct the matrix A
� construction using eigenvalue decomposition of C
� construction using Cholesky decomposition of C

• methods, that don't require the matrix A to be explicitly constructed
� Krylov subspace sampling method

� Circular embedding method

Eigenvalue decomposition of C. The covariance matrix is decomposed as C = Q · Λ · QT

(note C is SPD). Than A is constructed as A = Q ·
√

Λ, where Λ is diagonal and
√

Λ is element-
wise. This approach also o�ers the aforementioned decomposition form (1) of X (or X (x, ω))
as

X = µ+

N∑
i=1

qi ·
√
λi · yi,

where qi are eigenvectors of C (or columns of Q), λi are eigenvalues and yi are i.i.d. standard
random variables.

Cholesky decomposition of C. The Cholesky decomposition factor can be used as A, because
C is SPD. In comparison to the previous approach, the decomposition form (1) has bad properties
(low decrease in norm of summands in the decomposition form).

Krylov subspace sampling method. This iterative method is based on �nding an approxi-
mation of

√
C · y by projecting to Krylov space K(y,C) and using the Lanczos basis for approxi-

mation of the matrix square root. For the basic method see [2], for the preconditioned approach
see [3].

Circular embedding method. This method is based on fast Fourier transform and requires
a point discretization on a regular grid. It generates samples of random vector A ·Y , but cannot
be interpreted as an operator on y in the aforementioned way, see [1].

14



3 Karhunen-Loève decomposition

KLD is an alternative to the point discretization, but now we don't constrain on a �nite set
of domain points. KLD is based on a fact, that the L2

(
Ω, L2 (D)

)
space (where the studied

GRF belong) is identically isomorphic with the tensor product of spaces L2 (Ω) ⊗ L2 (D). The
existence and construction of KLD is given by the Karhunen-Loève theorem, see [1, thm. 7.52].
It states, that KLD takes form

X (x, ω) = µ (x) +
∞∑
j=1

√
λj · ψj (x) · ξj (ω) , (2)

where, in case of GRM, ξj (ω) are i.i.d. standard normal variables and {λj , ψj} denote the
eigenvalues and eigenfunctions of the covariance operator (Cf) (x) :=

∫
D c (x, y) · f (y) dy.

For the construction of KLD we only need to calculate the solution of the following eigenvalue
problem ∫

D

c (x, y) · ψi (y) dy = λi · ψi (x) ,∀i ∈ N,

which can be done using the Galerkin method.

For the Galerkin method consider a basis 〈φ1 (x) , . . . , φn (x)〉 = Vn ⊂ L2 (D), than the approxi-
mation of eigenvectors takes form ψi (x) '∑n

j=1 ψij · φj (x). We solve the following problemFind ψi ∈ Rn, λ̃i ∈ R+ : ∀φj (x) :∫
D
φj (x) ·

∫
D
c (x, y) ·

(∑n
j=1 ψij · φj (x)

)
dydx = λ̃i ·

∫
D
φj (x) · ψi (x) dx , (3)

which can by formulated as a generalized eigenvalue problem

Aψi = λ̃i ·W · ψi, Aij =

∫
D

∫
D

c (x, y) · φi (y) · φj (x) dydx, Wij =

∫
D

φi (x) · φj (x) dx. (4)

The di�cult part is the choice of the basis Vn. Before we specify the basis functions, let state
some general properties, which simplify the solution of the problem 4. One of such properties
is the orthonormality of Vn, which leads to the standard eigenvalue problem (matrix W become
identity matrix). Another useful property is that each of the basis functions is either �odd� or
�even� with approximately equal number of �odd� and �even� functions (here parity is understood
with respect to the middle of the domain D). This property allows us to permute the matrix A
into block diagonal form of 2d blocks (d is the dimension of D).
Speci�c bases tested in this article are three and were constructed as tensor product of 1d bases
of piece-wise constant functions, normalized Legendre polynomials or goniometric basis of 1d
solution of the equivalent problem (see [5]).

For experimental purposes, the calculation of Aij is done numerically by the Gauss-Legendre
quadrature of 100 points per dimension. Note, that this is very computationally expensive,
we need to evaluate the integrand in 1004 points for each non-zero entry of A. The sample
calculation using goniometric basis with 400 basis function (20 in one dimension) can be seen in
the Figure 1. Note the very fast decay of eigenvalues, which assures low approximation error of
the truncated KLD.

Next we compare the approximation error of the tested bases. We don't know the exact eigenfunc-
tions, so we take the approximation obtained using the piece-wise constant basis of 500× 500 =

15



Figure 1: Results for goniometric basis with 400 basis function.

250000 functions as �precise� solution. We measure the error as L2 (D) norm of the di�erence
between the �precise� solution ψi (x) and the Galerkin approximation ψhi (x), both multiplied by
square roots of the corresponding eigenvalues, err

(
λhi · ψhi (x)

)
=
∥∥λi · ψi (x)− λhi · ψhi (x)

∥∥
L2(D)

.
The resulting approximation errors for 1st and 13th eigenvector can be seen in the Figure 2. The
results show, that the polynomial basis has the best approximation property. In the case of the
polynomial basis, the convergence (in the Figure 2) stagnates for the number of basis functions
over 100, which is caused by the choice of the �precise� solution and arithmetic instability of the
evaluation of the higher order Legendre polynomials. Note, that the convergence of the Galerkin
method can be sensitive to the precision of the numerical integration, which is more di�cult
for fast oscillating functions, such as polynomials or goniometric functions. On the other hand,
the piecewise constant basis needs lower number of integration points with increasing number of
basis functions.

Figure 2: Convergence of tested bases.

The sampling of GRF, when we have KLD (2), simply means to sample the i.i.d. standard
normal variables ξj (ω). Note the similarity with the �eigenvalue decomposition of C� method.

4 Sample usage of sampling and decomposition of GRF

Finally we list some applications of decomposition/sampling of GRF. Our research mostly con-
cerns PDEs with unknown material parameters (e.g. permeability), for which only statistical
behaviour is known. In the case of many natural materials, the statistical behaviour (of loga-
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rithm) of their properties has Gaussian random �eld distribution. Our current research topics,
that involve GRF, are:

• Multilevel Monte Carlo approximation of the Darcy �ow problem solution with random
material �eld, where we only need to generate samples of GRF (see [4]).

• Stochastic Galerkin method for solving the same problem, where the decomposition form of
GRF is used (see [6]).

• Bayesian inverse approach to a material �eld estimation using noised point measurements of
the pore pressure and the Darcy's velocity (see [7]).

• Study of robustness of iterative solvers for problems with stochastic, oscillating coe�cients.
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�e²ení 3D úloh mechaniky tekutin metodou lattice Boltzmann

J. Blaho², T. Karásek, T. Brzobohatý

IT4Innovations, V�B - Technická univerzita Ostrava

1 Úvod

Metoda lattice Boltzmann (LBM) je jednou z numerických metod pouºívaných pro °e²ení úloh
proud¥ní. Po£átek jejího vývoje se datuje n¥kdy do 70. aº 80. let.

P°edch·dcem LBM je metoda lattice gas. Ta p°i²la s jednoduchou my²lenkou simulace chování
jednotlivých molekul tekutiny. N¥kdy se mluví o simulaci na mikroskopické úrovni. Výpo£etní
oblast se diskretizuje do pravidelné m°íºky. V kaºdém uzlu m°íºky se nacházejí �ktivní £ás-
tice, které se po m°íºce p°esouvají a navzájem interagují podle daných pravidel. �ástice nikdy
nem·ºe skon£it jinde neº na jednom z uzl· m°íºky. Z toho plyne vedle prostorové diskretizace
i diskretizace rychlosti.

Obrázek 1: Schéma kroku algoritmu metody lattice gas

Metoda lattice Boltzmann vychází ze stejných princip·. Po pravidelné m°íºce se pohybují £ás-
tice s diskrétními rychlostmi do sousedních uzl·. Dále dochází ke kolizi (úprav¥ sm¥r· p°e-
sunu), s omezením na zachování hmoty a hybnosti. Zárove¬ metoda LBM p°iná²í n¥která
vylep²ení, které odstra¬ují nedostatky metody lattice gas. Klí£ový je fakt, ºe metoda LBM
na makroskopické úrovni °e²í Navier-Stokesovy rovnice.

2 Algoritmus

Podstata metody LBM spo£ívá v manipulaci se sadou reálných £ísel v kaºdém uzlu m°íºky.
Tyto £ísla bývají obvykle ozna£ovány za hodnoty distribu£ní funkce, p°i£emº kaºdá hodnota
popisuje mnoºství £ástic mající jednu z mnoºiny moºných rychlostí. Makroskopické veli£iny jako
je hustota a rychlost proud¥ní tekutiny lze pro daný uzel získat pomocí jednoduchých operací.

Samotný výpo£et jednoho £asového kroku sestává ze dvou £ástí - propagace a kolize. Propagace
znamená prostý posun hodnot distribu£ních funkcí k sousedním uzl·m ve sm¥ru odpovídající
rychlosti. V kolizní £ásti se vyuºívá tzv. Bhatnagar-Gross-Krook·v operátor, který z fyzikálního
hlediska p°edstavuje relaxaci k rovnováºnému rozd¥lení £ástic. Toto rozd¥lení je de�nováno jako:

feqi = ρwi

[
1 + 3uvi +

9

2
(uvi)

2 − 3

2
uu

]
(1)
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Jedná se o aproximaci Maxwell-Boltzmannovy distribu£ní funkce Taylorovým polynomem druhé-
ho °ádu.

Obrázek 2: M°íºka D3Q19 - nej£ast¥j²í m°íºka pouºívaná ve 3D, vyuºívající 19 sm¥r· p°esunu

3 Paralelizace

Klí£ovou otázkou v oblasti HPC je moºnost a efektivita paralelizace. V tomto ohledu je LBM
velice zajímavá, díky povaze pouºitého algoritmu. V propaga£ní £ásti dochází k prostému
kopírování hodnot na sousední uzly. V kolizní £ásti je pak výpo£et v rámci uzlu zcela nezávislý.
V dne²ní dob¥ paralelního po£ítání na £ím dál výkonn¥j²ích superpo£íta£ích má proto tato
metoda velký potenciál.

4 Záv¥r

V sou£asné dob¥ je naimplementovaná základní funk£ní LBM v jazyce C++, vyuºívající hybridní
paralelizaci (MPI a OpenMP). Dal²í výzkum se bude soust°edit na optimalizaci implementace,
a vyuºitelnost pro °e²ení úloh s tzv. volnou hladinou a pro °e²ení rovnice "shallow water".

Obrázek 3: Vizualizace výstupu - °ez obtékání válce ve 3D

Pod¥kování: Tato práce je podporována z projektu SGS - Numerické metody pro modelování
environmentálních proces· SP2017/167
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Balancing discretization and algebraic errors in goal-oriented
error estimates for nonlinear problems

V. Dolej²í, F. Roskovec

Faculty of Mathematics and Physics, Charles Universityin Prague

1 Introduction

Employing the Dual Weighted Residual method (DWR) for the goal-oriented error estimation,
see e.g. [1], we propose an adaptive algorithm for solving nonlinear elliptic boundary value
problems. Rather than measuring the error in a norm coming from the mathematical formulation
of the solved problem, the error is estimated with respect to the so-called target functional,
which represents some quantity of special interest. This is achieved by solving an additional
(dual) problem having the target functional in its right-hand side. That enables us to adapt
the computational mesh directly with respect to this goal, which may fasten the computation
dramatically in many cases. On the other hand, the the necessity of solving the adjoint problem
brings additional computational costs and also possible errors. Based on the design published
in [2] and [3], we propose an adaptive algorithm, which keeps the linear and nonlinear algebraic
errors under the level of the discretization error � all of these measured with respect to the target
quantity.

2 DWR method for nonlinear problems

We consider the following abstract primal problem: Determine J(u) =
∫
Ω

jΩ(u) dx+
∫
∂Ω

jΓ(u) dS

given that

A(u) = 0 in Ω, u = uD on ∂Ω, (1)

where Ω ⊂ R2 is a bounded domain and uD, jΩ, jΓ : R→ R are given functions.

We discretize the problem (1) by the discontinuous Galerkin method (dG). Then we say that
uh ∈ Vh ⊂ V is the dG solution of the primal problem if it satis�es

ah(uh;ϕh) = 0 ∀ϕh ∈ Vh. (2)

We assume that the discretization is consistent, i.e. ah(u;ϕh) = 0 ∀ϕh ∈ Vh. This property gives
us the Galerkin orthogonality of the approximate solution.

2.1 Newton method

The problem (2) results in a nonlinear system of algebraic equations and it is further solved by
an inexact Newton method. We introduce the damped Newton method for the problem (2). In
every step of the method the next approximation is computed as u(n+1)

h = u
(n)
h + λndn, where

dn is the exact solution of

a′h(u
(n)
h ; dn, ψ) = −ah(u

(n)
h ;ψ),∀ψ ∈ Vh. (3)
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where a′h(u
(n)
h ; dn, ·) denotes the Fréchet derivative of ah with respect to its �rst variable at u(n)

h

along the direction dn and λn ∈ (0, 1] is a parameter which improves the convergence of the
method in early iterations.

In each step of the Newton method, the linear system (3) is solved by some iterative method
(e.g. GMRES). Due to the error of this iteration method we do not get the exact dn, but only
its approximation d(n)

A and hence in every step of the inexact Newton method we obtain

u
(n+1)
h,A = u

(n)
h + λnd

(n)
A .

2.2 Dual problem

The dual (adjoint) problem cannot be obtained directly in the nonlinear case. Therefore, accord-
ing to [1] we employ the Euler-Lagrange equations. That gives us the linearized discrete dual
problem

a′h(uh;ϕh, zh) = J ′(uh;ϕh) ∀ϕ ∈ Vh, (4)

where J ′(uh;ϕh) denotes the Fréchet derivative of J at uh along the direction ϕh and a′h(uh;ϕh, ·)
is the Fréchet derivative of ah with respect to its �rst variable at uh along the direction ϕh.

Exploiting the dual problem (4) we obtain the error representation of the target quantity

J(u)− J(uh,A) =
1

2
[rh(uh,A)(z − zah) + r∗h(uh,A, z

a
h)(u− uh,A)] + rh(uh,A)(zah) +R(3)

h , (5)

where rh(uh,A)(ϕ) = −ah(uh,A, ϕ), r∗h(uh,A, z
a
h)(ψ) = J ′(uh)(ψ) − a′h(uh)(ψ, zh) are the primal

and dual residual, respectively, and R(3)
h is a remainder, cubic in the error, which will be ne-

glected.

Unlike the approach presented in [1] we take into account here also the inexact solution of the
nonlinear algebraic problem. We note that, if uh and zh would be the exact solutions of the primal
and dual discrete problems, respectively, then rh(uh)(ϕh) = r∗h(uh, zh)(ϕh) = 0, ∀ϕh ∈ Vh.
This property cannot be achieved in real computations. Moreover we do not even intent to
obtain algebraically precise solutions, since it would increase the computational cost needlessly
when the discretization error is still large. On contrary, we monitor the decrease of the algebraic
error and stop iterating when the error is under the level of the discretization error up to a safety
parameter κ ∈ (0, 1].

We solve both of the linear systems (3) and (4) by a Krylov iterative solver. Then for each inner
iteration i = 1, . . . , imax we introduce

the primal linear algebraic error identity

tnh,A(·) := a′h(u
(n)
h )(dn,iA , ·) + ah(u

(n)
h ; ·) (6)

and the dual linear algebraic error identity

qnh,A(·) := a′h(u
(n)
h )(·, zn,ih )− J ′(u(n)

h )(·). (7)

If J : V → R is a linear functional and we denote u(n+1)
h,A = u

(n)
h +λnd

(n)
A and u(n+1)

h = u
(n)
h +λnd(n),

the inexact solution (due to errors of the linear solver) and the exact solution of one step of the
Newton method, respectively, then we get the following error identity (see [3])

J(u
(n+1)
h )− J(u

(n+1)
h,A ) = −λn

(
tnh,A(z

(n)
h,A) + qnh,A(d(n) − d(n)

A )
)
. (8)
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2.3 Reconstruction

Unfortunately, the error identity (5) contains the exact solutions u and z, hence is not practically
applicable. Therefore, these exact solutions have to be approximated. We can either compute
those in some richer discrete space (on �ner mesh and/or with higher polynomial degree), see
e.g. [4], or we can reconstruct those from uh and zh. The method from [4] is very precise, but it
increases the computation price signi�cantly.

Therefore, we apply the weighted least-squares reconstruction, which was presented in [5]. For
each element K of the triangulation Th this method constructs a function u+

K ∈ P p+1(K), which
is a solution of the weighted least-squares method on the patch of elements having at least
a common vertex with the element K. In this way we construct u+

h ≈ u and z+
h ≈ z.

3 Adaptive algorithm

Altogether, we de�ne the estimate of the total error in the following way

J(u)− J(u
(n)
h,A) ≈ 1

2
(ηS + η∗S) + ηN −

n−1∑
i=0

λi(ηiA + η∗,iA ), (9)

where we use the following error estimators:

• primal discretization error estimate ηS = rh(u
(n)
h,A)(z+

h )

• dual discretization error estimate η∗S = r∗h(z
(n)
h,A)(u+

h )

• non-linearity estimate ηN = rh(u
(n)
h,A)(z

(n)
h,A)

• primal algebraic estimate ηiA = tih,A(z
(i)
h,A)

• dual algebraic estimate η∗,iA = qih,A(d
(i)
A )

Finally, with all of these error estimators in hands we introduce the adaptive algorithm. The
constants C∗A ∈ (0, 1] should reduce the number of calculations of the particular estimates and
suppress the inexactness of the estimates. We usually set those from [10−3, 10−1].

REPEAT UNTIL 1
2(ηS + η∗S) < TOL :

initialize u(0)
h , z

(0)
h and ηS from previous mesh , k:=0

FOR n = 0, . . . , nmax:
r := k
REPEAT UNTIL ηN(u

(k)
h , z

(r)
h ) ≤ C1

AηS(u
(r)
h , z

(r)
h ) : %Newton iterations

perform GMRES iterations for (3) with tol. ηiA(u
(k)
h , z

(r)
h , d

i
A) ≤ C2

AηN(u
(k)
h , z

(r)
h )

�nd the optimal damping parameter λk, set u(k+1)
h,A and k := k + 1

perform GMRES iterations for (4) with tol. η∗,iA (u
(k)
h , z

(k,i)
h ) ≤ C3

AηN(u
(k)
h , z

(r)
h )

compute reconstructions u+
h , z

+
h , update ηS = ηS(k) and η∗S = η∗S(k)

IF ηA(u
(k)
h , z

(k)
h ) < C1

AηS : EXIT FOR loop
set uh,A := ukh,A and zah = zkh,A

IF 1
2(ηS + η∗S) > TOL :

re�ne elements with local error estimate ηS,K > TOLK = TOL
#elements
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4 Conclusion

We presented a robust adaptive algorithm, which is designed to keep discretization and algebraic
errors balanced and hence enable e�cient computation of various nonlinear elliptic problem
solved by dG method. Our experiments document stable and reliable performance of this al-
gorithm. Nevertheless, we should not cover the fact that the algorithm is partly heuristic. We
neglect the part of the error corresponding to u−u+

h and z−z+
h and also some terms coming from

the linearization of the problem. This is a common problem in DWR methods. As far as we know
there are some guaranteed estimates for linear problems using equilibrated �ux reconstructions,
but the extension to nonlinear problems is still unclear.
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Czech Science Foundation. The research of F. Roskovec was supported by the Charles University,
project GA UK No. 92315.
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Investigating �nite-precision Krylov subspace methods
via rank-de�ciency of the computed subspaces

T. Gergelits, I. Hn¥tynková, M. Kubínová, Z. Strako²

Faculty of Mathematics and Physics, Charles University in Prague

1 Short-recurrence Krylov subspace methods

Krylov subspace methods represent a computationally attractive way of solving large and sparse
linear algebraic problems of a general form

Ax = b, A ∈ Rn×n, b ∈ Rn. (1)

Many of these methods rely mathematically on computation of an orthonormal basis of the
Krylov subspaces

Kk(A, r0) ≡ span{r0, Ar0, . . . , A
k−1r0}, k = 1, 2, . . . ,

where r0 = b−Ax0. For a symmetric A, a sequence of orthonormal bases generating Kk(A, r0),
k = 1, 2, . . ., can be computed by short recurrences, represented by the Lanczos tridiagonaliza-
tion [5]. However, in �nite precision computations, the use of short recurrences inevitably leads
to the loss of global orthogonality and even the loss of linear independence among the generated
vectors. Consequently, the computed Krylov subspaces become rank-de�cient, which may cause
a signi�cant delay of convergence.

In this contribution, we investigate how the �rst k steps of the �nite precision arithmetic com-
putation can be related to the �rst l steps of the exact computation with the same matrix and
starting vector.1 Such pairing allows to compare not only the convergence curves, but also the
computed approximations, corresponding residuals, or the generated subspaces.

2 A pairing strategy

We propose the following pairing based on the loss of linear independence in the kth computed
Krylov subspace: For each iteration l in the exact computation, we aim at �nding the corre-
sponding iteration k(l) in the �nite precision computation as

k(l) ≡ max{j| num_rank(V̄j) = l}, (2)

where V̄j is the matrix of the Lanczos vectors computed in �nite precision arithmetic. The
de�nition of numerical rank is generally a subtle issue. In this contribution we investigate several
possible approaches.

1It should be pointed out that the analyses of Greenbaum and coauthors [3, 4] and Paige and coauthors [6]
link the results of �nite precision computations to exact computations for larger problems.

24



3 Observed phenomena

When applying the Lanczos method [5] to the system (1) with a symmetric positive de�nite
matrix A, the quantity of interest is typically the energy norm (A-norm) of the error. Using the
pairing (2), we have observed that

‖xl − x‖A ≈ ‖x̄k(l) − x‖A, (3)

see Figure 1. Moreover, typically we also have

‖xl − x̄k(l)‖A
‖xl − x‖A

� 1, ∀l, (4)

meaning that the trajectory of the computed approximations x̄k(l) is enclosed in a shrinking
`cone' around the trajectory of approximations xl from exact arithmetic computations.

Figure 1: The matrix strakos with n = 100, λmin = 0.1, λmax = 1000, and ρ = 0.7, see [7], and
a random vector x. Convergence curves before (a) and after pairing (c).

While in the convergence curves of ‖x̄l − x‖A, the loss of orthogonality causes plateaus, see
the typical staircase behavior in Figure 1a, in the convergence curves of ‖r̄k‖ = ‖b − Ax̄k‖, it
reveals itself in oscillations, see Figure 1b. Contrary to expectations, ‖r̄k(l)‖ and ‖rl‖ cannot
be compared directly. We suggest to use the relation between residuals of norm-minimizing and
Galerkin methods, see [1], and compare the exact and �nite precision residual norms as

1

‖rl‖2
≈

k(l)∑
j=k(l−1)+1

1

‖r̄j‖2
. (5)

The resulting match of the associated curves is shown in Figure 2.

Using the relationship between the Lanczos tridiagonalization and the Golub-Kahan bidiagonal-
ization [2], similar pairings can be applied to bidiagonalization-based methods such as LSQR,
Craig or LSMR. Here, however, the fact that solutions and residuals belong to di�erent subspaces,
both loosing global orthogonality, represents additional di�culty.

The poster will present some recent results, discussion and illustrative experiments of the studied
topics.

Acknowledgment: This work was supported by Charles University, project GAUK 196216.

25



Figure 2: The problem with matrix strakos from Figure 1. Residual convergence curves before
(a) and after pairing (b).
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Stokes system with solution dependent threshold slip boundary
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J. Haslinger, R. Ku£era, V. �átek

Charles University in Prague & Institute of Geonics of the CAS, Ostrava
IT4Innovations, V�B � Technical University of Ostrava

IT4Innovations, V�B � Technical University of Ostrava & Brno University of Technology

This contribution deals with an approximation of the Stokes system involving the threshold slip
boundary conditions of the Navier type. Unlike the classical Navier condition, this time a slip
may occur only when the shear stress attains a threshold bound represented by a function g. We
suppose that g is generally a nonlinear function of the tangential component of the �ow velocity.
Such boundary conditions occur in many practical problems (modeling of polymer melts �ow,
problems with multiple interfaces, �ow of the �uid along hydrophobic surfaces). For the physical
justi�cation we refer to [1, 2]. The mathematical and numerical analysis of such a type of
problems can be found in [3, 4, 5, 6], e.g. Using the �xed point approach we prove the existence
and uniqueness of the solution to this problem for an appropriate class of threshold bounds g.
The discretization will be done by P1-bubble/P1 elements which satisfy the LBB-condition. The
mesh independent conditions under which the discrete problems have a (unique) solution will be
presented and convergence results will be established. Finally, computational experiments will
be shown.

References

[1] H. Hervet, L. Leger: Flow with slip at the wall: from simple to complex �uids. C.R. Physique
4 (2003), pp. 241�249.

[2] I. Rao, K. Rajagopal: The e�ect of the slip boundary conditions on the �ow of �uids in
a channel. Acta Mechanica 135 (1999), pp. 113�126.

[3] H. Fujita: A coherent analysis of Stokes �ows under boundary conditions of friction type. J.
of Comput. and Appl. Math. 149 (2002), pp. 57�69.

[4] C.L. Roux, A. Tani: Steady solutions of the Navier-Stokes equations with threshold slip
boundary conditions. Math. Methods Appl. Sci. 30 (2007), pp. 595�624.

[5] M. Bulí£ek, J. Málek: On unsteady internal �ows of Bingham �uids subject to threshold
slip on the impermeable boundary. Recent Developments of Mathematical Fluid Mechanics,
2016, pp. 135�156.

[6] R. Ku£era, J. Haslinger, V. �átek, M. Jaro²ová: E�cient methods for solving the Stokes
problem with slip boundary conditions. Math. Comput Simulation (in press 2016).

27



�e²ení sdruºeného transportu tepla vodou
a horninou v kombinaci puklina-matrice

M. Hokr, P. Rálek

Technická univerzita v Liberci

1 Úvod

�e²ena je sdruºená úloha proud¥ní podzemní vody a transportu tepla v hornin¥. Modelová oblast
se skládá ze dvou £ástí, málo propustné horniny, kde je dominantní transport tepla vedením
a propustné zóny (pukliny), kde je dominantní transport tepla advekcí.

Proces je reprezentován standardními rovnicemi, které jsou numericky °e²eny existujícími meto-
dami v p°evzatém softwaru [1, 2]. Speci�ka úlohy vyplývají z geometrické kon�gurace a propo-
jení proces· mezi sebou. Úloha je postavena na datech reálné lokality a výsledky modelu jsou
porovnány s terénním m¥°ení. Model tak p°ispívá k identi�kaci vlastností horninového prost°edí,
i kdyº samotné °e²ení inverzní úlohy není p°edm¥tem prezentované práce. �e²ení navazuje na
práci [3].

2 Úloha

Model reprezentuje situaci v okolí tunelu, do kterého p°itéká voda svislou puklinou a zárove¬
vlivem vyuºití tunelu v n¥m sezónn¥ kolísá teplota vzduchu. Situaci je moºné popsat bu¤ ve
v¥t²ím m¥°ítku, s celým objemem horniny mezi povrchem a tunelem, kdy model musí být 3D,
nebo v men²ím m¥°ítku okolí tunelu, kdy na základ¥ osové symetrie je moºné pouºít 2D model.
Takový p°ípad je znázorn¥n na Obr. 1 � výchozí koncept je uveden v levé £ásti (p°edpokládáme
ustálený stav daleko od tunelu a ovlivn¥ní horniny v blízkosti tunelu) a modelová úloha s okra-
jovými podmínkami pro ob¥ rovnice v pravé £ásti. Zatímco m¥°ený pr·b¥h teploty na st¥n¥
tunelu je zadán jako okrajová podmínka modelu, teplota vyv¥rající vody je získána jako post-
procesing výsledného pole teploty a je porovnávána s m¥°ením.

T stablerock

T (t)tun

T (t)water

Rock
massif

Tunnel wall

H=0m

K_rock

K_fract
n_fract

n_rock

d_fract
Measured Q

d_BC

H=0m

K_rock

K_fract
n_fract

n_rock

d_fract
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d_BC

Obrázek 1: Schéma °e²ené úlohy proud¥ní a transportu tepla a zadaných okrajových podmínek:
H je hydraulická vý²ka, T je teplota, K je hydraulická vodivost, n je pórovitost, Q je pr·tok,
d ozna£uje rozdílnou ²í°ku odpovídající puklin¥ nebo umíst¥ní okrajové podmínky.

Zatímco b¥ºn¥ uvaºované rovnice sdruºeného procesu vycházejí z p°edpokladu lokální rovnováhy
mezi teplotou vody a teplotou pevné fáze (zrna horniny), v °e²ené úloze vzniká nerovnováha ve
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v¥t²ím m¥°ítku (decimetry�metry) v d·sledku nehomogenity rozloºení toku vody, p°i uplatn¥ní
stejných p°edpoklad· rovnováhy v lokálním m¥°ítku.

3 Výsledky

�e²ení úlohy ustáleného proud¥ní je moºné jednodu²e kalibrovat volbou hydraulických vodi-
vostí (K) pro blok horniny a puklinu, na základ¥ m¥°ených tok· p°es hranici (pr·sak to tunelu).
Tepelné parametry jsou n¥které známé z literatury, jiné jsou odhadnuty aº na základ¥ kalibrace
modelu na m¥°ený pr·b¥h teploty vyv¥rající vody. V úloze je nejistota vyplývající z abstrakce
reálných podmínek � ostré rozhraní mezi hranicí se zadanou teplotou (st¥na tunelu bez výv¥ru)
a hranicí s vyhodnocovanou teplotou (vyv¥rající vodou) (Obr. 1 vpravo).

P°íklad porovnání pro £áste£n¥ kalibrovaný model je na Obr. 2, který ukazuje identi�kaci hodnoty
ustálené teploty uvnit° masivu (rock b.c.). Model kvalitativn¥ i kvantitativn¥ vystihuje m¥°ený
pr·b¥h teplot, p°i£emº odchylky jsou p°im¥°ené nejistotám ve vlastnostech horninového prost°edí
a nep°esnosti m¥°ení. Potvrzuje, ºe je moºné teplotu vody vyuºít jako indikátor nehomogenního
toku prostorového rozloºení toku vody v hornin¥.

V p°ísp¥vku bude rozebráno, které jednotlivé vlivy odpovídají r·zným fyzikálním podmínkám
v hornin¥, a které jsou jen d·sledek diskretizace nebo abstrakce modelu.
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Obrázek 2: Porovnání m¥°eného £asového pr·b¥hu teploty vyv¥rající vody a dvou variant modelu
s r·znou hodnotou neznámé okrajové podmínky.

Pod¥kování: Práce vznikla z£ásti v rámci institucionální podpory CxI TUL a z£ásti je výsled-
kem °e²ení projektu Správy úloºi²´ radioaktivních odpad· �Výzkumná podpora pro bezpe£nostní
hodnocení hlubinného úloºi²t¥�.
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Numerical pricing of two-asset European-style
arithmetic Asian options

J. Hozman, T. Tichý

Technical University of Liberec
V�B � Technical University of Ostrava

1 Introduction

Options are the most interesting �nancial derivatives worldwide, both from the mathematical
point of view and the range of �nancial applications. Therefore, an important part of activities at
�nancial markets consists of using option pricing models, often formulated in the form of partial
di�erential equations (PDE). These models have analytical solutions only under very strong
simpli�cations and in the rest of cases an e�cient, robust and accurate numerical approach is
needed, cf. [1].

In this paper, we are concerned about pricing of one particular subclass of path-dependent
options � continuous arithmetic Asian option contracts on two assets. The corresponding pricing
model is formulated by a convection-di�usion-reaction equation, derived in a similar way as the
multidimensional Black-Scholes equation for European basket options, see [2].

The numerical approach listed below arises from the concept of the discontinuous Galerkin (DG)
method, for survey see [9]. This technique uses higher order piecewise polynomial discontinuous
approximation on arbitrary meshes, without any requirement on inter-element continuity. There-
fore, it is more suitable for numerical pricing of such exotic options than standard continuous
treatment based on �nite element methods, see [4].

We proceed as follows. First, we formulate the PDE system for Asian options on two assets
and incorporate a dimensionality reduction. Secondly, we realize its discretization and �nally,
an illustrative numerical experiment is presented.

2 PDE models for two-asset Asian options

We recall the pricing model from [5]. Let V denote the value of two-asset European-style Asian
option. This price function V = V (S1, S2, A, t) depends on the actual time t, two asset prices
S1(t), S2(t) and the continuous arithmetic average

A(t) =
1

t

∫ t

0

(
α1S1(u) + α2S2(u)

)
du (1)

with positive weights α1 and α2 satisfying α1 + α2 = 1.

Using the standard market assumptions and following a common approach based on multidi-
mensional Ito's lemma, construction of a risk-free portfolio and elimination of the randomness
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(cf. [5]), we solve the following deterministic parabolic partial di�erential equation

∂V

∂t
+

1

2
σ2

1S
2
1

∂2V

∂S2
1

+ ρσ1σ2S1S2
∂2V

∂S1∂S2
+

1

2
σ2

2S
2
2

∂2V

∂S2
2

+(r − q1)S1
∂V

∂S1
+ (r − q2)S2

∂V

∂S2
+
α1S1 + α2S2 −A

t

∂V

∂A
− rV = 0 (2)

for t ∈ (0, T ), S1 > 0, S2 > 0 and A > 0. The pricing equation (2) has the following (piecewise)
constant parameters: ρ ∈ (−1, 1) � correlation, r ≥ 0 � risk-free interest rate, σi > 0 � volatility
of the i-th asset and qi ≥ 0 � dividend yield of the i-th asset, i = 1, 2. The detailed description
of these market parameters can be found in [2].

The speci�c feature of all Asian options is the way in which the average is incorporated into the
payo� function. If we denote the strike price K and maturity T , then we distinguish four basic
grouping introduced in Table 1.

payo�s call put
�xed strike max(A−K, 0) max(K −A, 0)
�oating strike max(α1S1 + α2S2 −A, 0) max(A− α1S1 − α2S2, 0)

Table 1: Payo� functions for four basic types of Asian options.

Let us note that (2) with one of the terminal data from Table 1 represents a linear backward
Cauchy problem with the parabolic operator degenerated in variable A. This undesirable feature
of (2) can be overcome by a suitable dimensionality reduction possible for European-style options
only.

In what follows, we consider only Asian options with �oating strike. Inspired by approach
from [7], we introduce new spatial variables x = [x1, x2] as x1 = S1/A and x2 = S2/A together
with the reversal time transformation t̂ = T − t (t̂ is time to maturity). Then easy calculation
(cf. [5]) leads to the transformed forward pricing equation

∂u

∂t̂
−

2∑
i=1

∂

∂xi

(
ID(x) · ∇u

)
+

2∑
i=1

bi(x, t̂)
∂u

∂xi
+

(
r − α1x1 + α2x2 − 1

T − t̂

)
u = 0, (3)

where u(x, t̂) is the new pricing function, ID denotes the symmetric positive semi-de�nite matrix

ID(x) = {Dij}2i,j=1 =
1

2

(
σ2

1x
2
1 ρσ1σ2x1x2

ρσ1σ2x1x2 σ2
2x

2
2

)
, (4)

and vector (b1, b2)T represents a �eld induced by physical �uxes, component-wisely written as

bi(x, t̂) =

(
σ2
i +

1

2
ρσ1σ2 − r + qi +

α1x1 + α2x2 − 1

T − t̂

)
xi. (5)

Finally, the equation (3) is equipped with the initial condition u0 de�ned as

u0(x) :=

{
max(α1x1 + α2x2 − 1, 0), for call,

max(1− α1x1 − α2x2, 0), for put.
(6)

In order to numerically solve Cauchy problem (3)�(5) with (6), it is necessary to localize it on
bounded domain Ω := (0, xmax1 ) × (0, xmax2 ), where xmaxi stands, in fact, for the maximal price
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of the scaled i-th asset. We distinguish three parts of the rectangular boundary ∂Ω de�ned as
Γ1 = {0}× (0, xmax2 ), Γ2 = (0, xmax1 )×{0} and Γ3 = ∂Ω∩ IR2

+. According to [5], for put options,
we prescribe the boundary conditions of a mixed type in the following sense(

ID · ∇u(x, t̂)
)
· ~n = 0 on Γi, i = 1, 2, u(x, t̂) = 0 on Γ3, (7)

where ~n is the outer unit normal to Γi. Note that the generalization of all conditions for call
options can be done straightforwardly with the aid of the so-called put-call parity, see [2].

Analogously to the afore-mentioned approach, the similar initial-boundary value problem can
be formulated (with slight modi�cations) also for the case of two-asset Asian options with �xed
strike. For both cases it is possible to derive the variational formulations and treat their solvability
in weighted Sobolev spaces, see [8].

3 DG solver and numerical experiments

Since the governing equation (2) does not have a closed-form solution of Black-Scholes type,
the exact solution of the problem (3)�(7) is di�cult to �nd. Therefore, we use a numerical
approach based on the DG framework, where the approximate solution is sought in the �nite
dimensional space Sph consisting from piecewise polynomial, generally discontinuous, functions
of the p-th order de�ned on the domain Ω. Similarly as in [6], we introduce the semi-discrete
solution uh = uh(t̂) represented by the system of the ordinary di�erential equations

d

dt̂
(uh, vh) +Ah(uh, vh) = lh(vh)(t̂) ∀ vh ∈ Sph, ∀ t̂ ∈ (0, T ), (8)

where uh(0) is given by (6), (·, ·) denotes the inner product in L2(Ω) and the bilinear form Ah(·, ·)
stands for the DG semi-discrete variant of di�usion, convection and reaction operator from (3)
accompanied with penalties and stabilizations. Finally, the right-hand side form lh(·)(t̂) contains
terms arising from boundary conditions The detailed description of the afore-mentioned forms
can be found in [9].

Further, to obtain the fully time-space discrete DG formulation, we discretize in temporal vari-
able t̂. Here, we consider Crank-Nicolson scheme, which is practically unconditionally stable and
gives the second order convergence in time. It is equivalently written as the weighted average of
forward Euler and backward Euler methods.

Let τ be the constant time step of partition (0, T ), then the DG approximate solution umh of
problem (8) at time level t̂m is computed according to the following numerical scheme(

um+1
h , vh

)
+
τ

2
Ah
(
um+1
h , vh

)
= (umh , vh)− τ

2
Ah (umh , vh) +

τ

2

(
lh(vh) (t̂m+1) + lh(vh) (t̂m)

)
∀ vh ∈ Sph, m = 0, 1, . . . (9)

with the starting data u0
h ≈ u0.

Moreover, one can easily identify that the discrete scheme (9) corresponds to the system of linear
equations. More precisely, this system matrix is a composition of particular sparse matrices and
has a matrix inverse, which implies the solvability of the discrete problem (9), i.e. the existence
and uniqueness of the DG solution.

In conclusion, our aim is to demonstrate the usage of the DG method on the simpli�ed prob-
lem of pricing of Asian put options on two underlying assets � exchange rates of EUR and
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USD, both with respect to GBP (60% EUR and 40% USD), see Figure 1. All computations
are carried out with an algorithm implemented in the solver Freefem++, from a mesh genera-
tion/adaptation, over the DG discretization and assembly of a linear algebraic problem to the
basic post-processing. The detailed description can be found in [3].

Figure 1: The adaptively re�ned domain (left) and the corresponding discrete solution at the
month maturity (right), zoomed on [0, 3] × [0, 4]. The model parameters: ρ = 0.45, σ1 = 0.1,
σ2 = 0.15, r = q1 = q2 = 0.
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Fuzzy set of functions de�ned with the help of an auxiliary
membership function: A comparison of two approaches

J. Chleboun

Department of Mathematics, Faculty of Civil Engineering, Czech Technical University in Prague

1 Introduction

The contribution deals with integral membership functions de�ning fuzzy sets of functions.

It is quite common in the application oriented mathematical modeling that some input functions
are not known exactly, but are burdened by uncertainty. Take, for instance, a di�erential equation
and its coe�cient-function or right-hand side function.

Although stochastic approaches are highly popular among the analysts dealing with uncertainty
quanti�cation, see [1, 4, 6, 8], for instance, not all problems involving uncertainty are suitable
for the application of stochastic methods. If this is the case, a fuzzy set approach can be bene�cial
because weaker assumptions are necessary that in the case of stochastic methods.

Nevertheless, two di�erent approaches are used to fuzzify functions. One option is to consider
functions with fuzzy values and to generalize the notion of the derivative of such functions, see,
for example, [2, 5]. In the other approach, the uncertainty in a function is represented by a set
of crisp functions that, in the case of di�erential equations, can enter the modeled problem
as coe�cients or right-hand side functions. The set is made fuzzy by a membership function that
determines the amount of uncertainty through an α-level value between zero and one. In the latter
approach, the di�erential equation is not generalized, but all the input functions belonging
to an α-dependent set (α-level set) has to be taken into account in the analysis of the uncertainty
in the model output, see [7], for instance.

In the contribution, two types of membership functions are presented. Both are de�ned by means
of a de�nite integral and an auxiliary function ρ, but di�er in the properties of the auxiliary
function. A general framework was sketched in [3] but without any application, algorithmization,
and calculations. These are the subject of the current contribution.

2 Membership function

Let ξ = x0 < x1 < · · · < xn = ζ be mesh points in an interval [ξ, ζ] and let alow, aupp, and aunc
be three functions continuous on [ξ, ζ] and linear on Ii = [xi, xi+1], i = 0, 1, . . . , n−1. Moreover,
let

∀x ∈ [ξ, ζ] alow(x) < aunc(x) < aupp(x).

Let us de�ne

L1 = max
i=0,1,...,n−1

{
max

x∈(xi,xi+1)

{
|a′low(x)|, |a′unc(x)|, |a′upp(x)|

}}
and let us choose L2 > 0.

34



We are ready to introduce the set of admissible functions that will represent the uncertainty
in the function aunc:

Uad =
{
a ∈ C([ξ, ζ])| a|Ii is linear,

∣∣∣a′∣∣Ii∣∣∣ ≤ La, ∣∣∣(a′ − a′unc)∣∣Ii∣∣∣ ≤ L2, i = 0, . . . , n− 1
}
,

where C([ξ, ζ]) stands for the continuous functions on [ξ, ζ] and La ≥ L1. In the modeling
of the uncertain function aunc, a set of functions a will be considered instead of a unique func-
tion aunc that nevertheless remains included in Uad as its �backbone.� The functions from Uad are
continuous, piecewise linear, bounded from below and above by given functions alow and aupp,
the derivative of a is bounded too and, moreover, it cannot deviate from the derivative of aunc
by more than L2.

To fuzzify the set Uad, we �rst de�ne Ω = {(x, y) ∈ R2| x ∈ [ξ, ζ], y ∈ [alow(x), aupp(x)]}
and introduce a continuous auxiliary function ρ : Ω → [0, 1] such that ρ(x, alow(x)) = 0,
ρ(x, aunc(x)) = 1, ρ(x, aupp(x)) = 0, and ρ(x, ·) is concave for each x ∈ [ξ, ζ]. The function
ϕρ,x = ρ(x, ·) can be interpreted as the membership function of the fuzzi�ed quantity aunc(x).

Finally, a membership function associated with Uad is de�ned

µUad(a) =
1

ζ − ξ

∫ ζ

ξ
ρ(x, a(x)) dx, (1)

where a ∈ Uad. It is obvious that µUad(alow) = 0 = µUad(aupp) and µUad(aunc) = 1.

Then, for α ∈ [0, 1], an α-level set is de�ned by

αUad = {a ∈ Uad| µUad(a) ≥ α} . (2)

It is common in applications that an a-dependent state problem is to be solved and its solution
evaluated by q(a), a scalar quantity of interest. As a consequence of the fuzziness of Uad,
the quantity q(a) is fuzzy and its membership function can be obtained from the Zadeh extension
principle [9]. To this end, the extrema of q over αUad have to be identi�ed for each α ∈ [0, 1].
Such a task can be solved approximately by numerical optimization over αUad for a �nite set
of α-values.

3 Two variants of ϕρ,x

Cubic polynomials
In general,

ϕρ,x(y) = c0(x) + c1(x)y + c2(x)y2 + c3(x)y3,

where the values cj(x), j = 0, 1, 2, 3, can easily be inferred from the properties of ρ listed above,
especially if a computer algebra system (such as Mathematica or Maple, for instance) is employed.
To get concave functions, however, aunc(x) must be rather close to the center of the segment
[alow(x), aupp(x)].

By using the linearity of alow, aupp, and a on Ii and by further utilization of computer algebra
tools, the function ρ(x, a(x) can be expressed as a function of nodal values and x. In detail,

ρ(x, a(x) = γ(va,n;x), (3)

where va,n = (a0, a1, . . . , an) and ai stands for a(xi). The expression for the function γ also
contains the nodal values of alow, aunc, and aupp, but, unlike va,n, these are considered �xed
in the subsequent exposition.
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In view of (3) and (1), µUad can be identi�ed with µn, a function of n+ 1 real variables;

µn(va,n) =
1

ζ − ξ

∫ ζ

ξ
γ(va,n;x) dx. (4)

In the already mentioned optimization calculations related to the applications of the Zadeh
extension principle, the function µn appears in a nonlinear constraint, as seen from (1)-(4).
As a consequence, the calculation of µn(va,n) and ∂µn(va,n)/∂ai, i = 0, . . . , n, is important.

It turns out that µn(va,n) can hardly be directly expressed in terms of general input parameters
even if a computer algebra system is used. By implementing computer algebra results combined
with numerical integration, parametric expressions de�ning µn(va,n) and ∂µn(va,n)/∂ai, i =
0, . . . , n, are available. If generality is sacri�ced, that is, numbers instead of parameters are
employed in alow, aunc, and aupp, then direct formulae for µn(va,n) and ∂µn(va,n)/∂ai, i =
0, . . . , n, can be inferred. In this case, however, a change in alow, aunc, or aupp has to be followed
by the implementation of a piece of computer code (Matlab code, for instance) determined
by the new setting of alow, aunc, and aupp and generated by a relevant computer algebra tool.

Piecewise linear functions
A hat function for each x ∈ [ξ, ζ] is the simplest option:

ϕρ,x(y) =


(y − alow(x))aunc(x)

aunc(x)− alow(x)
, y ∈ [alow(x), aunc(x)],

(aupp(x)− y)aunc(x)

aupp(x)− aunc(x)
, y ∈ [aunc(x), aupp(x)].

A parallel to (3) and (4) can be inferred and, unlike the cubic case, the integral corresponding
to (4) can be expressed by a formula comprising va,n and the nodal values of alow, aunc, and
aupp. The same is valid for the �rst partial derivatives of µn(va,n). This bene�t is, however,
to some degree impaired by the loss of di�erentiability at the points (xi, aunc(xi)), which compli-
cates the optimization related to the Zadeh extension principle. This di�culty can by avoided
by decomposing the original optimization problem into a sequence of problems restricted to sub-
domains where µn is di�erentiable.

4 Conclusions

Both approaches have their advantages and disadvantages. The complexity of cubic (or even
higher degree) polynomials prevents obtaining fully analytic formulae for the membership func-
tion µn and its partial derivatives, but there is no problem with the di�erentiability of µn.
Piecewise linear functions allow for analytic formulae, but their piecewise features complicate
the algorithmization and coding. In describing fuzziness, on the other hand, piecewise linear
functions are more �exible than polynomials.
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1 Introduction

The ongoing advances in numerical mathematics and available computing power combined with
the industrial needs promote a development of more and more complex models. However, such
models are, due to their complexity, expensive from the point of view of the data storage and
the time necessary for their evaluation. The model order reduction (MOR) seeks to reduce the
computational complexity of large scale models. We present an approach to MOR based on the
proper orthogonal decomposition (POD) with Galerking projection, which is well described for
example by [4] or [5]. The problems arising from the nonlinearities present in the original model
are adressed within the framework of the discrete empirical interpolation method (DEIM) of [1].

The main contribution of this work consists in providing a link between the POD-DEIM based
MOR and OpenFOAM [3]. OpenFOAM is an open-source CFD toolbox capable of solving even
industrial scale processes. Hence, the availability of a link between OpenFOAM and POD-DEIM
based MOR enables a direct order reduction for large scale systems originating in the industrial
practice.

2 Model order reduction based on proper orthogonal
decomposition and discrete empirical interpolation

The proper orthogonal decomposition is a projection method for reducing the dimensions of
general large-scale ODE systems regardless of their origin [4]. However, within our work we
will restrict our interest to the systems obtained from the semi-discretization of time dependent
or parameter dependent partial di�erential equations (PDEs). Furthermore, given our interest
in OpenFOAM, which is a �nite volume method (FVM) based solver for the problems of the
computational �uid dynamics (CFD), we will take a special interest in ROM of the large-scales
ODE systems generated by the FV discretization of the Navier-Stokes equations.

A scalar nonlinear PDE for an unknown function y : R× R3 → R may be rewritten as

ẏ + L(t, y) = 0 , (1)

where the operator L represents all the terms of the original PDE apart from the temporal
derivative. After the FV semi-discretization of the equation (1) one obtains the system

∆Ωhẏ + Lh(t, y) = 0 , (2)

where Lh(t, y) is the FV spatial discretization operator corresponding to the operator L and
∆Ωh := diag(δΩh

i ) ∈ Rm×m is a diagonal matrix in which the symbol δΩh
i represents a volume

of one element of the computational domain discretization.
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In the OpenFOAM software, the operator Lh(t, y) has the structure Lh(t, y) = −Ã(t)y− b̃(t, y),
where the linear, implicitly discretized, members are lumped in the term Ã(t)y and the explicitly
discretized nonlinearities are used for the construction of the vector b̃(t, y). The size of the
matrix Ã and of the vector b̃ is determined by the number of the cells in the FV discretization
mesh, m. Because the matrix ∆Ωh is diagonal, its inversion is cheap and one can rewrite the
equation (2) as a (large) system of ODEs,

ẏ = A(t)y + b(t, y), y(0) = y0, A(t) = (∆Ωh)−1Ã(t), b(t, y) = (∆Ωh)−1b̃(t, y) . (3)

As POD is a projection method, its main objective is to �nd a subspace approximating a given
set of data in an optimal least-square sense. In our case, the data is generated by sampling the
solution of the full order model (3) at given times, {yj := y(tj)}nj=1 , tj ∈ (0, T ]. These samples
are called snapshots. The details on the theory of POD may be found for example in [4]. We
will restrict our description to a sketch of the process of the reduced order model construction.

Let us denote the space containing the solution of the system (3) and its orthogonal basis as
V = span{ψj}dj=1. Then it is possible to rewrite the solution of (3) as

y(t) =

d∑
j=1

ηj ψj , ∀t ∈ [0, T ], ηj(t) := 〈y(t), ψj〉W , d = dim(V ) , (4)

where by 〈·, ·〉W we denote a W -weighted inner product in the L2 space. The Fourier coe�cients
ηj , j = 1, . . . , d, are functions that map [0, T ] into R.

We arrange the members of the sum in (4) in descending order by the amount of information on
the original system they carry, take the �rst l ≤ d members of and introduce the ansatz

y`(t) =
∑̀
j=1

η`j ψj , ∀t ∈ [0, T ], η`j(t) := 〈y`(t), ψj〉W , l ≤ d , (5)

which is an approximation of y(t) provided ` < d. Inserting (5) into (3) and assuming that the
equality holds after projection of V on the `-dimensional subspace V ` = span{ψj}`j=1 we obtain
the following system,

η̇` = A`η` + f `(t, η`), ∀ t ∈ (0, T ], η`(0) = η`0 , (6)

where we de�ned the reduced system matrix

A` := (a`ij) ∈ Rl×l, a`ij = 〈Aψj , ψi〉W , (7)

the ROM nonlinearities f ` = (f `i )
T : [0, T ] → R`, f `i (t, η) =

〈
f
(
t,
∑`

j=1 ηjψj

)
, ψi

〉
W
, and the

initial condition η`(0) = η`0 = (〈y0, ψ1〉W , . . . , 〈y0, ψl〉W )T. The dimension of the newly de�ned
system (6) is ` ≤ d ≤ m.

The quality of the approximation is largely dependent on the choice of basis functions {ψj}`j=1.
For the sake of brevity, let us only state (the proof may be found in [5]) that the columns
of the matrix Ψ ∈ Rm×` calculated via the Algorithm 1 are a suitable basis for the discrete
representation of the space V `.

Furthermore, to make ROM completely independent of the full system dimension, it is necessary
to address two issues. The �rst issue is the time dependence of the matrix A, which would cause
the need to recalculate the matrix A` for each ROM evaluation.

A way to resolve the time dependence of the matrix A is to sample the system matrices the same
way as the full system solution and to interpolate between the full system matrix snapshots. If
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one uses the linear interpolation, it is possible to write the approximate system matrix as

Â(t) := $(t)Ai−1 + (1−$(t))Ai, $(t) =
t− ti−1

ti − ti−1
, i = 1, . . . , n . (8)

Substituting the approximation (8) of the matrix A into A` matrix de�nition (7), one may de�ne
an approximate time dependent matrix of the reduced system as

Â`(t) := ΨTWÂ(t)Ψ = $(t)ΨTWAi−1Ψ+(1−$(t))ΨTWAiΨ = $(t)A`i−1 + (1−$(t))A`i (9)

and the reduced order model, once it is created, stays fully independent on the full system
dimension.

The second problem arises when you look closely at the nonlinearities in (6). One may notice that
to evaluate the non-linearity in the reduced order model f `(t, η`), it is necessary to evaluate the
function f at (t, y`) and y`(t) =

∑`
j=1 η

`
j(t)ψj ∈ Rm. This signi�cantly increases the cost of the

evaluation of ROM. In this work, we address this problem via the discrete empirical interpolation
method of [1].

Algorithm 1 POD basis of rank `
Require: Snapshots {yj}nj=1, POD rank

` ≤ d, symmetric positive-de�nite
matrix of weights W ∈ Rm×m

1: Set Y = [y1, . . . , yn] ∈ Rm×n;
2: Determine Ȳ = W 1/2Y ∈ Rm×n;
3: Compute SVD, [Ψ̄,Σ, V̄ ] = svd(Ȳ );
4: Set σ = diag(Σ);
5: Compute ε(l) =

∑`
i=1 σi/

∑d
i=1 σi;

6: Truncate Ψ̄← [ψ̄1, . . . , ψ̄`] ∈ Rm×`;
7: Compute Ψ = W−1/2Ψ̄ ∈ Rm×`;
8: return POD basis, Ψ, and ratio ε(`)

Algorithm 2 DEIM
Require: p and F = [f1, . . . , fn] ∈ Rm×n

1: Compute POD basis Φ = [φ1, . . . , φp] for F
2: idx← arg maxj=1,...,m|(φ1){j}|;
3: U = [φ1] and ~i = idx;
4: for i = 2 to p do

5: u← φi;
6: Solve U~ic = u~i;
7: r ← u− Uc;
8: idx← arg maxj=1,...,m|(r){j}|;
9: U ← [U, u] and ~i← [~i, idx];

10: end for

11: return Φ ∈ Rm×p and index vector, ~i ∈ Rp

DEIM is a combination of the greedy algorithm and POD. The reduction of the computational
cost of the system nonlinearity evaluation is achieved by reducing the size of the argument of the
function f (assuming it is point-wise evaluable). The details of the procedure may be found for
example in the aforementioned article by [1]. We give only the method algorithm summarized in
the Algorithm 2. The outputs of the Algorithm 2 may be used to approximate the nonlinearity
in ROM by

f `(t, η`) ≈ f̃(t, η`) := ΨTWΦ(PTΦ)−1f(t, PTΨη`) , (10)

where the nonlinearity argument PTΨη` is in Rp, p ≤ m. We would like also to emphasize that
using DEIM, the nonlinearity samples {fj := f(tj , yj)}nj=1 need to be included in the solution
snapshots.

3 Reduced order model construction for incompressible
Navier-Stokes equations

The application of the POD-DEIM based model order reduction to the systems originating in
the FV discretization of the incompressible Navier-Stokes equations is not completely straight-
forward. In the incompressible Navier-Stokes equations,

ut +∇ · (u⊗ u)−∇ · (ν∇u) +∇p = f ,
∇ · u = 0 ,

(11)
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the continuity equation ∇ · u = 0 is pressure free. Thus, their discretization ultimately leads to
a system of linear algebraic equations of the form,(

M NT

N 0

)(
uh

ph

)
=

(
fh

0

)
, (12)

where we denoted the discrete representations of the considered functions by the superscript h.
The matrix N coincides with a discrete representation of the ∇ operator. The matrix M is
slightly more di�cult. The Navier-Stokes equations for an incompresible isothermal �ow (11)
are nonlinear. Hence, the nonlinear convective term ∇ · u⊗ u, needs to be linearized during the
construction of the matrix M . If we apply the Newton linearization to the nonlinear convective
term,

∇ · uj ⊗ uj ≈ uj−1∇uj + uj∇uj−1, j . . . current time step/iteration , (13)

we can de�ne a linear operator

M(uj−1, uj) := u̇j +∇ · (ν∇uj) + P(uj−1, uj) , (14)

where P represents the Newton linearization operator. Then, the matrix M is a discrete repre-
sentation of the operatorM.

The matricesM and N are, as results of the FV discretization, large and sparse. The system (12)
is a so called saddle point problem and as such, it cannot be directly solved by the available
methods of numerical linear algebra.

However, if one assumes the matrix M to be regular, it is possible to explicitly express the
velocity from the �rst row of the system (12) and to substitute for it in the second one. Doing
so, the following system for one unknown ph ∈ Rm is obtained

NM−1NTph = NM−1f, uh = M−1
(
f −NTph

)
. (15)

Nevertheless, as M is a large sparse matrix, its inverse is usually not obtainable and the sys-
tem (15) needs to be solved iteratively by alternatively updating the values of ph and uh (see
e.g. [2] or any description of SIMPLE or PISO algorithms).

The natural variable for the solution techniques for the incompressible Navier-Stokes equations
based on the solution of the system (15) is the pressure. Thus, it would seem reasonable to
base the reduced order model directly on the equation (15). Unfortunately, the pressure time
derivative is not explicitly present in the Navier-Stokes equations and as a consequence neither
in the system (15). Hence, it is not possible to rewrite the equation (15) in the form of the
equation (1) directly.

To de�ne the base system for the construction of ROM for the pressure we propose to split the
operatorM as

M =Mt +Mx, Mt(u
j) := u̇j , Mx(uj−1, uj) = ∇ · (ν∇uj) + P(uj−1, uj) . (16)

Moreover, we will denote the implicitly discretized part of the operator M as Mfvm and the
explicitly evaluated part of the operatorM asMfvc. Finally, the base system for the construction
of ROM for the pressure is de�ned as

ṗ ≈ A(t)p+ b(t, p), A(t) := N fvm
(
M fvm
x

)−1 (
N fvm

)T
, b(t, p) := N fvc

(
M fvc
x

)−1
f . (17)

Please note, that the pressure derivative is de�ned only approximately as, at the moment, we
do not have the proof of equality. Also let us emphasize that because of the linearization, the
coe�cients of the matrixM fvm

x are dependent on the current velocity �eld and as a consequence,
the matrix A is time dependent.
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4 Numerical examples

In order to validate the proposed method, we performed a series of numerical tests. The �rst
presented test is a creation of the reduced order model for a transient laminar �ow in the vicinity
of a cylindrical obstacle. Such a �ow develops an instability that leads to the formation of the
famous von Kármán vortex street. A comparison of the results of the full model (FVM simulation
of the full Navier-Stokes equations on approximately 18000 cells) and the created ROM (system
of 12 ODEs) is depicted in the Figure 1.

Figure 1: Qualitative comparison of the results of the CFD simulation and ROM results for the
case of the �ow around a cylindrical obstacle (von Kármán vortex street). Results of the ROM
are depicted in the top part of the �gure, results of the full model are depicted in the bottom.
The left part of the image is colored according to the pressure �eld, the right part according to
the velocity magnitude.
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Figure 2: Comparison of the di�erence between the experimental data, CFD simulation and
ROM estimate is depicted on the left side of the �gure. On the right side, it is shown the
qualitative comparison between the CFD result and ROM estimate for the velocity �eld.

The second selected test was a creation of ROM for a parametric study of the gas �ow in
a structured packing of the distillation columns. In this case, we assumed the �ow to be at
steady state and we studied the di�erence in pressure above and bellow the structured packing
relative to the height of the packing, ∆ph in dependence on the gas inlet velocity.
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The results of the test are depicted in Figure 2. The full model corresponds to a FVM simulation
of Reynolds-averaged Navier-Stokes equations on approximately 5 · 106 cells. The created ROM
consisted of 11 linear algebraic equations.

5 Conclusions

We proposed and validated an approach to use the proper orthogonal decomposition and the
discrete empirical interpolation for the model order reduction of systems arising from the �nite
volume spatial discretization of the incompressible Navier-Stokes equations. The presented ap-
proach is speci�cally designed for the pressure-based Navier-Stokes equations solution methods
(e.g. SIMPLE, SIMPLEC or PISO algorithms). We were able to link the proposed method
with the OpenFOAM software whereby the method could have been tested even on systems
with millions of cells and unstructured meshes. In the future, we plan to improve the mathe-
matical background of the proposed approach to the model order reduction of the Navier-Stokes
equations. Also, we would like to concentrate on the model order reduction for multiparametric
systems.
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1 Introduction

Many problems arising from mathematical modelling in science and engineering lead to solving
system of linear algebraic equations in the form

Ax = b, A ∈ Rn×n, x ∈ Rn, b ∈ Rn, (1)

where A is a large and sparse. Iterative methods based on Krylov subspaces such as the conjugate
gradient method represent a natural choice for solving such problems. Most often, in order to
be e�cient, it is useful to employ an iterative method together with preconditioning.

The incomplete Cholesky factorization is often a preconditioner of choice. Application of this
preconditioner needs at every iteration backward and forward substitutions and thus represents
a bottleneck in parallel environment. We focus on a particular strategy to obtain the precon-
ditioner via the generalized Gram�Schmidt process which may avoid these steps as it has been
introduced in [1]. The approach originally uses a relative dropping strategy employing magni-
tudes of entries of the computed column vectors in the approximate inverse factor. Dropping
strategy has been later extended in [2] to adaptive strategy. Later in [3] it has been summarized
and accompanied by new theoretical results.

2 Approximate inverse preconditioning

In more detail we deal with approximate inverse factorizations for symmetric and positive de�nite
matrices in the form

(P̃ TAP̃ )−1 = (UTU)−1 ≈ Z̃Z̃T ,

which arise from the incomplete version of the generalized Gram�Schmidt proces with pivoting.
The permutation matrix P̃ represents pivoting and forces the following inequalities for the entries
of the Cholesky factor U = [αj,i]

α1,1 ' α2,2 ' . . . ' αn,n > 0, (2)

αk,k ' |αk,j |, k = 1, . . . , n, j = k + 1, . . . , n, (3)

which also implies

α2
k,k '

j∑
i=k

α2
i,j , j = k + 1, . . . , n. (4)
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It has been shown in [2, 3] that employing pivoting may signi�cantly increase the robustness of
preconditioning and also often reduces sparsity of the factor Z̃ in terms of nonzero entries nnz(Z̃).

The goal of the incomplete algorithms is to deliver a sparse representation of the factorization,
which is close to the original factorization in some sense. Incomplete algorithms very often use
dropping rules that discard entries of small magnitudes. We deal with an extreme case of the
inverse of the upper triangular matrix with entries satisfying the inequalities (2), (3), and (4).
The parametrized matrix introduced by Kahan (1966)

Un(Θ) = diag[1, s, . . . , sn−1]


1 −c −c . . . −c

1 −c . . . −c
. . . . . .

...
. . . −c

1

 ,

where s = sin Θ and c = cos Θ is very useful in practice. For the entries of its inverse of
U−1
n (Θ) = [βi,j ] we can write

βi,j = 0, j < i, βi,j = s1−j , i = j, βi,j = s1−jc(1 + c)j−i−1, j > i. (5)

It is easy to see that the entries in the strictly upper triangular part of U−1
n (Θ) for Θ ∈ (0, π2 )

show an exponential growth when increasing their distance from the diagonal. For such problems
it is very hard to �nd a sparse approximation even if the original matrix is sparse. We hope that
this can be remedied by employing a multilevel framework that uses block densities to determine
the levels of the scheme. The framework then enables to store dense portions of the column
vectors in the preconditioner implicitly with a signi�cantly less number of nonzeros. Let us also
mention that a matrix in the new level is formed as an approximate Schur complement.

3 Multilevel scheme in approximate inverse preconditioning

Assume that A(1) = A is a symmetric and positive de�nite matrix. Consider the following
sequence of symmetrically permuted symmetric and positive de�nite matrices for ` = 1, . . . , `max
using the notation

(P̃ (`))TA(`)P̃ (`) =

[
A(`) B(`)

(B(`))T C(`)

]
, (6)

where P̃ (`) ∈ Rn×n is a permutation matrix, A(`) ∈ Rn`×n` , B(`) ∈ Rn`×n̄` , and C(`) ∈ Rn̄`×n̄` ,
n̄` = n−∑`

k=1 nk. Let us note that n` plays the role of size of the problem at level `.

In exact arithmetic the Schur complement of the block A(`) of the matrix (6) is equal to

A(`+1) = C(`) − (B(`))T (A(`))−1B(`). (7)

Naturally, there are several ways to obtain the approximation ofA(`+1) when approximate inverse
factorization of A(`) is explicitly known. We studied three ways how to construct an approxima-
tion of A(`+1) forming a matrix of the new level. The most simple of them is to compute

A(`+1)
cgs = C(`) −

(
(Z̃(`))TB(`)

)T
(Z̃(`))TB(`), (8)

which in terms of quantities of the Gram�Schmidt process corresponds to its classical variant.
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Alternatively we can approximate the block U (`)
1,2 ≈ Ũ

(`)
1,2 by the quantities of the modi�ed Gram�

Schmidt process, i.e., as

A(`+1)
mgs = C(`) − (Ũ

(`)
1,2)T Ũ

(`)
1,2 , (9)

where

Ũ
(`)
1,2 =



(z̃
(`)
1 )T

[
A(`) B(`)

]
(z̃

(`)
2 )T

[
A(`) B(`)

](
I −

[
z̃

(`)
1 (z̃

(`)
1 )T

[
A(`) B(`)

]
0

])
...

(z̃
(`)
j )T

[
A(`) B(`)

] j−1∏
k=1

(
I −

[
z̃

(`)
k (z̃

(`)
k )T

[
A(`) B(`)

]
0

])
...

(z̃
(`)
n` )T

[
A(`) B(`)

] n`−1∏
k=1

(
I −

[
z̃

(`)
k (z̃

(`)
k )T

[
A(`) B(`)

]
0

])



[
0
In̄`

]
.

Finally we can introduce a speci�c combination of the �rst approach with a correction

A(`+1)
cgss = A(`+1)

cgs + (B(`))TZ(`)
(

(Z̃(`))TA(`)Z̃(`) − I
)

(Z(`))TB(`). (10)

These approaches have di�erent numerical properties and also di�erent computation costs.

4 Conclusion

The goal of this contribution is to present new results for multilevel approximate inverse precon-
ditioning, discuss di�erences among possible ways to form the approximate Schur complement
and present some relevant theory.
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1 Introduction

Radioactive waste generated mainly in nuclear power plants, but also in health care, has to be
safely dispose. For this purpose, deep geological repositories are designed and special attention
has to be devoted to the integrity of such structures in order to achieve their very high reliability.
High reliability requires multilevel barriers. The repositories are designed in stable rock host
environment several hundred meters below the surface. They resemble tunnels with chambers
where the radioactive waste is stored in special containers. The tunnels and chambers are
equipped with concrete lining which is further improved by layers of expansive clays, especially
bentonite is used. The bentonite has very large swelling or shrinkage capacity which is in�uenced
by water content.

Behaviour of soils, rocks and concrete is usually described by elasto-plastic material models with
hardening or softening. Sometimes, the models are combined with damage mechanics which
reduces the sti�ness with the help of the damage parameter. Unfortunately, bentonites behave
strongly nonlinearly and the elasto-plastic models lead to unsatisfactory results. Therefore,
material models based on the theory of hypoplasticity were derived. They are based on the rate
form of stress-strain relationship which requires time integration.

2 Material model and integration methods

Hypoplasticity can take into account nonlinear behaviour of soils, in�uence of barotropy and
pyknotropy and the history of deformation. Hypoplastic constitutive equation relates the stress
rate σ̇ and the strain rate ε̇ in the form

σ̇ = Mε̇, (1)

where M is the fourth-order constitutive tensor which depends on the stress tensor σ, the
strain increments ∆ε and the state variables v. The stress has to be obtained by integration of
equation (1). Details about the constitutive tensor can be found in references [1] and [2].

Many integration methods (e.g. forward Euler method, Crank-Nicolson method, Runge-Kutta-
Fehlberg methods with substepping) were tested in connection with hypoplasticity material mod-
els. The performance of the low-order methods is generally unsatisfactory and it is suggested to
use the Runge-Kutta-Fehlberg (RKF) method of suitable order with substepping.

With respect to RKF method, the constitutive relationship (1) is rewritten into the form

σ̇ = Ψ(σ,∆ε,v) (2)

where Ψ is a tensor function. The RKF method has the form

σk+1 = σk + ∆tk

s∑
i=1

bi ki (σk,∆ε(tn+1),∆tk) , (3)
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where ki (σk,∆ε(tn+1),∆tk) represents the function Ψ evaluated for the given strain increment
of the actual time step ∆ε(tn+1) = ε(tn+1) − ε(tn) and attained stress levels at the prescribed
points of time interval. In (3), dimensionless step length ∆tk ∈ (0; 1] has been introduced in the
form

∆tk =
tk+1 − tk
tn+1 − tn

. (4)

In Runge-Kutta-Fehlberg method, the step length ∆tk is constructed according to the di�erence
between solution of two embedded Runge-Kutta algorithms of di�erent order of accuracy

σ̄k+1 = σk + ∆tk

s∑
i=1

b̄i ki (σk,∆ε(tn+1),∆tk) , (5)

σ̃k+1 = σk + ∆tk

s+1∑
i=1

b̃i ki (σk,∆ε(tn+1),∆tk) , (6)

where ki represents values of function Ψ evaluated in selected times and corresponding stress
values.

Generally, the substep k+ 1 is accepted if the relative error measure Rk+1 of two solutions σ̄k+1

and σ̃k+1 is less than a given tolerance ϑ, i.e.

σRk+1 =
‖σ̃k+1 − σ̄k+1‖
‖σ̃k+1‖

≤ ϑ . (7)

Several time integration RKF schemes have been implemented for the time integration of equa-
tion (2). Their description in the form of Butcher's tables is given in Tables (1) and (2). It
should be noted that the algorithm RKF-23bs is the Bogacki-Shampine coe�cient pairs and the
advantage of the method is that it provides better estimate of error with the minimum cost
because the k4 can be used as k1 in the next step - First Same As Last (FSAL) concept.

0 0
1/2 1/2 1/2 1/2
1 -1 2 3/4 0 3/4

1/6 2/3 1/6 2/9 1/3 4/9
0 1 0 7/24 1/4 1/3 1/8

Table 1: Butcher table for RKF-23 (left) and RKF-23bs Bogacki-Shampine (right)

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40
16/135 0 6656/12825 28561/56430 -9/50 2/55
25/216 0 1408/2565 2197/4101 -1/5

Table 2: Butcher table for RKF-45
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3 Numerical experiments

The implemented hypoplasticity model was tested on simple benchmark examples with axisym-
metric specimen 1x1 m subjected to various loading path:

1. Triaxial drained test with constant con�ning pressure and gradually increasing axial load,
initial stress -200 kPa, constant suction -1.9 MPa.

2. Triaxial drained test with constant volume increment, initial stress -200 kPa, constant
suction -1.9 MPa.

Resulting diagrams from these examples can be seen in Figures (1) and (2), where evolution of
axial stresses (a) or degree of saturation (b) versus evolution of axial strains can be observed.
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Figure 1: Triaxial drained test with constant con�nig pressure - axial stress σax vs. axial strain
εax (a), evolution of degree of saturation Sr according to axial strain εax (b)
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Figure 2: Triaxial drained test with constant volume increment - axial stress σax vs. axial strain
εax (a), evolution of degree of saturation Sr according to axial strain εax (b)

Comparison of integration schemes for various tolerances in benchmark example 1 (Triaxial
drained test with constant con�ning pressure and gradually increasing axial load) is summarized
in Table 3.

49



ϑ RKF-23 RKF-23bs RKF-45
σerr 1.57e-2 2.08e-3 0

10−7 t [s] 34.6 21.1 84.7
σerr 1.85e-2 2.37e-3 1.89e-3

10−6 t [s] 19.3 13.2 10.7
σerr 2.23e-2 5.78e-3 2.97e-3

10−5 t [s] 11.95 8.81 8.41
σerr 3.67e-2 9.45e-3 6.07e-3

10−4 t [s] 7.70 6.44 8.11
σerr � 1.34e-2 8.92e-3

10−3 t [s] � 6.43 8.07

Table 3: Comparison of di�erent integration schemes.

4 Conclusion

Suitable method for time integration in hypoplasticity models has to be selected with respect
to highly nonlinear functions used in the fourth-order constitutive tensor. Numerical tests show
that Runge-Kutta-Fehlberg method 23bs is the optimal choice.
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Recent advances in PERMON
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1 Introduction

PERMON [5, 6] (Parallel, E�cient, Robust, Modular, Object�oriented, Numerical) is a scalable
software toolbox for solution of quadratic programming (QP) problems.

QP problems arise in various disciplines including elasto-plasticity, contact problems with friction,
shape optimization, vehicle routing problems, support vector machines, medical imaging, climate
modeling, least-squares regression, data �tting, data mining, control systems and many others.

Our recent e�orts have been mainly aimed at problems of mechanics. These problems may be
described by partial di�erential equations (PDEs). To be solved with computers, they have to be
discretized, e.g. with the popular Finite Element Method (FEM). We typically get large sparse
linear systems of equations, but in case of constrained problems such as contact problems of
mechanics, QP problems arise.

Large scale problems necessitates the use of parallelization to get a good time to solution and
distribute the memory requirements. Domain decomposition methods (DDMs) solve the original
problem by splitting it into smaller subdomain problems that are independent, allowing for
a natural parallelization.

Finite Element Tearing and Interconnecting (FETI) methods [1, 2, 3, 4] form a successful subclass
of DDMs. They are non-overlapping methods and combine iterative and direct solvers. FETI
methods allow highly accurate computations scaling up to tens of thousands of cores.

Due to limitations of commercial packages, problems often have to be adapted to be solvable.
This is an expensive process and results re�ect less accurately physical phenomena. Moreover,
it takes a long time before the most recent numerical methods needed for High Performance
Computing (HPC) are implemented into such packages. These issues lead us to establish the
PERMON toolbox.

2 PERMON toolbox

The PERMON toolbox makes use of theoretical results in QP algorithms, discretization tech-
niques, and DDMs. It incorporates our own codes, and makes use of renowned open source
libraries.

PERMON consists of several modules. PermonQP and PermonFLLOP form a solver layer.
PermonCube and PermonMembrane are benchmark generators used for tests of the solver layer.
PermonAIF provides a C interface. There are also several utility modules e.g., �le interface.
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Figure 1: QP transformation chain: illustration of the PermonQP work�ow

3 PERMON solver layer

The solver layer of PERMON depends on PETSc [7, 8, 9] and uses its time-proven coding
style. It is formed by the PermonQP and optionally PermonFLLOP modules. PermonQP
provides a base for solution of linear systems and QP problems. It includes data structures,
transformations, algorithms, and supporting functions for QP. PermonFLLOP is an extension of
the PermonQP package, adding support for DDM of the FETI type. This combination of DDM
and QP algorithms is what makes PERMON unique.

3.1 PermonQP

PermonQP is a package providing a base for solution of quadratic programing (QP) problems.
It includes data structures, transformations, algorithms, and supporting functions for QP. Its
programming interface (API) is carefully designed to be easy-to-use, and at the same time e�cient
and suitable for High Performance Computing (HPC).

The solution process begins with QP problem speci�cation. Then a series of QP transformation
is applied. Each QP transformation creates a new, usually simpli�ed, QP problem. Moreover,
each new QP problem has a reconstruction function inserted by the QP transformation. This
series of QP problems is represented as a bidirectional chain, see Figure 1. After a su�ciently
easily solvable QP is obtained, an automatically or manually chosen solver is called. Then using
the reconstruction functions we obtain the solution of the original QP problem.

QP problems can be either unconstrained or have a number of di�erent constraints including e.g,
equality, inequality, box, elliptical or conical constraints. PETSc KSP is usually used as a solver
for unconstrained QP problems. It provides both iterative and direct solvers. For unconstrained
or box constrained QP problems, PETSc TAO wrapper can be used. PermonQP also contains
several other solvers e.g., a variant of augmented Lagrangian method called SMALXE or active-
set methods like MPRGP [16, 17, 18].

PermonQP source code is freely available under BSD 2-Clause License.
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3.2 PermonFLLOP

PermonFLLOP (shortly FLLOP, FETI Light Layer on Top of PETSc) is an extension of the
PermonQP package, implementing the algebraic part of DDMs of the FETI type. The details of
the FETI methods can be found in [1, 2, 3, 4].

Minimal input for FLLOP consists of l2g mapping, subdomains sti�ness matrices and load vec-
tors. These are generally obtained by volume-meshing the domain, that is then decomposed into
subdomains using a partitioning software like METIS [10]. Then virtually any FEM implemen-
tation can be used to generate subdomains sti�ness matrices and load vectors. L2g mapping
assigns local degrees of freedom of each subdomain to the global degrees of freedom.

FLLOP is being prepared to be published under an open source license. Open source DDM
codes are relatively rare. Let us mention the Multilevel BDDC solver library (BDDCML) by
J. �ístek et al. [11], PETSc BDDC preconditioner implementation by S. Zampini [12], and codes
by P. Jolivet et al. [13] on top of FreeFem++ [14, 15].

4 Recent advances

Throughout the PERMON toolbox there were several improvements in both performance and
memory scalability. We implemented and thoroughly benchmarked Dirichlet and lumped FETI
precondtitioners. New matrix type that condense a local part of matrix into a sequential matrix
was developed and used to improve assembly process of FETI matrices. The support for mul-
tiple subdomains per core was improved and mainlined. Solution of FETI coarse problem was
investigated. Ability to assemble FETI gluing matrix and kernel of sti�ness matrix was added.
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Circumradius condition: breakthrough or not ?
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1 Introduction

The �nite element method (FEM) is perhaps the most popular numerical method for the solu-
tion of partial di�erential equations. Much work has been devoted to theoretical and practical
aspects of the FEM. Possibly the most basic question is, when does the sequence of approximate
solutions uh converge to the exact solution u. Surprisingly this question is still far from being
answered even for the simplest problems in 2D. This can be seen from the interest that the
recently derived circumradius condition raised in the �nite element community. This condition
derived in [4], [5] is a generalization of the well known maximum and minimum angle conditions,
which are su�cient for O(h) convergence of piecewise linear �nite elements. Here we comment on
the circumradius condition and its relation to previous work and the maximum angle condition.

2 Angle conditions

We consider Poisson's problem in a 2D Lipschitz domain Ω:

−∆u = f in Ω (1)

with (e.g.) homogenous Dirichlet boundary conditions. We consider a system of triangulations
{Th}h∈(0,h0) of Ω ⊂ R2, which de�nes the piecewise linear �nite element space Vh = {vh ∈
C(Ω); vh|K ∈ P 1(K) for all K ∈ Th}, where P 1(K) is the space of linear functions on the
triangular element K ∈ Th. The convergence is then usually measured with respect to the
parameters hK = diamK and h = maxK∈Th hK .

For (1), estimates on the �nite element error are usually obtained via Céa's lemma and estimates
for Lagrange interpolation on triangles. For u ∈ C(K), let ΠKu ∈ P 1(K) be the Lagrange
interpolation de�ned by the vertices of K. From this, we can construct the global interpolant
Πhu ∈ Vh such that (Πhu)|K = ΠKu for all K ∈ Th. The error of the �nite element method is
then estimated by the error of the interpolant.

The �rst condition for O(h) convergence of Πhu to u in the H1(Ω)-seminorm is the so-called
minimum angle condition derived independently in [10], [11].

Lemma 1. Let γ0 > 0 and let the minimal angle of K ∈ Th satisfy γK ≥ γ0, then there exists
a constant C = C(γ0) independent of u, hK such that

|u−ΠKu|1,2,K ≤ ChK |u|2,2,K . (2)

If we assume that γK ≥ γ0 > 0 for all K ∈ Th and all h ∈ (0, h0), we then obtain

|u−Πhu|1,2,Ω ≤ Ch|u|2,2,Ω, (3)

which is an O(h) error estimate for the FEM in H1(Ω).

Later, a generalization of Lemma 1 was proved independently by [1], [2] and [3] leading to the
maximum angle condition:
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Lemma 2. Let α0 < π and let the maximal angle of K ∈ Th satisfy αK ≤ α0, then for all
p ∈ [1,∞] there exists a constant Cp(α0) independent of u, hK such that

|u−ΠKu|1,p,K ≤ Cp(α0)hK |u|2,p,K . (4)

Again, assuming that αK ≤ α0 < π for all K ∈ Th and all h ∈ (0, h0), we obtain a W 1,p(Ω)
version of (3).

3 Circumradius condition

Recently, a generalization of Lemmas 1 and 2 was given in [4] and [5].

Lemma 3 (Circumradius estimate). Let RK ≤ 1 be the circumradius of K. Then for all p ∈
[1,∞] there exists a constant Cp independent of u,K such that

|u−ΠKu|1,p,K ≤ CpRK |u|2,p,K . (5)

Assuming the circumradius condition

lim
h→0

max
K∈Th

RK → 0, (6)

we obtain convergence (not O(h) convergence) of the �nite element method similarly as in (3).
We shall refer to Lemma 3 as the circumradius estimate, although in [5] both (5) and (6) are
ambiguously called the circumradius condition.

The circumradius condition raised a lot of interest in the �nite element community, as it was
the general opinion that such a well known and studied subject as the error of linear Lagrange
interpolation on a triangle was well established and no breakthrough was expected. The matter
of originality and correctness was also unclear due to the fact that the original paper [4] relied
heavily on numerical computations and was written in Japanese and the rigorous proof in the
subsequent paper [5] is rather technical. To clarify the matter, the author discussed these issues
in the paper [6].

3.1 The O(h)-case

The �rst observation is the following. Since αK is the largest angle in K, its opposing side has
length hK . By the law of sines,

2RK =
hK

sinαK
. (7)

If we substitute this expression into (5), we get an O(h) estimate if and only if the denominator
sinαK is uniformly bounded away from zero for all K ∈ Th, which is exactly the maximum angle
condition. Therefore, as far as O(h) convergence is concerned, the circumradius and maximum
angle conditions are equivalent.

3.2 Relation to the maximum angle condition

The observation in Section 3.1 indicates that there might be a deeper connection of the circum-
radius and maximum angle conditions. This is indeed the case, as demonstrated in [8]. Here we
only present the idea without going into technical details.
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Figure 1: Dilation of a triangle K ∈ Th.

The basic idea is to take the triangle K, which can be arbitrary, and scale it appropriately so
that the scaled triangle K̃ satis�es the maximum angle condition with a given angle α0. Hence
Lemma 2 can be applied on K̃ to obtain an O(hK) estimate of the interpolation error. By
transforming the O(hK) error estimate on K̃ back to the original element K, one obtains an
O(RK) estimate for the interpolation error on K.

The scaling (dilation) of K is de�ned as follows. Let K have vertices A,B,C, cf. Figure 1. Let
the maximal angle αK be at A, hence the side BC has length hK . We choose α0 < π as in
the maximum angle condition. If αK > α0, we �nd the unique triangle K̂ with vertices Â, B,C
such that α

K̂
:= ∠BÂC = α0 and Â, A have the same foot H of their altitudes to BC. This is

possible, since the set of all vertices Â such that ∠BÂC = α0 is a circular arc, cf. Figure 1. In
other words, we have dilated the triangle K in the direction perpendicular to BC, such that the
dilated triangle K̂ has maximum angle α0.

The dilation factor can be easily evaluated and moreover, since the dilation is only in one di-
rection, Sobolev (semi-)norms are transformed trivially from K to K̂ and back using powers of
this factor. If one transforms the maximal angle estimate (4) using these relations, one obtains
the result of Lemma 3 without the technical assumption RK ≤ 1. Moreover, once all the nec-
essary quantities are evaluated, it is quite simple to apply the same technique to obtain similar
estimates for higher order Lagrange interpolation, which is otherwise very technical, as in [6].

3.3 Prior work

The case of p = 2 in Lemma 1 was proved already by A. Rand in his Ph.D. thesis [9], however this
result was not published in a journal. This case was then independently shown by K. Kobayashi
in [4] where it is claimed that the constant in (5) can be taken as C2 = 1. However, the proof
relies heavily on numerical computations and is therefore hard to verify. Finally, the case of
general p was proven by K. Kobayashi and T. Tsuchiya in [5] using the technique of [1].

As it turns out, Lemma 3 is already essentially proved in [7], although the �nal result is never
formulated since the paper only deals with O(h) convergence and the maximum angle condition.
However, estimates using RK are used throughout the paper and Lemma 5 could have been
obtained in the following way. An intermediate step of (2.22) in [7] states

|detBK | =
fKgKhK

2RK
, (8)

where detBK is the Jacobian of the mapping from a reference triangle to K and fK , gK , hK are
the lengths of sides of K. An intermediate step of the chain of inequalities following (2.22) in [7]
is

|v −ΠKv|1,p,K ≤ 32Ĉ|detBK |−1fKgKhK |v|2,p,K . (9)
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Substituting (8) into (9) immediately gives (5). The reason this is not done in the paper is that
(8) is further estimated using the maximum angle condition, thus eliminating RK from the �nal
estimate in order to obtain O(h) convergence.
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Czech Republic.
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1 Introduction

Complex technical systems that are modelled by a system of ordinary di�erential equations may
feature states that are considered unsafe. Any solution that originates from an initial state and
reaches an unsafe state represents a �aw, a dangerous scenario, which is to be avoided in the
design of the system. We address computing these solutions and our approach is based on solving
an equality constrained nonlinear programming problem [4].

To this end we use the Sequential Quadratic Programming method (SQP) [5]. The underlying
saddle-point matrix is sparse and may be solved either iteratively or directly [2]. In the poster
we show that when one applies LDLT factorization [3, Alg. 4. 1. 2] on the resulting saddle-point
matrix then the lower-triangular factor is again sparse and well-structured.

2 Problem formulation

The reachability problem we try to solve is described in [4] and we formulate it in this section.
Consider a dynamical system whose dynamics is modelled by a system of ordinary di�erential
equations of the following form

ẋ = f(x(t)), x(0) = x0 , (1)

where x : R → Rn is an unknown function of t, and the right hand side f : Rn → Rn is
continuously di�erentiable. Denote the �ow by Φ : R×Rn → Rn for which when an initial state
x0 ∈ Rn is �xed then Φ(t) : Rn → Rn represents the solution x(t) of (1).

The problem we try to solve can be formulated in the following way [4]: Consider a dynamical
system (1) and let Init and Unsafe be two sets of states in Rn. Find a solution of (1) such that
x0 ∈ Init and Φ(t, x0) ∈ Unsafe for some t ≥ 0.

3 Solution approach

Our approach to �nding solutions of dynamical system (1) from Init to Unsafe is formulated as
an equality constrained nonlinear programming problem

minF (χ) subject to c(χ) = 0 . (2)

Here the unknown vector χ has the form

χ =
[
x1

0, t1, x
2
0, t2, . . . , x

N
0 , tN

]T ∈ RN(n+1) . (3)
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Figure 1: N connected solution segments

We use the idea of multiple shooting [1], that is, we put together shorter solution segments of the
dynamical system (1) in order to compute one solution. Parameters (3) are initial states xi0 ∈ Rn,
1 ≤ i ≤ N , of solution segments and ti, 1 ≤ i ≤ N , are their lengths. Here n denotes the state
space dimension and N the number of solution segments. One such solution is illustrated in
Fig. 1.

This equality constrained nonlinear problem (2) with the choice of the objective function (4) and
the vector of constraints (5) is described and analyzed in [4]. The objective function and the
vector of constraints we consider are of the form

F (χ) =

N∑
i=1

t2i , (4)

c(χ) = [gI, g1, . . . , gN−1, gU] ∈ R(N−1)n+2 , (5)

where gI = 1
2

(
‖x1

0 − cI‖2EI
− 1
)
∈ R, gU = 1

2

(
‖Φ(tN , x

N
0 )− cU‖2EU

− 1
)
∈ R, and constraints

gi = xi+1
0 −Φ(ti, x

i
0) ∈ Rn for 1 ≤ i ≤ N − 1. Norms ‖ · ‖EI

and ‖ · ‖EU
are energy norms. Since

the sets Init, resp. Unsafe are ellipsoids their shape and size are given by symmetric positive
de�nite matrices EI, resp. EU. Vectors cI ∈ Rn and cU ∈ Rn give centres of these ellipsoids.

4 Saddle-point matrix

We use the SQP method to solve the minimization problem (2). The underlying saddle-point
matrix is of the form

K =

[
H B
BT 0

]
,

where H ∈ RN(n+1)×N(n+1) is a block diagonal symmetric positive de�nite matrix and B ∈
RN(n+1)×(N−1)n+2 is a banded matrix with full column rank [4].

We expand on the results in [4] with application of direct solvers and making use of sparsity of
the resulting saddle point matrix. Our main contribution thus lies in the computation of the
LDLT factorization of the saddle-point matrix K so that[

H B
BT 0

]
= LDLT ,

=

[
LH 0

BTL−TH D−1
H LS

] [
DH 0
0 −DS

] [
LTH D−1

H L−1
H B

0 LTS

]
,
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and in describing the exact structure of sparse matrices LH , BTL−TH D−1
H and LS . Here we have

BTH−1B = LSDSL
T
S that is the LDLT factorization of the Schur complement, and we put

H = LHDHL
T
H . Note that the lower-triangular factors LH and LS have ones on the diagonal.

The structures of the saddle-point matrix K and its lower-triangular factor L are illustrated in
Fig. 2.

Figure 2: On the left hand side: the structure of matrix K with the block-diagonal matrix H and
the banded matrix B; On the right hand side: the lower-triangular factor L of the saddle-point
matrix K

Acknowledgement: This work was supported by the Czech Science Foundation (GACR) grant
number 15-14484S with institutional support RVO:67985807.
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Note on boundary conditions on arti�cial boundaries
for Navier�Stokes �uid's �ow

M. Lanzendörfer, J. Hron

Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague

It seems natural to our minds to separate the "inner" and "outer", despite of them being insep-
arable in essence. In the (computational) �uid dynamics it is often practical to consider the �ow
problems in a bounded domain. In a majority of cases, certain parts of the domain's boundary
are arti�cial: not related to any natural physical interface. The choice of boundary conditions
to be imposed on arti�cial boundaries is then a modelling issue, where neither the physics alone
nor the mathematical analysis alone give conclusive recommendations.

The talk will focus on the in�ow and out�ow boundary conditions for steady Navier�Stokes
equations

div vvv = 0
div (vvv ⊗ vvv)− div TTT = 0

}
in Ω, TTT = −pIII + ν

(
∇vvv + (∇vvv)T

)
.

Namely, we will be interested in the case that the �ow rate is not known a priori, i.e. in the case
that the (rather standard) choice

v = vin on some Γin ⊂ ∂Ω

is not practical.

To pick one part of the issue, we will discuss a particular set of examples demonstrating the
non-uniqueness and the (lack of) stability of steady solutions for the �do-nothing� b.c.'s and the
b.c.'s based on prescribed constant traction

pnnn− (∇vvv)nnn = P0nnn or − TTTnnn = P0nnn on some Γ ⊂ ∂Ω,with P0 ∈ R.

For instance, if such conditions are prescribed on two opposite parts of the domain's boundary, we
will observe two di�erent steady solutions. (For P0 = 0 this gives us, among others, an exemplary
non-trivial solution to steady Navier�Stokes problem with trivial data.) Such multiple solutions
can be easily obtained in standard numerical simulations. We will also show that one of them is in
certain sense asymptotically stable while the other one is unstable. In more complex geometries
more steady solutions can be found.
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Bifurcations in contact problems with Coulomb friction

T. Ligurský, Y. Renard

Institute of Geonics of the CAS, Ostrava
INSA, Lyon

1 Introduction

Let us consider static deformation of an elastic body whose reference con�guration is the closure
of a bounded domain Ω ⊂ R2. Let the boundary ∂Ω be Lipschitz-continuous and split into three
disjoint relatively open subsets ΓD, ΓN and Γc (see Figure 1). The body is �xed along ΓD whereas
an applied surface force of density h is prescribed on ΓN . A �at rigid foundation supports the
body along Γc, and the contact is modelled by unilateral conditions and the Coulomb friction
law. We suppose that there is no initial gap between the body and the foundation. We consider
that the surface force at a point x ∈ ΓN depends on a real parameter γ and it may depend on x
either, that is, h = h(γ,x) in our model, γ being a loading parameter. We seek equilibrium
states of the body for the values of γ from an interval I of our interest.

Discretisation of this problem is done by applying a conforming Lagrange �nite-element method
to a mixed variational formulation of the problem with Lagrange multipliers enforcing the Dirich-
let and the contact boundary conditions. The contact conditions are approximated nodally and
written in terms of projections. This gives the following discrete problem:

Find y := (γ,u,λD,λν ,λτ ) ∈ I × R2(nΩ+nD+nc) such that

H(y) = 0,

}

where H : I × R2(nΩ+nD+nc) → R2(nΩ+nD+nc) is de�ned by

H(y) :=


A(u)−L(γ)−B>DλD −B>ν λν −B>τ λτ

BDu
−1
r

(
λν,j − ((λν − rBνu)j)−

)
, j = 1, . . . , nc

−1
r

(
λτ,j − P[F ((λν−rBνu)j)−,−F ((λν−rBνu)j)−]((λτ − rBτu)j)

)
, j = 1, . . . , nc

 .

Here, u ∈ R2nΩ is the vector of nodal displacements, λD ∈ R2nD is the Lagrange multiplier cor-
responding to the Dirichlet condition, and λν ,λτ ∈ Rnc are the normal and tangential Lagrange
multipliers on the contact zone, respectively. Further, A(u) and L(γ) are the vectors of internal
elastic forces and external applied ones, respectively, and BD is the kinematic transformation
matrix linking u with the Lagrange multiplier λD. The matrices Bν and Bτ associate the vector
of nodal displacements with the vectors of contact nodal displacements in the directions of the
unit inward normal ν and the unit tangent τ to the foundation, respectively. The notation (.)−
means the negative part (or equivalently, the projection onto (−∞, 0]), and P[a,b](.) stands for the
projection onto an interval [a, b], a ≤ b. The friction coe�cient is represented by a non-negative
constant F here and r > 0 is a �xed augmentation parameter.

Following [2], we shall present the behaviour of bifurcations for di�erent �nite-element meshes
in two model problems from [1] in our talk.

63



0
x1

x2

ν

τ

hh

Γc

ΓN

ΓD

ΓN

Ω

40

80

(a) Rectangular body.

ΓDΓN
h

Γc

x1

x2

Ω

ν

τ

(b) Triangular body.

Figure 1: Geometries of the model problems.

2 Problem with a rectangular body

Firstly, consider deformation of a rectangular block that is 40 mm wide and 80 mm high from
Figure 1(a). A plane-strain approximation of the nonlinear Ciarlet-Geymonat constitutive law
is used for the material of the block. Namely, the �rst Piola-Kirchho� stress tensor σ̂ is given
by

σ̂(x,F ) = (σ̃(F̃ ))1≤i,j≤2, F̃ =

(
F 0
0 1

)
, F ∈ R2×2,

σ̃(F̃ ) = 2b
(
tr(F̃>F̃)

)
I + 2(a− bF̃F̃>)F̃ +

(
2c det(F̃>F̃)− d

)
F̃−>, F̃ ∈ R3×3,

where
λ = 4000 N/mm2, µ = 120 N/mm2, a = 30 N/mm2

and
b =

µ

2
− a, c =

λ

4
− µ

2
+ a, d =

λ

2
+ µ.

We have prescribed h(γ,x) = γ(−2, 0.12(x1−20)) (in N/mm2) on both lateral sides of the block,
r = 10 and F = 1. Discretisation is done by approximating the displacement and the Lagrange
multiplier for the Dirichlet condition with continuous piecewise bilinear functions on rectangular
meshes.

As described in [1], there are six solution branches intersecting at γ = 0 for a uniform mesh
with 800 squares and 21 contact nodes, which are illustrated in Figure 2. Branches 1, 2 and 3
correspond to forcing the block to the right with no contact, contact-stick and contact-slip to
the right of the lower right vertex of the block. Branches 4, 5 and 6, which are symmetric with
respect to the axis x1 = 20 of the block, correspond to forcing the block to the left with no
contact, contact-stick and contact-slip to the left of the lower left vertex.

To explore the bifurcation phenomenon in the contact problem thoroughly, we have performed
our method of piecewise-smooth numerical branching [2] for discretisations on di�erent uniform
meshes, namely with 200, 800, 3200 and 12800 squares. As we shall show in our talk, we have
found six branches distinctly separated for all meshes. The branches seem to be stable and to
converge with the meshes.

3 Problem with a triangular body

Secondly, let us consider deformation of an isosceles triangle with legs 1 m long shown in Fig-
ure 1(b). Let us restrict ourselves to the small-deformation framework with Hooke's law with
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(a) Branch 1. (b) Branch 2. (c) Branch 3.

(d) Branch 4. (e) Branch 5. (f) Branch 6.

Figure 2: Deformed bodies corresponding to the solutions with |γ| = 1: (a), (b), (c) γ = −1;
(d), (e), (f) γ = 1.

the Lamé constants λ = 100 GN/m2 and µ = 82 GN/m2, and let r = 10 and F = 1.7. Both
the displacement and the Lagrange multiplier for the Dirichlet condition are approximated with
continuous piecewise linear functions over triangular meshes.

There are four solution branches intersecting at γ = 0 for h = h(γ) = γ(−26,−7.5) GN/m2 and
the discretisation with a uniform mesh with 4096 triangles and 64 contact nodes, see Figure 3 [1].
They correspond to a partial contact and slip of the triangle to the right (Branch 2), and to no
contact, contact-stick and contact-slip to the left of the lower left vertex of the triangle with
pulling the whole triangle to the left (Branches 1, 3 and 4).

To explore the bifurcation in this contact problem, we have taken uniform meshes with 4096,
16384, 65536 and 262144 triangles. We shall show that the bifurcation behaviour is more complex
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(a) Branch 1. (b) Branch 2.

(c) Branch 3. (d) Branch 4.

Figure 3: Deformed bodies corresponding to the solutions with |γ| = 1: (b) γ = −1; (a), (c), (d)
γ = 1.

here. Branches 1 and 4 approach one another for �ner meshes, and they disappear both for the
�nest mesh. Nevertheless, regarding the branching of the corresponding contact problem with
forces h = (h1, h2) over the plane h1�h2, one can �nd it stable and convergent, again.
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�IT4Innovations excellence in science - LQ1602�.
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Elastodynamics of thin-walled structures
using 3D mixed �nite elements

D. Luká², J. Schöberl

Department of Applied Mathematics, FEECS & IT4Innovations, V�B-TU Ostrava
Institute for Analysis and Scienti�c Computing, TU Vienna

1 Introduction

This is a joint work with Honeywell International s.r.o. in Brno.

Ultrasonic waves are important means for structural health monitoring (SHM) of aircrafts. De-
velopment of the SHM technology can bene�t from fast and reliable computer simulations of
the elastic wave equation. There are several di�culties to deal with. First of all, due to energy
reasons the actuating pulse is short (5 periods) so that the Fourier transform cannot be e�ciently
employed. The wave equation is approximated using an unconditionaly stable Newmark scheme
in time and �nite elements in space. Secondly, a typical frequency is 105 Hz and the measurement
time is 10−3 seconds, which leads to large numbers (104) of time-steps. Finally, the structures
under consideration are thin so that the standard 3d displacement �nite elements su�er from
the shear-locking e�ect. Namely, convergence of the method deteoriates when re�ning the dis-
cretization. The reason is a bad aspect ratio of the geometry under consideration. Therefore
various plate and shell models were introduced, e.g. the Kirchho� and Reissner-Mindlin plate.
A main drawback of conventional shell models is that they include rotational quantities, which
cause di�culties for nonsmooth domains or when connecting shells to a structure. As a remedy
the Hellinger-Reissner mixed formulation can be employed.

2 Mixed TD-NNS �nite elements

In the mixed �nite element method we simultaneously search for both displacement and stress
�eld. The weak mixed formulation of the elastodynamic problem reads to �nd stresses σ(x, t)
satisfying σn(x, t) = T (x, t) on the boundary Γ, and the displacements u(x, t) such that{ ∫

Ω σ : τ +
∫

Ω div τ · u = 0 ∀τ,∫
Ω div σ · v − ρ

∫
Ω
∂2u
∂t2
· v = 0 ∀v, (1)

where : stands for the Frobenius inner product and τ(x), v(x) denote the stress and displacement
test functions, respectively, where τn(x) = 0 on Γ. The �rst equation in (1) represents the
Hooke's law, the second equation describes the Newton (force equilibrium) law. The key point is
now choosing proper regularity of the stresses and displacements. In the standard mixed setting
one lefts the displacements piecewise discontinuous, u ∈ L2(Ω), and the stresses are symmetric
tensors with continuous normal components, σ ∈ Hsym(div; Ω). However, a known stable �nite
element discretization over tetrahedra [1] leads to 162 DOFs per element.

Here we follow another recent idea of Joachim Schöberl and Astrid Pechstein (born Sinwel) [2, 3]
who chose tangential-continuous displacements, u ∈ H(curl; Ω), and normal-normal-continuous
stresses, σ ∈ H(div div; Ω), which leads to a tetrahedral �nite element of only 36 DOFs. The
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Figure 1: Theoretical (solid lines) and numerical (crosses) SH/Lamb symmetric (red) and anti-
symmetric (blue) dispersion curves using TD-NNS anisotropic hexahedral elements.

method is referred to as TD-NNS. Note that in (1) the mixed terms, e.g.,
∫

Ω div σ · v, has to be
understood in the distributional sense.

In [3] prismatic triangular anisotropic elements allowing for discretizations of thin structures are
proposed and analyzed. Here we additionaly propose prismatic hexahedral elements with 2 DOFs
per edge, 4 DOFs per vertical face and 2 (bubble) DOFs per element as far as displacements are
considered. Concerning stresses we have 9 DOFs per face and 70 (bubble) DOFs per element.
We can get rid of the large amount of stress bubbles by hybridization so that the (face, normal-
normal) continuity of stresses is broken and reinforced again by Lagrange multipliers, which
act as normal displacements. Therefore we end up in the following purely displacement �nite
element:

• 2 DOFs per edge representing tangential displacements,

• 4 DOFs per vertical face representing tangential displacements,

• 9 DOFs per (both vertical and horizontal) face representing normal displacements,

• and 2 DOFs per element (cell) representing tangential displacements.

The hybridized mixed �nite element discretization of elastodynamics admits the standard primal
form, where both the mass and sti�ness matrix are assembled elementwise, though, now they
are more involved. In Fig. 1 we present a good correspondence of the theoretical dispersion
diagram to the numerical simulations. The new TD-NNS elements are robust with respect to
the thickness. In Fig. 2 we depict simulation of ultrasonic elastic waves in a real-world thin-
walled structure. The system was numerically integrated in time by an unconditionally stable
Newmark scheme.

Acknowledgement: This work has been supported by the Technology Agency of the Czech
Republic under the grant TA03010140.
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Figure 2: Simulation of ultrasonic elastic waves propagating in a thin-walled structure using
TD-NNS tetrahedral elements.
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HTFETI pro °e²ení nesymetrických systém·

A. Markopoulos, T. Brzobohatý, V. Ry²ka

IT4Innovations, V�B - Technická univerzita Ostrava

1 Úvod

Metoda FETI (Finite Element Tearing and Interconnecting) [1] je £asto vyuºívaná pro °e²ení
problém· velkého rozsahu. Její algoritmus spo£ívá v eliminaci primárních neznámých zp·sobem,
který umoº¬uje °e²it duální systém lineárních rovnic pomocí projektovaných variant Krylovov-
ských metod.

Prezentace se zam¥°uje na p°ípady, kdy rozd¥lení °e²eného problému na p°íli² velké mnoºství
podoblastí negativn¥ ovliv¬uje výkon metody FETI. Pomocí metody Hybridní FETI (HFETI)
navrºené Klawonnem a spol. (viz nap°. [2]) m·ºeme zredukovat tento efekt slepením n¥kolika
sousedních podoblastí do cluster·. Tento postup upravuje strukturu algoritmu tak, ºe ñ cluster·
(ñ < po£et podoblastí) se chová jako ñ podoblastí ve standardní FETI metod¥.

2 Skalární advek£n¥-difúzní rovnice

M¥jme ohrani£enou oblast Ω ⊂ R2 s po £ástech hladkou hranicí ∂Ω. Uvaºujme následující
okrajovou úlohu: 

−∇ · (D∇c)︸ ︷︷ ︸
difúze

+ a · ∇c︸ ︷︷ ︸
advekce

= f v Ω

c = g na ∂Ω,

(1)

kde c = c(x1, x2) reprezentuje neznámou skalární funkci, D =

(
D11 D12

D21 D22

)
je tenzor difúze,

a = (a1, a2)T ozna£uje vstupní vektorové pole rychlostí advekce, f = f(x1, x2) je zdrojový £len
a g je okrajová podmínka p°edepsaná na ∂Ω.

V na²em p°ípad¥ advekce p°evládá nad difúzí, coº zp·sobuje zna£nou nestabilitu numerického
MKP °e²ení. Tuto nestabilitu °e²íme pomocí CAU metody blíºe popsané v £lánku [3]. Princip
této metody zjednodu²en¥ spo£ívá v p°i£tení tzv. �numerické difúze� k matici tuhosti, která
vyplyne z metody kone£ných prvk· (MKP), jak ukazuje následující rovnice

(Kdiff + Kadv + KCAU )︸ ︷︷ ︸
K

u = fG + fCAU︸ ︷︷ ︸
f

. (2)

Zde Kdiff a Kadv ozna£ují symetrickou a nesymetrickou matici korespondující k difúznímu re-
spektive advek£nímu £lenu. Sou£et t¥chto dvou matic odpovídá matici tuhosti vzniklé z MKP
stejn¥ jako vektor fG. Matice KCAU a vektor fCAU reprezentují d°íve zmín¥nou �numerickou
difúzi� . Vektor neznámých je ozna£en jako u.
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3 Hybridní Total FETI metoda

Pro srozumiteln¥j²í popis HTFETI metody pouºijeme hierarchicky dekomponovanou doménu
(viz obrázek 1).

Obrázek 1: Doménová dekompozice: Cx = 3, Cy = 2, Nx = 1, Ny = 3, nx = 10, and ny = 5.

Diskretizace a dekompozice sestává z 3 úrovní:

• 1. úrove¬ - dekompozice na clustery. Kaºdý z nich p°i výpo£tu zam¥stná 1 výpo£etní uzel.
Parametry Cx a Cy ur£ují po£et cluster· v x-ovém a y-ovém sm¥ru.

• 2. úrove¬ - kaºdý cluster je dekomponován na podoblasti. Parametry Nx a Ny udávají
po£et podoblastí ve sm¥rech x a y.

• 3. úrove¬ - kaºdá podoblast je diskretizována uniformn¥ 2D kone£nými prvky. Jejich po£et
v x-ovém a y-ovém sm¥ru udávají parametry nx, ny.

Implementace HTFETI se velice podobá klasické TFETI metod¥. V obou algoritmech jsou
Lagrangeovy multiplikátory (LM) pouºity jak pro lepení podoblastí dohromady, tak pro vynucení
Dirichletových okrajových podmínek. Z toho d·vodu jsou v²echny podoblasti plovoucí, a proto
matice tuhosti na v²ech podoblastech vykazují defekt a lze na n¥ pouºít stejný algoritmus, který
po£ítá se singulární maticí.

Pod¥kování: Tato práce byla podpo°ena Ministerstvem ²kolství mládeºe a t¥lovýchovy z Národ-
ního programu udrºitelnosti II (NPU II) v rámci projektu �IT4Innovations excellence in science
- LQ1602� a dále také Vysokou ²kolou bá¬skou - Technickou univerzitou Ostrava z SGS projektu
SP2016/150 �Modelování povodní a zne£i²t¥ní II� .
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On the optimal initial conditions for an inverse problem
of model parameter estimation

C. Matonoha, �. Papá£ek

Institute of Computer Science of the CAS, Prague
Institute of Complex Systems, University of South Bohemia in �eské Bud¥jovice, Nové Hrady

1 Introduction

The aim of this contribution is to establish the link between experimental conditions (protocol)
and the accuracy of the results. The idea is presented in a simpli�ed case study of FRAP (Flu-
orescence Recovery After Photobleaching) data processing [7, 3]. It serves as a paradigmatic
example of the inverse problem of the di�usion parameter estimation from spatio-temporal mea-
surements of �uorescent particle concentration. A natural question is how the experimental
settings in�uence the accuracy of resulting parameter estimates. There are many rather empiri-
cal recommendations related to the design of a photobleaching experiment, e.g., the bleach spot
shape and size, the region of interest (location and size), the total time of measurement, cf. [2].
However, we should have a more rigorous tool for the choice of experimental design factors. This
goal can be achieved through a reliable process model, the Fickian di�usion equation, and per-
forming the subsequent sensitivity analysis with respect to the model parameters. Thus, we can
de�ne an optimization problem as the maximization of the sensitivity measure. The special focus
of this contribution concerns the search for the optimal bleaching pattern [2, 5], or, from the
more mathematical viewpoint, we show how to �nd an optimal binary-valued initial conditions
in a di�usion-parameter estimation problem.

2 Problem formulation

We consider the Fickian di�usion problem with a constant di�usion coe�cient δ > 0 and assume
a spatially radially symmetric observation domain, i.e., the data are observed on a cylinder
with the radius R = 1 and height T = 1. In FRAP, the simplest governing equation for the
spatio-temporal distribution of �uorescent particle concentration u(r, t) is the di�usion equation

∂u

∂t
= δ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, (1)

where r ∈ [0, 1], t ∈ [0, 1], with the initial and Neumann boundary conditions

u(r, 0) = u0(r),
∂u

∂r
(1, t) = 0. (2)

The main issue in FRAP and related estimation problems is to �nd the value of the di�usion
coe�cient δ from spatio-temporal measurements of the concentration u(r, t), cf. [6, 7].

Obviously, the measured data are discrete and each data entry quanti�es the variable u at
a particular spatio-temporal point (r, t) in a �nite domain, i.e.,

u(ri, tj), i = 0 . . . n, r0 = 0, rn = 1,

j = 0 . . .m, t0 = 0, tn = 1,
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where i is the spatial index uniquely identifying the pixel position where the value of �uorescence
intensity u is measured and j is the time index (the initial condition corresponds to j = 0).
Usually, the data points are uniformly distributed both in time (the time interval ∆t between
two consecutive measurements is constant) and space, i.e., on an equidistant mesh with the
step-size ∆r, cf. [4].

Given the data as above, the di�usion coe�cient δ can be computed numerically by solving the
inverse problem to (1)-(2). Because of unavoidable noise in the data, one obtains an estimated
value δ which reasonably well approximates the true δ. It can be shown [1, 4], that for our case of
single scalar parameter estimation and white noise as data error assumed, the expected relative
error in δ depends on the data noise and a factor, which we call the global semi-relative squared
sensitivity SGRS , as follows

E

(∣∣∣∣δ − δδ
∣∣∣∣2
)
∼ σ2

SGRS
, (3)

where σ2 denotes the variance of the additive Gaussian noise. The sensitivity measure SGRS is

SGRS := δ2
n∑
i=0

m∑
j=1

[
∂

∂δ
u(ri, tj)

]2

, (4)

where ∂
∂δu(ri, tj) is the usual sensitivity of the model output in the spatio-temporal point (ri, tj)

with respect to the parameter δ. It is obvious from this estimate that if the noise level is �xed,
the estimation of δ can only be improved by switching to an experimental design with a higher
sensitivity.

The sensitivity measure (4) involves several design parameters. If all the above parameters
R, T,∆r,∆t are �xed, there is only one way to maximize the sensitivity measure SGRS : to
consider the initial bleach u0 in (2) as the experimental design parameter. By optimizing the
bleach design, we mean to select the initial conditions in such a way that SGRS is maximized
and hence the expected error in δ is minimized. In order to do so, we have to choose the class of
designs from which we select the initial conditions. Without loss of generality, we assume u0(r)
is a {1, 0}-function

u0(r) =

{
1, r ∈ B,
0, else,

(5)

where B is an open subset of [0, 1] (not necessarily continuous), which we call further as the
bleaching pattern or the bleach shape. The set B determines the initial condition u0(r) and thus
the value SGRS . The goal is to �nd such a set Bopt determining the non-zero sub-vector of u0(r),
and thus the optimal initial condition uopt0 (r), where SGRS reaches its maximum:

Bopt = arg max
B⊂[0,1]

SGRS . (6)

Depending on the di�erent restrictions imposed on the initial bleach, we can study problem (6)
not only with a �xed bleach depth (u0(r) is a {1, 0}-function) but also with a �xed energy, i.e.
with an additional restriction ∫

u0(r)dr = c, (7)

where c > 0 is a given constant.

The function u0 is discontinuous, so the problems with de�nition and existence of a solution to
(1)-(2) occur. This drawback is partially restricted by the fact that B is an open subset. Thus,
we keep a classical formulation of the initial boundary value problem (1)-(2) and use a �nite
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di�erence Crank-Nicholson (CN) scheme to compute a numerical solution u(ri, tj), i = 0 . . . n−1,
j = 1 . . .m. Replacing the derivative with a �nite di�erence, the sensitivity measure SGRS can
be approximated with a value Sapp as follows

SGRS ≈ Sapp =
m∑
j=1

j2
n∑
i=0

[u(ri, tj)− u(ri, tj−1)]2 . (8)

The values u(ri, tj) are computed from u(ri, tj−1) using the CN scheme, thus no extra work is
necessary.

3 Numerical example

To demonstrate the optimal con�gurations of the initial condition let us choose n = 30, m = 200
and �nd such an initial condition (u0(r0), . . . , u0(rn))T ∈ Rn+1 in form of a {1, 0}-function,
cf. (5), that maximizes the value Sapp (8) for 1/δ = 1, 2, . . . , 120 (notice the inverse values of δ).
For the sake of simplicity we consider four types of shapes (or patterns) of the initial condition2

(the sets B in (5)):

disk : u0 = (1, . . . , 1 [, 0, . . . , 0])T

annulus : u0 = (0, . . . , 0, 1, . . . , 1 [, 0, . . . , 0])T

disk+annulus : u0 = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1 [, 0, . . . , 0])T

double annulus : u0 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0, 1, . . . , 1 [, 0, . . . , 0])T

Figure 1 shows the result of the optimization problem (6), i.e., the vertical lines visualize both
the shape and size of the initial condition u0 leading to the maximal value of Sapp. Figure 2
shows the maximum values of Sapp vs. 1/δ for the four di�erent classes of the initial shapes of
bleaching patterns. There are intervals of δ where the value Sapp is maximal for disk (δ ≥ 1/17),
annulus (δ ≥ 1/44), disk+annulus (1/82 ≤ δ ≤ 1/18), and double annulus (1/120 ≤ δ ≤ 1/45).
For δ → 0 we can �nd more complicated shapes as optimal initial conditions.
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Figure 1: The result of optimization
problem (6): each vertical line indicates
the non-zero sub-vector of u0 for which
Sapp is maximal.
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2The last zero sub-vector, marked in square brackets, can be empty in each u0.
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4 Conclusion

Although the experimental devices for FRAP measurements allow an arbitrary bleaching pat-
tern, there is hardly any study concerning its in�uence on the accuracy of resulting parameter
estimates. Thus, we formulated the problem of the optimal initial condition for the further
identi�cation of a constant di�usion coe�cient. We set a sensitivity measure as the optimality
criterion to be maximized in order to have the expected error minimal, cf. (4). Our preliminary
numerical results indicate that there exist speci�c initial conditions u0 that maximize the sensi-
tivity measure Sapp and therefore minimize the error in the model parameter estimate (di�usion
coe�cient δ). The optimal initial shapes or bleaching patterns are functions of δ. We found
not only disks of various radii (the usual bleach shape used in the FRAP community) but also
annuli and other more complicated radially symmetric patterns. These optimal initial conditions
depend not only on δ but also on other parameters re�ecting the experimental protocol. How
exactly these parameters as well as the restriction on a �xed energy in�uence the solution of our
problem of bleaching pattern optimization is the subject of ongoing research.
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Solution of contact problems for nonlinear beam and foundation

H. Netuka, J. Machalová

Department of Mathematical Analysis and Applications of Mathematics
Faculty of Science, Palacký University, Olomouc

1 Introduction

We will consider the following nonlinear beam model

EI w′′′′ − Eα (w′)2w′′ + Pµw′′ = f in (0,L). (1)

The beam has a constant sti�ness given by the elastic modulus of material E and constant area
moment of inertia I. Its length is L and thickness is 2h. The width of the beam we consider as
a unit. The distributed transverse load is denoted by q(x) and w(x) describes the de�ection of
the beam at a position x. Furthermore, in (1) we denoted

I =
2

3
h3, α = 3h(1− ν2), µ = (1 + ν)(1− ν2), f = (1− ν2)q (2)

with ν as the Poisson's ratio. Finally, P is an external axial force applied on x = L which causes
compression for P > 0 or tension for P < 0. This mathematical model was developed in 1996
by D.Y. Gao (see [2]) and is successfully used since its publication.

The potential energy of this beam ΠG : V → R is de�ned by

ΠG(v) =
1

2

∫ L

0
EI(v′′)2dx+

1

12

∫ L

0
Eα(v′)4dx− 1

2

∫ L

0
Pµ(v′)2dx−

∫ L

0
fvdx, v ∈ V, (3)

where V is the space of kinematically admissible de�ections, so that essential boundary conditions
should be entered into V . It can be proved that this functional is coercive on V and for P ≤ Pcr
strictly convex as well, where the critical load Pcr is determined by

Pcr = min
w∈V

∫ L
0 EI (w′′)2 dx∫ L

0 µ (w′)2 dx
. (4)

This implies that for any f and P : P ≤ Pcr the variational problem{
Find w ∈ V such that
ΠG(w) = min

v∈V
ΠG(v) (5)

has exactly one solution and the stationary condition Π
′
G(w, v) = 0 leads to the governing

equation (1).

2 Normal compliance contact model

Now let us consider a foundation lying in the distance g ≤ 0 below the Gao beam (see Fig. 1).
We can distinguish two principal cases: deformable and undeformable (or rigid) foundation. Here
we will study only the �rst case with kF > 0 as the foundation modulus.
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Figure 1: Gao beam and deformable foundation.

Simple considerations (see [5]) lead to the enhanced equation

EI w′′′′ − Eα (w′)2w′′ + Pµw′′ = f + T (w) in (0,L), (6)

where contact force T is given by

T (w) = cF (g− w)+, cF = (1− ν2)kF , v
+(x) = max{0, v(x)}. (7)

Such relation is usually referred as the so-called normal compliance condition. The �rst formu-
lation of contact problem using normal compliance condition was presented in [7].

Equation (6) is associated with the total potential energy ΠT of the whole system given by

ΠT (v) = ΠG(v) +
1

2

∫ L

0
cF ((g − v)+)

2
dx, v ∈ V. (8)

This functional has the same properties which have been mentioned above in connection with
the functional ΠG. Hence the problem{

Find w ∈ V such that
ΠT (w) = min

v∈V
ΠT (v) (9)

has one solution if P ≤ Pcr. It is worth noting that we did not obtain variational inequality
what is usual in the case of Signorini conditions, which are relevant for rigid foundations.

3 Solution using optimal control

Our idea is that we transform the contact problem (9) into an optimal control problem. For
this purpose let us perform the variable transformation z = v′. Using the method of Lagrange
multipliers, we construct the Lagrangian

L(v, z, λ) =
1

2

∫ L

0
EI (v′′)2 dx+

1

12

∫ L

0
Eαz4 dx− 1

2

∫ L

0
Pµz2 dx−

∫ L

0
fvdx+

+
1

2

∫ L

0
cF ((g − v)+)

2
dx+

∫ L

0
λ(v′ − z)dx, v ∈ V, z ∈ Z, λ ∈ Λ, (10)

where V is the given function space, Z is the space of their derivatives and Λ = L2((0,L)).
Problem (9) is then replaced by

L(v, z, λ) −→ stat
v,z,λ

, (11)

which investigates a stationary point of Lagrangian L (for more details see [3]). After some
calculations we obtain (among other results)∫ L

0
EIw′′ϕ′′dx−

∫ L

0
fϕdx−

∫ L

0
uϕdx = 0 ∀ϕ ∈ V, (12)
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where we have set ∫ L

0
uϕdx =

∫ L

0
cF (g − w)+ϕdx−

∫ L

0
λϕ′dx ∀ϕ ∈ V. (13)

From (12) we get the so-called state problem
For given u �nd w := w(u) ∈ V such that∫ L

0
EIw′′ϕ′′dx =

∫ L

0
(f + u)ϕdx ∀ϕ ∈ V. (14)

Next, using this relation, we rearrange functional (8) to the following form

J(w, u) =
1

2

∫ L

0
u(w − ŵ)dx+

1

12

∫ L

0
Eα(w′)4dx− 1

2

∫ L

0
Pµ(w′)2dx+

+
1

2

∫ L

0
cF ((g − w)+)

2
dx, (15)

where function ŵ solves the state equation for u = 0. Now we are able to de�ne the optimal
control problem 

Find a function u∗ ∈ Uad such that
J (w(u∗), u∗) = min

u∈Uad
J (w(u), u) ,

where w(u) ∈ V solves the state problem (14)

(16)

with admissible set of controls determined by

Uad = {u ∈ L2((0,L)) : |u(x)| ≤ C a.e. in (0,L)} (17)

for some positive constant C, because we do not want to break the beam. More information on
the optimal control of di�erential equations can be �nd in monographs [4] and [10].

In our case it can be proved that under the assumption P ≤ Pcr problem (16) has just one
optimal pair (w∗, u∗) ∈ V × Uad and the function w∗ = w(u∗) solves variational problem (9).

4 Numerical realization

As we can see from (16), computational procedure will consist of two parts: evaluation of given
state problem (14) simultaneously with minimization of the transformed functional J . The �rst
task does not make much troubles, because the �nite element solution for Euler�Bernoulli beam
is well-known, see e.g. [8].

Hence for given control value uk we compute state wk and then for the pair (wk, uk) we perform
one step of minimization process for functional J(w, u). For this purpose we used the condi-
tioned gradient method (see [10]). Descent directions was given by gradients of J(w, u) which
were evaluated by means of adjoint problem technique. Step lengths were determined by using
algorithms described in [6].

For illustrative purposes a simple example is given here. We consider the beam from Fig. 1 with
the following data:
L = 1m, h = 0.1m, E = 21·1010 Pa, I = 0.666667·10−3 m4, ν = 0.3, q = −5·108 N (constant).

From Fig. 2 it is seen that the tougher foundation on the right enables signi�cantly smaller
penetration into the foundation, hence the contact zone is smaller than the one on the left side.
The blue stars show de�ection of the Euler�Bernoulli model, the red stars correspond to the Gao
beam and green crosses represent the foundation.
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Figure 2: kF = 5 · 108 Nm−3 kF = 5 · 1010 Nm−3

5 Conclusion

The idea used here is based on the original method applied in [9] and [1]. The authors call it
the control variational method. The subject of the papers was linear cantilever beam (Euler�
Bernoulli model) with foundation. Our research signi�cantly generalized these works as we
consider nonlinear Gao beam in addition subjected to axial load and with all kinds of possible
boundary conditions. We have also expanded and re�ned numerical solution for this approach.
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Multilevel methods for elliptic di�erential equations
with log-normally distributed parameters
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1 Introduction

Several classes of numerical methods can be used for the solution of elliptic di�erential equa-
tions with randomly distributed data: the Monte Carlo methods, collocation methods and the
stochastic Galerkin method. In our contribution, we focus on the stochastic Galerkin method.
It is applied to the variational form of the problem with respect to both physical and random
variables. We assume that coe�cients at the elliptic part of the equation depend on N random
variables y1, . . . , yN which are independent and log-normally distributed with the joint probabil-
ity density ρ. Then the problem is to �nd u(x, y) ∈ H = H1

0 (D)⊗ L2
ρ(Rn) such that∫

Rn

∫
D

exp (a(x, y))∇u(x, y)∇v(x, y)ρ(y) dx dy =

∫
Rn

∫
D
b(x)v(x, y)ρ(y) dx dy, (1)

where D ⊂ Rd, d = 1, 2 or 3, x ∈ D is a spatial variable and y is a �nite dimensional random
�eld, y = (y1, . . . , yN ), see, for example, [2].

The solution u(x, y) of (1) is assumed to be approximated by a generalized polynomial chaos
expansion and by �nite element (FE) functions of the physical variable x

u(x, y) =
F∑
r=1

M∑
j=1

ujrΦj(y)ψr(x),

where {Φj(y)}Mj=1 is a set of N -variate tensor product polynomials orthogonal with respect to
the scalar product of L2

ρ(RN ). In particular, Φj(y) =
∏N
i=1 ϕji(yi), where ϕk(yi) is Hermite

orthogonal polynomial of order k. For approximation we use 0 ≤ ki ≤ Pi, where Pi are some
given constants. Assuming a linear expansion of a(x, y), we obtain a system of M × F linear
equations with M × F unknowns ujr,

Au = B,

where

Air,js =

∫
RN

∫
D

exp

(
a0(x) +

N∑
k=1

ak(x)yk

)
∇ψs(x)∇ψr(x)Φi(y)Φj(y)ρ(y) dx dy,

Bir =

∫
RN

∫
D
b(x)ψr(x)Φi(y)ρ(y) dx dy

The matrix A is huge and usually poorly conditioned, and even if A is never constructed explicitly
in practical computation, it is worth to search for e�cient preconditioning methods. These
methods are usually based on some natural block splitting of A [5] or use some hierarchy of
approximation subspaces [6, 7, 8, 9].
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2 Block and multilevel preconditioning

In our contribution, we present and study several block preconditioning methods and algebraic
multilevel (AML) methods [1, 3], and prove guaranteed upper bounds for the resulting condition
numbers of the preconditioned matrix A. We focus on the following methods

(a) block diagonal preconditioning with PN + 1 blocks corresponding to approximation sub-
spaces which contain the approximation polynomials ϕkN (yN ) of orders 0, 1, . . . , PN , re-
spectively

(b) AML preconditioning in a form of a V-cycle with a hierarchical splitting of the approxi-
mation spaces with respect to the degree of approximation polynomials ϕkN (yN )

(c) AML preconditioning in a form of a W-cycle for the same hierarchy as in (b).

We introduce a tool for proving upper bounds for the resulting condition numbers for all of these
methods. Some of the proofs are based on estimating the strengthened CBS constants for the
hierarchical approximation subspaces and for the energy scalar product de�ned by the problem.
Our methodology is based on an "element-wise" approach, which is well known from the classical
AML theory [1, 3, 4]. We mention, that the guaranteed bounds for the CBS constants can be
employed for two-sided a posteriori error estimates and for adaptive algorithms as well.
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Abstract

Estimates of the distance of a function to the space of divergence free �elds follow for example
from the well-known inf-sup condition for incompressible media [1, 7, 9, 10, 11] and contain
an LBB-type constant. This constant can be estimated by analytical methods only for speci�c
shapes of domains and the Dirichlet boundary conditions [4, 8]. Their semi-analytic extensions to
more general domains and mixed boundary conditions have been proposed in the recent papers
[10, 11, 12, 13] concerning a posteriori error estimates for incompressible �ow problems.

In this contribution, we use such estimates in Hencky's plasticity problem to analyze a limit
factor λ∗ for a prescribed load [3, 15]. Finding λ∗ is one of the most important tasks in quan-
titative analysis of the Hencky problem since beyond this limit value no physically reasonable
solution may exist. Within the kinematical approach to limit analysis, λ∗ can be de�ned as the
in�mum of a nonsmooth and convex functional subject to the divergence free constraint imposed
on displacement �elds. This minimization problem is called the limit analysis problem [3, 15]. It
can be solved, e.g. by the penalty method studied in [5, 6, 14] or by the augmented Lagrangian
method [2].

The presented estimates of the distance to the set of divergence free �elds enable us to �nd
guaranteed and fully computable upper bounds of λ∗ using functions which need not satisfy the
divergence free constraint. To get bounds which are close to λ∗ we utilize special functions,
namely solutions to a discrete penalized version of the limit analysis problem. We construct
a sequence of upper bounds that converges to λ∗ as the discretization parameter tends to zero.
This result is very useful since the sequence of the discrete limit load parameters need not
converge to λ∗ due to possible locking phenomena.
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1 Introduction

The Vehicle Routing Problem (VRP) deals with a delivering goods from one or more depots
to multiple customers by �eet of vehicles. The most studied type of VRP is the Capacited
Vehicle Routing Problem (CVRP). In CVRP, each customer requires a certain amount of goods
and each vehicle has its speci�ed capacity. The aim is to minimize the total cost of the route.
Determining the optimal solution is an NP-hard problem. The exact solution can be found only
for a limited number of customers and vehicles. Therefore, research is mostly focused on heuristic
and metaheuristic algorithms which can �nd the approximate solution in an acceptable time.

2 MILP formulation

VRP is most commonly formulated using the (mixed) Integer Linear Programming (ILP, MILP)
model. VRP can be described by many ILP formulations. In this section, Vehicle Flow Model [1]
is described.

Let us have the following parameters:

N: number of customers
V: number of available vehicles
di: demand of customer i
Tv: capacity of vehicle v
cij : distance between node i and node j

where the node with index 0 represents a depot and nodes with indices from 1 to N+1 are
customers. Variables x and y are binary and variable u is real. Variable xvij equals 1 i� the
vehicle v travels on arc (i, j). Variable yij equals 1 i� the vehicle travels on arc (i, j). Our
problem reads

min

V∑
v=1

N∑
i=0

N∑
j=0

cijx
v
ij (1)

N∑
i=1

N∑
j=0

dix
v
ij < Tv, v = 1, 2..., V (2)

V∑
v=1

xvij = yij , i, j = 0, 1, ..., N (3)
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N∑
j=0,j 6=i

yij = 1, i = 1, 2, ..., N (4)

N∑
i=0,i6=j

yij = 1, j = 1, 2, ..., N (5)

N∑
j=1

y0j ≤ V (6)

N∑
i=1

yi0 ≤ V (7)

ui − uj + (N + 1)yij ≤ N, 1 ≤ i 6= j ≤ N (8)

N∑
j=0,j 6=i

xvij =
N∑

j=0,j 6=i
xvji, i = 1, 2, ..., N, v = 1, 2, ..., N (9)

Constraints (2) ensure that capacity of the vehicle is not exceeded. Constraints (3), (4) and (5)
ensure exactly one visit for each arc and each customer by any vehicle. The number of available
vehicles is speci�ed by constraints (6), (7). Constraints (8) are subtour elimination constraints
and constraints (9) ensure the continuity of the route. Other MILP or ILP formulations can be
found in [2].

The exact solution of this problem can be obtained by using algorithms such as Branch-and-
Bound, Column Generation, Branch-and-Cut or more recent Branch-and-Cut-and-Price algo-
rithms.

3 Binary QP formulation

In [3], the Binary Quadratic Programming (BQP) formulation was introduced. There is three-
index binary variable xvij introduced in this formulation. Variable xvip equals 1 i� vehicle v is
located in node i at step p. This formulation leads to following minimization problem

min

V∑
v=1

N∑
i=0

N∑
j=0

N∑
p=1

cijx
v
ipx

v
jp+1 (10)

V∑
v=1

N∑
p=1

xvip = 1, i = 1, 2..., N (11)

N∑
i=0

xvip =

N∑
i=0

xvip+1, p = 0, 1, ..., N, v = 1, 2, ..., V (12)

N∑
i=1

di

N∑
p=1

xvip ≤ Tv, v = 1, 2, ..., V. (13)

Constraints (11) ensure that each customer is visited exactly once. The route continuity is
ensured by (12) and constraints (13) ensure that the capacity of the vehicle is not be exceeded.
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The main advantage of the BQP formulation is the reduction of number of constraints. Branch
and Bound algorithms can be used for this problem. The bounds of the objective function can
be obtained from the QP or SDP relaxation.
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Computing zeros of analytic functions by integral contour method
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1 Introduction

We present a numerical method for computing zeros of an analytic complex function. This ab-
stract relies on Master thesis of the �rst author, which is a compilation of a series of papers of
professor Sakurai and collaborators. We �nd the method particularly interesting for a forthcom-
ing research on locating eigenvalues of large-scale matrices, which we mention in Conclusion.

Let Ω be a simply connected domain in C, f : C→ C be a function holomorphic in Ω and γ be
a positively oriented curve in Ω that does not pass any zero of f . We consider the problem of
�nding all zeros of f in the interior of γ. We use an integral contour method which is referred
to a concept relying on Cauchy's residue theorem. Denoting by z1, . . . , zn the mutually distinct
zeros and by α1, . . . , αn ∈ N their respective multiplicities, we can calculate following Newton
sums by the residue theorem

sk :=
n∑
i=1

αiz
k
i =

1

2πi

∫
γ
zk
f ′(z)

f(z)
dz. (1)

Note that N := s0 is the total number of zeros. We translate the problem of �nding zeros of f
to searching for the same zeros of a polynomial

PN (z) := zN + σ1z
N−1 + ...+ σN ,

the coe�cients of which we get from Newton's identities
1 0 · · · · · · 0
s1 2 0 · · · 0
...

. . . . . . . . .
...

sN−2 · · · s1 N − 1 0
sN−1 · · · · · · s1 N




σ1

σ2
...

σN−1

σN

 = −


s1

s2
...

sN−1

sN

 .

The method of Newton's identities is usually ill-conditioned due to bad conditioning of the
polynomial, i.e., small changes in the polynomial coe�cients generate large changes in the zeros.
Moreover, the larger N the more accurate quadrature in (1) has to be employed.

2 Formal orthogonal polynomials

The method of formal orthogonal polynomials gives more accurate approximation of the zeros
of analytic function. This method has been introduced in [1, 2].

Let P be the linear space of polynomials with complex coe�cients. We introduce bilinear form
〈·, ·〉 : P × P → C by

〈φ, ψ〉 :=
1

2πi

∫
γ
φ(z)ψ(z)

f ′(z)

f(z)
dz =

n∑
i=1

αiφ(zi)ψ(zi).
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Polynomial ϕt of degree t ≥ 0 is called a formal orthogonal polynomial (FOP) if it is monic and
satis�es 〈

zk, ϕt(z)
〉

= 0 for all k ∈ {0, 1, · · · , t− 1}, (2)

If ϕt is uniquely determined by (2), then it is referred to as a regular FOP and t is a regular index.
The regular FOP of degree t ≥ 1 exists if and only if matrix Ht := (sp+q)

t−1
p,q=0 = (〈1, zp+q〉)t−1

p,q=0

is nonsingular. The zeros of a regular FOP are eigenvalues of matrix pencil H(1)
t − λHt, where

H
(1)
t := (sp+q+1)t−1

p,q=0. The problem of �nding zeros z1, . . . , zn of f is now equivalent to �nding
a regular FOP ϕn. The respective multiplicities α1, . . . , αn solves following Vandermonde system,
for which there is a stable method relying on Newton polynomial interpolation,

1 · · · 1
z1 · · · zn
...

...
zn−1

1 · · · zn−1
n



α1

α2
...
αn

 =


s0

s1
...

sn−1

 .

Unfortunately, computing eigenvalues ofH(1)
n −λHn is still ill-conditioned. We replace it by a bet-

ter conditioned problem of �nding eigenvalues of pencilM (1)
n −λMn, whereMn := (〈ϕp, ϕq〉)n−1

p,q=0

and M (1)
n := (〈ϕp, ϕ1ϕq〉)n−1

p,q=0 with ϕk being suitable monic polynomials. In case of Hn strongly
regular, i.e., all its leading principal submatrices are regular, then all of ϕ0, ϕ1, ..., ϕn are regular
FOPs. In this case Mn and M (1)

n are diagonal and tridiagonal, respectively. Otherwise, if Hn

not being strongly regular, we establish a set of regular indices {ik}, k = 0, ...,K, where K is
the number of regular blocks in Hn. If n ≥ 1, then i0 = 0, i1 = 1 and iK = n. We de�ne the
sequence of {ϕt}∞t=0 as follows: If t is a regular index, then ϕt is the regular FOP. Otherwise,
ϕt(z) := zt−rϕr(z), where r is the largest index less than t, and ϕt is called an inner polyno-
mial. The polynomials can be grouped into blocks such that every block starts with the regular
polynomial and the remaining polynomials in this block are inner.

In the practical algorithm there are two thresholds εcond and εstop with εstop < εcond. The value
εcond determines the length of blocks and εstop decides whether the algorithm is being stopped,
i.e. decides whether r = n and ϕr = ϕn. If |〈ϕr, ϕr〉| ≥ εcond for some regular index r, then

ϕr+1 is being generated as FOP (if r is regular index, then |〈ϕr, ϕr〉| = det Hr+1

Hr
= det Gr+1

Gr

)
.

Else we search for the smallest t such that t ≤ N − 1 − r and
∣∣〈ztϕr, ϕr〉∣∣ > εcond. Then t + 1

is being the length of block and t is being the number of inner polynomials in the block. If we
fail to �nd such t and

∣∣〈ztϕr, ϕr〉∣∣ < εstop for all t ∈ {0, · · · , N − 1 − r}, then n = r, compute
the zeros of ϕn and algorithm will be stopped. If we fail to �nd such t and there exists some
t ∈ {0, · · · , N − 1 − r} such that

∣∣〈ztϕr, ϕr〉∣∣ ≥ εstop, then the length of block will be m such
that |〈zmϕr, ϕr〉| = max

0≤t≤N−1−r

∣∣〈ztϕr, ϕr〉∣∣ and algorithm continues until the last regular index r

is less than N .

3 Numerical examples

We give two examples. First of all, we consider

f(z) :=
10∏
j=1

(
z − 1

2
j

)
, γ(t) :=

11

2
e2πit.
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By the method of Newton's identities we obtain the following approximation of zeros z4 and z9:

z4 = +2.203620388030727 + 0.4032628524238667i;
z9 = +4.328112677568831 + 0.0000315934022037i.

After replacing Newton's identities by eigenvalue problem H
(1)
10 − λH10 the approximations read

z4 = +2.375661289285481− 1.945767526 · 10−5i;
z9 = +4.488679268520042− 1.196308016 · 10−6ii.

Finally, the method of FOPs gives the best approximation

z4 = +1.999999975589223 + 2.338471947 · 10−7i;
z9 = +4.499999938630227− 4.909355538 · 10−9i.

In the second example we consider

f(z) := e3z + 2z cos (z)− 1, γ(t) := 2e2πit.

If we set εcond = 1 and εstop = 10−12, the algorithm decides that n = 4, generates ϕ0, ϕ1 as
a regular FOP, ϕ2 generates as an inner polynomial, ϕ3 and ϕ4 generates as a regular FOP. The
approximation of the zeros is obtained as follows:

z1 = −1.844233953262216− 3.189796250 · 10−16i;
z2 = +0.530894930292931− 1.331791876751123i;
z3 = +0.530894930292938 + 1.331791876751128i;
z4 = −1.21 · 10−14 − 5.681456752 · 10−15i.

4 Conclusion

The presented method can be further extended towards �nding eigenvalues of both linear and
nonlinear operators, see the references. Our particular aim is to �nd eigenvalues λj of a large
real and symmetric positive de�nite matrix A ∈ RM×M in a certain interval on the real axis,
where we expect n eigenvalues, n�M . Given a (random) nonzero vector v ∈ RM we search for
poles of the function

f(z) := v(A− z I)−1v =

M∑
j=1

νj
λj − z

,

where νj are related to coordinates of v in an orthonormal basis of the eigenvectors of A. We can
employ the integral contour method, see Fig. 1. However, each evaluation of f involves a solution
to the large system with matrix A. Therefore, our further research shall address two essential
problems:

• We shall �nd a suitable quadrature method to minimize the number of evaluations of f .

• We shall �nd a reasonable way to update the solver when perturbing the matrix diagonal.
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Figure 1: Integral contour method
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Incremental estimation of the largest and smallest
Ritz values in the conjugate gradient method
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The (preconditioned) Conjugate Gradient (CG) method by Hestenes and Stiefel [2] is the iterative
method of choice for solving linear systems Ax = b with a real symmetric positive de�nite
matrix A. During the process, it is often desirable to get some information about λmin and λmax,
the smallest and the largest eigenvalue of A. The information about the eigenvalues can then
be used, e.g., to approximate norms of errors, to estimate the ultimate level of accuracy, or, to
estimate the condition number of A. Note that since A is symmetric and positive de�nite, it
holds that λmax = ‖A‖ and λ−1

min = ‖A−1‖.
A natural way to approximate λmin and λmax during the CG computations is to use minimum
and maximum Ritz values that can be determined from the CG coe�cients. The straightforward
approach would require storing the tridiagonal Jacobi matrices and computing their eigenvalues.
Such an approach would be expensive with increasing iterations. In this contribution we general-
ize results of [4] and present a very simple way to approximate the maximum and the minimum
Ritz value incrementally at a negligible cost.

The Lanczos and the CG algorithms. We brie�y recall the Lanczos and Conjugate Gradient
algorithms as well as their relationships; see, for instance [3].

Algorithm 3 Lanczos algorithm
1: input A, v
2: β0 = 0, v0 = 0
3: v1 = v/‖v‖
4: for k = 1, . . . do
5: w = Avk − βk−1vk−1

6: αk = vTk w
7: w = w − αkvk
8: βk = ‖w‖
9: vk+1 = w/βk

10: end for

Given a starting vector v and a symmetric matrix A ∈ RN×N , one can consider a sequence of
nested subspaces

Kk(A, v) ≡ span{v,Av, . . . , Ak−1v}, k = 1, 2, . . . ,

called Krylov subspaces. The dimension of these subspaces is increasing up to an index n called
the grade of v with respect to A, at which the maximum dimension is attained, and Kn(A, v) is
invariant under multiplication with A. Assuming that k < n the Lanczos algorithm computes an
orthonormal basis v1, . . . , vk+1 of the Krylov subspace Kk+1(A, v). The basis vectors vj satisfy
the matrix relation

AVk = VkTk + βk+1vk+1e
T
k
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where Vk = [v1 · · · vk] and Tk is the k × k symmetric tridiagonal matrix of the recurrence coe�-
cients computed in Algorithm 3:

Tk =


α1 β1

β1
. . .

. . . βk−1

βk−1 αk

 .
The coe�cients βj being positive, Tk is a Jacobi matrix. The Lanczos algorithm works for any
symmetric matrix, but if A is positive de�nite, then Tk is positive de�nite as well.

Algorithm 4 Conjugate gradients
1: input A, b, x0

2: r0 = b−Ax0

3: p0 = r0

4: for k = 1, . . . , n do

5: γk−1 =
rTk−1rk−1

pTk−1Apk−1

6: xk = xk−1 + γk−1pk−1

7: rk = rk−1 − γk−1Apk−1

8: δk =
rTk rk

rTk−1rk−1

9: pk = rk + δkpk−1

10: end for

When solving a system of linear algebraic equations Ax = b with symmetric and positive de�nite
matrix A, the CG method (Algorithm 4) can be used. CG computes iterates xk that are optimal
since the A-norm of the error is minimized over the manifold x0 + Kk(A, r0). The residual
vectors rk are proportional to the Lanczos basis vectors vj and hence mutually orthogonal. It is
well-known (see, for instance [3]) that the recurrence coe�cients computed in both algorithms
are connected via formulas which can be written in the matrix form as Tk = RTkRk, where

Rk =


1√
γ0

√
δ1
γ0

. . . . . .
. . .

√
δk−1

γk−2
1√
γk−1

 .

In other words, CG computes implicitly the Cholesky factorization of the Jacobi matrix Tk
generated by the Lanczos algorithm. Therefore, it holds that

‖Tk‖ = ‖Rk‖2, ‖T−1
k ‖ = ‖R−1

k ‖2,

and to approximate ‖Tk‖ and ‖T−1
k ‖, one can use algorithms that incrementally estimate the

maximum singular values of the upper triangular matrices Rk and R−1
k .

Incremental estimation. Consider the problem of incremental estimation of norms of upper
triangular matrices extended in each update by one column; see, e.g., [1]. Let R ∈ Rk be an
upper triangular matrix and let z be its approximate maximum right singular vector. Let

R̂ =

[
R v

µ

]
, v ∈ Rk, µ ∈ R.
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We consider the new approximate maximum right singular vector in the form ẑ =
[
sz c

]T
,

where s2 + c2 = 1 are chosen such that the norm of the vector

R̂ẑ =

[
sRz + cv

cµ

]
is maximum. The numbers s, c, and the corresponding maximum norm of R̂ẑ can easily be
determined from the eigenvalue problem for a 2× 2 symmetric matrix having the entries ‖Rz‖2,
vTRz, and vT v + µ2.

Specialization to bidiagonal matrices and their inverses. In general, the previous tech-
nique requires to store the matrixR, the vector z, and to performO(k2) operations per update. In
this presentation, we apply the previous technique to the upper triangular matrices Rk and R−1

k ,
which are available in CG. Thanks to their special structure (Rk is bidiagonal, R−1

k is semisepa-
rable) we will show that the incremental estimates of ‖Rk‖ and ‖R−1

k ‖ can be computed in O(1)
operations, without storing the corresponding matrices and the approximate maximum right
singular vectors. In other words, in each iteration of CG we just need to update a few scalars to
compute incremental estimates of ‖Rk‖ and ‖R−1

k ‖. Note that the incremental estimates provide
a lower bound on the largest Ritz value and an upper bound on the smallest Ritz value.

�
�
��+

Q
Q
QQk

����9

XX
XXy

A Tk EST

The estimators have been suggested to be computationally cheap and e�cient, but, on the other
hand, one cannot expect a very high relative accuracy of the estimates. Numerical experiments
predict that the incremental estimates agree with the approximated Ritz values to 2 or 3 valid
digits. If one needs to improve the accuracy, one can store Rk and compute, from time to time,
a better approximation of the minimum and the maximum right singular vector.
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Parallelization of the PragTic software
for an automated fatigue damage calculation

J. Tom£ala, M. Pecha

IT4Innovations National Supercomputing Centre, V�B - Technical university of Ostrava

1 Introduction

Repeated service loading of machine parts leads to the reduction of their load-carrying capacity
and often to the fatigue failure. Because the experimental veri�cation of their long-term func-
tionality is very expensive and time consuming, the engineers are interested in virtual modelling
and simulating fatigue failure. The quality of these simulations is limited by:

• reliability of phenomenological models - used prediction criteria, cyclic plasticity model

• involved numerical methods, algorithms, and their implementations

• computational resources being at disposal for the simulations.

Fatigue analysis requires very accurate results of the stress-strain calculation at critical locations
of the �nite element (FE) model. After results are obtained, the fatigue analysis takes place,
being realized usually in another software. One of available tools for computational fatigue
analysis is PragTic.

PragTic software is developed at CTU in Prague. It serves as a fatigue analysis tool using the
computation results of the FE-solution. It is provided as a freeware on PragTic1. Many new
fatigue criteria and approaches have been implemented into this code during last �fteen years.
PragTic also has a direct connection to the large material and experimental databases FatLim
(Fatigue Limits) and FinLiv (Finite Lives). The major focus of PragTic is multiaxial fatigue
analysis. It is very important in cases where more load channels act on the component simul-
taneously. The analysis is therefore usually realized by evaluating stress or strain components
on various planes in the analyzed point. The damage parameter built from these components is
either maximized over all possible planes or integrated over them. Obtaining the single equiva-
lent stress or strain by some criterion gets complicated, because many candidate planes have to
be evaluated. In addition to it, the computation time is increased even more due the need to
correctly evaluate shear stress or strain components in cases of non-proportional loading, when
the shear stress or strain vector rotates. The current usual solution is to compute the position
and radius of the minimum circle circumscribed to the shear stress vector tip trajectory in each
load cycle.

The major feature of the PragTic software is the multiaxial fatigue analysis. This analysis type
is used if multiple load channels simultaneously act on a mechanical component. In these cases,
the analysis process is usually proceeded by the stress-strain component evaluation on various
planes, which go through the analyzed point. Then, the damage parameter is set up from these
components and further processed as follows: it is maximized or integrated over all evaluated
planes [1].
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The PragTic software predicts mechanical fatigue failure by generating large-scale computational
simulations. This approach demands extensive computational resources and large amount of the
time. By the parallelization of this software at the various levels, we can save a lot of the run
time. It allows to �nd much more detailed solution. In this paper we present the parallelization
at the node level.

2 Former version and its ine�ciency

Former version of the PragTic software is accessing disc very often through the simulations.
Therefore, it wastes huge amount of the run time by writing, reading, writing, reading, . . . etc.
of partial results to/from disc. The PragTic uses �les on disc as the temporary bu�ers, which
cause signi�cant slowdown of the program. These temporary bu�er �les are erased at the end of
the run.

Development of the PragTic fatigue solver was started by Jan Papuga in 2000, and various
institutions got involved throughout the past years - above all the Czech Technical University, the
Evektor company, or V�B-Technical University of Ostrava. Since the last two decades, a whole
range of new criteria and approaches on fatigue analysis have been implemented. Nowadays, it is
distributed as a freeware application, and it can be downloaded from the PragTic webpages [3].

3 Main idea

The PragTic sequentially generates simulations node by node. Main idea of our �rst paralleliza-
tion was to assign the particular subset of nodes to every parallel process, then compute partial
solutions and �nally merge the results into the one result �le. If we use for example 192 processor
cores, then the theoretical maximum speed up would be 192. Of course, there is always the run
time overhead cost, so the real speed up is lower. It is caused by distributing the particular
subsets of nodes at the beginning and then merging the results after the partial computations.

Further signi�cant speed up can be reached by not saving the temporary bu�ers to the disc, but
keeping them just in the memory. It is a nowadays approach compared to the 20 years old one,
when computers had signi�cantly less operating memory than today.

4 Implementation and results

First step was to compile the PragTic on Salomon cluster. Then we have parallelized the PragTic
using MPI and got the �rst results. And �nally we optimized temporary bu�ers operations,
which was the hardest part, because this optimization required changes at circa 500 lines of the
PragTic's source code.

We have chosen to test the small benchmark of 120 nodes on the Salomon cluster. The loading
was sin(t)+ sin(1000*t) where t means time.

The result run times are shown in the Figure 1. The red color represents run time of the
version saving temporary bu�ers to the real disc (former version of the PragTic), the green color
represents run time of the version saving temporary bu�ers to the shared memory (/dev/shm)
and the yellow color represents run time of the version saving temporary bu�ers to the ramdisk
(/ramdisk). As the compute nodes do not see each other's shared memory and ramdisk, their
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Figure 1: Result run times for 120 nodes simple example

run time graph line ends at 20 processor cores. The Salomon's compute nodes contain just
24 processor cores [2]. The blue color represents run times of the optimized version with no
temporary bu�ers on disc (they are just in memory).

Another example is EV-55 airplane [7]. Its result run times are shown in the Figure 2. Black
color represents database copying time, which appeared as the main issue in parallelization of
this example. This �gure also contains graph lines with lighter colors, they represents run times
without delay caused by database copying.

5 Conclusion

As it can be seen from the results, by the parallelization and optimization of the PragTic we
reached speed up 128 on 120 processor cores in �rst, simple 120 nodes example and speed up
64 on 192 processor cores in 239628 nodes EV-55 airplane example. We also can see, that using
bigger databases causes signi�cant delay and that without this delay our version scales well.

It is obvious, that much higher speed up could be reached on bigger problem with more processor
cores. We also expect much higher speed up if we will be successful with the plane and method
parallelization.
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Figure 2: Result run times for EV-55 airplane example
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3D simulation of a wheel tracker test of asphalt concrete
described by the Burgers model

K. T·ma

Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague

1 Introduction

Asphalt concrete is important for its usage in the construction of the roads, highways or run-
ways. When the cars are running over the surface of the road, the material is being repeatedly
compressed. Therefore, it is important to study how the response of the material depends on
the applied load and its speed.

This contribution re�ects joint research with V. Pr·²a, J. Málek and J.M. Krishnan who studied
the response of the asphalt concrete in a wheel tracker test. The experiment was performed
for asphalt concrete con�ned with 200 kPa and containing 2% of air voids. In this abstract we
present a numerical simulation of this experiment described by th Burgers model.

2 Description of the experiment

In the experiment, that is being simulated, the sample of the shape of a brick with the dimensions
30 cm × 13.8 cm × 5 cm is subject to the applied stress that starts at t = 0 at the top of the
brick according to Figure 1 and it moves to the right and then back (this is one cycle) with
a constant velocity. The dimensions of the contact area are equal to 2.5 cm × 6 cm and 1 000
cycles are performed. The experiment is performed with two di�erent applied stresses 540 kPa
and 800 kPa moving with two di�erent speeds 1 km/h and 10 km/h. The experimental setup is
depicted in Figure 1, the dashed line shows the trajectory of the applied stress.

30 cm

5
cm

13
.8
cm

2 c
m

2.5 cm
6 c
m

Figure 1: Schematic description of the experimental setup.

3 Mathematical model

Asphalt concrete is simulated by the viscoelastic �uid-like Burgers model that is capable of
capturing two di�erent relaxation mechanisms that appear in asphalt concrete. It is assumed
that the density ρ of the material is constant, then the balance of mass and balance of linear and
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angular momentum are in the form

div v = 0, (1)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= div T, T = TT, (2)

where v is the �uid velocity. Next, T is the symmetric Cauchy stress tensor in the form

T = −pI + µs

(
∇v + (∇v)T

)
+G1(B1 − I) +G2(B2 − I), (3)

where µs is the solvent viscosity, G1 and G2 are the elastic moduli and B1,B2 are the additional
stress tensors. They satisfy the set of evolution di�erential equations (fully coupled through the
velocity �eld v)

O
B1 +

1

τ1
(B1 − I) = 0, (4)

O
B2 +

1

τ2
(B2 − I) = 0, (5)

where
O
B=

∂B

∂t
+v ·∇B− (∇v)B−B(∇v)T is the objective upper convected Oldroyd derivative

and τ1, τ2 are two relaxation times describing two di�erent relaxation mechanisms of the material.

It is worth mentioning that the Burgers model can be derived using the framework of thermome-
chanics of continuum based on two notions that assure that the second law of thermodynamics
is automatically satis�ed. The �rst notion is the principle of the maximum rate of entropy
production and the other one is the natural con�guration that splits the total deformation into
the dissipative part and the purely elastic part that corresponds to that of the compressible
neo-Hookean solid. For more details see [1].

We obtain the material parameters µs, G1, G2, τ1, τ2 by comparing the predictions of the model
to the simple compression experiment. The �tting procedure is based on the minimization of
the di�erence between the measured experimental data and the numerical simulation, for more
details see [2, 3]. Fitted material parameters µs = 2.81MPa s, G1 = 52.4MPa, G2 = 9.81MPa,
τ1 = 101.3 s, τ2 = 109.3 s are then used in the simulation of the wheel tracker test.

4 Numerical implementation

In the present experiment the top boundary of the asphalt concrete brick was deforming. In order
to simulate it, the arbitrary Lagrangian-Eulerian (ALE) method is employed. By using a new
unknown � arbitrary deformation û � the standard weak formulation in deforming Eulerian
domain Ωx is transformed to a �xed ALE domain Ωχ. It is assumed that all points on the
boundaries are material points, i.e. the time derivative of û is equal to the �uid velocity v. For
more details on the transformation to the ALE domain see [4, 5], where this method is applied
in two spacial dimensions.

In three dimensional space the weak formulation in Ωχ ∈ R3 is in the form

F̂ = I+∇χû, Ĵ = det F̂,

∫
Ωχ

Ĵ tr
(
(∇χv)F̂−1

)
q dχ = 0,∫

Ωχ

Ĵρ

[
∂v

∂t
+ (∇χv)

(
F̂−1

(
v − ∂û

∂t

))]
· q dχ+

∫
Ωχ

ĴT̂F̂−T · ∇q dχ =

∫
∂Ωχ

t̂n · q dSχ,

T̂ = −pI+ µs

(
(∇χv)F̂−1 + F̂−T(∇χv)T

)
+G1(B1 − I) +G2(B2 − I),
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∫
Ωχ

Ĵ

[
∂Bi

∂t
+ (∇χBi)

(
F̂−1

(
v − ∂û

∂t

))
− (∇χv)F̂−1Bi −BiF̂

−T(∇χv)T +
1

τi
(Bi − I)

]
·Qi dχ = 0, i = 1, 2,∫

Ωχ

∇χû · ∇r dχ = 0,

which holds for all admissible test functions q,q,Q1,Q2 and r. The vector t̂n is used for pre-
scribing the time-dependent Neumann boundary condition, i.e. for prescribing the moving com-
pression on the top side of the domain. All other sides of the domain are �xed, i.e. described by
zero Dirichlet boundary conditions for v and û.

The numerical implementation is based on this weak formulation and is has been performed
using AceGen/AceFEM system [6, 7]. AceGen is a code generation system and AceFEM is
a �nite element environment that uses the generated code. The system provides the automatic
di�erentiation to compute the exact tangent matrix from the residuum which implies the e�cient
and robust implementation of the Newton solver.

Due to the symmetry of the problem with respect to the dashed line in Figure 1 only one half
is computed. The symmetric part of Ωχ is discretized by regular hexahedra, pressure p, parts of
the Cauchy stress tensor Q1 and Q2 are approximated by piecewise discontinuous linear P1disc

elements, the velocity v is approximated by piecewise triquadratic H2 elements, and in order
to decrease the size of the problem the arbitrary deformation û is approximated by piecewise
trilinear H1 elements. The time derivatives are approximated by backward Euler method, non-
linearities are solved with the Newton method and the consequent set of linear equations are
solved with the iterative CGS solver with a LU decomposition used as a constant preconditioner
(MKL Pardiso). The linear iterations are stopped when the relative residuum reaches 10−4 and
the stopping condition for the Newton iterations is 10−9.

5 Results

The results are computed on the mesh containing 1 680 hexahedra and described by 88 052
degrees of freedom. The problem is calculated parallely with 24 threads on the system with
two Intel Xeon E5-2620 v2, the typical time of the assembly of the residuum and the tangent
matrix is 0.85 s, LU decomposition that is needed only once takes 5.8 s and because the solution
between two Newton iterations is not changing a lot, usually it is enough to perform only two
CGS iterations which take 0.13 s. One compression cycle is approximated by 200 time steps,
hence all together 200 000 time steps has to be performed to compute the whole simulation.

Figure 2 shows the snapshot in the 1000th cycle at the time when the 800 kPa compression is at
the top in the middle going to the left with the lower speed 1 km/h. The pressure is localized
mainly under the compression area. The cumulated deformation of the domain is very small and
thus the dependence of the deformation on the cycle number Figure 3a) and also coordinate x
Figure 3b) are plotted. The graph in 3b) shows that the upper side is mostly depreciated at
x
.
= 16 cm which is on the right from the middle and which shows the inertia of the material.

The graph in 3a) shows that the deformation of the material is bigger when it is pressed with
higher stress or when it moves with a slower speed.

In the next step of our research the simulation will be compared to the experimental results.

Acknowledgement: This research is supported by the ERC-CZ project LL1202.

100



Figure 2: A snapshot of the asphalt concrete pressed with 800 kPa and the speed 1 km/h in cycle
1000 going to the left, displacement uz [m] (left) and pressure p [kPa] (right).

a) b)

Figure 3: Graph of the dependence of the displacement uz on the number of the cycle measured
at the top in the middle for di�erent speeds and applied pressures (left), and the dependence of
the displacement uz on the position x obtained for the applied pressure 800 kPa and the speed
1 km/h (right).
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Lower bounds on eigenvalues of linear elliptic operators

T. Vejchodský

Institute of Mathematics of the CAS, Prague

1 Introduction

Eigenvalue problems for linear second-order partial di�erential elliptic operators are often solved
by the conforming �nite element method. This approach is a special case of the standard Galerkin
method and, thus, it yields approximate eigenvalues that are guaranteed to be greater or equal
to the exact eigenvalues. The natural question how to compute guaranteed lower bounds on
eigenvalues is much more di�cult to answer. The problem of lower bounds has been studied for
decades and approached by many authors. Lower bounds of Weinstein [5] and Kato [1] belong
among the oldest.

In this contribution, we recall these two classical lower bounds and discuss their properties. A
straightforward application of these two bounds in the context of the �nite element method can
be problematic, because the di�erential operator has to be applied in the strong (point-wise)
form. Therefore, we generalized Weinstein's and Kato's bounds to the weak setting [4], which
can be easily implemented within the standard conforming �nite element method.

2 Weinstein's bound

Let us consider a Hilbert space V , its dense subset D(A) and a linear symmetric operator
A : D(A)→ V . Eigenfunctions ui ∈ D(A) \ {0} and the corresponding eigenvalues λi ∈ R of A
satisfy

Aui = λiui.

We assume that eigenvalues form a countable sequence 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · and that the
corresponding eigenfunctions {ui} form an orthonormal basis in V .

Theorem 1 (Weinstein 1934). Let u∗ ∈ D(A) \ {0} and λ∗ ∈ R be arbitrary. Let δ = ‖Au∗ −
λ∗u∗‖/‖u∗‖. Then there exists λi such that λ∗ − δ ≤ λi ≤ λ∗ + δ.

Proof. Since eigenfunctions {ui} form an orthonormal basis, we use Parseval's identity and the
symmetry of A to derive the estimate

‖Au∗ − λ∗u∗‖2 =
∞∑
j=1

〈Au∗ − λ∗u∗, uj〉2 =
∞∑
j=1

|λj − λ∗|2〈u∗, uj〉2 ≥ min
j
|λj − λ∗|2‖u∗‖2.

Thus, there exists λi such that

|λi − λ∗| = min
j
|λj − λ∗| ≤

‖Au∗ − λ∗u∗‖
‖u∗‖

= δ.
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3 Kato's bound

Weinstein's lower bound is simple and elegant, but it does not provide the index information.
Having the approximation λ∗, the corresponding λi is the exact eigenvalue closest to λ∗, but we
do not know which one it is, i.e. we do not know the particular value for the index i. Moreover,
the accuracy of Weinstein's bound is suboptimal, because it is linear in δ. This is solved by
Kato's bound, which is quadratic in δ.

Theorem 2 (Kato 1949). Let u∗ ∈ D(A) \ {0} be arbitrary and let λ∗ = 〈Au∗, u∗〉/〈u∗, u∗〉. Let
δ = ‖Au∗ − λ∗u∗‖/‖u∗‖ and µ, ν ∈ R satisfy

λi−1 ≤ µ < λ∗ < ν ≤ λi+1 for some i.

Then λ∗ −
δ2

ν − λ∗
≤ λi ≤ λ∗ +

δ2

λ∗ − µ
.

Proof. For simplicity, we prove the lower bound only. Notice that (λj − λi)(λj − ν) ≥ 0 for all
j = 1, 2, . . . . Thus,

0 ≤
∞∑
j=1

(λj − λi)(λj − ν)〈u∗, uj〉2 =

∞∑
j=1

(λ2
j − (λi + ν)λj + λiν)〈u∗, uj〉2

= ‖Au∗‖2 − (λi + ν)〈Au∗, u∗〉+ λiν‖u∗‖2 =
(
δ2 + λ2

∗ − (λi + ν)λ∗ + λiν
)
‖u∗‖2,

where we use the fact that ‖Au∗‖2 = (δ2 + λ2
∗)‖u∗‖2. Consequently, we derived the inequality

0 ≤ δ2 + λ2
∗ − (λi + ν)λ∗ + λiν and the claimed statement follows by expressing λi.

The order of accuracy of Kato's lower bound is optimal and it solves � in a sense � the index
problem as well. However, this is a consequence of the strong assumption of having a lower
bound ν on the exact eigenvalue λi+1. This assumption cannot be veri�ed unless we have an
additional knowledge about the spectrum. One possibility how to verify this assumption is the
homotopy method proposed in [2].

4 Weak setting

The weak formulation of an elliptic eigenvalue problem is based on two continuous bilinear forms
a(·, ·) and b(·, ·) de�ned on a Hilbert space V and reads: �nd ui ∈ V \ {0} and λi ∈ R such that

a(ui, v) = λib(ui, v) ∀v ∈ V.
For example, in the case of the Laplace eigenvalue problem, we have V = H1

0 (Ω), a(u, v) =
(∇u,∇v) and b(u, v) = (u, v), where Ω ⊂ Rd is a domain and (·, ·) stands for the L2(Ω) scalar
product.

In general, we assume the bilinear form a(·, ·) to be symmetric and V -elliptic and the bilinear form
b(·, ·) to be symmetric and nonnegative. We use the notation ‖v‖2a = a(v, v) and |v|2b = b(v, v) for
the induced norm and seminorm, respectively. If the seminorm ‖ · ‖b is compact with respect to
‖ · ‖a then we can use the spectral theory of compact operators to show that there is a countable
sequence 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · of eigenvalues, the corresponding eigenfunctions can be
normalized such that b(ui, uj) = δij , and Parseval's identity ‖v‖2b =

∑∞
i=1 |b(v, ui)|2 holds true

for all v ∈ V .
Within this setting Weinstein's bound can be generalized as follows.
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Theorem 3. Let u∗ ∈ V \ {0} and λ∗ ∈ R be arbitrary and let w ∈ V be the unique solution of
the problem

a(w, v) = a(u∗, v)− λ∗b(u∗, v) ∀v ∈ V.
If √

λi−1λi ≤ λ∗ ≤
√
λiλi+1 (1)

and if there exists η > 0 such that ‖w‖a ≤ η then

`i ≤ λi, where `i =
1

4‖u∗‖2b

(
−η +

√
η2 + 4λ∗‖u∗‖2b

)2

.

Function w is a representative of the residual and its energy norm ‖w‖a cannot be obtain exactly,
in general. Therefore, we assume the existence of the computable bound η. The quantity η can
be computed by the complementarity approach (or two-energy principle) using techniques of
a posteriori error estimates, in particular, a suitable �ux reconstruction. This theorem is a
generalization of the result [3] and more details including the proof can be found in [4].

In a similar way, we can generalize Kato's bound.

Theorem 4. Let u∗ ∈ V \ {0} be arbitrary and let λ∗ = ‖u∗‖2a/‖u∗‖2b . Let there be ν ∈ R such
that

λi−1 < λ∗ < ν ≤ λi+1 for a �xed index i. (2)

Let w ∈ V be the same as in Theorem 3 and let there is η such that ‖w‖a ≤ η. Then

Li ≤ λi, where Li = λ∗

(
1 +

ν

λ∗(ν − λ∗)
η2

‖u∗‖2b

)−1

.

5 Numerical example

For illustration, we consider Laplace eigenvalue problem in the dumbbell shaped domain Ω =
(0, π)2∪ [π, 5π/4]× (3π/8, 5π/8)∪ (5π/4, 9π/4)× (0, π) with zero Dirichlet boundary conditions.
Upper bounds λ∗ = Λh,i on eigenvalues are computed by conforming piecewise linear �nite
elements based on adaptive triangular meshes. Lower bounds `i, Li with ν = `i+1, and L′i with
ν = Li+1 are computed as described above. Figure 1 presents convergence curves of eigenvalue
enclosures Λh,i − `i (squares), Λh,i −Li (circles), and Λh,i −L′i for i = 1 and 2. The curve for Li
is missing in the left panel, because eigenvalues λ1 and λ2 form a tight cluster close to 2 and λ3

is close to 5. Consequently, `2 is below Λ1 even on the �nest mesh, the middle inequality in (2)
is not satis�ed, and L1 cannot be de�ned. Fortunately, L2 with ν = `3 works well and L′1 with
ν = L2 can be successfully computed.

6 Conclusions

Lower bound `i converges with a suboptimal rate, because it is based on the subotimal Weinstein's
estimate. Lower bound Li converges with the optimal rate, however, its accuracy depends heavily
on the size of the spectral gap λi+1 − λi and on the choice of ν su�ciently close to λi+1. As we
observed in the numerical example, if the spectral gap is small then the accuracy of the bound Li
is relatively low, unless the mesh is su�ciently �ne and the small spectral gap well resolved. On
the other hand, if the spectral gap is relatively large then the bound Li produces very accurate
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Figure 1: Squares correspond to `i, circles to Li with ν = `i+1, and crosses to Li with ν = Li+1.

results. Since both lower bounds `i and Li are compute by simple formulas based on the same
quantities, we recommend to compute both of them and use the larger one as the �nal lower
bound.

Lower bound `i is guaranteed to be below λi if the relative closeness assumption (1) is satis�ed.
A similar assumption for Kato's bound is (2). These assumption are di�cult to verify, but our
numerical experiments indicate that even if they are not satis�ed the bounds `i and Li are very
often below the exact eigenvalue λi. A natural approach is to combine the bounds `i and Li and
use ν = `i+1 to compute the bound Li.

The disadvantage of the bound Li is its dependence on the size of the spectral gap λi+1 − λi.
This bound even fails in the case of multiple eigenvalues. However, a version of Kato's bound
that improves this disadvantage and that is suitable for multiple eigenvalues is presented already
in [1] and it is generalized to the weak setting in [4]. In the future research we plan to prove the
convergence of the adaptive algorithm mentioned in Section 5.
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and parabolic problems in primal and mixed form

R. Blaheta

Institute of Geonics of the CAS, Ostrava

1 Introduction

In this lecture, we concern the numerical solution of PDE problems and describe overlapping
domain decomposition, which provides a tool for the construction of parallelizable Schwarz type
iterative solvers and preconditioners. The idea of using overlapping domain decomposition goes
back to Schwarz alternating method from 1870, see [1]. The analysis of this alternating iterative
method was evolved by great mathematicians, see e.g. S.L. Sobolev (1936), R. Courant and
D. Hilbert (1937), S.G. Michlin (1951), M. Práger (1958), I. Babu²ka (1958), F.E. Browder
(1958). The use of overlapping domain decomposition for parallel computations started in the
late eighties in the work of M. Dryja and O. Widlund [4], P.L. Lions [5, 6], S. Nepomnyaschikh [7]
and others and continue up to the present days. The origin of the alternating Schwarz method
is nicely described in [8].

The classical results about the Schwarz type methods are described in several domain decompo-
sition textbooks, see e.g. Chan and Mathew [9], Smith, Bjørstadt and Gropp [10], Toselli and
Widlund [11], Mathew [12], Brenner and Scott [13].

The Schwarz method is also for a long time investigated and utilized at the Institute of Geonics,
see e.g. [14, 15, 16, 17, 18]. The author would like to thank all co-workers contributed to
this work. The implementation for massively parallel and robust computations is nowadays
in progress starting collaboration with the PERMON team from IT4Innovations Centre at TU
Ostrava.

In this lecture, we shall repeat the classical results which provide necessary framework. Then we
touch new topics concerning robustness of additive Schwarz preconditioners as well as applica-
tions to mixed FEM and multiphysics problems.

2 Solved problems

In this paper, we are interested in numerical solution of boundary and initial-boundary value
problems for elliptic and parabolic PDEs of the form

−∇ · α∇p = f in Ω (1)

and
c0
∂p

∂t
−∇ · α∇p = f in Ω, (2)

respectively. Above p is the unknown function and α and c0 are coe�cients which can vary in
the domain Ω.

We assume that Ω ⊂ Rd, d = 1, 2, 3 and that these problems are discretized by linear P1 �nite
elements from the space

Vh =
{
vh ∈ H1(Ω) : vh|E ∈ P1 ∀E ∈ Th

}
,



where Th is a division of Ω into simplexes. The discretization in time can be done by backward
Euler or higher order Radau time integration methods. The FEM for elliptic problems and FEM
with backward Euler with timestep τ for parabolic problems lead to linear systems with SPD
matrices A and M + τA, respectively.

We shall also consider mixed formulation of the above PDE problems arising from introduction
of a dual variable v,

α−1v +∇p = 0
∇ · v = f in Ω

and
α−1v +∇p = 0

∇ · v −c0
∂p
∂t = −f in Ω

The discretization in space will use the same division Th of Ω, piecewise constant pressure
p = ph ∈ L2(Ω) and lowest order Raviart-Thomas elements for velocity v = vh ∈ H(div, Ω).
The discretization in time provides di�erential-algebraic equations (DAE) which can be again
discretized by backward Euler or higher order Radau time integration methods. Discretization
provide saddle point systems with the matrices of the form[

Mv BT

B 0

]
or
[
Mv BT

B −Mp

]
,

respectively.

3 Overlapping domain decomposition

Figure 1: Overlapping domain decomposition.

Let us consider a two step construction of overlapping domain decomposition of Ω, see Fig. 1:

• �rst, decomposition into nonoverlapping subdomains Ω0
i , i = 1, . . . ,m : Ω̄ =

⋃
Ω̄0
i ,

Ω0
i ∩ Ω0

j = ∅ for i 6= j

• second, decomposition into overlapping subdomains Ωδ
i , i = 1, . . . ,m, where δ > 0, Ωδ

i =
{x ∈ Ω, dist(x, Ω0

i ) ≤ δ} ⊃ Ω0
i

In the case of �nite element division Th , we assume that all subdomains are aligned with the
�nite element division

Ω̄0
j =

⋃{
E ⊂ Th : E ⊂ Ω̄0

j 6= ∅
}
, Ω̄δ

j =
⋃{

E ⊂ Th : E ⊂ Ω̄δ
j 6= ∅

}



Note that aligned extension is created by adding layers of elements,

Ω̄
fe(1)
j =

⋃{
E ⊂ Th : E ∩ Ω̄0

j 6= ∅
}
, etc.

Beside the parameters m - number of subdomains and δ > 0 - size of the overlap, there is another
important parameter of the decomposition:

m0 = max
i=1,...,m

m0i, m0i = card
{
j : Ωδ

i ∩ Ωδ
j 6= ∅

}
Theorem 1. Let us consider an overlapping domain decomposition {Ωδ

j}mj=1. Then there is
a partition of unity θj , j = 1, . . . ,m such that

supp θj ⊂ Ω
δ
j (3)

0 ≤ θj(x) ≤ 1 (4)

1 =
∑

θj(x) ∀x ∈ Ω (5)

Moreover, all θj are continuous in Ω, ∇θj exists a.e. in Ω and there is a constant C independent
on δ and diam(Ωj) such that

‖∇θj‖∞ ≤ C/δ ∀j = 1, · · · ,m. (6)

Proof. The proof can be found in [11], see also [20, 10]. It is based on the construction

θi(x) = di(x)
/ m∑
k=1

dk(x),

where

di(x) =

{
dist(x, ∂Ωδ

i \ ∂Ω) for x ∈ Ωδ
i ,

0 otherwise.

4 Function spaces and bilinear forms

We consider two types of bilinear forms. First,

a(u, v) =

∫
Ω
α∇u · ∇v + β uv, α = α(x) ≥ α0 > 0, β = β(x) ≥ β0 ≥ 0. (7)

This form is de�ned, bilinear and symmetric on a subspace V of H1(Ω). If β0 = 0, then we
consider such subspace V that the Friedrichs or Poincare inequalities guarantee the positive
de�niteness of the bilinear form a on V . For simplicity we restrict to the case with Friedrichs
inequality, i.e. we assume that there is a constant cF independent on v ∈ V ,

‖v‖2,0 ≤ cF |v|2,1 ∀v ∈ V. (8)

If β0 > 0 then the bilinear form can be considered on V = H1(Ω) where it is positive de�nite
and represents a weighted H1norm.



Second considered bilinear form is the following

a(u, v) =

∫
Ω
κu · v + λ div(u) div(v) (9)

κ ≥ κ0 > 0, λ ≥ λ0 > 0 . Then a is an SPD bilinear form which de�nes a weighted H(div) inner
product in the space V = H(div,Ω) of vector functions u : Ω→ Rd, d = 2, 3.

For the numerical realization, we use FE subspaces Vh ⊂ V . For example, we assume decompo-
sition of Ω into triangles/tetrahedra and consider spaces

Vh = {v ∈ C(Ω), v|E ∈ P1 ∀E ∈ Th} ⊂ V ⊂ H1(Ω), (10)

Vh = {v ∈ C( Ω )d, v|E ∈ RT1 ∀E ∈ Th} ⊂ H(div,Ω), (11)

where P1 is the set of polynomials of order les or equal of one, RT1 is the set of vector functions

v ∈ RT1 ⇔ v(x) = cx+ ξ, x, ξ ∈ Rd, c ∈ R1.

Using the bilinear form a, the space V and a continuous linear functional b ∈ V ′, we can consider
the variational problem,

�ndu ∈ V : a(u, v) = b(v) ∀v ∈ V (12)

Proposition 1. Let V be a Hilbert space with the norm ‖·‖1, a be bounded and positive de�nite
on V , i.e. there are two positive constants γ0, γ1 such that

|a(u, v)| ≤ γ1‖u‖V ‖v‖V ∀u, v ∈ V (13)

γ0‖u‖2V ≤ a(u, u) ∀u ∈ V (14)

Then the Lax-Milgram theorem guarantees existence and uniqueness of the solution of (12).

The problem (12) can be rewritten into the operator form

Au = b, A : V → V ′, u ∈ V, b ∈ V ′, (15)

where
〈Au, v〉 = a(u, v) ∀u, v ∈ V, (16)

〈·, ·〉 is the duality pairing.

The same construction is possible for the �nite dimensional case V = Vh. Further, a basis {φi}n1
in Vh de�ne an isomorphism u ≡ u between Vh and Rn, and (15) become equivalent to the linear
algebraic system

Au = b, u, b ∈ Rn, (17)

〈Au, v〉n = a(u, v) ∀u,v ∈ Rn, u ≡ u, v ≡ v, 〈b, v〉n = b(v) ∀v ∈ Rn, v ≡ v,
where 〈·, ·〉n is the Euclidean inner product in Rn.



5 Space decomposition

Let us consider the space V of functions in Ω de�ned in Section 4 and domain decomposition
into Ωδ

i , i = 1, . . . ,m de�ned in Section 3. Then a stable decomposition means that

V = V1 + · · ·+ Vm, Vi = {v ∈ V : v = 0 in Ω \ Ωδ
i }

The existence of stable decomposition is crucial for the in�nite dimensional case, see e.g. [5].
Note that due to the nonempty overlap, the decomposition of V is not a direct sum. The inclusion
Vi ⊂ V de�nes a natural operator Si : Vi → V .

The bilinear form a and the operator A can be restricted to Vi,

ai(ui, vi) = a(Siui, Sivi) ∀ui, vi ∈ Vi,

〈Aiui, vi〉 = ai(ui, vi) = a(Siui, Sivi) = 〈ASiui, Sivi〉 = 〈RiASiui, vi〉 ,
thus Ai = RiASi = RiAR?i , where Ri (a restriction) is the adjoint operator to Si, Ri : V → Vi .

In the case of aligned FE discretization and domain decomposition and FE spaces with nodal
degrees of freedom, the decomposition

V = V1 + · · ·+ Vm, i.e. Vh = Vh1 + · · ·+ Vhm

trivially exists. If Vh = span {φi, i ∈ Nh}, where {φi, i ∈ Nh} is a nodal FE basis, Nh =
{1. . . . , n}, it holds that Vhi = span {φi, i ∈ Ni}, Ni ⊂ Nh, card(Ni) = ni. Then the isomorphism
u ≡ u between Vh and Rn ≡ V can be completed by isomorphisms ui ≡ ui between Vhi and
Rni ≡ Vi. The inclusion Vhi ⊂ Vh and these isomorphisms de�ne the prolongation operators
Si : Rni → Rn and the restriction operators Ri : Rn → Rni .

Note that RT
i = Si,

(Si)jk =

{
1 if j ∈ Ni and k is the order (index) of j in Ni

0 otherwise
,

The decomposition now has the form

V =
∑
i

RT
i Vi

and Ai = RiASi = RiAR
T
i .

6 Schwarz-type methods and preconditioners

Let us consider the problem

�ndu ∈ V : a(u, v) = b(v) ∀v ∈ V (18)

and note that if ũ ∈ V is an approximation of u, which is the solution of (18), then a correction
from Vk can be computed as

wk ∈ Vk, a(wk, v) = b(v)− a(ũ, v) ∀v ∈ Vk.



The corrected approximation to u has the form ũC = ũ+ wk. Note that wk is the a-orthogonal
projection of the error u− ũ to Vk because

a(u− ũ− wk, v) = 0 ∀v ∈ Vk.

Schwarz algorithm, which uses the correction from all subspaces Vk, can be de�ned as follows

Let u0 be given
for i = 0, 1, 2, · · · until convergence

w = 0
for k = 1, · · · ,m
compute wk

a(wk, v) = b(v)− a(ui + σw, v) ∀v ∈ Vk
w = w + wk

end

ui+1 = ui + ωw
end

The multiplicative algorithm uses the choice σ = 1, ω = 1 and it is convergent under described
setting. The additive algorithm uses σ = 0 and for convergence we need suitable damping by
0 < ω < 1. Note that the multiplicative algorithm was suggested by H.A. Schwarz in 1870 for
proving existence of the solution on a composite domain, see Fig. 2.

Figure 2: A picture from the original paper by H.A. Schwarz published in 1870.

The Schwarz algorithm can be rewriten into the operator or matrix form

Operator form

Let u0 be given
for i = 0, 1, 2, · · · until convergence

w = 0
for k = 1, · · · ,m
compute wk = A−1k

(
b−A(ui + σw)

)
w = w + wk

end

ui+1 = ui + ωw
end

Matrix form

Let u0 be given
for i = 0, 1, 2, · · · until convergence
w = 0
for k = 1, · · · ,m
compute wk = A−1k

(
b−A(ui + σw)

)
w = w +wk

end

ui+1 = ui + ωw
end

Application of one iteration of the Schwarz method starting from zero initial gues provides the
Schwarz preconditioner. We shall be especially interested in the additive Schwarz preconditioner.
In the operator form it provides B : V → V ′ where

B−1 =
∑

R?kA−1
k Rk. (19)

In the matrix form
B−1 =

∑
RT
kA
−1
k Rk (20)



Note that the local inverses represent solving local systems. It is possible to generalize the
Schwarz method in this respect that local systems are solved only inaccuratelly.

7 Tools for analysis of the additive Schwarz preconditioner

Let us consider the preconditioner (19) providing the preconditioned operator

B−1A =
∑
k

R?kA−1
k RkA =

∑
k

Pk,

where Pk are a-orthogonal projections. To get spectral information about B−1A, which is sym-
metric in a-inner product, we shall investigate the form a(B−1Av, v). A trivial upper bound for
is as follows

a(B−1Av, v) ≤
∥∥∥∥∥∑

k

Pkv

∥∥∥∥∥
a

‖v‖a ≤ m‖v‖2a,

where m is the number of subdomains. A sharper estimate, not depending on m, is provided by
the following theorem.

Theorem 2. Let
a(vi, vj) ≤ εij

√
a(vi, vi)

√
a(vj , vj)

for all vi ∈ Vi, vj ∈ Vj, 0 ≤ εij ≤ 1. For E = (εij), let ρ(E) be the spectral radius of E. Then for
all v ∈ V ,

a(B−1Av, v) = a

(
m∑
1

Pkv, v

)
≤ ρ(E) a(v, v).

Proof. It holds

a

(
m∑
1

Piv, v

)
≤ a

∑
i

Piv,
∑
j

Pjv

1/2

a(v, v)1/2 ≤

∑
ij

a(Piv, Pjv)

1/2

a(v, v)1/2 ≤

≤

∑
ij

εij‖Piv‖a‖Pjv‖a

1/2

a(v, v)1/2 ≤
[
%(E)

∑
i

‖Piv‖2a

]1/2

a(v, v)1/2 ≤

≤ ρ(E)1/2a
(∑

Piv, v
)1/2

a(v, v)1/2

Note that
ρ(E) ≤ ‖E‖∞ = max

i

∑
εij ≤ m0

where m0 is the maximal number of overlapping subdomains (colouring). Thus

λmax(B−1A) ≤ m0 = K1. (21)



Theorem 3. (Lions 1988, Nepomnyaschikh 1986) Let K0 be a positive constant such that

∀v ∈ V ∃vk ∈ Vk : v = v1 + · · ·+ vk
∑

a(vk, vk) ≤ K0 a(v, v).

Then
a(v, v) ≤ K0 a(B−1Av, v) ∀v ∈ V

and consequently
λmin(B−1A) ≥ 1/K0. (22)

Proof. It holds

a(v, v) = a

(
v,
∑
k

vk

)
=
∑
k

a(v, Pkvk) =
∑
k

a(Pkv, vk) ≤

≤
{∑

k

a(Pkv, Pkv)

}1/2{∑
k

a(vk, vk)

}1/2

=

{∑
k

a(Pkv, v)

}1/2

k
1/2
0 a(v, v)1/2

a(v, v) ≤ k0 a(B−1Av, v)

As a counterpart to this theorem, we also have

Theorem 4. (Bjørstadt, Mandel 1991) Let us assume that there is a constant K1 such that

∀v ∈ V ∀vk ∈ Vk : v = v1 + · · ·+ vm a(v, v) ≤ K1

∑
a(vk, vk).

Then
a(B−1Av, v) ≤ K1 a(v, v) ∀v ∈ V

and
λmax(B−1A) ≤ K1.

Note that K1 ≤ %(E) for E introduced in Theorem (2).

For the algebraic case, the preconditioned system has the form

B−1A =
∑

RT
kA
−1
k RkA =

∑
Pk,

where Pk are now A-orthogonal projections. All the above theorems are applicable to this case,
getting a bit modi�ed form. As an example, we reformulate Theorem (3).

Theorem 5. Let K0 be a positive constants, such that

∀v ∈ V , ∃vk ∈ Vk, v =

m∑
k=k0

vk :
∑
k

‖ Rkvk ‖2A≤ K0 ‖ v ‖2A, (23)

Then
λmin

(
B−1A

)
≥ 1/K0, λmax

(
B−1A

)
≤ K1 = m0, cond

(
B−1A

)
≤ K0K1.



8 Applications

The developed theory can be applied to analysis of particular cases. The condition number
estimate is not favourable for elliptic problems with bilinear form of the type (7) with β = 0. In
this case,

cond
(
B−1A

)
≤ 2

(
1 +

1

δ2

αmax

αmin
cF,Ω

)
,

which is not favourable for two reasons. First, the estimate involve contrast in the coe�cient α
over whole domain. Note that this can be localized into subdomains if the Friedrichs inequality
holds on the subdomains with uniformly bounded constant cF . Second, the term δ−2 naturaly
increase if we increase number of subdomains.

This unfavourable dependence on δ−2 is usually compensated by introducing auxiliary global
coarse space into the space decomposition. Such space can be de�ned e.g. by a coarser �nite
element grid [4], by agregations [22, 14] or by smoothed aggregations [20].

The situation is more favourable for the bilinear form of the type (7) with β = β(x) ≥ β0 > 0.
In this case

cond
(
B−1A

)
≤ 2

(
1 +

1

δ2
max

α

β

)
,

where max α
β can e�ectivelly compensate the term δ−2 if α � β, e.g. for parabolic problems

with small time step. See [15, 12].

The presence of L2 part in the H(div) norm has a similar e�ect. This enables to construct
e�cient preconditioners for mixed FEM systems and apply one-level Schwarz preconditioning to
elliptic problems discretized by mixed FEM. See [16, 17]

9 Schwarz preconditioner for poroelasticity

The Biot model of poroelasticity arises from interconnecting elasticity and time dependent Darcy
�ow in deformable porous media. The �uid pressure contributes to elastic stress, deformation
of porous space serves as a source or sink in �uid conservation. Frequently the elasticity is dis-
cretized in space by standard Lagrangian (Courant) �nite elements and Darcy �ow is discretized
by more accurate and conservative mixed elements (Raviart - Thomas). The combination with
time discretization by implicit Euler method then provides a time stepping scheme, when the
system with the matrix AE or AE

AE =

 A 0 BT
u

0 Mv BT

1
τBu B − 1

τC

 , AE =

1
τ

τ

AE =

 A 0 BT
u

0 τMv τBT

Bu τB −C

 ,
is solved in each time step. The blocks are �nite element matrices, A corresponds to elasticity
discretized by Lagrangian elements, Mv is a weighted mass matrix corresponding to velocities
discretized by Raviart-Thomas mixed �nite elements, C corresponds to a weighted mass matrix
for piecewise constant �nite elements, Bu andB are constraint matrices from coupling of elasticity
and �ow equations. For the iterative solution, it is favourable to scale the matrixAE to get system
with symmetric matrix AE . We can use GMRES or after symmetrization the MINRES iterative
methods with the following matrix P as an e�cient positive de�nite preconditioner to AE ,

P =

A 0 0
0 Ma 0
0 0 C

 , Ma = τM + τ2BTC−1B.



More details can be founfd e.g. in [19, 18].

For implementation of the preconditioner P, we have to (approximately) solve the systems with
A and the augmented matrixMa. The solution of the elasticity block system can be done by two-
level additive Schwarz method. The solution of the system with matrix Ma has been described
and analysed in [19]. The analyse shows that the use of one-level method is enough in this
case for several reasons. First is damping of the di�erential part of Ma by the time step factor.
This is similar to application of the one-level Schwarz method to the systems appearing in the
implicit Euler solution of parabolic equations, which was mentioned earlier. Second reason is
that the matrix Mv is weighted by inverse of permeabilities, which make it dominating over the
di�erential part of Ma .

Acknowledgement: The work was done within the projects LD15105 �Ultrascale computing
in geo-sciences� and LQ1602 �IT4Innovations excellence in science� supported by the Ministry
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1 Introduction

The purpose of this lecture is to give an overview of the basic FETI (Finite Element Tearing and
Interconnecting) methods for the solution of extremely large (currently some hundreds of billions)
systems of linear equations arising from the discretization of the boundary value problems for
elliptic partial di�erential equations. In the �rst part of the lecture, we shall review the basic
algorithms and scalability results. We shall also brie�y mention some interesting features of these
methods arising in the solution of more complex engineering problems including the problems
with plasticity, contact problems of elasticity with or without friction [7], shape optimization
including contact shape optimization, problems with varying material properties etc.

The FETI domain decomposition methods can e�ectively exploit the parallel facilities provided
by modern supercomputers. However, this task is far from trivial and straightforward. The
FETI methods appeared in the early 90s, when the parallel computers were not assumed to have
some tens or even hundreds of thousands of cores, and an immediate goal was to use them for the
solution of the problems discretized by a few millions of the degrees of freedom. Thus it is not
surprising that we face new problems. For example, the cost of the assembling of the projector
to the �natural coarse grid�, which is nearly negligible for smaller problems, starts to essentially
a�ect the cost of the solution when the dimension of the dual problem reaches some tens of
millions. New challenges are posed also by the emerging exascale technologies, the e�ective
exploitation of which has to take into account a hierarchical organization of memory, the varying
cost of operations depending on the position of arguments in memory, and the increasing role
of communication costs. Last but not least, it is important to exploit an up-to-date software,
either open-source or commercial, as the e�ective implementation of some standard steps, such
as the application of direct solvers, is highly nontrivial and a�ects the overall performance of
algorithms.

In the second part of the lecture we present some hints concerning the parallel implementation
of FETI-type algorithms for the solution of very large problems, including the implementation of
the action of a generalized inverse K+ of the sti�ness matrix K and the action of the projector
to the �natural coarse grid� P . We brie�y discuss the possibility to overcome the bottleneck
by introducing the third level grid by a variant of HTFETI (Hybrid TFETI). The third level is
introduced by the decomposition of TFETI subdomains into smaller subdomains that are partly
glued in corners or by averages at the primal level as proposed by Klawonn and Rheinbach.
The presentation will use two packages developed at IT4Innovations, National Supercomputing
Center Ostrava, namely PERMON based on PETSc, and ESPRESO based on Intel MKL and
Cilk.



2 FETI methods

The basic FETI (also FETI-1) method was was proposed by Farhat and Roux [1] in 1990.
The FETI-1 method is based on the decomposition of the spatial domain into non-overlapping
subdomains that are "glued" by Lagrange multipliers. After eliminating the primal variables, the
original problem is reduced to a small, better conditioned system in Lagrange multipliers that
is solved iteratively. The original FETI-1 method became numerically scalable after introducing
the projectors to the natural coarse space (kernels of local sti�ness matrices) by Farhat, Mandel,
and Roux [2]. The latter authors proved the bounds on the spectrum in terms of the ratio of the
decomposition and discretization parameters.

By projecting the Lagrange multipliers in each iteration onto an auxiliary space to enforce con-
tinuity of the primal solutions at the crosspoints, Farhat, Mandel and Tezaur obtained a faster
converging FETI method for plate and shell problems - FETI-2.

Similar e�ect was achieved by a variant called the Dual-Primal FETI method FETI-DP, in-
troduced by Farhat et al. The continuity of the primal solution at crosspoints is implemented
directly into the formulation of the primal problem so that one degree of freedom is considered
at each crosspoint shared by two and more adjacent subdomains. The continuity of the primal
variables across the rest of the subdomain interfaces is once again enforced by the Lagrange
multipliers. After eliminating the primal variables, the problem reduces to a small, relatively
well conditioned strictly convex quadratic programming problem that is again solved iteratively.

Implementation of the FETI-1 and FETI-2 method into general purpose packages requires an
e�ective method for automatic identi�cation of the kernels of the sti�ness matrices of the sub-
domains as these kernels are used both in elimination of the primal variables and in de�nition of
the natural coarse grid projectors. This problem motivated the development of FETI-DP (dual-
primal). FETI-DP manipulates with the subdomains joined in the some nodes called corners,
so that the sti�ness matrices of the subdomains are invertible. However, even though FETI-DP
may be e�ciently preconditioned so that it scales better than the original FETI for plates and
shells, the coarse grid de�ned by the corners without additional preconditioning is less e�cient
than that de�ned by the rigid body motions, which is important for some applications, and the
FETI-DP method is more di�cult to implement as it requires special treatment of the corners
which are not local variables associated with the subdomains.

An alternative solution was proposed in [3]. It is easier to implement and it preserves e�ciency
of the coarse grid of the classical FETI-1. The basic idea is to use the Lagrange multipliers not
only for gluing of the subdomains along the auxiliary interfaces, but also for implementation
of the Dirichlet boundary conditions. The resulting TFETI method thus works with a priori
known kernels of the local sti�ness matrices. Heuristic arguments and the results of numerical
experiments indicate that the new method is not only much easier to implement, but also more
e�cient than the original FETI-1.

The parallel scalability of TFETI deteriorates with the increasing number of subdomains. The
reason is the increasing cost of the implementation of projectors to the coarse grid. It seems that
the most powerful tool for the solution of very large problems is a combination of TFETI and
FETI-DP that is called HTFETI (hybrid). A few subdomains are joined by nodes or averages
into so called clusters which have in HTFETI the same role as subdomains in FETI. The sti�ness
matrix of each cluster shares the dimension with any of its subdomains, i.e., six in 3D elastic-
ity. Thus the dimension of the coarse space is reduced by tens, opening the way for e�ective
exploitation of tens or hundreds of thousands of cores. HTFETI is thus a powerful tool for the
exploitation of the hierarchical structure of modern supercomputers.



3 PERMON

PERMON (Parallel, E�cient, Robust, Modular, Object-oriented, Numerical) [5] is a software
package which aims at the massively parallel solution of problems of constrained quadratic pro-
gramming (QP). PERMON is based on PETSc and combines aforementioned TFETI method
and QP algorithms. The core solver layer consists of the PermonQP package for QP and its
PermonFLLOP extension for FETI. PermonQP supports the separation of QP problems, their
transformations, and solvers. It contains all QP solvers described in [7]. More can be found on
the PERMON website: permon.it4i.cz.

An example of numerical and weak parallel scalability of TFETI on model 3D linear elastic cube
up to 701 millions of unknowns and 10,648 subdomains with one subdomain per one computa-
tional core on Archer is demonstrated in the graphs in Fig. 1. The contact problem was solved
using SMALBE and MPRGP with our new adaptive expansion steplength which signi�cantly im-
proved this scalability and reduced not only the number of expansion steps but also the number
of CG steps.

Figure 1: Scalability highlights - linear and contact 3D elastic cube problems

4 ESPRESO

ESPRESO [6] is an ExaScale PaRallel FETI SOlver developed at IT4Innovations. The main
focus is to create a highly e�cient parallel solver. Apart from the algorithms used by MatSol and
PERMON, it also enhances the HFETI method, which is designed to run on massively parallel
machines with thousands of compute nodes and hundreds of thousands of CPU cores. The
algorithms can be seen as a multilevel FETI method designed to overcome the main bottleneck
of standard FETI methods, a large coarse problem, which arises when solving large problems
decomposed into the large number of subdomains. ESPRESO can exploit modern many-core
accelerators.

There are three major versions of the solver. ESPRESO CPU is a CPU version that uses the
sparse representation of system matrices. It contains an e�cient communication layer on the top
of MPI 3.0 combined with the shared memory parallelization inside nodes. The communication
layer was developed speci�cally for FETI solvers and uses several state-of-the-art communication
hiding and avoiding techniques to achieve better scalability.



The ESPRESO solver can take advantage of many-core accelerators to speedup the solver run-
time. To achieve this, it uses a dense representation of sparse system matrices in the form of
Schur complements. The main advantage of using this approach in FETI solvers is the reduction
of the iteration time. Instead of calling a solve routine of the sparse direct solver in every iter-
ation, which by its nature is a sequential operation, the solver can use the dense matrix-vector
multiplication (GEMV) routine. The GEMV o�ers the parallelism required by many-core ac-
celerators and delivers up to 4× speedup depending on the hardware con�guration. There are
two versions: ESPRESO MIC for Intel Xeon Phi and ESPRESO GPU for graphic accelerators.
More information can be found at the ESPRESO website: espreso.it4i.cz
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Interval Computation

What is interval computation

Solving problems with interval data
(or using interval techniques for non-interval problems)

What is not interval computation

stochastic computation

fuzzy computation

Interval paradigm

Take into account all possible realizations rigorously.

Where interval data do appear

1 numerical analysis (handling rounding errors)

2 computer-assisted proofs

3 global optimization

4 modelling uncertainty
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Numerical Analysis

Example (Rump, 1988)

Consider the expression

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with

a = 77617, b = 33096.

Calculations from 80s gave

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

the true value f = −0.827386 . . .
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Computer-Assisted Proofs

Kepler conjecture

What is the densest packing of balls? (Kepler,
1611)

That one how the oranges are stacked in a shop.

The conjecture was proved by T.C. Hales (2005).

Double bubble problem

What is the minimal surface of two given volumes?

Two pieces of spheres meeting at an angle of 120◦.

Hass and Schlafly (2000) proved the equally sized case.
Hutchings et al. (2002) proved the general case.
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Global Optimization

Rastrigin’s function f (x) = 20 + x
2
1 + x

2
2 − 10(cos(2πx1) + cos(2πx2))
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Further Sources of Intervals

Mass number of chemical elements (sue to several stable isotopes)

[12.0096, 12.0116] for the carbon

physical constants

[9.78, 9.82]ms−2 for the gravitational acceleration

mathematical constants

π ∈ [3.1415926535897932384, 3.1415926535897932385].

measurement errors

temperature measured 23◦C± 1◦C

discretization

time is split in days
temperature during the day in [−8, 3]◦C for Ostrava in January

missing data

What was the temperature in Ostrava on January 31, 1999?
Very probably in [−25, 15]◦C.

processing a state space

find robot singularities, where it may breakdown
check joint angles [0, 180]◦.
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Interval Computations

Notation

An interval matrix

A := [A,A] = {A ∈ R
m×n | A ≤ A ≤ A}.

The center and radius matrices

Ac :=
1

2
(A+ A), A∆ :=

1

2
(A− A).

The set of all m × n interval matrices: IRm×n.

Main problem

Let f : Rn 7→ R
m and x ∈ IR

n. Determine the image

f (x) = {f (x) : x ∈ x}.
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Interval Arithmetic

Interval arithmetic (incl. rounding, IEEE standard)

a + b = [a + b, a + b],

a − b = [a − b, a − b],

a · b = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a/b = [min(a/b, a/b, a/b, a/b),max(a/b, a/b, a/b, a/b)], 0 6∈ b.

Theorem (Basic properties of interval arithmetic)

Interval addition and multiplication is commutative and associative.

It is not distributive in general, but sub-distributive instead,

∀a,b, c ∈ IR : a(b + c) ⊆ ab + ac .

Example (a = [1, 2], b = 1, c = −1)

a(b + c) = [1, 2] · (1− 1) = [1, 2] · 0 = 0,

ab + ac = [1, 2] · 1 + [1, 2] · (−1) = [1, 2] − [1, 2] = [−1, 1].
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Images of Functions

Monotone functions

If f : x → R is non-decreasing, then f (x) = [f (x), f (x)].

Example

exp(x) = [exp(x), exp(x)], log(x) = [log(x), log(x)], . . .

Some basic functions

Images x2, sin(x), . . . , are easily calculated, too.

x2 =

{

[min(x2, x2),max(x2, x2)] if 0 6∈ x ,

x2 = [0,max(x2, x2)] otherwise

But. . .

. . . what to do for more complex functions?
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Images of Functions

Notice

f (x) need not be an interval (neither closed nor connected).

Interval hull �f (x)

Compute the interval hull instead

�f (x) =
⋂

v ∈ IR
n : f (x) ⊆ v

v .

Bad news

Computing �f (x) is still very difficult (NP-hard, undecidable).

Interval enclosure

Compute as tight as possible v ∈ IR
n : f (x) ⊆ v .
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Interval Functions

Definition (Inclusion isotonicity)

f : IRn 7→ IR is inclusion isotonic if for every x , y ∈ IR
n :

x ⊆ y ⇒ f (x) ⊆ f (y).

Definition (Interval extension)

f : IRn 7→ IR is an interval extension of f : Rn 7→ R if for every x ∈ R
n :

f (x) = f (x).

Theorem (Fundamental theorem of interval analysis)

If f : IRn 7→ IR satisfies both properties, then

f (x) ⊆ f (x), ∀x ∈ IR
n.

Proof.

For every x ∈ x , one has by interval extension and inclusion isotonicity
that f (x) = f (x) ⊆ f (x), whence f (x) ⊆ f (x).
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Natural Interval Extension

Definition (Natural interval extension)

Let f : Rn 7→ R be a function given by an arithmetic expression. The
corresponding natural interval extension f of f is defined by that
expression when replacing real arithmetic by the interval one.

Theorem

Natural interval extension of an arithmetic expression is both an interval
extension and inclusion isotonic.

Proof.

It is easy to see that interval arithmetic is both an interval extension and
inclusion isotonic. Next, proceed by mathematical induction.
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Natural Interval Extension

Example

f (x) = x2 − x , x ∈ x = [−1, 2].

Then

x2 − x = [−1, 2]2 − [−1, 2] = [−2, 5],

x(x − 1) = [−1, 2]([−1, 2] − 1) = [−4, 2],

Best one?(x − 1
2)

2 − 1
4 = ([−1, 2] − 1

2 )
2 − 1

4 = [−1
4 , 2].

Theorem

Suppose that in an expression of f : Rn 7→ R each variable x1, . . . , xn
appears at most once. The corresponding natural interval extension f (x)
satisfies for every x ∈ IR

n: f (x) = f (x).

Proof.

Inclusion “⊆” by the previous theorems.
Inclusion “⊇” by induction and exactness of interval arithmetic.
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Software

Matlab/Octave libraries

Intlab (by S.M. Rump),
interval arithmetic and elementary functions
http://www.ti3.tu-harburg.de/~rump/intlab/

Versoft (by J. Rohn),
verification software written in Intlab
http://uivtx.cs.cas.cz/~rohn/matlab/

Lime (by M. Hlad́ık, J. Horáček et al.),
interval methods written in Intlab, under development
http://kam.mff.cuni.cz/~horacek/projekty/lime/

Other languages libraries

Int4Sci Toolbox (by Coprin team, INRIA),
A Scilab Interface for Interval Analysis
http://www-sop.inria.fr/coprin/logiciels/Int4Sci/

C++ libraries: C-XSC, PROFIL/BIAS, BOOST interval, FILIB++,. . .

many others: for Fortran, Pascal, Lisp, Maple, Mathematica,. . .
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Solution Set

Interval linear equations

Let A ∈ IR
m×n and b ∈ IR

m. The family of systems

Ax = b, A ∈ A, b ∈ b.

is called interval linear equations and abbreviated as Ax = b.

Solution set

The solution set is defined

Σ := {x ∈ R
n : ∃A ∈ A∃b ∈ b : Ax = b}.

Important notice

We do not want to compute x ∈ IR
n such that Ax = b.

Theorem (Oettli–Prager, 1964)

The solution set Σ is a non-convex polyhedral set described by

|Acx − bc | ≤ A∆|x |+ b∆.
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Proof of Oettli–Prager Theorem (|Acx − bc | ≤ A∆|x |+ b∆)

Let x ∈ Σ, that is, Ax = b for some A ∈ A and b ∈ b. Now,

|Acx − bc | = |(Ac − A)x + (Ax − b) + (b − bc)| = |(Ac − A)x + (b − bc)|

≤ |Ac − A||x |+ |b − bc | ≤ A∆|x |+ b∆.

Conversely, let x ∈ R
n satisfy the inequalities. Define y ∈ [−1, 1]m as

yi =

{

(Acx−bc )i
(A∆|x |+b∆)i

if (A∆|x |+ b∆)i > 0,

1 otherwise.

Now, we have (Acx − bc)i = yi(A
∆|x |+ b∆)i , or,

Acx − bc = diag(y)(A∆|x |+ b∆).

Define z := sgn(x), then |x | = diag(z)x and we can write

Acx − bc = diag(y)A∆ diag(z)x + diag(y)b∆,

or

(Ac − diag(y)A∆ diag(z))x = bc + diag(y)b∆.
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Example of the Solution Set

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

1

2

3

4

−1

−2

−3

−4

1 2 3 4−1−2−3−4 x1

x2
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Example of the Solution Set

Example





[3, 5] [1, 3] −[0, 2]
− [0, 2] [3, 5] [0, 2]
[0, 2] −[0, 2] [3, 5]









x1
x2
x3



 =





[−1, 1]
[−1, 1]
[−1, 1]



 .

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
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Topology of the Solution Set
Proposition

In each orthant, Σ is either empty or a convex polyhedral set.

Proof.

Restriction to the orthant given by s ∈ {±1}n:

|Acx − bc | ≤ A∆|x |+ b∆, diag(s)x ≥ 0.

Since |x | = diag(s)x , we have

|Acx − bc | ≤ A∆ diag(s)x + b∆, diag(s)x ≥ 0.

Using |a| ≤ b ⇔ a ≤ b, −a ≤ b, we get

(Ac − A∆ diag(s))x ≤ b, (−Ac − A∆ diag(s))x ≤ −b, diag(s)x ≥ 0.

Corollary

The solutions of Ax = b, x ≥ 0 is described by Ax ≤ b, Ax ≥ b, x ≥ 0.

Remark

Checking Σ 6= ∅ and boundedness are NP-hard.
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Interval Hull �Σ

Goal

Seeing that Σ is complicated, compute �Σ instead.

First idea

Go through all 2n orthants of Rn, determine interval hull of restricted sets
(by solving 2n linear programs), and then put together.

Theorem

If A is regular (each A ∈ A is nonsingular), Σ is bounded and connected.

Theorem (Jansson, 1997)

When Σ 6= ∅, then exactly one of the following alternatives holds true:

1 Σ is bounded and connected.

2 Each topologically connected component of Σ is unbounded.

Second idea – Jansson’s algorithm

Check the orthant with (Ac)−1bc and then all the topologically connected.
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Polynomial Cases

Two basic polynomial cases

1 Ac = In,

2 A is inverse nonnegative, i.e., A−1 ≥ 0 ∀A ∈ A.

Theorem (Kuttler, 1971)

A ∈ IR
n×n is inverse nonnegative if and only if A−1 ≥ 0 and A

−1
≥ 0.

Theorem

Let A ∈ IR
n×n be inverse nonnegative. Then

1 �Σ = [A
−1

b,A−1b] when b ≥ 0,

2 �Σ = [A−1b,A
−1

b] when b ≤ 0,

3 �Σ = [A−1b,A−1b] when 0 ∈ b.

Proof.

1 Let A ∈ A and b ∈ b. Since b ≥ b ≥ b ≥ 0 and

A−1 ≥ A−1 ≥ A
−1

≥ 0, we get A
−1

b ≤ A−1b ≤ A−1b.
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Preconditioning

Enclosure

Since Σ is hard to determine and deal with, we seek for enclosures

x ∈ IR
n such that Σ ⊆ x .

Many methods for enclosures exists, usually employ preconditioning.

Preconditioning (Hansen, 1965)

Let C ∈ R
n×n. The preconditioned system of equations:

(CA)x = Cb.

Remark

the solution set of the preconditioned systems contains Σ

usually, we use C ≈ (Ac)−1

then we can compute the best enclosure (Hansen, 1992, Bliek, 1992,
Rohn, 1993)
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Preconditioning

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

7

14

−7

−14

7 14−7−14 x1

x2
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Preconditioning

Example (typical case)

(

[6, 7] [2, 3]
[1, 2] −[4, 5]

)(

x1
x2

)

=

(

[6, 8]
− [7, 9]

)

2.5

1.5

0.5 1.0−0.5 x1

x2
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Interval Gaussian Elimination

Interval Gaussian elimination = Gaussian elimination + interval arithmetic.

Example (Barth & Nuding, 1974))

(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

Then we proceed as follows
(

[2, 4] [−2, 1] [−2, 2]
[−1, 2] [2, 4] [−2, 2]

)

∼

(

[2, 4] [−2, 1] [−2, 2]
0 [1, 6] [−4, 4]

)

.

By back substitution, we compute

x2 = [−4, 4],

x1 =
(

[−2, 2]− [−2, 1] · [−4, 4]
)

/ [2, 4] = [−5, 5].
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Interval Jacobi and Gauss-Seidel Iterations

Idea

From the ith equation of Ax = b we get

xi =
1
aii

(

bi −
∑i−1

j=1 aijxj −
∑n

j=i+1 aijxj

)

.

If x0 ⊇ Σ is an initial enclosure, then

xi ∈
1
aii

(

bi −
∑

j 6=i aijx
0
j

)

, ∀x ∈ Σ.

Thus, we can tighten the enclosure by iterations

Interval Jacobi / Gauss–Seidel iterations (k = 1, 2, . . . )

1: for i = 1, . . . , n do

2: xk
i := 1

aii

(

bi −
∑

j 6=i aijx
k−1
j

)

∩ xk−1
i ;

3: end for
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Krawczyk Iterations

Krawczyk operator

Krawczyk operator K : IRn → IR
n reads

K (x) := Cb + (In − CA)x

Proposition

If x ∈ x ∩Σ, then x ∈ K (x).

Proof.

Let x ∈ x ∩Σ, so Ax = b for some A ∈ A and b ∈ b. Thus CAx = Cb,
whence x = Cb + (In − CA)x ∈ Cb + (In − CA)x = K (x).

Krawczyk iterations

Let x0 ⊇ Σ is an initial enclosure, and iterate (k = 1, 2, . . . ):

1: xk := K (xk−1) ∩ xk−1;
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ε-inflation

Theorem

Let x ∈ IR
n and C ∈ R

n×n. If

K (x) = Cb + (I − CA)x ⊆ int x ,

then C is nonsingular, A is regular, and Σ ⊆ x .

Proof.

Existence of a solution based on Brouwer’s fixed-point theorem.
Nonsingularity and uniqueness based on the Perron–Frobenius theory.

Remark

A reverse iteration method to the Krawczyk method.

It starts with a small box around (Ac)−1bc , and then iteratively
inflates the box.

Implemented in Intlab v. 6.
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Regularity

Definition (Regularity)

A ∈ IR
n×n is regular if each A ∈ A is nonsingular.

Theorem

Checking regularity of an interval matrix is co-NP-hard.

Forty necessary and sufficient conditions for regularity of A by Rohn
(2010):

1 The system |Acx | ≤ A∆|x | has the only solution x = 0.

2 det(Ac − diag(y)A∆ diag(z)) is constantly either positive or negative
for each y , z ∈ {±1}n.

3 For each y ∈ {±1}n, the system Acx − diag(y)A∆|x | = y has a
solution.

4 . . .
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Regularity – Sufficient / Necessary Conditions

Theorem (Beeck, 1975)

If ρ(|(Ac )−1|A∆) < 1, then A is regular.

Proof.

Precondition A by the midpoint inverse: M := (Ac)−1A. Now,

Mc = In, M∆ = |(Ac)−1|A∆,

and for each M ∈ M we have

|M −Mc | = |M − In| ≤ M∆.

From the theory of eigenvalues of nonnegative matrices it follows

ρ(M − In) ≤ ρ(M∆) < 1,

so M has no zero eigenvalue and is nonsingular.

Necessary condition

If 0 ∈ Ax for some 0 6= x ∈ R
n, then A is not regular. (Try x := (Ac)−1

∗i )
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Parametric Interval Systems

Parametric interval systems

A(p)x = b(p),

where the entries of A(p) and b(p) depend on parameters
p1 ∈ p1, . . . , pK ∈ pK .

Definition (Solution set)

Σp = {x ∈ R
n : A(p)x = b(p) for some p ∈ p}.

Relaxation

Compute (enclosures of) the ranges A := A(p) and b := b(p) and solve

Ax = b.

May overestimate a lot!
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Special Case: Parametric Linear Interval Systems

Parametric linear interval systems

A(p)x = b(p),

where

A(p) =

K
∑

k=1

Akpk , b(p) =

K
∑

k=1

bkpk

and p ∈ p for some given interval vector p ∈ IR
K , matrices

A1, . . . ,AK ∈ R
n×n and vectors b1, . . . , bn ∈ R

n.

Remark

It covers many structured matrices: symmetric, skew-symmetric, Toeplitz
or Hankel.
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Parametric Linear Interval Systems – Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.
The stiffnesses sij of bars are uncertain.
The displacements d of the nodes, are solutions of the system Kd = f ,
where f is the vector of forces.

f

1

2

3

4

5
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Parametric Linear Interval Systems – Example

Example (Displacements of a truss structure (Skalna, 2006))

The 7-bar truss structure subject to downward force.
The stiffnesses sij of bars are uncertain.
The displacements d of the nodes, are solutions of the system Kd = f ,
where f is the vector of forces.

K =















































s12

2
+ s13 −

s12

2
−

s12

2
−s13 0 0 0

−

s21

2

s21 + s23

2
+ s24

s21 − s23

2
−

s23

2

s23

2
−s24 0

−

s21

2

s21 − s23

2

s21 + s23

2

s23

2
−

s23

2
0 0

−s31 −

s32

2

s32

2
s31 +

s32 + s34

2
+ s35

s34 − s32

2
−

s34

2
−

s34

2

0
s32

2
−

s32

2

s34 − s32

2

s34 + s32

2
−

s34

2
−

s34

2

0 −s42 0 −

s43

2
−

s43

2
s42 +

s43 + s45

2
0

0 0 0 −

s43

2
−

s43

2
0

s43 + s45

2














































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Parametric Linear Interval Systems – Example

Example

(

1− 2p 1
2 4p − 1

)

x =

(

7p − 9
3− 2p

)

, p ∈ p = [0, 1].

2
4
6

−2
−4
−6
−8

−10
−12
−14
−16
−18

2 4 6 8 10−2−4−6−8−10 x1

x2

0
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Parametric Linear Interval Systems – Solution Set

Theorem

If x ∈ Σp, then it solves

|A(pc)x − b(pc)| ≤
K
∑

k=1

p∆k |Akx − bk |.

Proof.

|A(pc)x − b(pc)| =

∣

∣

∣

∣

K
∑

k=1

p
c
k(A

k
x − b

k)

∣

∣

∣

∣

=

∣

∣

∣

∣

K
∑

k=1

p
c
k(A

k
x − b

k)−

K
∑

k=1

pk(A
k
x − b

k)

∣

∣

∣

∣

=

∣

∣

∣

∣

K
∑

k=1

(pc
k − pk)(A

k
x − b

k )

∣

∣

∣

∣

≤

K
∑

k=1

|pc
k − pk ||A

k
x − b

k | ≤

K
∑

k=1

p
∆
k |A

k
x − b

k |.

Popova (2009) showed that it is the complete characterization of Σp

as long as no interval parameter appears in more than one equation.

Checking x ∈ Σp for a given x ∈ R
n is a polynomial problem via

linear programming.
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Parametric Linear Interval Systems – Enclosures

Relaxation and preconditioning – First idea

Evaluate A := A(p), b := b(p), choose C ∈ R
n×n and solve

(CA)x = Cb.

Relaxation and preconditioning – Second idea

Solve A′x = b′, where

A′ :=

K
∑

k=1

(CAk)pk , b′ :=

K
∑

k=1

(Cbk)pk .

Second idea is provably better

Due to sub-distributivity law,

A′ :=
K
∑

k=1

(CAk)pk ⊆ C

( K
∑

k=1

Akpk

)

= (CA).
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Special Case: Symmetric Systems

The symmetric solution set of Ax = b

{x ∈ R
n : Ax = b for some symmetric A ∈ A and b ∈ b}.

Described by 1
2(4

n − 3n − 2 · 2n + 3) + n nonlinear inequalities (H., 2008).

Example

A =

(

[1, 2] [0, a]
[0, a] −1

)

, b =

(

2
2

)

.

2

4

6

−2

2 4 6 8 10 x1

x2

0

A =

(

−1 [−5, 5]
[−5, 5] 1

)

, b =

(

1
[1, 3]

)

.

2

4

−2

2 4−2−4−6 x1

x2

0
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Application: Least Square Solutions

Least square solution

Let A ∈ IR
m×n, b ∈ IR

m and m > n. The least square solution of

Ax = b,

is defined as the optimal solution of

min
x∈Rn

‖Ax − b‖2,

or, alternatively as the solution to

ATAx = ATb.

Interval least square solution set

Let A ∈ IR
m×n and b ∈ IR

m and m > n. The LSQ solution set is defined

ΣLSQ := {x ∈ R
n : ∃A ∈ A ∃b ∈ b : ATAx = ATb}.

Proposition

ΣLSQ is contained in the solution set to ATAx = ATb.
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Application: Least Square Solutions

Proposition

ΣLSQ is contained in the solution set to
(

0 AT

A Im

)(

x
y

)

=

(

0
b

)

. (1)

Proof.

Let A ∈ A, b ∈ b. If x , y solve

AT y = 0, Ax + y = b,

then

0 = AT (b − Ax) = ATb − ATAx ,

and vice versa.

Proposition

Relaxing the dependencies, the solution set to ATAx = ATb is contained
in the solution set to (1).
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Mean value form

Theorem

Let f : Rn 7→ R, x ∈ IR
n and a ∈ x . Then

f (x) ⊆ f (a) +∇f (x)T (x − a),

Proof.

By the mean value theorem, for any x ∈ x there is c ∈ x such that

f (x) = f (a) +∇f (c)T (x − a) ∈ f (a) +∇f (x)T (x − a).

Improvements

successive mean value form

f (x) ⊆ f (a) + f ′x1(x1, a2, . . . , an)(x1 − a1)

+ f ′x2(x1, x2, a3 . . . , an)(x2 − a2) + . . .

+ f ′xn(x1, . . . , xn−1, xn)(xn − an).

replace derivatives by slopes
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Slopes

Slope form enclosure

f (x) ⊆ f (a) + S(x , a)(x − a),

where a ∈ x and

S(x , a) :=

{

f (x)−f (a)
x−a

if x 6= a,

f ′(x) otherwise.

Remarks

Slopes can be replaced by derivatives, but slopes are tighter.

Slopes can be computed in a similar way as derivatives.

function its slope S(x , a)

x 1
f (x)± g(x) Sf (x , a)± Sg (x , a)

f (x) · g(x) Sf (x , a)g(a) + f (x)Sg (x , a)

e f (x) e f (x)Sf (x , a)
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Slopes

Example

f (x) = 1
4x

2 − x + 1
2 , x = [1, 7].

f ′(x) = [−1
2 ,

5
2 ], Sf (x , x

c) = [14 ,
7
4 ].

1

2

3

4

5

1 2 3 4 5 6 7 8−1 0 x

y

f (x)

f ′(x)

Sf (x , x
c)

Notice: Slopes cannot be used for monotonicity checking.
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Nonlinear Equations

Problem statement

Find all solutions to

fj(x1, . . . , xn) = 0, j = 1, . . . , j∗

inside the box x0 ∈ IR
n.

Theorem (Zhu, 2005)

For a polynomial p(x1, . . . , xn), there is no algorithm solving

p(x1, . . . , xn)
2 +

n
∑

i=1

sin2(πxi ) = 0.

Proof.

From Matiyasevich’s theorem solving the 10th Hilbert problem.

Remark

Using the arithmetical operations only, the problem is decidable by Tarski’s
theorem (1951).
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Interval Newton method

Classical Newton method

. . . is an iterative method

xk+1 := xk −∇f (xk)−1f (xk), k = 0, . . .

Cons

Can miss some solutions

Not verified (Are we really close to the true solution?)

Interval Newton method – Stupid intervalization

xk+1 := xk −∇f (xk)−1f (xk), k = 0, . . .

Interval Newton method – Good intervalization

N(xk , xk) := xk −∇f (xk)−1f (xk),

xk+1 := xk ∩ N(xk), k = 0, . . .
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Interval Newton method

Theorem (Moore, 1966)

If x , x0 ∈ x and f (x) = 0, then x ∈ N(x0, x).

Proof.

By the Mean value theorem,

fi(x)− fi (x
0) = ∇fi(ci )

T (x − x0), ∀i = 1, . . . , n.

If x is a root, we have

−fi(x
0) = ∇fi(ci )

T (x − x0).

Define A ∈ R
n×n such that its ith row is equal to ∇fi(ci )

T . Hence

−f (x0) = A(x − x0),

from which

x = x0 − A−1f (x0) ∈ x0 −∇f (x)−1f (x0).

Notice, that this does not mean that there is c ∈ x such that

−f (x0) = ∇f (c)(x − x0).
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Interval Newton method

Theorem (Nickel, 1971)

If ∅ 6= N(x0, x) ⊆ x , then there is a unique root in x and ∇f (x) is regular.

Proof.

“Regularity.” Easy.

“Existence.” By Brouwer’s fixed-point theorem.
[Any continuous mapping of a compact convex set into itself has a fixed point.]

“Uniqueness.” If there are two roots y1 6= y2 in x , then by the Mean value
theorem,

f (y1)− f (y2) = A(y1 − y2)

for some A ∈ ∇f (x);. Since f (y1) = f (y2) = 0, we get

A(y1 − y2) = 0

and by the nonsingularity of A, the roots are identical.
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Interval Newton method

Practical implementation

Instead of

N(xk , xk) := xk −∇f (xk)−1f (xk)

let N(xk , xk) be an enclosure of the solution set (with respect to x) of

∇f (x)(x − x0) = −f (x0).

Extended interval arithmetic

So far
[12, 15]

[−2, 3]
= (−∞,∞).

Now,

a/b := {a/b : a ∈ a, 0 6= b ∈ b}.

So,
[12, 15]

[−2, 3]
= (−∞,−6] ∪ [4,∞).
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Interval Newton method

Example

x

y

f (x) = x3 − x + 0.2

0.5

1.0

−0.5

−1.0

0.5 1.0 1.5−0.5−1.0−1.5−2.0

In six iterations precision 10−11 (quadratic convergence).
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Interval Newton method

Example (Moore, 1993)

y
f (x) = x2 + sin(x−3)

0

0.5

1.0

−0.5

−1.0

0.5 1.0

All 318 roots of in the interval [0.1, 1] found with accuracy 10−10.
The left most root is contained in [0.10003280626, 0.10003280628].

Summary

N(x0, x) contains all solutions in x

If x ∩ N(x0, x) = ∅, then there is no root in x

If ∅ 6= N(x0, x) ⊆ x , then there is a unique root in x
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Krawczyk method

Krawczyk operator

Let x0 ∈ x and C ∈ R
n×n, usually C ≈ ∇f (x0)−1. Then

K (x) := x0 − Cf (x0) + (In − C∇f (x))(x − x0).

Theorem

Any root of f (x) in x is included in K (x).

Proof.

If x1 is a root of f (x), then it is a fixed point of

g(x) := x − Cf (x).

By the mean value theorem,

g(x1) ∈ g(x0) +∇g(x)(x1 − x0),

whence

x1 ∈ g(x) ⊆ g(x0) +∇g(x)(x − x0)

= x0 − Cf (x0) + (In − C∇f (x))(x − x0).
15 / 60

Krawczyk method

Theorem

If K (x) ⊆ x , then there is a root in x .

Proof.

Recall

g(x) := x − Cf (x).

By the proof of the previous Theorem, K (x) ⊆ x implies

g(x) ⊆ x .

Thus, there is a fixed point x0 ∈ x of g(x),

g(x0) = x0 − Cf (x0) = x0,

so x0 is a root of f (x).
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Krawczyk method

Theorem (Kahan, 1968)

If K (x) ⊆ int x , then there is a unique root in x and ∇f (x) is regular.

Recall Theorem from “ε-inflation” (for solving Ax = b)

Let x ∈ IR
n and C ∈ R

n×n. If

K (x) = Cb + (In − CA)x ⊆ int x ,

then C is nonsingular, A is regular, and Σ ⊆ x .

Proof.

The inclusion K (x) ⊆ int x reads

−Cf (x0) + (In − C∇f (x))(x − x0) ⊆ int (x − x0)

Apply the above Theorem for

b := −f (x0), A := ∇f (x), x := x − x0

We have that ∇f (x) is regular, which implies uniqueness.
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More general constraints

Constraints

equations hi(x) = 0, i = 1, . . . , I

inequalities gj(x) ≤ 0, j = 1, . . . , J

may be others, but not considered here
(6=, quantifications, logical operators, lexicographic orderings, . . . )

Problem

Denote by Σ the set of solutions in an initial box x0 ∈ IR
n?

Problem: How to describe Σ?

Subpavings

Split x into a union of three sets of boxes such that

the first set has boxes provably containing no solution

the second set has boxes that provably consist of only solutions

the third set has boxes which may or may not contain a solution
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Subpaving Example

Example

x2 + y2 ≤ 16,

x2 + y2 ≥ 9

Figure: Exact solution set

−4

−3

−2

−1

0

1

2

3

4

 

 

Figure: Subpaving approximation
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Subpaving Example

Example

(x − 1)2 + (y − 2)2 ≤ 1
7 ,

(x2 + y2 − 9)(13x − y2) ≥ 1
2

Figure: Exact solution set Figure: Subpaving approximation
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Subpaving Algorithm

Branch & Bound approach

divide x0 recursively into sub-boxes,

remove sub-boxes with provably no solutions

contract sub-boxes

Some simple tests

Test for x ⊆ Σ:

no equations and g j(x) ≤ 0 ∀j

Test for x ∩Σ = ∅:
0 6∈ hi(x) for some i
g
j
(x) > 0 for some j

Also very important

Which box to choose (data structure fo L)?

How to divide the box? (which coordinate, which place, how many
sub-boxex)
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A Simple Contractor – Constraint Propagation

Example

Consider the constraint

x + yz = 7, x ∈ [0, 3], y ∈ [3, 5], z ∈ [2, 4].

Express x

x = 7− yz ∈ 7− [3, 5][2, 4] = [−13, 1].

Thus, the domain for x is [0, 3] ∩ [−13, 1] = [0, 1].

Express y

y = (7− x)/z ∈ (7− [0, 1])/[2, 4] = [1.5, 3.5].

Thus, the domain for y is [3, 5] ∩ [1.5, 3.5] = [3, 3.5].

Express z

z = (7− x)/y ∈ (7− [0, 1])/[3, 3.5] = [127 ,
7
3 ].

Thus, the domain for z is [2, 4] ∩ [127 ,
7
3 ] = [2, 73 ].

No further propagation needed as each variable appears just once.
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Other Techniques

Other techniques

Various kinds of consistencies (2B, 3B,. . . ), shaving,. . .

Example (thanks to Elif Garajová)

−4

−3

−2

−1

ε = 1.0
time: 0.952 s

ε = 0.5
time: 2.224 s

ε = 0.125
time: 9.966 s
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Software

Free constraint solving software

Alias (by Jean-Pierre Merlet, COPRIN team),
A C++ library for system solving, with Maple interface,
http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-C++.html

Quimper (by Gill Chabert and Luc Jaulin),
written in an interval C++ library IBEX,
a language for interval modelling and handling constraints,
http://www.emn.fr/z-info/ibex

RealPaver (by L. Granvilliers and F. Benhamou),
a C++ package for modeling and solving nonlinear and nonconvex
constraint satisfaction problems,
http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver

RSolver (by Stefan Ratschan),
solver for quantified constraints over the real numbers,
implemented in the programming language OCaml,
http://rsolver.sourceforge.net/
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Introduction

Rigorous computation

What and why?

Can we obtain rigorous numerical results by using floating-point
arithmetic?

Yes, by extending to interval arithmetic. Direct usage is however not
effective!

Example (Amplification factor for the interval Gaussian elimination)

n = 20 n = 50 n = 100 n = 170

102 105 1010 1016

Advise

Postpone interval computation to the very end.
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Verification

Verification

Compute a solution by floating-point arithmetic, and then to verify that
the result is correct or determine rigorous distance to a true solution.

Typically, we can prove uniqueness (=the problem is well posed).
Therefore, verifying singularity of a matrix cannot be performed!

What we will do

As an example, we show a verification method for the problem of finding a
root of a function f : Rn → R

n.

Problem statement

Given x∗ ∈ R
n a numerically computed (=approximate) solution of

f (x) = 0, find a small interval 0 ∈ y ∈ IR
n such that the true solution lies

in x∗ + y .
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Illustration of Verification

Example

Illustration of the verification of x∗ to be a solution of f (x) = 0.

1

2

3

1 2 3 4 5 x1

x2

f1(x) = 0 f2(x) = 0

x∗x∗
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Ingredients

Brouwer fixed-point theorem

Let U be a convex compact set in R
n and g : U → U a continuous

function. Then there is a fixed point, i.e., ∃x ∈ U : g(x) = x .

Observation

Finding a root of f (x) is equivalent to finding a fixed-point of the function
g(y) ≡ y − C · f (x∗ + y), where C is any nonsingular matrix of order n.

Perron theory of nonnegative matrices

If |A| ≤ B , then ρ(A) ≤ ρ(B).
(≤ is meant entrywise and ρ(·) is the spectral radius)

If A ≥ 0, x > 0 and Ax < αx , then ρ(A) < α.

Lemma

If z + Ry ⊆ int y , then ρ(R) < 1 for every R ∈ R .

Proof. |R |y∆ < y∆, whence by Perron theory ρ(R) < 1.
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Cooking

Theorem

Suppose 0 ∈ y . Now if

−C · f (x∗) + (I − C · ∇f (x∗ + y)) · y ⊆ int y ,

then:

C and every matrix in ∇f (x∗ + y) are nonsingular, and

there is a unique root of f (x) in x∗ + y .

Proof.

By the mean value theorem,

f (x∗ + y) ∈ f (x∗) +∇f (x∗ + y)y .

By the assumptions, the function

g(y) = y − C · f (x∗ + y) ∈ −C · f (x∗) + (I − C · ∇f (x∗ + y))y ⊆ int y

has a fixed point, which shows “existence”.

By Lemma, C and ∇f (x∗ + y) are nonsingular, implying “uniqueness”.
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Cooking

Implementation

take C ≈ ∇f (x∗)−1 (numerically computed inverse),

take y := C · f (x∗) and repeat inflation

y :=

(

−C · f (x∗)+(I −C ·∇f (x∗+y)) ·y

)

· [0.9, 1.1]+10−20 [−1, 1]

until the assumption of Theorem are satisfied.
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Verification of a Linear System of Equations

Problem formulation

Given a real system Ax = b and x∗ approximate solution, find y ∈ IR
n

such that A−1b ∈ x∗ + y .

Example

x1

x2

x∗
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Verification of a Linear System of Equations

Given the system Ax = b and an approximate solution x∗.

Theorem

Suppose 0 ∈ y . Now if

C (b − Ax∗) + (I − CA)y ⊆ int y ,

then:

C and A are nonsingular,

there is a unique solution of Ax = b in x∗ + y .

Proof.

Use the previous result with f (x) = Ax − b.

Implementation

take C ≈ A−1 (numerically computed inverse),
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Verification of a Linear System of Equations

ε-inflation method (Caprani and Madsen, 1978, Rump, 1980)

Repeat inflating y := [0.9, 1.1]x + 10−20[−1, 1] and updating

x := C (b − Ax∗) + (I − CA)y

until x ⊆ int y .

Then, Σ ⊆ x∗ + x .

Results

Verification is about 7 times slower than solving the original problem
(for random instances of dimension 100 to 2000).
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Verification of a Linear System of Equations

Example

Let A be the Hilbert matrix of size 10 (i.e., aij =
1

i+j−1), and b := Ae.

Then Ax = b has the solution x = e = (1, . . . , 1)T .

Approximate solution by
Matlab:

0.999999999235452
1.000000065575364
0.999998607887449
1.000012638750021
0.999939734980300
1.000165704992114
0.999727989024899
1.000263042205847
0.999861803020249
1.000030414871015

Enclosing interval by ε-inflation method (2 it-
erations):

[ 0.99999973843401, 1.00000026238575]
[ 0.99999843048508, 1.00000149895660]
[ 0.99997745481481, 1.00002404324710]
[ 0.99978166603900, 1.00020478046370]
[ 0.99902374408278, 1.00104070076742]
[ 0.99714060702796, 1.00268292103727]
[ 0.99559932282378, 1.00468935360003]
[ 0.99546972629357, 1.00425202249136]
[ 0.99776781605377, 1.00237789028988]
[ 0.99947719419921, 1.00049082925529]

36 / 60



Verification of a Linear System of Equations

Challenge

verification for large systems
(one cannot use preconditioning by the inverse matrix)
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Tolerable Solutions

Motivation

So far, existentially quantified interval systems

Σ := {x ∈ R
n : ∃A ∈ A∃b ∈ b : Ax = b}.

Now, incorporate universal quantification as well!

Definition (Tolerable solutions)

A vector x ∈ R
n is a tolerable solution to Ax = b if for each A ∈ A there

is b ∈ b such that Ax = b.

In other words,

∀A ∈ A ∃b ∈ b : Ax = b.

Equivalent characterizations

Ax ⊆ b,

|Acx − bc | ≤ −A∆|x |+ b∆.
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Tolerable Solutions

Theorem (Rohn, 1986)

A vector x ∈ R
n is a tolerable solution if and only if x = x1 − x2, where

Ax1 − Ax2 ≤ b, Ax1 − Ax2 ≥ b, x1, x2 ≥ 0.

Proof.

“⇐” Let A ∈ A. Then

Ax = Ax1 − Ax2 ≤ Ax1 − Ax2 ≤ b,

Ax = Ax1 − Ax2 ≥ Ax1 − Ax2 ≥ b

Thus, Ax ∈ b and Ax = b for some b ∈ b.

“⇒” Let x ∈ R
n be a tolerable solution. Define x1 := max{x , 0} and

x2 := max{−x , 0} the positive and negative part of x , respectively. Then
x = x1 − x2, |x | = x1 + x2, and |Acx − bc | ≤ −A∆|x |+ b∆ draws

Ac(x1 − x2)− bc ≤ −A∆(x1 + x2) + b∆,

−Ac(x1 − x2) + bc ≤ −A∆(x1 + x2) + b∆.
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Tolerable Solutions – Application

Example (Leontief’s Input–Output Model of Economics)

economy with n sectors (e.g., agriculture, industry, transportation,
etc.),

sector i produces a single commodity of amount xi ,

production of each unit of the jth commodity will require aij
(amount) of the ith commodity

di the final demand in sector i .

Now the model draws

xi = ai1x1 + · · ·+ ainxn + di .

or, in a matrix form

x = Ax + d .

The solution x = (In − A)−1d =
∑∞

k=0 A
kd is nonnegative if ρ(A) < 1.

Question: Exists x such that for any A ∈ A there is d ∈ d : (In − A)x = d?
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AE Solutions

Quantified system Ax = b

each interval parameter aij and bi is quantified by ∀ or ∃

the universally quantified parameters are denoted by A∀, b∀,

the existentially quantified parameters are denoted by A∃, b∃

the system reads (A∀ + A∃)x = b∀ + b∃

Definition (AE solution set)

ΣAE :=
{

x ∈ R
n :

∀A∀ ∈ A∀ ∀b∀ ∈ b∀ ∃A∃ ∈ A∃ ∃b∃ ∈ b∃ : (A∀ + A∃)x = b∀ + b∃
}

.
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AE Solutions

Theorem (Shary, 1995)

ΣAE =
{

x ∈ R
n : A∀x − b∀ ⊆ b∃ − A∃x

}

. (1)

Proof.

ΣAE =
{

x ∈ R
n : ∀A∀ ∈ A

∀ ∀b∀ ∈ b
∀ ∃A∃ ∈ A

∃ ∃b∃ ∈ b
∃ : A∀

x − b
∀ = b

∃ − A
∃

x
}

=
{

x ∈ R
n : ∀A∀ ∈ A

∀ ∀b∀ ∈ b
∀ : A∀

x − b
∀ ∈ b

∃ − A
∃

x
}

=
{

x ∈ R
n : A

∀

x − b
∀ ⊆ b

∃ − A
∃

x
}

.

Theorem (Rohn, 1996)

ΣAE =
{

x ∈ R
n : |Acx − bc | ≤

(

(A∃)∆ − (A∀)∆
)

|x |+ (b∃)∆ − (b∀)∆
}

.

Proof.

Using (1) and the fact p ⊆ q ⇔ |pc − qc | ≤ q∆ − p∆, we get

|
(

A∀x − b
∀
)

c −
(

b
∃ − A∃x

)

c | ≤
(

A∃x − b
∃
)∆

−
(

b
∀ − A∀x

)∆

= (A∃)∆|x |+ b
∃∆ − (A∀)∆x | − b

∀∆.
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AE Solutions

Example
(

[3, 4]∃ [−2, 1]∃

[0, 2]∀ [3, 4]∀

)

x =

(

[−4, 5]∃

[−4, 5]∃

)

.

1

2

3

−1

−2

−3

1 2 3−1−2−3 x1

x2

AE solution set.

(

[3, 4]∀ [−2, 1]∀

[0, 2]∀ [3, 4]∀

)

x =

(

[−4, 5]∃

[−4, 5]∃

)

.

1

2

3

−1

−2

−3

1 2 3−1−2−3 x1

x2

Tolerable solution set.
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Eigenvalues of Symmetric Interval Matrices

A symmetric interval matrix

AS := {A ∈ A : A = AT}.

Without loss of generality assume that A = AT , A = A
T
, and AS 6= ∅.

Eigenvalues of a symmetric interval matrix

Eigenvalues of a symmetric A ∈ R
n×n: λ1(A) ≥ · · · ≥ λn(A).

Eigenvalue sets of AS are compact intervals

λi (A
S) :=

{

λi (A) : A ∈ AS
}

, i = 1, . . . , n.

Theorem

Checking whether 0 ∈ λi (A
S) for some i = 1, . . . , n is NP-hard.

Proof.

A is singular iff MS :=

(

0 A

AT 0

)S

is singular (has a zero eigenvalue).
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Eigenvalues – An Example

Example

Let

A ∈ A =





[1, 2] 0 0
0 [7, 8] 0
0 0 [4, 10]





What are the eigenvalue sets?
We have λ1(A

S) = [7, 10], λ2(A
S) = [4, 8] and λ3(A

S) = [1, 2].

0 1 2 3 4 5 6 7 8 9 10 ℜ

λ1(A) λ2(A) λ3(A)

Eigenvalue sets are compact intervals. They may intersect or equal.
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Eigenvalues – Some Exact Bounds

Theorem (Hertz, 1992)

We have

λ1(A
S) = max

z∈{±1}n
λ1(A

c + diag(z)A∆ diag(z)),

λn(A
S) = min

z∈{±1}n
λn(A

c − diag(z)A∆ diag(z)).

Proof.

“Upper bound.” By contradiction suppose that there is A ∈ AS such that

λ1(A) > max
z∈{±1}n

λ1(Az),
[

where Az ≡ Ac + diag(z)A∆ diag(z)
]

Thus Ax = λ1(A)x for some x with ‖x‖2 = 1.
Put z∗ := sgn(x), and by the Rayleigh–Ritz Theorem we have

λ1(A) = xTAx ≤ xTAz∗x

≤ max
y :‖y‖2=1

yTAz∗y = λ1(Az∗).
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Eigenvalues – Some Other Exact Bounds

Theorem

λ1(A
S ) and λn(A

S) are polynomially computable by semidefinite
programming with arbitrary precision.

Proof.

We have

λn(A
S ) = maxα subject to A− αIn is positive semidefinite, A ∈ AS .

Consider a block diagonal matrix M(A, α) with blocks

A− αIn, aij − aij , aij − aij , i ≤ j .

Then the semidefinite programming problem reads

λn(A
S) = maxα subject to M(A, α) is positive semidefinite.
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Eigenvalues – Enclosures

Theorem

We have

λi(A
S) ⊆ [λi (A

c)− ρ(A∆), λi (A
c) + ρ(A∆)], i = 1, . . . , n.

Proof.

Recall for any A,B ∈ R
n×n,

|A| ≤ B ⇒ ρ(A) ≤ ρ(|A|) ≤ ρ(B),

and for A,B symmetric (Weyl’s Theorem)

λi (A) + λn(B) ≤ λi (A+ B) ≤ λi(A) + λ1(B), i = 1, . . . , n.

Let A ∈ AS , so |A − Ac | ≤ A∆. Then

λi (A) = λi (A
c + (A− Ac)) ≤ λi(A

c) + λ1(A− Ac)

≤ λi (A
c) + ρ(|A − Ac |) ≤ λi (A

c) + ρ(A∆).

Similarly for the lower bound.
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Eigenvalues – Easy Cases

Theorem
1 If Ac is essentially non-negative, i.e., Ac

ij ≥ 0 ∀i 6= j , then

λ1(A
S) = λ1(A).

2 If A∆ is diagonal, then

λ1(A
S) = λ1(A), λn(A

S) = λn(A).

Proof.

1 For the sake of simplicity suppose Ac ≥ 0. Then ∀A ∈ AS we have
|A| ≤ A, whence

λ1(A) = ρ(A) ≤ ρ(A) = λ1(A).

2 By Hertz’s theorem,

λ1(A
S) = max

z∈{±1}n
λ1(A

c + diag(z)A∆ diag(z)),

= λ1(A
c + A∆) = λ1(A).
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Positive Semidefiniteness

AS is positive semidefinite if every A ∈ AS is positive semidefinite.

Theorem

The following are equivalent

1 AS is positive semidefinite,

2 Az ≡ Ac − diag(z)A∆ diag(z) is positive semidefinite ∀z ∈ {±1}n,

3 xTAcx − |x |TA∆|x | ≥ 0 for each x ∈ R
n.

Proof.

“(1) ⇒ (2)” Obvious from Az ∈ AS .
“(2) ⇒ (3)” Let x ∈ R

n and put z := sgn(x). Now,

xTAcx − |x |TA∆|x | = xTAcx − xT diag(z)A∆ diag(z)x = xTAzx ≥ 0.

“(3) ⇒ (1)” Let A ∈ AS and x ∈ R
n. Now,

xTAx = xTAcx + xT (A − Ac)x ≥ xTAcx − |xT (A− Ac)x |

≥ xTAcx − |x |TA∆|x | ≥ 0.
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Positive Definiteness

AS is positive definite if every A ∈ AS is positive definite.

Theorem

The following are equivalent

1 AS is positive definite,

2 Az ≡ Ac − diag(z)A∆ diag(z) is positive definite for each z ∈ {±1}n,

3 xTAcx − |x |TA∆|x | > 0 for each 0 6= x ∈ R
n,

4 Ac is positive definite and A is regular.

Proof.

“(1) ⇔ (2) ⇔ (3)” analogously.
“(1) ⇒ (4)” If there are A ∈ A and x 6= 0 such that Ax = 0, then

0 = xTAx = xT 1
2(A + AT )x ,

and so 1
2 (A+ AT ) ∈ AS is not positive definite.

“(4) ⇒ (1)” Positive definiteness of Ac implies λi (A
c) > 0 ∀i , and

regularity of A implies λi (A
S) > 0 ∀i .
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Complexity

Theorem (Nemirovskii, 1993)

Checking positive semidefiniteness of AS is co-NP-hard.

Theorem (Rohn, 1994)

Checking positive definiteness of AS is co-NP-hard.

Theorem (Jaulin and Henrion, 2005)

Checking whether there is a positive definite matrix in AS is a polynomial
time problem.

Proof.

There is a positive semidefinite matrix in AS iff λn(A
S) ≥ 0.

So we can check it by semidefinite programming.
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Sufficient Conditions

Theorem

1 AS is positive semidefinite if λn(A
c) ≥ ρ(A∆).

2 AS is positive definite if λn(A
c) > ρ(A∆).

3 AS is positive definite if Ac is positive definite and
ρ(|(Ac)−1|A∆) < 1.

Proof.

1 AS is positive semidefinite iff λn(A
S) ≥ 0.

Now, employ the smallest eigenvalue set enclosure

λn(A
S) ⊆ [λn(A

c)− ρ(A∆), λn(A
c) + ρ(A∆)].

2 Analogous.

3 Use Beeck’s sufficient condition for regularity of A.
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Application: Convexity Testing

Theorem

A function f : Rn 7→ R is convex on x ∈ IR
n iff its Hessian ∇2f (x) is

positive semidefinite ∀x ∈ int x .

Corollary

A function f : Rn 7→ R is convex on x ∈ IR
n if ∇2f (x) is positive

semidefinite.
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Application: Convexity Testing

Example

Let

f (x , y , z) = x3 + 2x2y − xyz + 3yz2 + 8y2,

where x ∈ x = [2, 3], y ∈ y = [1, 2] and z ∈ z = [0, 1]. The Hessian of f
reads

∇2f (x , y , z) =





6x + 4y 4x − z −y
4x − z 16 −x + 6z
−y −x + 6z 6y





Evaluation the Hessian matrix by interval arithmetic results in

∇2f (x , y , z) ⊆





[16, 26] [7, 12] −[1, 2]
[7, 12] 16 [−3, 4]
− [1, 2] [−3, 4] [6, 12]





Now, both sufficient conditions for positive definiteness succeed.
Thus, we can conclude that f si convex on the interval domain.
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Conclusion

Interval computation offers:

nice theory, methods and applications

many open problems

interdisciplinarity

Thanks

Any feedback is welcome!
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Parallel Linear Algebra Program

Thursday, February 2nd

09:00 - 10:30 Krylov subspace methods, Z. Strakos

10:30 - 11:00 Break

11:00 - 12:30 Hybrid solvers, G. Marait

12:30 - 13:30 Lunch break

13:30 - 15:00 Hands-on PaStiX, M. Faverge, G. Marait, F. Pruvost

15:00 - 15:30 Break

15:30 - 17:00 Hands-on MaPHyS, M. Faverge, G. Marait, F. Pruvost
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1
Introduction

What is the purpose of linear algebra libraries? (1/2)

• Many simulations codes solves a problem:
- Ax = b
- A is a matrix of size M − by − N
- x and b, two vectors (or set of vectors) of sizes N and M respectively

• Goal: provide the users with libraries able to do this operation in the most
efficient manner:

- The fastest time to solution as possible
- Numerical Accuracy

• Two major kinds of problems:
- A is dense, all entries are considered non-zeroes
- A is sparse, high percentage of zero entries
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What is the purpose of linear algebra libraries? (2/2)

• Can we compute A−1?
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What is the purpose of linear algebra libraries? (2/2)

• Can we compute A−1?
• Tow main classes of algorithms?

- Direct or iterative methods

• When using direct methods, it also exists many factorization algorithms:
- For general matrices: A = LU
- For symmetric/hermitian definite positive matrices: A = LLt , or LLh

(Cholesky)
- For symmetric/hermitian non definite positive matrices: A = LDLt , or LDLh

- But also: A = QR
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A little bit of history Computing in 1974

• High Performance Computers:
- IBM 370/195, CDC 7600, Univac 1110, DEC PDP-10, Honeywell 6030

• Fortran 66

• Trying to achieve software portability

• Run efficiently
• BLAS (Level 1)

- Vector operations

• Software released in 1979
- About the time of the Cray 1
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A little bit of history

• But the BLAS-1 weren’t enough
- Consider AXPY ( y = αx + y ): 2n flops on 3n read/writes
- Computational intensity = (2n)/(3n) = 2/3
- Too low to run near peak speed (read/write dominates)
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- Consider AXPY ( y = αx + y ): 2n flops on 3n read/writes
- Computational intensity = (2n)/(3n) = 2/3
- Too low to run near peak speed (read/write dominates)

• So the BLAS-2 were developed (1984-1986)
- Standard library of 25 operations (mostly) on matrix/vector pairs

- GEMV: y = αAx + βy , GER: A = A + αx ∗ y t ,
- Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC

- Why BLAS 2? They do O(n2) ops on O(n2) data
rightarrow So computational intensity still just (2n2)/(n2) = 2
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A little bit of history

• But the BLAS-1 weren’t enough
- Consider AXPY ( y = αx + y ): 2n flops on 3n read/writes
- Computational intensity = (2n)/(3n) = 2/3
- Too low to run near peak speed (read/write dominates)

• So the BLAS-2 were developed (1984-1986)
- Standard library of 25 operations (mostly) on matrix/vector pairs

- GEMV: y = αAx + βy , GER: A = A + αx ∗ y t ,
- Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC

- Why BLAS 2? They do O(n2) ops on O(n2) data
rightarrow So computational intensity still just (2n2)/(n2) = 2

- OK for vector machines, but not for machines with caches
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Why higher level BLAS?

BLAS Memory Refs Flops Ratio

Lvl 1 y = y + αx 3n 2n 2/3

Lvl 2 y = y + Ax n2 2n2 2

Lvl 3 C = C + AB 4n2 2n3 n/2
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How do we measure the code performance/efficiency? What is a

xflop/s?
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How do we measure the code performance/efficiency? What is a

xflop/s?

• xflop/s is a rate of execution, some number of floating point operations
per second. Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or multiplication.
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How do we measure the code performance/efficiency? What is a

xflop/s?

• xflop/s is a rate of execution, some number of floating point operations
per second. Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or multiplication.

• kilo 103, mega 106, giga 109, tera 1012,
exa 1015, zetta 1018,
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How do we measure the code performance/efficiency? What is a

xflop/s?

• xflop/s is a rate of execution, some number of floating point operations
per second. Whenever this term is used it will refer to 64 bit floating point
operations and the operations will be either addition or multiplication.

• kilo 103, mega 106, giga 109, tera 1012,
exa 1015, zetta 1018, yotta 1021
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How do we measure the code performance/efficiency? What is

the theoretical peak performance?

• The theoretical peak is based not on an actual performance from a
benchmark run, but on a paper computation to determine the theoretical
peak rate of execution of floating point operations for the machine.

• Flops = cores × clock × FLOPs
cycle

• For example, an Intel Xeon 5570 quad core at 2.93 GHz can complete 4
floating point operations per cycle or a theoretical peak performance of
11.72 GFlop/s per core or 46.88 Gflop/s for the socket.

• A more recent example: an Intel Haswell architecture like the E5-2620v3
can complete up to 16 Flops per cycle (thanks to AVX2 and FMA3) at a
frequency up to 3.2 GHz per core. So the theoretical peak is 51.2GFlop/s
per core, and 201.6GFlop/s for the 6 cores (the frequency is limited to
2.1GHz when all cores are enabled with AVX2 and FMA3)
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2
Software evolution
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2.1
Software evolution
Single core architectures

Example of the LU factorization

V

-

lu( )

dgetf2
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Solve( * )

dtrsm

dgemm
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Software evolution

LINPACK (70's)
vector operations

� Level 1 BLAS
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Software evolution

LINPACK (70's)
vector operations

� Level 1 BLAS

LAPACK (80's)
block operations

� Level 3 BLAS
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LAPACK

• http://www.netlib.org/lapack/
• LAPACK (Linear Algebra PACKage) provides routines for

- solving systems of simultaneous linear equations,
- least-squares solutions of linear systems of equations,
- eigenvalue problems,
- and singular value problems.

• it relies on BLAS

• it uses Fortran column major layout

• it is sequential

• it is a reference implementation

• It handle dense and banded matrices, but not general sparse matrices

• In all areas, similar functionality are provided for real and complex
matrices, in both single and double precision.
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Summary for one single core

CPU
BLASBLAS

LAPackLAPack

CPU

LAPackELAPackE

F
o
rt
ra
n

C

CBlasCBlas

C

F
o
rt
ra
n

1. BLAS provides the basic linear algebra
subroutines in Fortran

2. CBlas provides a C interface to BLAS

3. LAPACK provides a more advanced set of linear
algebra routines on top of BLAS, and in Fortran

4. LAPACKE (since 2011) provides a C interface to
LAPACK (Do not use CLapack)

Provided by Netlib, OpenBLAS, IBM ESSL, Intel MKL, AMD ACML, ...
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What about more complex architectures?

• Multiple CPUs in distributed memory

• Multi-core architectures

• Nodes enhanced with accelerators as GPUs
and/or KNL
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2.2
Software evolution
Distributed memory

Software evolution ScaLAPACK

LINPACK (70's)
vector operations

� Level 1 BLAS

LAPACK (80's)
block operations

� Level 3 BLAS

ScaLAPACK (90's)
block cyclic

data distribution

� PBLAS

� BLACS

(message passing)
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Software evolution ScaLAPACK

LINPACK (70's)
vector operations

� Level 1 BLAS

LAPACK (80's)
block operations

� Level 3 BLAS

ScaLAPACK (90's)
block cyclic

data distribution

� PBLAS

� BLACS

(message passing)

• The problem is: how to distribute the data?
→ 2D block cyclic layout
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2D block-cyclic layout
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2D block-cyclic layout
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2D block-cyclic layout
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2D block-cyclic layout
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Example of LU factorization How distributed memory implementation works?

V

-

lu( )

dgetf2
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Solve( * )

dtrsm

dgemm

1. Panel: Communications between
involved processors for each
column

2. TRSM update:
- Broadcast the triangle on the

row
- Local TRSM updates are made

in parallel

3. GEMM update:
- Broadcast the U part to the

column
- Local GEMM updates are made

in parallel
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2D block-cyclic layout, Algorithm progression
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2D block-cyclic layout, Algorithm progression
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2D block-cyclic layout, Algorithm progression
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2D block-cyclic layout, Algorithm progression
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2D block-cyclic layout, Algorithm progression
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Parallelism in ScaLAPACK

• Level 3 BLAS block operations
- For all the reduction routines

• Pipelining/Look-ahead
- QR Algorithm, Triangular

Solvers, classic factorizations

• Redundant computations
- Condition estimators

• Static work assignment
- Bisection

• Task parallelism
- Sign function eigenvalue

computations

• Divide and Conquer
- Tridiagonal and band solvers,

symmetric eigenvalue problem
and Sign function

• Cyclic reduction
- Reduced system in the band

solver

• Data parallelism
- Sign function
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2.3
Software evolution
Multi-core architectures (shared memory)

Example of LU factorization How to parallelize it in shared memory?

V

-

lu( )

dgetf2
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Solve( * )

dtrsm

dgemm

• Use fork-and-join
parallelism (Bulk
Sync Processing)

• Simple and easy
to do in any
reasonable
software

• Parallelize the
largest portion of
the Flops

• Requires only to
link to
Multi-threaded
BLAS library such
as MKL
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Software evolution Plasma

LINPACK (70's)
vector operations

� Level 1 BLAS

LAPACK (80's)
block operations

� Level 3 BLAS

ScaLAPACK (90's)
block cyclic

data distribution

� PBLAS

� BLACS

(message passing)

PLASMA (00's)
tile operations

� tile layout

� dataflow scheduling
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PLASMA: 1) Memory layout
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PLASMA: 2) Dataflow scheduling

• Rethink algorithms as dataflow algorithms

• Express the algorithm as a directed acyclic graph (DAG) where nodes are
tasks, and edges data movements

• Rely on external runtime to:
- discover data dependencies
- schedule tasks in a coherent way

• Remove all possible synchronization points
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Example of Cholesky Inversion
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Example of Cholesky Inversion
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2.4
Software evolution
Heterogeneous architectures

Which library to use for accelerators?

• Nvidia CuBLAS on Nvidia GPUs
- Cover the set of BLAS routines for Nvidia GPUs
- A few extra routines from LAPACK
- Set of Batched BLAS routines to apply many times the same operation of

multiple data

• Intel MKL on Intel MIC architectures
- Same coverage as classic MKL (with various efficiency)
- Set of Batched BLAS routines to apply many times the same operation of

multiple data

• MAGMA (ICL - UTK) for Nvidia GPUs and Intel MIC
- Interface to BLAS routines + subset of internally implemented routines
- Cover partially LAPACK routines
- Set of Batched BLAS routines

• CULA, BLIS, clBLAS, . . .
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MAGMA: Methodology overview

• MAGMA uses hybridization methodology
based on:

- Representing linear algebra as collections
of tasks and data dependencies among
them

- Properly scheduling tasks’ execution
over multicore and GPU hardware
components

• Applied to fundamental linear algebra
algorithms

- One and two-sided factorizations and
solver

- Iterative solvers
- Eigensolvers

• Productivity
- High level
- Leveraging prior developments
- Exceeding in performance homogeneous

solutions
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MAGMA: Methodology overview

1. Perform panel computations (Level 2 BLAS) on CPUs using
multi-threaded LAPACK

2. Perform trailing matrix updates (Level 3 BLAS) on the accelerator using
look-ahead technique.

xxMathieu Faverge – PRACE PLA - DLA 35

How to combine eveything?

1. Distributed memory system with 2D block-cyclic (or not)

2. New tile data layout for enhanced memory accesses

3. Tile algorithms to reduce synchronization points

4. Exploit both CPUs and accelerators
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3
Chameleon

Matrices Over Runtime Systems @ Exascale

Linear algebra

AX = B

Sequential-Task-Flow

for (j = 0; j < N; j++)

Task (A[j]);

Direct Acyclic Graph

−→

Runtime systems

M. GPU M. GPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

Time 

−→

Heterogeneous
platforms
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The Chameleon Library

Sequential Task Flow (STF) design of dense linear algebra tiles algorithms
(derived from PLASMA) on top of runtime systems

Tile matrix layout

nb=192, 320, 960, ...

nb

Runtime systems

• QUARK

• StarPU

• PaRSEC

• OmpSS
M. GPU M. GPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

Time 

STF PLASMA algorithms

for (k = 0; k < N; k++){

POTRF (A[k][k]);

for (m = k+1; m < N; m++)

TRSM (A[k][k], A[m][k]);

for (n = k+1; n < N; n++) {

SYRK (A[n][k], A[n][n]);

for (m = n+1; m < N; m++)

GEMM (A[m][k], A[n][k], A[m][n]);

}

}

Optimized kernels

• BLAS, LAPACK

• cuBLAS, MAGMA
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3.1
Chameleon
Programming model: Sequential Task Flow

Task Scheduling

The runtime maps the graph of tasks (DAG) on the hardware

• Allocating computing
resources

• Enforcing dependency
constraints

• Handling data transfers

Adaptiveness

• A single DAG enables multiple
scheduling strategies

• A single DAG can be mapped
on multiple platforms

M. GPU M. GPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

CPU 

Time 
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Sequential Task Flow / StarPU

• Express parallelism. . .

• . . . using the natural program flow

• Submit tasks in the sequential flow of the program. . .
• . . . then let the runtime:

- infer the dependencies and,
- schedule the tasks asynchronously

StarPU (http://starpu.gforge.inria.fr/)

• Storm Team – Inria Bordeaux - Sud-Ouest

• Computes cost models on the fly

• Kernels can be scheduled on either the CPU, and/or the accelerators

• Multiple scheduling strategies: Minimum Completion Time, Local Work
Stealing, user defined...

xxMathieu Faverge – PRACE PLA - DLA 42

Ex.: Sequential Cholesky Decomposition
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for (j = 0; j < N; j++) {
POTRF ( A[j][j]);
for (i = j+1; i < N; i++)

TRSM ( A[i][j], A[j][j]);
for (i = j+1; i < N; i++) {

SYRK ( A[i][i], A[i][j]);
for (k = j+1; k < i; k++)

GEMM ( A[i][k],
A[i][j], A[k][j]);

}
}

Ex.: Task-Based Cholesky Decomposition
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for (j = 0; j < N; j++) {
POTRF (RW,A[j][j]);
for (i = j+1; i < N; i++)

TRSM (RW,A[i][j], R,A[j][j]);
for (i = j+1; i < N; i++) {

SYRK (RW,A[i][i], R,A[i][j]);
for (k = j+1; k < i; k++)

GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]);

}
}
__wait__();

Dynamic Task Graph Building
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for (j = 0; j < N; j++) {
POTRF (RW,A[j][j]);
for (i = j+1; i < N; i++)

TRSM (RW,A[i][j], R,A[j][j]);
for (i = j+1; i < N; i++) {

SYRK (RW,A[i][i], R,A[i][j]);
for (k = j+1; k < i; k++)

GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]);

}
}
__wait__();

• Tasks are submitted asynchronously
at run-time

• Data references are annotated

• StarPU infers data dependences...

• ... and builds a graph of tasks

GEMM

SYRK

TRSM

POTRF



Dynamic Task Graph Building
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Dynamic Task Graph Building
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for (j = 0; j < N; j++) {
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GEMM (RW,A[i][k],
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__wait__();

• Tasks are submitted asynchronously
at run-time

• Data references are annotated

• StarPU infers data dependences...

• ... and builds a graph of tasks

• The graph of tasks is executed GEMM

SYRK

TRSM

POTRF



Data Dependencies on Heterogeneous Nodes
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MEM

CPU

CPU GPU1

GPU0
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GEMM

SYRK

TRSM

POTRF

RAM

GPU0

• Handles dependencies

• Handles scheduling (policy)

• Handles data consistency (MSI
protocol)

Data dependencies on distributed architectures

Task ↔ Node Mapping
• Provided by the

application

• Can be altered
dynamically

Communications
• Inferred from the task

graph
- Dependencies

• Automatic Isend and
Irecv calls

node0 node1 node2 node3

Irecv

Node 0

node0 node1 node2 node3

Isend

Node 1
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Showcase with QR factorization on heterogeneous node
Shared memory with accelerators
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Measured increase: 
+12 CPUs 

~200 GFlops 

• QR decomposition on 16 CPUs (AMD) + 4 GPUs (C1060)
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Showcase with Cholesky decomposition
Distributed memory with accelerators
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CPU-only MPI / ScaLAPACK

• 144 nodes of curie: 1152 cores + 288 Nvidia M2090
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Goal: Separation of concerns

Main advantages:

1. Data distribution
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Goal: Separation of concerns

Main advantages:

1. Data distribution

2. Algorithm
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Goal: Separation of concerns

Main advantages:

1. Data distribution

2. Algorithm

3. Tasks distribution
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Goal: Separation of concerns

Main advantages:

1. Data distribution

2. Algorithm

3. Tasks distribution

• Allow for simpler composition of
algorithms (FActorization and solve,
Cholesky inversion, . . . )

• Allow to develop new algorithms without
the burden of the communications
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4
Advanced dense linear algebra algorithm

Example of QR factorization
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Tile QR Factorization

First panel factorization and corresponding
updates

DAG for a 4×4 tiles matrix
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Tile QR Factorization

• Algorithm
- the same R factor as LAPACK (absolute values)
- different set of Householder reflectors
- different Q matrix
- different Q generation / application procedure

• Numerics
- same as LAPACK

• Performance
- comparable to vendor on few cores
- much better than vendor on many cores
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Communication Avoiding QR (CAQR) [Demmel et al.’08]

Tall and Skinny QR (TSQR)
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Communication Avoiding QR (CAQR) [Demmel et al.’08]

Tall and Skinny QR (TSQR) CAQR

R

T
S

Q
R

UPDATES
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Tile CAQR factorization

First panel factorization and corresponding updates (a & b).
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Tile CAQR factorization

First panel factorization and corresponding updates (c & d).
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Tile CAQR factorization

First panel factorization and corresponding updates.

xxMathieu Faverge – PRACE PLA - DLA 58

Tile CAQR factorization

Second panel factorization and corresponding updates.
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Tile CAQR factorization

Final panel factorization.
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Tile CAQR factorization

Final panel factorization.
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Tile QR factorization performance (N=4480, M varies)
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• 2 Nehalem Xeon E5520 at 2.27GHz per node (8 cores)

• P=15, Q=4, MB=280

• Theoretical peak of 4.358 TFlop/s
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Tile QR factorization performance (M=67200, N varies)
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5
conclusion

Functionality coverage

• Covers classic four precisions (zcds):
double complex, single complex, double real, single real

• All BLAS 3 subroutines (CPU or GPU):
GEMM, TRSM, TRMM, HEMM/SYMM, HERK/SYRK, HER2K/SYR2K

• Some auxiliary subroutines:
- Matrix generation: random general (PLRNT), hermitian (PLGHE),

symmetric (PLGSY)
- Norms computation: Max, Infinite, One, Frobenius
- A few extra functions: LASET, LACPY, GEADD, TRADD

• Data distribution is 2D Block Cyclic in tile layout
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Functionality coverage

• Cholesky (A = LLt)
Factorization, solve, inverse (GPU: Cuda, MAGMA, KBLAS)

• LU factorization (no pivoting):
Factorization, solve (GPU: Cuda, MAGMA)

• QR factorization:
Factorization, solve, application and generation of Q (GPU on updates
only)

• Complex symmetric factorization (Specific to CEA: A = LLt)
Factorization, solve, inverse (GPU: Cuda, MAGMA, KBLAS)
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Functionality under development

• Two-sided factorization
Eigenvalue and Singular value problems

• LU factorization with pivoting

• Map functionality

• LATMS-like matrix generators

• QDWH algorithm (On top of Chameleon)
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Other examples of dense linear algebra libraries

• DPLASMA (PaRSEC)
- ICL, University of Tennessee
- Use Parameterized Task Graph (PTG) programming model

• LibFlame, Elemental
- University of Austin, TACC
- Georgia Tech.

• MAGMA

• . . .

xxMathieu Faverge – PRACE PLA - DLA 65

Thanks !
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Contributions

Many thanks to Patrick Amestoy, Abdou Guermouche, Pascal Henon,
and Jean-Yves l’Excellent for their large contribution to these slides.
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Introduction to Sparse Matrix Computations

Outline

1. Introduction to Sparse Matrix Computations
Motivation and main issues
Sparse matrices
Gaussian elimination
Symmetric matrices and graphs
The elimination graph model
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Introduction to Sparse Matrix Computations

A selection of references

⋆ Books

◮ Duff, Erisman and Reid, Direct methods for Sparse Matrices,
Clarenton Press, Oxford 1986.

◮ Dongarra, Duff, Sorensen and H. A. van der Vorst, Solving Linear
Systems on Vector and Shared Memory Computers, SIAM, 1991.

◮ Saad, Yousef, Iterative methods for sparse linear systems (2nd
edition), SIAM press, 2003

⋆ Articles

◮ Gilbert and Liu, Elimination structures for unsymmetric sparse LU
factors, SIMAX, 1993.

◮ Liu, The role of elimination trees in sparse factorization, SIMAX,
1990.

◮ Heath and E. Ng and B. W. Peyton, Parallel Algorithms for Sparse
Linear Systems, SIAM review 1991.
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Introduction to Sparse Matrix Computations Motivation and main issues

Outline

1. Introduction to Sparse Matrix Computations
Motivation and main issues
Sparse matrices
Gaussian elimination
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The elimination graph model
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Introduction to Sparse Matrix Computations Motivation and main issues

Motivations

⋆ solution of linear systems of equations → key algorithmic kernel

Continuous problem
↓

Discretization
↓

Solution of a linear system Ax = b

⋆ Main parameters:
◮ Numerical properties of the linear system (symmetry, pos. definite,

conditioning, . . . )
◮ Size and structure:

• Large (> 1000000× 1000000 ?), square/rectangular
• Dense or sparse (structured / unstructured)
• Target computer (sequential/parallel)

→ Algorithmic choices are critical
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Introduction to Sparse Matrix Computations Motivation and main issues

Motivations for designing efficient algorithms

⋆ Time-critical applications

⋆ Solve larger problems

⋆ Decrease elapsed time (parallelism ?)

⋆ Minimize cost of computations (time, memory)
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Introduction to Sparse Matrix Computations Motivation and main issues

Difficulties

⋆ Access to data :
◮ Computer : complex memory hierarchy (registers, multilevel cache,

main memory (shared or distributed), disk)
◮ Sparse matrix : large irregular dynamic data structures.

→ Exploit the locality of references to data on the computer
(design algorithms providing such locality)

⋆ Efficiency (time and memory)
◮ Number of operations and memory depend very much on the

algorithm used and on the numerical and structural properties of
the problem.

◮ The algorithm depends on the target computer (vector, scalar,
shared, distributed, clusters of Symmetric Multi-Processors (SMP),
GRID).

→ Algorithmic choices are critical
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Introduction to Sparse Matrix Computations Sparse matrices

Outline

1. Introduction to Sparse Matrix Computations
Motivation and main issues
Sparse matrices
Gaussian elimination
Symmetric matrices and graphs
The elimination graph model
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Introduction to Sparse Matrix Computations Sparse matrices

Sparse matrices

Example:

3 x1 + 2 x2 = 5
2 x2 - 5 x3 = 1

2 x1 + 3 x3 = 0

can be represented as

Ax = b,

where A =





3 2 0
0 2 −5
2 0 3



, x =





x1
x2
x3



 , and b =





5
1
0





Sparse matrix: only nonzeros are stored.
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Introduction to Sparse Matrix Computations Sparse matrices

Sparse matrix ?

Original matrix

0 100 200 300 400 500

0

100

200

300

400

500

nz = 5104

Matrix dwt 592.rua (N=592, NZ=5104);
Structural analysis of a submarine
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Introduction to Sparse Matrix Computations Sparse matrices

Factorization process (direct method)

Solution of Ax = b

⋆ A is unsymmetric :
◮ A is factorized as: A = LU, where

L is a lower triangular matrix, and
U is an upper triangular matrix.

◮ Forward-backward substitution: Ly = b then Ux = y

⋆ A is symmetric:
◮ A = LDLT or LLT

⋆ A is rectangular m× n with m ≥ n and minx ‖Ax− b‖2 :
◮ A = QR where Q is orthogonal (Q−1 = QT and R is triangular).
◮ Solve: y = QTb then Rx = y
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Introduction to Sparse Matrix Computations Sparse matrices
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Introduction to Sparse Matrix Computations Sparse matrices

Difficulties

⋆ Only non-zero values are stored

⋆ Factors L and U have far more nonzeros than A

⋆ Data structures are complex

⋆ Computations are only a small portion of the code (the rest is
data manipulation)

⋆ Memory size is a limiting factor
→ out-of-core solvers
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Introduction to Sparse Matrix Computations Sparse matrices

Typical test problems:

BMW car body,
227,362 unknowns,
5,757,996 nonzeros,
MSC.Software

Size of factors: 51.1 million entries
Number of operations: 44.9 ×109
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Introduction to Sparse Matrix Computations Sparse matrices

Typical test problems:

BMW crankshaft,
148,770 unknowns,
5,396,386 nonzeros,
MSC.Software

Size of factors: 97.2 million entries
Number of operations: 127.9 ×109
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Introduction to Sparse Matrix Computations Sparse matrices

Sources of parallelism

Several levels of parallelism can be exploited:

⋆ At problem level: problem can de decomposed into sub-problems
(e.g. domain decomposition)

⋆ At matrix level arising from its sparse structure

⋆ At submatrix level within dense linear algebra computations
(parallel BLAS, . . . )
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Introduction to Sparse Matrix Computations Sparse matrices

Data structure for sparse matrices

⋆ Storage scheme depends on the pattern of the matrix and on the
type of access required

◮ band or variable-band matrices
◮ “block bordered” or block tridiagonal matrices
◮ general matrix
◮ row, column or diagonal access
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Introduction to Sparse Matrix Computations Sparse matrices

Data formats for a general sparse matrix A

What needs to be represented

⋆ Assembled matrices: MxN matrix A with NNZ nonzeros.

⋆ Elemental matrices (unassembled): MxN matrix A with NELT
elements.

⋆ Arithmetic: Real (4 or 8 bytes) or complex (8 or 16 bytes)

⋆ Symmetric (or Hermitian)
→ store only part of the data.

⋆ Distributed format ?

⋆ Duplicate entries and/or out-of-range values ?
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Introduction to Sparse Matrix Computations Sparse matrices

Classical Data Formats for Assembled Matrices

⋆ Example of a 3x3 matrix with NNZ=5 nonzeros

a31

a23a22

a11

a33

1 2 3

1

2

3

⋆ Coordinate format
IC [1 : NNZ] = 1 3 2 2 3
JC [1 : NNZ] = 1 1 2 3 3
VAL [1 : NNZ] = a11 a31 a22 a23 a33

⋆ Compressed Sparse Column (CSC) format
IA [1 : NNZ] = 1 3 2 2 3
VAL [1 : NNZ] = a11 a31 a22 a23 a33
JA [1 : N + 1] = 1 3 4 6

column J is stored in IA and VAL at indices JA(J)...JA(J+1)-1

⋆ Compressed Sparse Row (CSR) format:
Similar to CSC, but row by row
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Introduction to Sparse Matrix Computations Sparse matrices
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Introduction to Sparse Matrix Computations Sparse matrices

Sparse Matrix-vector products

Assume we want to comute Y ← AX.
Various algorithms for matrix-vector product depending on sparse
matrix format:

⋆ Coordinate format:

Y( 1 :N) = 0
DO i =1,NNZ

Y( IC ( i ) ) = Y( IC ( i ) ) + VAL( i ) ∗ X(JC( i ) )
ENDDO

⋆ CSC format:
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Introduction to Sparse Matrix Computations Sparse matrices

Sparse Matrix-vector products

Assume we want to comute Y ← AX.
Various algorithms for matrix-vector product depending on sparse
matrix format:

⋆ Coordinate format:

Y( 1 :N) = 0
DO i =1,NNZ

Y( IC ( i ) ) = Y( IC ( i ) ) + VAL( i ) ∗ X(JC( i ) )
ENDDO

⋆ CSC format:

Y( 1 :N) = 0
DO J=1,N

DO I=JA( J ) , JA( J+1)−1
Y( IA ( I ) ) = Y( IA ( I ) ) + VAL( I )∗X( J )

ENDDO

ENDDO
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Introduction to Sparse Matrix Computations Sparse matrices

File storage: Rutherford-Boeing

⋆ Standard ASCII format for files
⋆ Header + Data (CSC format). key xyz:

◮ x=[rcp] (real, complex, pattern)
◮ y=[suhzr] (sym., uns., herm., skew sym., rectang.)
◮ z=[ae] (assembled, elemental)
◮ ex: M T1.RSA, SHIP003.RSE

⋆ Supplementary files: right-hand-sides, solution, permutations. . .

⋆ Canonical format introduced to guarantee a unique representation
(order of entries in each column, no duplicates).

Format description can be found at :
http://math.nist.gov/MatrixMarket/formats.html
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Introduction to Sparse Matrix Computations Sparse matrices

File storage: Rutherford-Boeing

DNV-Ex 1 : Tubular joint-1999-01-17 M_T1

1733710 9758 492558 1231394 0

rsa 97578 97578 4925574 0

(10I8) (10I8) (3e26.16)

1 49 96 142 187 231 274 346 417 487

556 624 691 763 834 904 973 1041 1108 1180

1251 1321 1390 1458 1525 1573 1620 1666 1711 1755

1798 1870 1941 2011 2080 2148 2215 2287 2358 2428

2497 2565 2632 2704 2775 2845 2914 2982 3049 3115

...

1 2 3 4 5 6 7 8 9 10

11 12 49 50 51 52 53 54 55 56

57 58 59 60 67 68 69 70 71 72

223 224 225 226 227 228 229 230 231 232

233 234 433 434 435 436 437 438 2 3

4 5 6 7 8 9 10 11 12 49

50 51 52 53 54 55 56 57 58 59

...

-0.2624989288237320E+10 0.6622960540857440E+09 0.2362753266740760E+11

0.3372081648690030E+08 -0.4851430162799610E+08 0.1573652896140010E+08

0.1704332388419270E+10 -0.7300763190874110E+09 -0.7113520995891850E+10

0.1813048723097540E+08 0.2955124446119170E+07 -0.2606931100955540E+07

0.1606040913919180E+07 -0.2377860366909130E+08 -0.1105180386670390E+09

0.1610636280324100E+08 0.4230082475435230E+07 -0.1951280618776270E+07

0.4498200951891750E+08 0.2066239484615530E+09 0.3792237438608430E+08

0.9819999042370710E+08 0.3881169368090200E+08 -0.4624480572242580E+08
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Gaussian elimination

A = A(1), b = b(1), A(1)x = b(1):




a11 a12 a13
a21 a22 a23
a31 a32 a33









x1

x2

x3



 =





b1
b2
b3



 2← 2− 1× a21/a11
3← 3− 1× a31/a11

A(2)x = b(2)






a11 a12 a13

0 a
(2)
22 a

(2)
23

0 a
(2)
32 a

(2)
33











x1

x2

x3



 =







b1

b
(2)
2

b
(2)
3






b
(2)
2 = b2 − a21b1/a11 . . .

a
(2)
32 = a32 − a31a12/a11 . . .

Finally A(3)x = b(3)







a11 a12 a13

0 a
(2)
22 a

(2)
23

0 0 a
(3)
33











x1

x2

x3



 =







b1

b
(2)
2

b
(3)
3







a
(3)
(33)

= a
(2)
(33)
− a

(2)
32 a

(2)
23 /a

(2)
22 . . .

Typical Gaussian elimination step k : a
(k+1)

ij = a
(k)
ij −

a
(k)
ik

a
(k)
kj

a
(k)
kk
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Relation with A = LU factorization

⋆ One step of Gaussian elimination can be written:
A(k+1) = L(k)A(k) , with

Lk =



















1

.

.

1

−lk+1,k .

. .

−ln,k 1



















and lik =
a
(k)
ik

a
(k)
kk

.

⋆ Then, A(n) = U = L(n−1) . . .L(1)A, which gives A = LU ,

with L = [L(1)]−1 . . . [L(n−1)]−1 =











1 0

.

.

.

li,j 1











,

⋆ In dense codes, entries of L and U overwrite entries of A.

⋆ Furthermore, if A is symmetric, A = LDLT with dkk = a
(k)
kk :

A = LU = At = U tLt implies (U)(Lt)−1 = L−1U t = D diagonal and

U = DLt, thus A = L(DLt) = LDLt
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Gaussian elimination and sparsity

Step k of LU factorization (akk pivot):

⋆ For i > k compute lik = aik/akk (= a′ik),

⋆ For i > k, j > k

a′ij = aij −
aik × akj

akk
or

a′ij = aij − lik × akj

⋆ If aik 6= 0 et akj 6= 0 then a′ij 6= 0

⋆ If aij was zero → its non-zero value must be stored
 k j

k

i

x

x

x

x

 k j

k

i

x

x

x

0

fill-in
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Factorisation LU (version KIJ)

1 for k = 1 to n− 1 do

2 for i = k + 1 to n do

3 aik := aik/akk;
4 for j = k + 1 to n do

5 aij := aij − aik ∗ akj ;
6 end

7 end

8 end

J

I

K
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Factorisation LDLt (version KIJ)

1 for k = 1 to n− 1 do

2 for j = k + 1 to n do

3 t := ajk/akk;
4 for i = j to n do

5 aij := aij − aik ∗ t;
6 end

7 ajk := t;;

8 end

9 end

J

I

K
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Example

⋆ Original matrix













X X X X X
X X
X X
X X
X X













⋆ Matrix is full after the first step of elimination

⋆ After reordering the matrix (1st row and column ↔ last row and
column)
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Example













X X
X X

X X
X X

X X X X X













⋆ No fill-in
⋆ Ordering the variables has a strong impact on

◮ the fill-in
◮ the number of operations
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Efficient implementation of sparse solvers

⋆ Indirect addressing is often used in sparse calculations: e.g. sparse
SAXPY

do i = 1, m

A( ind(i) ) = A( ind(i) ) + alpha * w( i )

enddo

⋆ Even if manufacturers provide hardware for improving indirect
addressing

◮ It penalizes the performance

⋆ Switching to dense calculations as soon as the matrix is not sparse
enough
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Symmetric matrices and graphs

⋆ Assumptions: A symmetric and pivots are chosen on the diagonal
⋆ Structure of A symmetric represented by the graph G = (V,E)

◮ Vertices are associated to columns: V = {1, ..., n}
◮ Edges E are defined by: (i, j) ∈ E ↔ aij 6= 0
◮ G undirected (symmetry of A)
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Symmetric matrices and graphs

⋆ Remarks:
◮ Number of nonzeros in column j = |AdjG(j)|
◮ Symmetric permutation ≡ renumbering the graph

3

4

2

5

11

2

3

4

5

1         2         3         4         5        

Symmetric matrix Corresponding graph
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Introducing the filled graph G
+(A)

⋆ Let F = L+ LT be the filled matrix,
and G(F) the filled graph of A denoted by G+(A).

⋆ Lemma (Parter 1961) : (vi, vj) ∈ G+ if and only if (vi, vj) ∈ G or

∃k < min(i, j) such that (vi, vk) ∈ G+ and (vk, vj) ∈ G+.

5

1

6

2

34

+
G (A) = G(F) F = L + L

T

1

2

3

4

5

6
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Modeling elimination by reachable sets

⋆ The fill edge (v4, v6) is due to the path (v4, v2, v6) in G1.
However (v2, v6) originates from the path (v2, v1, v6) in G0.

⋆ Thus the path (v4, v2, v1, v6) in the original graph is in fact
responsible of the fill in edge (v4, v6).

⋆ Illustration :

5

1

6

2

34

+
G (A) = G(F) F = L + L

T

1

2

3

4

5

6
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Fill-in theorem

Theorem

Any Aij = 0 will become a non-null entry Lij or Uij 6= 0 in A = L.U if
and only if it exists a path in GA(V,E) from vertex i to vertex j that
only goes through vertices with a lower number than i and j.
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Exercise

Find the fill-in terms.

Matrice 3x3 : 2eme numerotationMatrice 3x3 : 1ere numerotation

6

5 9 2

3

174

8

8

9

7

6

5

4

3

2

1

3

2

1 4

5

6 9

8

7
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A first definition of the elimination tree

⋆ A spanning tree of a connected graph G is a subgraph T of G
such that if there is a path in G between i and j then there exists
a path between i and j in T .

⋆ Let A be a symmetric positive-definite matrix, A = LLT its
Cholesky factorization, and G+(A) its filled graph (graph of
F = L+ LT).

Definition

The elimination tree of A is a spanning tree of G+(A) satisfying the
relation PARENT [j] = min{i > j|lij 6= 0}.
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Graph structures

+
G (A) = G(F)

a

h

i

d

e

j

b

f

c g

j
10

d
4

i
9

e
5

b
2

a
1

c

3

g
7

h
8

f
6

h
8

d
4

e
5

b
2

f
6

c

3

a
1

i
9

g
7

j
10

a

b

c

d

e

f

g

h

i

j

entries in T(A)

fill−in entries

F =A =

a

b

c

d

e

f

g

h

i

j

a

b

c

d

e

f

g

h

i

j

entries in T(A)

fill−in entries

F =A =

a

b

c

d

e

f

g

h

i

j

G(A)

T(A)
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Properties of the elimination tree

⋆ Another perspective also leads to the elimination tree

j

i

j i

⋆ Dependency between columns of L :

1. Column i > j depends on column j iff lij 6= 0
2. Use a directed graph to express this dependency
3. Simplify redundant dependencies (transitive reduction in graph

theory)

⋆ The transitive reduction of the directed filled graph gives the
elimination tree structure
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Directed filled graph and its transitive reduction

h
8

d
4

e
5

b
2

f
6

c

3

a
1

i
9

g
7

j
10

d
4

i
9

e
5

b
2

a
1

c

3

g
7

h
8

f
6

j
10

d
4

i
9

e
5

b
2

a
1

c

3

g
7

h
8

f
6

j
10

T(A)

Directed filled graph Transitive reduction
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Major steps for solving sparse linear systems

There are 4 steps :

1. Reordering :find a (symmetric) permutation P such that it
minimizes fill-in in the factorization of P.A.P t. Furthermore, in a
parallel context, it should create as much as possible independent
computation tasks.

2. Symbolic factorization : this step aims at computing the
non-zeros structure of the factors before the actual numeric
factorization. It avoids to manage a costly dynamic structure and
allows to do some load-balancing.

3. Numerical factorization : compute the factorization by using the
preallocated structure from the symbolic factorization.

4. Triangular solve : obtain the solution of A.x = L.(U.x) = b.
Forward solve L.y = b then a backward solve U.x = y. In some
cases, it is required to use iterative refinements to increase the
accuracy of the solution.
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Fill-reducing orderings

Three main classes of methods for minimizing fill-in during
factorization

⋆ Selection of next best pivot (e. g. : minimum degree for
symmetric matrices).

⋆ Cuthill-McKee (block tridiagonal matrix)

⋆ Nested dissections (“block bordered” matrix).
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Cuthill-McKee and Reverse Cuthill-McKee

Consider the matrix:

A =

















x x x x
x x

x x x
x x x x
x x x

x x

















The corresponding graph is

5 3

4 6

12
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Cuthill-McKee algorithm

⋆ Goal: reduce the profile/bandwidth of the matrix

(the fill is restricted to the band structure)

⋆ Level sets (such as Breadth First Search) are built from the vertex
of minimum degree (priority to the vertex of smallest number)
We get: S1 = {2}, S2 = {1}, S3 = {4, 5}, S4 = {3, 6} and thus
the ordering 2, 1, 4, 5, 3, 6.

The reordered matrix is:

A =

















x x

x x x x

x x x x

x x x

x x x

x x
















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Reverse Cuthill-McKee

⋆ The ordering is the reverse of that obtained using Cuthill-McKee
i.e. on the example {6, 3, 5, 4, 1, 2}

⋆ The reordered matrix is:

A =

















x x

x x x

x x x

x x x x

x x x x

x x

















⋆ More efficient than Cuthill-McKee at reducing the envelop of the
matrix.
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Illustration: Reverse Cuthill-McKee on matrix dwt 592.rua

Harwell-Boeing matrix: dwt 592.rua, structural computing on a
submarine. NZ(LU factors)=58202

Original matrix Factorized matrix

0 100 200 300 400 500

0

100

200

300

400

500

nz = 5104
0 100 200 300 400 500

0

100

200

300

400

500

nz = 58202
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Illustration: Reverse Cuthill-McKee on matrix dwt 592.rua

NZ(LU factors)=16924

Permuted matrix Factorized permuted matrix
(RCM)

0 100 200 300 400 500

0

100

200

300

400

500

nz = 5104

0 100 200 300 400 500

0

100

200

300

400

500

nz = 16924
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Nested Dissection

Recursive approach based on graph partitioning.

Graph partitioning Permuted matrix

(1)

(5)

(4)

(2)

S1

S2

S3

S1

1

2

3

4

S2

S3
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Nested Dissection : Algorithm

G(V,E) is the adjacency graph of A (V = vertices, E = edges).
In the recursive algorithm k is a global variable initialized to n =
card(G).
It represented the next number to be given.

1 NestedDissection(G) : ;
2 if G non dissecable then

3 Number the vertices of V from k to k := k − |V |+ 1 ;
4 end

5 else

6 Find a partition V = A
⋃

B
⋃

S with S a separator of G;
7 Number the vertices of S from k to k := k − |S|+ 1 ;
8 NestedDissection(G(A)) : ;
9 NestedDissection(G(B)) : ;

10 end
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Ordering : efficient strategy

The modern software (e.g.
METIS http://glaros.dtc.umn.edu/gkhome/views/metis/ or
SCOTCH http://www.labri.fr/perso/pelegrin/scotch/) are
based on on the nested dissection algorithm but :

⋆ they use hybrid ordering ND + local heuristics (e.g. Minimum
degree) ;

⋆ they use multilevel approaches : graph coarsening, reordering on
the reduced graph, graph uncoarsening.
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Impact of fill reduction on the shape of the tree (1/2)

Reordering
technique

Shape of the tree observations

AMD

⋆ Deep well-balanced

⋆ Large frontal matrices
on top

AMF

⋆ Very deep unbalanced

⋆ Small frontal matrices

Figure: Shape of the trees resulting from various reordering techniques.

Mathieu Faverge Sparse Linear Algebra 55

Ordering sparse matrices Impact of fill reduction algorithm on the shape of the tree

Impact of fill reduction on the shape of the tree (2/2)

Reordering
technique

Shape of the tree observations

PORD

⋆ deep unbalanced

⋆ Small frontal matrices

SCOTCH

⋆ Very wide
well-balanced

⋆ Large frontal matrices

METIS

⋆ Wide well-balanced

⋆ Smaller frontal
matrices (than
SCOTCH)
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Importance of the shape of the tree

Suppose that each node in the tree corresponds to a task that:
- consumes temporary data from the children,
- produces temporary data, that is passed to the parent node.

⋆ Wide tree
◮ Good parallelism
◮ Many temporary blocks to store
◮ Large memory usage

⋆ Deep tree
◮ Less parallelism
◮ Smaller memory usage
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3. Symbolic factorization
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Symbolic factorization : column-block algorithm
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Symbolic factorization

The goal of this algorithm is to build the non-zero pattern of L (and
U). We will consider the symmetric case (graph of A+At if A has an
unsymmetric NZ pattern). In this case the symbolic factorization is
really cheaper than the factorization algorithm.

Fundamental property

The symbolic factorization relies on the elimination tree of A.
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Symbolic factorization : Algorithm (1/3)

For a sparse matrix A we will denote by:

Definition

Row(Ai∗) = {k < i/Aik 6= 0}, for i = 1..n
Col(A∗j) = {k > j/Akj 6= 0}, for j = 1..n
We will denote by SRow and SCol the sorted set.
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Symbolic factorization : Algorithm (2/3)

1 for j = 1 to n− 1 do

2 Build SCol(A∗j)
3 end

4 ;
5 for j = 1 to n− 1 do

6 mj := first elt of SCol(A∗j) ;
7 SCol(A∗mj

) :=
Merge(SCol(A∗mj

), SCol(A∗j)−mj) ;

8 end

mj

j
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Symbolic factorization : Algorithm (3/3)

At the end of algorithm we have :
SCol(A∗j) for j = 1..n
The algorithm uses two loops :

Complexity

The complexity of the symbolic factorization is in O(‖E∗‖) the
number of edges in the elimination graph.
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Block Symbolic factorization

The problem in the symbolic factorization is the memory needs.
It is of the same order than the factorization.
In fact, we can use the partition deduced from the ordering to compute
a block structure of the matrix.

Definition

A supernode (or supervariable) is a set of contiguous columns in the
factors L that share essentially the same sparsity structure.
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Quotient graph and block elimination tree
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Quotient graph and block elimination tree
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Quotient graph and block elimination tree

The block symbolic factorization relies on

Property of the elimination graph

Q(G,P )∗ = Q(G∗, P )
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Block Symbolic factorization : Algo

1 for k = 1 to N − 1 do

2 Build Ik = the list of block intervals
3 end

4 ;
5 for k = 1 to N − 1 do

6 mk := n(k, 1) (first extra-diagonal
block in k) ;

7 Imk
:= Merge(Imk

, (Ik − [mk])) ;

8 end
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Block Symbolic factorization : Algo

1 for k = 1 to N − 1 do

2 Build Ik = the list of block intervals
3 end

4 ;
5 for k = 1 to N − 1 do

6 mk := n(k, 1) (first extra-diagonal
block in k) ;

7 Imk
:= Merge(Imk

, (Ik − [mk])) ;

8 end
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Block Symbolic factorization : Algo

1 for k = 1 to N − 1 do

2 Build Ik = the list of block intervals
3 end

4 ;
5 for k = 1 to N − 1 do

6 mk := n(k, 1) (first extra-diagonal
block in k) ;

7 Imk
:= Merge(Imk

, (Ik − [mk])) ;
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1
Introduction

Motivations

Solve linear systems of equations → key algorithmic kernel

audikw 1 matrix (University of Florida collection)

Main parameters

• Numerical properties of the linear system

(symmetry, positive definite, conditioning, ...)

• Size and structure:xxM. Faverge – PATC PLA 2017 - PASTIX 4/77

Different solving methods

• Robust/accurate for general problems

• BLAS-3 based implementation

• Memory/CPU prohibitive for large 3D problems

• Limited parallel scalability

• Problem dependent efficiency/controlled

accuracy

• Only mat-vec required, fine grain computation

• Less memory consumption, possible trade-off

with CPU

xxM. Faverge – PATC PLA 2017 - PASTIX 5/77xxM. Faverge – PATC PLA 2017 - PASTIX 6/77

2
Direct



Major steps for solving sparse linear systems

Direct methods steps

Steps of the factorization

1. Analysis (on the graph of the matrix):

1.1 Ordering: minimize fill-in while maximizing parallelism

1.2 Symbolic factorization: predict the structure of the factorized matrix

1.3 Data distribution: optimize the data distribution to accelerate the factorization

2. Numerical factorization: decomposition of A into LU, LLT
, or LDLT

3. Triangular systems solves: the solution x is computed by means of forward

and backward substitutions

xxM. Faverge – PATC PLA 2017 - PASTIX 7/77

Ordering

Goals

• reduce fill-in during factorization

• increase parallelism

Graph theory

• Uses graph representation: ∃(i , j) ∈ G ⇔ aij 6= 0

• Characterization theorem:

li,j 6= 0 ⇔







(i , j) ∈ G

or

∃ a path (j , k1, . . . , kl , i) such that ∀p ∈ J1, lK, kp < min(i , j)

xxM. Faverge – PATC PLA 2017 - PASTIX 8/77

Ordering example

5

4 3 2 1

1 2 3 4 5

1 1

2 1 1

3 1 0 1

4 1 0 0 1

5 1 0 0 0 1

A

3

2 1 4

5

G

1 2 3 4 5

1 1

2 1 1

3 1 0 1

4 1 0 0 1

5 1 0 0 0 1

L

3

2 1 4

5

G∗

5

4

3

2

1

T

Without reordering

1 2 3 4 5

1 1

2 1 1

3 1 0 1

4 1 0 0 1

5 1 0 0 0 1

A

3

2 5 4

1

G

1 2 3 4 5

1 1

2 1 1

3 1 0 1

4 1 0 0 1

5 1 0 0 0 1

L

3

2 5 4

1

G∗

5

4 3 2 1

T

With reordering
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Nested dissection: a widely used algorithm in direct solvers

Algorithm

1. Find a list of vertices separating the graph

into two pieces

2. Number this separator with higher indices

3. Iterate on sub-graphs

Advantages

• There is no fill-in between two separated

graphs

• The two corresponding sub-parts of the

matrix can be computed independently

7

3 6

1 4

2 5

1 2 21 11 12

3 4 22 13 14

9 10 23 19 20

5 6 24 15 16

7 8 25 17 18

Adjacency graph (G).

xxM. Faverge – PATC PLA 2017 - PASTIX 10/77

Symbolic factorization

7

3 6

1 4

2 5

1 2 21 11 12

3 4 22 13 14

9 10 23 19 20

5 6 24 15 16

7 8 25 17 18

Adjacency graph (G).

1 4

3 7 6

2 5

Quotient graph (G∗/P ).

7

3

1 2

6

4 5

Elimination tree (T).

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Factorized matrix (L).

1

2

3

4

5

6

7

Columns are blocked into supernodes on which BLAS can be executed.
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Symbolic factorization

The goal of this algorithm is to build the non-zero pattern of L (and U). We will

consider the symmetric case (graph of A + At
if A has an unsymmetric pattern).

In this case the symbolic factorization is really cheaper than the factorization

algorithm.

Fundamental property

The symbolic factorization relies on the elimination tree of A.

xxM. Faverge – PATC PLA 2017 - PASTIX 12/77



Quotient graph and block elimination tree

Property of the elimination graph : Q(G,P)∗ = Q(G∗,P)

X X X X

X X X X

X X X X

X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

X X X X X X X X

R R X X X X R R X X

R R X X X X R R X X

X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X X X X X X X X X

X X X X X X X X X X R R X X X X R R X X

X X X X X X X X X X R R X X X X R R X X

R X R X X X X X R R X R X R X X X X R R X X X X 1

R X R X X X X X R X X R X R X X X X X R R X X X 1

R R R X R X R R R X R R X R X R R R X R R R X X 1

X X X X R X R X R X X X X X X R X R X R R R R X 1

X X X X R X R X R R X X X X X R X R R R R R R R X

X: Non-zero terms of A, R: Fill-in terms of L.

xxM. Faverge – PATC PLA 2017 - PASTIX 13/77

Supernodal methods

Definition

A supernode (or supervariable) is a set of contiguous columns in the factors L

that share essentially the same sparsity structure.

• All algorithms (ordering, symbolic factor., factor., solve) generalized to

block versions.

• Use of efficient matrix-matrix kernels (improve cache usage).

• Same concept as supervariables for elimination tree/minimum degree

ordering.

• Supernodes and pivoting: pivoting inside a supernode does not increase

fill-in.

xxM. Faverge – PATC PLA 2017 - PASTIX 14/77

Numerical factorization: super-nodal method

Algorithm 1: Right looking blocked sequen-

tial factorization: A = LLT
.

for k = 1 to N do

/* Factorize the column block */

Factorize Ak,k in Lk,k .L
T
k,k ;

Solve L(1−bk ),k .L
T
k,k = A(1−bk ),k ;

/* Trailling supernodes updates

*/

for j = 1 to bk do

for i = 1 to bk do

A(i),(j) = A(i),(j) − L(i),k .L
T
k,(j);

end

end

end

xxM. Faverge – PATC PLA 2017 - PASTIX 15/77

Numerical factorization: multi-frontal method

21 22 23 24 25

21 1 1 1 1 1

22 1 1 1 1 1

23 1 1 1 1 1

24 1 1 1 1 1

25 1 1 1 1 1

9 10 21 22 23 24 25

9 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

1 2 3 4 9 10 21 22 23

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

5 6 7 8 9 10 23 24 25

5 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

19 20 21 22 23 24 25

19 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

11 12 13 14 19 20 21 22 23

11 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

15 16 17 18 19 20 23 24 25

15 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

xxxx
xxxx
xxxx
xxxx

xxx
xxx
xxx
xxx
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Numerical factorization: multi-frontal method

21 22 23 24 25

21 1 1 1 1 1

22 1 1 1 1 1

23 1 1 1 1 1

24 1 1 1 1 1

25 1 1 1 1 1

9 10 21 22 23 24 25

9 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

1 2 3 4 9 10 21 22 23

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

5 6 7 8 9 10 23 24 25

5 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

19 20 21 22 23 24 25

19 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

11 12 13 14 19 20 21 22 23

11 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

15 16 17 18 19 20 23 24 25

15 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx
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Numerical factorization: multi-frontal method

21 22 23 24 25

21 1 1 1 1 1

22 1 1 1 1 1

23 1 1 1 1 1

24 1 1 1 1 1

25 1 1 1 1 1

9 10 21 22 23 24 25

9 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

1 2 3 4 9 10 21 22 23

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

5 6 7 8 9 10 23 24 25

5 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

19 20 21 22 23 24 25

19 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

11 12 13 14 19 20 21 22 23

11 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

15 16 17 18 19 20 23 24 25

15 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxM. Faverge – PATC PLA 2017 - PASTIX 16/77



Numerical factorization: multi-frontal method

21 22 23 24 25

21 1 1 1 1 1

22 1 1 1 1 1

23 1 1 1 1 1

24 1 1 1 1 1

25 1 1 1 1 1

9 10 21 22 23 24 25

9 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

1 2 3 4 9 10 21 22 23

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

5 6 7 8 9 10 23 24 25

5 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

19 20 21 22 23 24 25

19 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

11 12 13 14 19 20 21 22 23

11 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

15 16 17 18 19 20 23 24 25

15 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxx
xxx

xxx
xxx
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Numerical factorization: multi-frontal method

21 22 23 24 25

21 1 1 1 1 1

22 1 1 1 1 1

23 1 1 1 1 1

24 1 1 1 1 1

25 1 1 1 1 1

9 10 21 22 23 24 25

9 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

1 2 3 4 9 10 21 22 23

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

5 6 7 8 9 10 23 24 25

5 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

19 20 21 22 23 24 25

19 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

11 12 13 14 19 20 21 22 23

11 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

15 16 17 18 19 20 23 24 25

15 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxx
xxx
xxx
xxx

xxx
xxx
xxx
xxx
xxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxx
xxx

xxx
xxx
xxx

xxx
xxx

xxx
xxx
xxx
xxx
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Numerical factorization: multi-frontal method

21 22 23 24 25

21 1 1 1 1 1

22 1 1 1 1 1

23 1 1 1 1 1

24 1 1 1 1 1

25 1 1 1 1 1

9 10 21 22 23 24 25

9 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

1 2 3 4 9 10 21 22 23

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

5 6 7 8 9 10 23 24 25

5 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1 1 1

19 20 21 22 23 24 25

19 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1

21 1 1 1 1 1 1 1

22 1 1 1 1 1 1 1

23 1 1 1 1 1 1 1

24 1 1 1 1 1 1 1

25 1 1 1 1 1 1 1

11 12 13 14 19 20 21 22 23

11 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1
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3
Distributed architectures
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4
Communication schemes

Distributed matrix example (Fan-out)

Fan-out

1. Column blocks are sent to target block’s owner

2. Target block’s owner performs the update

C0

C1

C2

C3

P1

P2
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Distributed matrix example (Fan-in)

Fan-in

1. Contribution aggregated locally in a temporary buffer

2. Contribution sent to receiver when complete

3. Contribution added on receiver

C0

C1

C2

C3

P1

P2

F 1

2
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5
Data distribution

Proportional Mapping [A. Pothen, C. Sun 93]

• Top-down strategy to build candidate processor groups for each block

(ensure good locality of communications)

• Down-top mapping induced by a logical simulation of computations of the

block solver (models for factorization time, communication and

aggregation)
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Dynamic Scheduling : New Mapping

• Need to map data on MPI process

• Two steps :

- A first proportional mapping step to map data
- A second step to build a file structure for the work stealing algorithm
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Thread support inside MPI libraries

• MPI THREAD SINGLE
- Only one thread will execute.

• MPI THREAD FUNNELED
- The process may be multi-threaded, but only the main thread will make MPI

calls

(all MPI calls are funneled to the main thread).

• MPI THREAD SERIALIZED
- The process may be multi-threaded, and multiple threads may make MPI calls,

but only one at a time: MPI calls are not made concurrently from two distinct

threads

(all MPI calls are serialized).

• MPI THREAD MULTIPLE
- Multiple threads may call MPI, with no restrictions.

xxM. Faverge – PATC PLA 2017 - PASTIX 25/77

Communication schemes (Up to 10% efficiency)
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6
Heterogeneous architectures and runtime
systems

Numerical Factorization

Algorithm to eliminate the block column k

1. Factorize the diagonal block

2. Solve off-diagonal blocks in the current column (TRSM)

3. Update the underlying matrix with the column’s contribution (GEMM)

Possible variants

• One single update ≈
multi-frontal

• 1D updates per block of

columns

• 2D updates ≈ Dense

factorization
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Numerical Factorization on GPUs: PaStiX (historical)

choices

• Supernodal method

• 1D updates

• Sequential BLAS

• Internal scheduler, or external

runtime to support

accelerators
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Advantages of using a task-based runtime system

• Several computing kernels can be associated with the task (C, OPENCL,

NVIDIA CUDA)

• Execute the task graph on the available resources

• Address the whole computing units and the whole potential parallelisms

• Insulate the algorithm from the architecture and data distribution

• Automatic handling of data transfers

• Finer parallelism handling
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Runtime systems supported by PaStiX

STARPU

• Inria Storm Team

• Dynamic Task Discovery

• Computes cost models on the fly

• Multiple kernels on the accelerators

• Multiple scheduling strategies: Minimum Completion Time, Local Work Stealing,

user defined...

PARSEC

• ICL – University of Tennessee, Knoxville

• Parameterized Task Graph

• Only the most compute intensive kernel on accelerators

• Scheduling strategy based on static performance model

• GPU multi-stream enabled
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Runtime systems supported by PaStiX

STARPU

• Inria Storm Team

• Dynamic Task Discovery

• Computes cost models on the fly

• Multiple kernels on the accelerators

• Multiple scheduling strategies: Minimum Completion Time, Local Work Stealing,

user defined...

PARSEC

• ICL – University of Tennessee, Knoxville

• Parameterized Task Graph

• Multiple kernels on the accelerators

• Scheduling strategy based on static performance model

• GPU multi-stream enabled

We consider only PARSEC runtime in this talk
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Test platform

Matrix Size nnzA nnzL TFlop

Afshell10 1.5e+6 27e+6 610e+6 0.12

FilterV2 0.6e+6 12e+6 536e+6 3.6

fault639 0.6e+6 29e+6 1234e+6 8.28

audi 0.9e+6 78e+6 1276e+6 5.12

boneS10 0.9e+6 55e+6 370e+6 0.29

inline 0.5e+6 37e+6 212e+6 0.14

ldoor 0.9e+6 47e+6 304e+6 1.08

nd24 0.07e+6 28e+6 335e+6 2.17

Matrices description from the Univ. of Florida collection

1. Fermi architecture

- 2 hexacore Intel(R) Xeon(R) CPU X5650 @ 2.67
- 3 Nvidia M2070
- 32 GB of memory

2. Kepler architecture

- 2 decacore Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30 - 3.00GHz
- 3 Nvidia K40c (ECC=ON, no max boost)
- 32 GB of memory
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Performance on Fermi architecture
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Scotch 12 threads
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HSL 12 threads
TSP 12 threads

+ 1 GPU
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• ≈ 100GB speedup per GPUxxM. Faverge – PATC PLA 2017 - PASTIX 33/77

Performance on Kepler architecture
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• Gives less improvement over the CPUs only version that on previous work

with Fermi architecture
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Performance of the hybrid 1D/2D DAG
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• First GPU improves the CPUs performance

• Extra GPUs give less improvement (except for nd24k)

• Switch size is 240 (Might create some slow down on the CPUs-only

version)
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7
ILU(k) Factorization

Block ILU(k): supernode amalgamation algorithm

Derive a block incomplete LU factorization from the supernodal parallel

direct solver

• Based on existing package PaStiX

• Level-3 BLAS incomplete factorization implementation

• Fill-in strategy based on level-fill among block structures identified thanks

to the quotient graph

• Amalgamation strategy to enlarge block size

Highlights

• Handles efficiently high level-of-fill

• Solving time faster than with scalar ILU(k)

• Scalable parallel implementation
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Fill-in theorem

Theorem

Any Aij = 0 will become a non-null entry Lij or Uij 6= 0 in A = iLU(k) if and only

if it exists a shortest path of lengh k + 1 in GA(V ,E) from vertex i to vertex j

that only goes through vertices with a lower number than i and j .
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Factorization ILU(k)

level 1 level 1

4

3

2

1

1 2 3 4 5

5 3 21 4

5 level 3
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BILU(k): the amalgamation strategy

Find the exact supernode partition
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BILU(k): the amalgamation strategy

Merge the couple of supernodes that add the less extra fill-in
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Block ILU(k): some results on AUDI matrix

(N = 943, 695, NNZ = 39, 297, 771)

Numerical behaviour
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Block ILU(k): some results on AUDI matrix

(N = 943, 695, NNZ = 39, 297, 771)

Preconditioner setup time
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Block ILU(k): some results on AUDI matrix

(N = 943, 695, NNZ = 39, 297, 771)

Forward/Backward solution time

xxM. Faverge – PATC PLA 2017 - PASTIX 44/77

Block ILU(k): some results on AUDI matrix

(N = 943, 695, NNZ = 39, 297, 771)

Total solution time
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8
H-Matrix compression

Compression techniques of A

Write A as UV t

• A is M − by − N

• U is M − by − r , V is N − by − r

• ||A − UV t || < tol ||A||

Tolerance

• Absolute tolerance: tol

• Norm of the block being compressed: ||A||2

• Relative tolerance: tolA =
√

tol × ||A||2

Truncation method

• SVD: A = uσv t
. Keep k singular values such that σk < tolA

• RRQR: A = Qk Rk . Stop when ||Ã(k + 1 :, k + 1 :)||2 < tolA
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Why using such techniques?

Dense matrix product updates

• C+ = A ∗ B

• Time complexity: Θ(n3), with N the block size

• Memory complexiity: Θ(n2) memory complexity

Low rank matrix product updates

• C+ = UA ∗ V t
A ∗ UB ∗ V t

B

• Time complexity: Θ(r 2 ∗ n)

• Memory complexity: Θ(r ∗ n)
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Why using such techniques?

Current solver – for 3D problems

• Θ(n2) time complexity

• Θ(n
4

3 ) memory complexity

• BLAS 3 operations

Target solver – for 3D problems

• Θ(n
4

3 ) time complexity

• Θ(n log(n)) memory complexity

• BLAS 3 operations

Objective: build a black-box algebraic low-rank solver following the supernodal

approach of PaStiX, with block-data structures.
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Block-Low-Rank Compression – Symbolic Factorization

Large off-diagonal are low-rank, in the form uv t
.
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Block-Low-Rank Algorithm

Approach

• Large supernodes are partitioned into a set of smaller supernodes

• Large off-diagonal blocks are represented as low-rank blocks

Operations

• Diagonal blocks are dense

• TRSM are performed on low-rank off-diagonal blocks

• GEMM are performed between low-rank off-diagonal blocks. It creates

contributions to dense or low-rank blocks: this is the extend-add problem

Compression techniques

• SVD, RRQR for now

• Easily extension to any algebraic method: ACA etc...

• Possible extension to randomized techniques etc...
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Two different Scenarios: Scenario END

Scenario END: Compress L (similar to BLR-MUMPS: FCSU version)

1. Eliminate each column block

1.1 Factorize the dense diagonal block

1.2 Compress off-diagonal blocks belonging to the supernode

1.3 Apply a TRSM on LR blocks (cheaper)

1.4 LR update on dense matrices

2. Solve triangular systems with low-rank blocks

Untouched

READ

READ/WRITE

CREATED
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Two different Scenarios: Scenario BEGIN

Scenario BEGIN: Compress A

1. Compress large off-diagonal blocks in A (exploiting sparsity)

2. Eliminate each column block

2.1 Factorize the dense diagonal block

2.2 Apply a TRSM on LR blocks (cheaper)

2.3 LR update on LR matrices (extend-add)
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Extend-add: SVD Recompression

A low-rank structure u1v t
1 receives a low-rank contribution u2v t

2.

Algorithm

A = u1v
t
1 + u2v

t
2 =

(

[u1, u2]
)

×
(

[v1, v2]
)t

• QR: [u1, u2] = Q1R1 Θ(m(r1 + r2)
2)

• QR: [v1, v2] = Q2R2 Θ(n(r1 + r2)
2)

• SVD: R1Rt
2 = uσvT Θ((r1 + r2)

3)

A =
(

Q1uσ
)

×
(

Q2v
)t

u1 u2m

r1 r2

0

0
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Extend-add: RRQR Recompression

A low-rank structure u1v t
1 receives a low-rank contribution u2v t

2.

u1 and u2 are orthogonal matrices

Algorithm

A = u1v
t
1 + u2v

t
2 =

(

[u1, u2]
)

×
(

[v1, v2]
)t

Orthogonalize u2 with respect to u1 :

u
∗

2 = u2 − u1(u
t
1u2) Θ(mr1r2)

Form new orthogonal basis, and normalize each column :

[u1, u2] = [u1, u
∗

2 ]×

(

I ut
1u2

0 I

)

Apply a RRQR on :
(

I ut
1u2

0 I

)

×
(

[v1, v2]
)t

RRQR with truncation in Θ(n(r1 + r2)r
∗

1 ) . Less stable?
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Summary of both scenarios BEGIN and END

Memory consumption

• BEGIN scenario really saves memory

• END scenario reduces the size of L’ factors, but supernodes are allocated

dense at the beginning: no gain in pure right-looking

Update

• BEGIN scenario requires expensive extend-add algorithms to update

(recompress) low-rank structures

• END scenario continues to apply dense update at a smaller cost

Potential optimizations

• BEGIN: Merge similar contributions together before applying a single

recompression

• END: Use a left-looking algorithm to compress a block just before a

supernode is eliminated. This approach may reduce the level of parallelism
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Context

Machine: 2 INTEL Xeon E5-2680 v3 at 2.50 GHz

• 128 GB

• 24 threads

3D Matrices from The SuiteSparse Matrix Collection

• Atmosmodj: atmospheric model (1270432 dofs)

• Audi: structural problem (943695 dofs)

• Hook: model of a steel hook (1498023 dofs)

• Serena: gas reservoir simulation (1391349 dofs)

• Geo1438: geomechanical model of earth (1437960 dofs)

• + laplacian’s generator: Poisson problem

Parallelism is obtained following PASTIX static scheduling strategy for

multi-threaded architectures.
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Parameters

Entry parameters

• Tolerance: absolute parameter (normalized for each block)

• Compression method: SVD or RRQR

• Compression scenario: BEGIN or END

• Blocking sizes: between 128 and 256 in following experiments

Scenario BEGIN

• Blocks are compressed at the beginning

• Each contribution implies a recompression

Scenario END

• Blocks are compressed just before a supernode is eliminated

• Those blocks are never uncompressed
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Performance on general matrices: RRQR/END (24 CPUs)
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Performance on general matrices: RRQR/BEGIN (24 CPUs)
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Convergence of RRQR/BEGIN, tolerance=1e − 04
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Memory on general matrices: BEGIN
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Scaling on laplacians: Memory Consumption RRQR/BEGIN
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Toward low rank compressions in supernodal solver

Many works on hierarchical matrices and direct solvers

• Eric Darve : Hierarchical matrices classifications (Building O(N) Linear

Solvers Using Nested Dissection)

• Sherry Li : Multifrontal solver + HSS (Towards an Optimal-Order

Approximate Sparse Factorization Exploiting Data-Sparseness in

Separators)

• David Bindel : CHOLMOD + Low Rank (An Efficient Solver for Sparse

Linear Systems Based on Rank-Structured Cholesky Factorization)

• Jean-Yves L’Excellent : MUMPS + Block Low Rank

xxM. Faverge – PATC PLA 2017 - PASTIX 64/77



Symbolic factorization

xxM. Faverge – PATC PLA 2017 - PASTIX 65/77

Nested dissection, 2D mesh/matrix

xxM. Faverge – PATC PLA 2017 - PASTIX 66/77

Computational cost (O(N2) for 3D PDE)
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Low-Rank Compression of Supernodes

xxM. Faverge – PATC PLA 2017 - PASTIX 68/77

FastLA associate team between INRIA/Berkeley/Stanford

Supernodal Solver - Hierarchical Matrices O(N.loga(N))

1. Check the potential compression ratio on top level blocks

2. Develop a prototype with:

- low-rank compression on the larger supernodes
- compression tree built at each update
- complexity analysis of the approach

3. Study coupling between nested dissection and compression tree ordering

Which algorithm to find low-rank approximation ?

SVD, RR-LU, RR-QR, ACA, CUR, Random ...

Which family of hierarchical matrix ?

H, H2
, HODLR ...
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Summary and future works



Summary of the PaStiX 5.2.3 features Former version

• LLt, LDLt, LU : supernodal implementation (BLAS3)

• Static pivoting + Refinement: CG/GMRES

• Simple/Double precision + Float/Complex operations

• Require MPI + Posix Thread (PETSc driver)

• MPI/Threads (Cluster/Multicore/SMP/NUMA)

• Centralized or Distributed interface

• Dynamic scheduling NUMA (static mapping)

• Support external ordering library (PT-Scotch/METIS)

• Multiple RHS (direct factorization)

• Incomplete factorization with ILU(k) preconditionner

• Schur computation (hybrid method MaPHYS or HIPS)

• Out-of Core implementation (shared memory only)
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PaStiX 6.0 features

Factorization

Real s/d Complex c/z

POTRF LLt LLH

PXTRF - LLt

HETRF - LDLH

SYTRF LDLt LDLt

GETRF LU LU

Solve

• TRSM-like interface (LLT, LLN, LUN only for now)

• DIAG operation for LDLt
, LDLH

Iterative refinement

• GMRES, BCG, CG
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PaStiX 6.0 Schedulers

Which scheduler

Seq. P-Thread Runtime

Static Dyn StarPU PaRSEC

POTRF SHM/LR SHM/LR - - SHM/LR (GPU)

PXTRF Coming Coming - - Coming

HETRF SHM SHM - - -

SYTRF SHM SHM - - -

GETRF SHM/LR SHM/LR - - SHM/LR (GPU)

TRSM SHM/LR SHM/LR - - -

DIAG SHM/LR SHM/LR - - -

Future development

• Integration of StarPU (SHM+GPU), similar coverage as PaRSEC

• Integration of MPI in all non runtime implementation
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PaStiX 6.0

• Static pivoting + Refinement: CG/GMRES

• Multiple RHS (direct factorization)

• Schur computation (hybrid method MaPHYS or HIPS):

- Improved parallelism
- Solve operation on either interior and/or schur

• Support external ordering libraries:

- Scotch, PT-Scotch, Metis, ParMetis (Under Dev.), Personal

• Open source git repository: https://gitlab.inria.fr/solverstack/pastix

• Open to external contributions

xxM. Faverge – PATC PLA 2017 - PASTIX 74/77

Softwares

Graph/Mesh partitioner and ordering :

http://scotch.gforge.inria.fr

Sparse linear system solvers :

http://pastix.gforge.inria.fr

http://hips.gforge.inria.fr

https://wiki.bordeaux.inria.fr/maphys/doku.php
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Softwares

Fast Multipole Method :

http://scalfmm-public.gforge.inria.fr/

Matrices Over Runtime Systems (with University of Tenessee):

http://icl.cs.utk.edu/projectsdev/morse
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MaPHyS: a Massively Parallel Hybrid Solver

HiePACS team, Gilles Marait

PRACE 03/02/2017, Ostrava

Parallel sparse linear solver

Goal: solving Ax = b, where A is sparse, on distributed architectures

Usual trades o�

Direct

� Robust/accurate for general

problems

� BLAS-3 based implementations

� Memory/CPU prohibitive for large

3D problems

� Limited weak scalability

Iterative

� Problem dependent e�ciency /

accuracy

� Sparse computational kernels

� Less memory requirements and

possibly faster

� Possible high weak scalability
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Step 1: Domain decomposition (Analysis)

Global Matrix A

� A is a general sparse matrix. We want to solve Ax = b.
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Step 1: Domain decomposition (Analysis)

Global Matrix A Adjacency graph G

� The adjacency graph of A (n×n) is used as an algebraic mesh:

G = ({1, . . . , n} , {(i , j), aij 6= 0 | aji 6= 0})

� On the �rst row of A, a1,1, a1,2 and a1,11 6= 0

⇒ (1, 1), (1, 2) and (1, 11) ∈ G 2/32

Step 1: Domain decomposition (Analysis)

Global Matrix A Adjacency graph G

� A graph partitioner is used to split the graph (ND algorithm)

� node separator → Γ = {interface nodes}

� disconnected sets of nodes → Ii = {interior nodes subdomain i}

� reordering: I=
⋃

I
i
�rst and Γ last
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Step 1: Domain decomposition (Analysis)

Global Matrix A Adjacency graph G

(

AII AIΓ

AΓI AΓΓ

)(

xI

xΓ

)

=

(

bI

bΓ

)
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Step 1: Domain decomposition (Analysis)

Global Matrix A Adjacency graph G

� AII has a block diagonal structure suitable for parallel computation

2/32



Step 1: Domain decomposition (Analysis)

Global Matrix A Adjacency graph G

� How do we distribute AΓΓ?

2/32

Step 1: Domain decomposition (Analysis)

Local Matrix Ai Adjacency graph G

� We assign each interface node to a neighboring subdomain

i
i i i i

i i i i

N

i 1

T
i i i

� Parallel implementation: 1 subdomain 1 MPI process
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Step 1: Domain decomposition (Analysis)

Local Matrix Ai Adjacency graph G

� We assign each interface node to a neighboring subdomain

Ai =

(

AIiIi
AIiΓi

AΓiIi
AΓiΓi

)

A =

N
∑

i=1

RT
i AiRi

� Parallel implementation: 1 subdomain ⇔ 1 MPI process 3/32
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Step 2: Factorization

Local Matrix Ai Adjacency graph G

� We factorize AIiIi
and compute Si = AΓiΓi

−AΓiIi
A−1

IiIi
AIiΓi

Ai =

(

AIiIi
AIiΓi

AΓiIi
AΓiΓi

)
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Step 2: Factorization

Local Schur Si Adjacency graph G

� We factorize AIiIi
and compute Si = AΓiΓi

−AΓiIi
A−1

IiIi
AIiΓi

� Now, on each subdomain, the whole local problem is condensed onto

the interface (dense matrix)

4/32

Step 2: Factorization

Local Schur Si Adjacency graph G

� We solve the interface problem SxΓ = f = bΓ −AΓIA
−1
II

bI

with a preconditioned Krylov method

4/32
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Step 3: Algebraic Additive Schwarz (aS) Preconditioner

Assembled Local Schur S̄i Adjacency graph G

� No overlap in Si = AΓiΓi
−AΓiIi

A−1
IiIi

AIiΓi
: S =

∑N

i=1R
T
Γi
SiRΓi

� Assemble S̄i = RΓi
SRT

Γi

� MaS/S =
N
∑

i=1

RT

Γi
S̄−1

i
RΓi
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Assemble local schur computation

� Local Schur:

Si =

(

Skk
i Skl

i

S lk
i S ll

i

)

� Neighbor to neighbor communications:

S̄ ll
i =

∑

k∈adj

S ll
k

� Assembled local Schur:

S̄i =

(

¯Skk
i Skl

i

S lk
i S̄ ll

i

)

� Algebraic Additive Schwarz Preconditionner:

MaS/S =
N
∑

i=1

RT
Γi
S̄−1
i RΓi
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Step 4: Solve

Local Schur Si Adjacency graph G

� on Γ: Krylov method

� S xΓ = f preconditioned with MaS/S

� on : Direct method

� x
i

1

i i
b

i i i
x

i
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Step 4: Solve

Local Matrix Ai Adjacency graph G

� on Γ: Krylov method

� S xΓ = f preconditioned with MaS/S

� on I: Direct method

� x
Ii

= A−1

Ii Ii
(b

Ii
−A

Ii Γi
xΓi

)
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Summary

Step 1: Algebraic domain decomposition

� A =
∑N

i=1R
T
i AiRi with Ai =

(

AIiIi
AIiΓi

AΓiIi
AΓiΓi

)

Step 2: Factorization

� Computation of A−1
IiIi

and Si = AΓiΓi
−AΓiIi

A−1
IiIi

AIiΓi

Step 3: Preconditioning

� Assembly and factorization of S̄i

Step 4: Solve

� on Γ: Krylov method

� S xΓ = f preconditioned with MaS/S =
∑

N

i=1 R
T

Γi
S̄−1

i
RΓi

� on I: Direct method

� x
Ii

= A−1

Ii Ii
(b

Ii
−A

Ii Γi
xΓi

) 8/32
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Presentation

Parallel Domain decomposition Schur complement based Linear Solver

Hybrid solver developped in Berkley.

Developers:

� Ichitaro Yamazaki

� X. Sherry Li
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PSDLin domain decomposition

Local Matrix Ai Adjacency graph G

Analysis and domain decomposition like in MaPHyS:

Ai =

(

AIiIi
AIiΓi

AΓiIi
AΓiΓi

)

A =

N
∑

i=1

RT
i AiRi
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Global algebraic view

� Global hybrid decomposition:

A =

(

AII AIΓ

AΓI AΓΓ

)

� Global Schur complement

S = AΓΓ −AΓIA
−1
II

AIΓ

11/32

Local algebraic view

� Local hybrid decomposition:

A′

i =

(

AIiIi
AIiΓi

AΓiIi
0

)

� Local pre-Schur complement:

S ′

i = −AΓiIi
A−1

IiIi
AIiΓi

� Global Schur complement:

S = AΓΓ −
N
∑

i=1

RT
Γi
S ′

iRΓi

� Global preconditioner: M = S−1

12/32

Dropping

� Direct / direct method?

� Three successive dropping techniques:

� local dropping on
i i

� local dropping on i

� global dropping on

� S

� M S 1 : direct/iterative method
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Dropping

� Direct / direct method?

� Three successive dropping techniques:

� local dropping on A
Ii Γi

� local dropping on S ′

i

� global dropping on S

� S → S̃

� M = S̃−1 : direct/iterative method
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Current software implementation

Parallelism

� MPI: 1 subdomain ⇔ 1 MPI process

Partitioner

� Scotch [F. Pellegrini et al.]

Sparse direct solver

� MUMPS [P.R. Amestoy et al.]

� PaStiX [P. Ramet et al.]

Iterative Solvers

� CG/GMRES/FGMRES [V.Fraysse and L.Giraud]

Dense direct solver

� Your favorite BLAS and LAPACK implementations

14/32
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Multi-threading: implementation

Parallelism

� MPI: 1 domain ⇔ 1 MPI process with multi-threading

Dense direct solver

� BLAS and LAPACK: multi-threaded MKL library

Sparse direct solver

� MUMPS [P.R. Amestoy et al.] with multi-threaded MKL library

� PaStiX [P. Ramet et al.] with internal multi-threading

Iterative Solvers

� CG/GMRES/FGMRES [V.Fraysse and L.Giraud] with multi-threaded

MKL library

15/32

Multi-threading: advantage

More �exibility to exploit multicore nodes

� 1 core per domain ⇒ 32 domains

16/32



Multi-threading: advantage

More �exibility to exploit multicore nodes

� 2 cores per domain ⇒ 16 domains
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Multi-threading: advantage

More �exibility to exploit multicore nodes

� 4 cores per domain ⇒ 8 domains
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Multi-threading: advantage

More �exibility to exploit multicore nodes

� 8 cores per domain ⇒ 4 domains

16/32

Multi-threading: experiment

Hopper plateform

� Bi-socket nodes 12-core AMD MagnyCours @ 2.1GHz

� 32 GB DDR3 per node

Matrices

Matrix Matrix211 Nachos4M

order 801K 4.147K

nnz 129.4M 256.4M
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Multi-threading: experiment

Hopper plateform

� Bi-socket nodes 12-core AMD MagnyCours @ 2.1GHz

� 32 GB DDR3 per node

Matrix211
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Multi-threading: experiment

Hopper plateform

� Bi-socket nodes 12-core AMD MagnyCours @ 2.1GHz

� 32 GB DDR3 per node

Nachos4M

19/32



Outline

MaPHyS overview

MaPHyS step by step

PDSLin

Current software implementation

Features

Multi-threading

Sparsi�cation / approximation on the interface

MaPHyS interfaces

Coarse grid correction

Ongoing e�orts

19/32

Sparsi�cation / approximation of the interface system

Local Schur complement Si dense

1. preconditioner S̄−1
i construction expensive as a dense matrix

2. computation / memory requirements for Si expensive

1. Sparsi�cation of the local preconditioner

� dropping strategy to build S̃i ≈ S̄i with S̃i sparse

s̃lj =

{

0, if |s̄lj | < ǫ(|s̄ll |+ |s̄jj |),

s̄lj , otherwise

2. Approximation of the local Schur

� partial ILU(t,p) factorization of Ai to compute approximate Schur

20/32
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Interfaces for MaPHyS

Application _

Analysis _

Factorization _ _ _ _ _

Preconditioner Setup _ _ _ _ _

Solve _ _ _ _ _

Centralized Matrix Input

� Application provides global matrix A on one MPI process

� MaPHyS performs algebraic domain decomposition and data

distribution on MPI processes

� Convenient, but does not scale

� problem size

� number of processes

21/32

Interfaces for MaPHyS

Application _ _ _ _ _

Factorization _ _ _ _ _

Preconditioner Setup _ _ _ _ _

Solve _ _ _ _ _

Distributed subdomain interface

� Application performs domain decomposition and provides subdomain

connectivity and local matrices Ai in a distributed way

� Algebraic domain decomposition is bypassed

� Naturally compliant with FEM, but also FV, HDG. . .

� Currently in use into TECSER ANR project, HPC4Energy project,

. . .

21/32
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Current software implementation

Features

Multi-threading

Sparsi�cation / approximation on the interface

MaPHyS interfaces

Coarse grid correction

Ongoing e�orts
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Motivation: Coarse Correction for MaPHyS

Need for Coarse Correction

� Good scalability of the direct part ,

� The size and condition number of the iterative problem increases

with the number of subdomains /

A proved robust coarse space for a larger class of methods

� Generalized Abstract Schwarz (GAS) methods

� Only works in the SPD case, with distributed input

Two implementations

� A python prototype, providing a framework for distributed GAS

methods

� Integrated in MaPHyS 0.9.4
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Example: 2D Test problem

Heterogeneous di�usion

� ∇(K∇u) = q

� 7 alternating conductivity

layers

� Subdomain: 20× 20 elements

Boundary conditions

� Dirichlet on the left

� Neumann elsewhere

� Source: q = 1

Conductivity K (N = 8 subdomains)

Solution x (N 8 subdomains)
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Example: 2D Test problem

Heterogeneous di�usion

� ∇(K∇u) = q

� 7 alternating conductivity

layers

� Subdomain: 20× 20 elements

Boundary conditions

� Dirichlet on the left

� Neumann elsewhere

� Source: q = 1

Conductivity K (N = 8 subdomains)

Solution x∗ (N = 8 subdomains)
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Weak Scalability

N 2 4 8 16 32 64 128 256 512

niter 1 7 13 21 33 54 92 169 325
24/32

Convergence Behavior

xΓ, N = 128, niter = 0

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 10

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 20

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 30

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 40

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 50

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 60

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 70

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 70

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 70

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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Convergence Behavior

xΓ, N = 128, niter = 70

Problem

� No global exchange of information

Solution

� Use an exact direct solve on a coarse space V0

Contribution

� Coarse space for MaPHyS

� but also for a wider class of methods

� only in the SPD case
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aS

2

Step by step

Step 1: Domain Decomposition

(Application level)

� A =
∑N

i=1R
T
i AiRi

Step 2: Factorization

� Computation of A−1
IiIi

and Si = AΓiΓi
−AΓiIi

A−1
IiIi

AIiΓi

Step 3: Preconditioner Setup

� MaS

2

=

0

∑N

i=1R
T
Γi

(

RΓi
SRT

Γi

)

−1
RΓi

Step 4: Solve

� on Γ: Krylov method S xΓ = f preconditioned with MaS

2

� on I: Direct method xIi
= A−1

IiIi
(bIi

−AIiΓi
xΓi

)

26/32

aS, 2 Step by step

Step 1: Domain Decomposition (Application level)

� A =
∑N

i=1R
T
i AiRi

Step 2: Factorization

� Computation of A−1
IiIi

and Si = AΓiΓi
−AΓiIi

A−1
IiIi

AIiΓi

Step 3: Preconditioner Setup

� MaS,2 = M0 +
∑N

i=1R
T
Γi

(

RΓi
SRT

Γi

)

−1
RΓi

Step 4: Solve

� on Γ: Krylov method S xΓ = f preconditioned with MaS,2

� on I: Direct method xIi
= A−1

IiIi
(bIi

−AIiΓi
xΓi

)
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3D Test problem

Heterogeneous di�usion

� ∇(K∇u) = 1

� Alternating conductivity layers of 3 elements (ratio K between

layers)

� Dirichlet on the left, Neumann elsewhere

Domain decomposition

� N × 1× 1 (1D decomposition)

� N/2× 2× 1 (2D decomposition)

� Constant subdomain size: 10× 10× 10 elements

Implementation

� python/MPI

27/32
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Outline

MaPHyS overview

MaPHyS step by step

PDSLin

Current software implementation

Features

Ongoing e�orts
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Ongoing e�orts

1. Data-sparse preconditioner: consider H-matrix for local Schur

complement representation (FASTLA with Stanford) - Funding Inria

Région Aquitaine - Y. Harness

2. Multiple RHS: Inexact Breakdown Block GMRES with De�ated

Restart standalone library IB-BGMRES-DR - Funding from

DGA-RAPID/HI-BOX - C. Piacibello

3. Parallel algebraic domain decomposition for MaPHyS: consider input

in any distributed format and perform parallel domain decomposition

standalone library Paddle - Funding from ANR TECSER - M. Kuhn
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Outline

MaPHyS overview

Installation and current releases
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MaPHyS

Installing MaPHyS

� MaPHyS and its dependencies can be installed through spack in

≤ 15 minutes + co�ee break

morse.gforge.inria.fr/spack/spack.html

� From a laptop to an heterogeneous supercomputer

Bash

# Install and load spack

git clone https://github.com/fpruvost/spack.git

cd spack

. ./share/spack/setup-env.sh

# Install maphys

spack install maphys
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MaPHyS versions

MaPHyS 0.9.3

� current version, multi-threading, distributed subdomain interface

MaPHyS 0.9.4

� integration of the Coarse Grid Correction

� already available through spack:

Bash

spack install maphys@0.9.4

MaPHyS 1.0 (work in progress)

� Rede�nition of MaPHyS interface for current and future needs

� Integration of Paddle (Analysis step)

� Integration of IB-BGMRES-DR (multi-RHS iterative solver)
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Krylov subspace methods from the historical, analytic, application,
and high performance computing perspective

Zdeněk Strakoš
Charles University and Czech Academy of Sciences, Prague

PRACE course, Ostrava, February 2017
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Tomáš Gergelits,
Jörg Liesen,
Josef Málek,
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Miroslav Tůma.
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

Matrices and operators in infinite dimensional Hilbert spaces.

Euler
Gauss
Jacobi
Chebyshev, Markov
Stieltjes
Hilbert, von Neumann
Krylov, Gantmakher
Lanczos, Hestenes, Stiefel
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

Cornelius Lanczos, Why Mathematics, 1966

“ In a recent comment on mathematical preparation an educator wanted to
characterize our backwardness by the following statement: ”Is it not astonishing
that a person graduating in mathematics today knows hardly more than what Euler
knew already at the end of the eighteenth century?”. On its face value this sounds a
convincing argument. Yet it misses the point completely. Personally I would not
hesitate not only to graduate with first class honors, but to give the Ph.D. (and with
summa cum laude) without asking any further questions, to anybody who knew only
one quarter of what Euler knew, provided that he knew it in the way in which Euler
knew it. ”
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

Cornelius Lanczos, Linear Differential Operators, 1961

“To get an explicit solution of a given boundary value problem is in this age of large
electronic computers no longer a basic question. The problem can be coded for the
machine and the numerical answer obtained. But of what value is the numerical
answer if the scientist does not understand the peculiar analytical properties and
idiosyncrasies of the given operator?”
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

analytic: The progress in computing technology and the need for solving
practical problems forces us to think algorithmically and do things fast.
Analytic view is by its nature slow and it does not keep up with the pace.
But analytic view is absolutely crucial. It makes a little sense to progress fast
in a wrong direction.

Cornelius Lanczos, The Inspired Guess in the History of Physics, 1964,

“Once the great mathematician Gauss was engaged in a particularly important
investigation, but seemed to make little headway. His colleagues inquired when the
publication was to appear. Gauss gave them an apparently paradoxical and yet
perfectly correct answer: ‘I have all the results but I don’t know yet how I am going
to get them’.”
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

analytic: The progress in computing technology and the need for solving
practical problems forces us to think algorithmically and do things fast.
Analytic view is by its nature slow and it does not keep up with the pace.
But analytic view is absolutely crucial. It makes a little sense to progress fast
in a wrong direction.

application: Development and application of mathematics lives in an
unbreakable symbiosis. I do not believe in “pure” against “applied”
mathematics. This division is artificial, caused by proudness and ambitions.
As a malign disease it leads mathematics to fragmentation and the fields of
mathematics to dangerous isolation. Applications are like a fresh water.
Any application must, however, honor the assumptions of the theory.
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Meaning of the words - application

Henri Poincaré, 1909, graduate of the Polytechnique

“The scientist does not study nature because it is useful; he studies it because he
delights in it, and he delights in it because it is beautiful. If nature were not
beautiful, it would not be worth knowing, and if nature were not worth knowing, life
would not be worth living. ...
I mean that deeper beauty coming from the harmonious order of the parts, and that
a pure intelligence can grasp.

Science has had marvelous applications, but a science that would only have
applications in mind would not be science anymore, it would be only cookery.”
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Meaning of the words

Matrix iterative methods −→ Krylov subspace methods

historical: Without understanding the history we are confused in the presence
and we will get lost in the future. This holds also for mathematics.

analytic: The progress in computing technology and the need for solving
practical problems forces us to think algorithmically and do things fast.
Analytic view is by its nature slow and it does not keep up with the pace.
But analytic view is absolutely crucial. It makes a little sense to progress fast
in a wrong direction.

application: Development and application of mathematics lives in an
unbreakable symbiosis. I do not believe in “pure” against “applied”
mathematics. This division is artificial, caused by proudness and ambitions. As
a malign disease it leads mathematics to fragmentation and the fields of
mathematics to dangerous isolation. Applications are like a fresh water. Any
application must honor the assumptions of the theory.

computational: Computing is a very involved process. Computers should serve
in solving properly mathematically formulated problems. Mathematics must
respect limitations of the computing technology.
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Meaning of the words - computational

John von Neumann and Herman H. Goldstine, Numerical ... , 1947

“When a problem in pure or in applied mathematics is ‘solved’ by numerical
computation, errors, that is, deviations of the numerical ‘solution’ obtained from the
true, rigorous one, are unavoidable. Such a ‘solution’ is therefore meaningless,
unless there is an estimate of the total error in the above sense.

Such estimates have to be obtained by a combination of several different methods,
because the errors that are involved are aggregates of several different kinds of
contributory, primary errors. These primary errors are so different from each other
in their origin and character, that the methods by which they have to be estimated
must differ widely from each other. A discussion of the subject may, therefore,
advantageously begin with an analysis of the main kinds of primary errors, or rather
of the sources from which they spring.

This analysis of the sources of errors should be objective and strict inasmuch as
completeness is concerned, . . . .”
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Cornelius Lanczos, March 9, 1947

On (what are now called) the Lanczos and CG methods:

“The reason why I am strongly drawn to such
approximation mathematics problems is ... the fact that
a very “economical” solution is possible only when it is very “adequate”.

To obtain a solution in very few steps
means nearly always that one has found a way
that does justice to the inner nature of the problem.”
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Albert Einstein, March 18, 1947

“Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”
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Albert Einstein, March 18, 1947

“Your remark on the importance of
adapted approximation methods makes very
good sense to me, and I am convinced
that this is a fruitful mathematical aspect,
and not just a utilitarian one.”

Main principle behind Krylov subspace methods:

Highly nonlinear adaptation of the iterations to the problem.

12 / 126

Conjugate Gradient (CG) method for Ax = b with A HPD (1952)

r0 = b − Ax0, p0 = r0 . For n = 1, . . . , nmax :

αn−1 =
r∗n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
r∗nrn

r∗n−1rn−1

pn = rn + βnpn−1

Here αn−1 ensures the minimization of ‖x − xn‖A along the line

z(α) = xn−1 + αpn−1 .
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Mathematical elegance of CG

Provided that

pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in
the n-dimensional minimization over the whole shifted Krylov subspace

x0 + Kn(A, r0) = x0 + span{p0, p1, . . . , pn−1} .
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the one-dimensional line minimizations at the individual steps 1 to n result in
the n-dimensional minimization over the whole shifted Krylov subspace

x0 + Kn(A, r0) = x0 + span{p0, p1, . . . , pn−1} .

The orthogonality condition leads to short recurrences due to the relationship
to the orthogonal polynomials that define the algebraic residuals and search
vectors.
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Mathematical elegance of CG

Provided that

pi ⊥A pj , i 6= j,

the one-dimensional line minimizations at the individual steps 1 to n result in
the n-dimensional minimization over the whole shifted Krylov subspace

x0 + Kn(A, r0) = x0 + span{p0, p1, . . . , pn−1} .

The orthogonality condition leads to short recurrences due to the relationship
to the orthogonal polynomials that define the algebraic residuals and search
vectors.

Inexact computation?
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Antoine de Saint-Exupéry, The Wisdom of the Sands, 1944

“I would not bid you pore upon a heap of stones, and turn them over and over, in
the vain hope of learning from them the secret of meditation. For on the level of the
stones there is no question of meditation; for that, the temple must have come into
being. But, once it is built, a new emotion sways my heart, and when I go away, I
ponder on the relations between the stones. ...

I must begin by feeling love; and I must first observe a wholeness. After that I
may proceed to study the components and their groupings. But I shall not trouble to
investigate these raw materials unless they are dominated by something on which my
heart is set. Thus I began by observing the triangle as a whole; then I sought to
learn in it the functions of its component lines. ...

So, to begin with, I practise contemplation. After that, if I am able, I analyse
and explain. ...

Little matter the actual things that are linked together; it is the links that I must
begin by apprehending and interpreting.”
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Outline

1 What are the Krylov subspace methods and what kind of mathematics is
involved?

2 Linear projections onto highly nonlinear Krylov subspaces

3 Model reduction and moment matching

4 Convergence and spectral information

5 Inexact computations and numerical stability

6 Functional analysis and infinite dimensional considerations

7 Operator preconditioning, discretization and algebraic computation

8 HPC computations with Krylov subspace methods?

9 Myths about Krylov subspace methods
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1. What are the Krylov subspace methods and what
kind of mathematics is involved?
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1 Historical development and context

Mechanical quadrature

Newton, Cotes 1720s

Gauss quadrature

Gauss 1814

Gauss quadrature and

orthogonal polynomials

Jacobi 1826

Generalisations of the

Gauss quadrature, 

minimal partial realisation

Christoffel 1858/77

Three-term recurrences

and continued fractions

Brouncker, Wallis 1650s

Infinite series expansions

and continued fractions

Euler 1744/48

Continued fractions and

three-term recurrence for

orthogonal polynomials

Chebyshev 1855/59

Continued fractions and 

Chebyshev inequalities

Chebyshev 1855,  

Markov, Stieltjes 1884 

Real symmetric matrices

have real eigenvalues, 

interlacing property

Cauchy 1824

Reduction of bilinear

form to tridiagonal form

Jacobi 1848

Diagonalisation of

quadratic forms

Jacobi 1857

Jordan canonical form

Weierstrass 1868,

Jordan 1870

Minimal polynomial

Frobenius 1878

Analytic theory of continued fractions,

Riemann-Stieltjes integral,

solution of the moment problem

Stieltjes 1894 

Jacobi form (or matrix)

Hellinger & Toeplitz 1914

Foundations of functional analysis, including continuous spectrum, resolution

of unity, self-adjoined operators, Hilbert space

Hilbert 1906-1912 

Orthogonalisation via

the Gramian

Gram 1883

Orthogonalisation algorithms

for functions and vectors

Schmidt 1905/07, Szász 1910

Mathematical foundations of 

quantum mechanics

Hilbert 1926/27,

von Neumann 1927/32,

Wintner 1929

Representation theorem

Riesz 1909

Modern numerical analysis

von Neumann & Goldstine 1947

Turing 1948

Krylov subspace methods

Lanczos 1950/52, Hestenes & Stiefel 1952

Transformation of the

characteristic equation

Krylov 1931

Orthogonalisation idea

Laplace 1820

1950

1650

Secular equation of the

moon

Lagrange 1774

Characteristic equation

Cauchy 1840

Krylov sequences

Gantmacher 1934
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1 Lanczos, Hestenes and Stiefel

Numerical analysis

Rounding error analysis

Least squares solutions

Gaussian elimination

Matrix theory

Optimisation

Structure and sparsity

Convex geometry

Convergence analysis

Cornelius Lanczos

An iteration method for the solution

of the eigenvalue problem of linear 

diff ti l d i t l t  1950

Polynomial preconditioningIterative methods Stopping criteria

Vandermonde determinant

Floating point computationsCost of computations

Data uncertainty

y

Projections

Orthogonalisation
Orthogonal polynomials

Linear algebra
Approximation theory

Chebyshev, Jacobi and

Legendre polynomials

Minimising functionals

g y
differential and integral operators, 1950

Solution of systems of linear equations

by minimized iterations, 1952

Chebyshev polynomials in the solution

of large-scale linear systems, 1952

Cauchy-Schwarz inequality

General inner products

Gauss-Christoffel quadrature Riemann-Stieltjes integral

Sturm sequences

Rayleigh quotients Differential and integral operators

Fredholm problem

Functional analysis

g p y

Continued fractions

Liouville-Neumann expansion

Magnus R. Hestenes & Eduard Stiefel

Methods of conjugate gradients for

solving linear systems, 1952

Green s function

Fourier series

Dirichlet and Fejér kernel

Trigonometric interpolation

Gibbs oscillation

Gauss Christoffel quadrature Riemann Stieltjes integral

Real analysis

Dirichlet and Fejér kernel
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1 Homework problem

Consider 2n real numbers m0, m1, . . . , m2n−1.
Solve the 2n equations

n∑

j=1

ω
(n)
j {θ(n)

j }ℓ = mℓ , ℓ = 0, 1, . . . , 2n − 1 ,

for the 2n real unknowns ω
(n)
j > 0, θ

(n)
j .
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1 Homework problem

Consider 2n real numbers m0, m1, . . . , m2n−1.
Solve the 2n equations

n∑

j=1

ω
(n)
j {θ(n)

j }ℓ = mℓ , ℓ = 0, 1, . . . , 2n − 1 ,

for the 2n real unknowns ω
(n)
j > 0, θ

(n)
j .

Is this problem linear?
Does it look easy?
When does it have a solution?
How the solution can be determined?
How the solution can be computed?
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1 Positive definite linear functionals on polynomials

Linear functional L(x) is positive definite on the space of polynomials Pn of
degree at most n if its first 2n + 1 moments

L(xℓ) = mℓ, ℓ = 0, 1, . . . , 2n

are real and the Hankel matrix Mn of moments is positive definite, i.e., ∆n > 0 ,
where

∆n = |Mn| =

∣∣∣∣∣∣∣∣∣

m0 m1 · · · mn

m1 m2 · · · mn+1

...
...

. . .
...

mn mn+1 · · · m2n

∣∣∣∣∣∣∣∣∣

.
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1 Stieltjes moment problem (1894) of order n

With the positive definite L(x) we can restrict ourselves to real polynomials of a
real variable and write, using a non-decreasing positive distribution function µ
defined on the real axis having finite limits at ±∞,

L(f) =

∫
f(x) dµ(x) ,

with the inner product

(p, q) := L(p(x)q(x)) =

∫
p(x)q(x) dµ(x) .
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1 Stieltjes moment problem (1894) of order n

With the positive definite L(x) we can restrict ourselves to real polynomials of a
real variable and write, using a non-decreasing positive distribution function µ
defined on the real axis having finite limits at ±∞,

L(f) =

∫
f(x) dµ(x) ,

with the inner product

(p, q) := L(p(x)q(x)) =

∫
p(x)q(x) dµ(x) .

Solution of the Stieltjes moment problem of order n exists
and it is unique if and only if (with some m2n > 0) we have ∆n > 0 .
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1 The unknown ω
(n)
j , θ

(n)
j ?

Cholesky decomposition of the matrix of moments Mn = LnLT
n

The entries of the ℓth row of the the inverse L−1
n give the coefficients of the

ℓth orthonormal polynomial determined by the positive definite linear
functional L(x) associated with the matrix of moments Mn .

Roots of the ℓth orthogonal polynomial give the quadrature nodes θ
(ℓ)
j . The

weights ω
(ℓ)
j are given by the formula for the interpolatory quadrature.

Computations are done differently

(Gragg and Harrod, Gautschi, Laurie, ...)

O’Leary, S, Tichý, On Sensitivity of Gauss-Christoffel quadrature, Numerische
Mathematik, 107, 2007, pp. 147 –174

Pranic, Pozza, S, Gauss quadrature for quasi-definite linear functionals, IMA J.
Numer. Anal, 2016 (to appear)
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1 All we talk about is the conjugate gradient or the Lanczos method!

Distribution function ω(λ) associated with Ax = b, r0 = b − Ax0, A SPD:

λi, si are the eigenpairs of A , ωi = |(si, w1)|2

...

0

1

ω1

ω2

ω3

ω4

ωN

ζ λ1 λ2 λ3
. . . . . . λN ξ
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1 Spectral decomposition A =
∑N

ℓ=1 λℓ sℓs
∗

ℓ

Symbolically

w∗
1Aw1 = w∗

1

(
N∑

ℓ=1

λℓ sℓs
∗
ℓ

)
w1 ≡ w∗

1

(∫ b

a

λdE(λ)

)
w1

=

N∑

ℓ=1

λℓ w∗
1sℓ s∗ℓw1 =

N∑

ℓ=1

λℓ ωℓ =

∫ b

a

λ dω(λ) ,

where dE(λℓ) ≡ sℓs
∗
ℓ and

I =
N∑

ℓ=1

sℓs
∗
ℓ ≡

∫ b

a

dE(λ) .

Hilbert (1906, 1912, 1928), Von Neumann (1927, 1932), Wintner (1929) .
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2. Linear projections onto highly nonlinear Krylov
subspaces

References:

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 2
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2 Krylov sequences and (cyclic) Krylov subspaces

The Krylov sequence generated by A ∈ C
N×N and v ∈ C

N

v, Av, A2v, . . .

The nth Krylov subspace generated by A ∈ C
N×N and v ∈ C

N

Kn(A, v) := span{v, Av, . . . , An−1v}, n = 1, 2, . . .

By construction,

K1(A, v) ⊂ K2(A, v) ⊂ · · · ⊂ Kd(A, v) = Kd+k(A, v) for all k ≥ 1.

v

A

##
Av

A

  
· · ·

A

""
Ad−2v

A

$$
Ad−1v

K1(A, v)

A

;;K2(A, v)

A

>>· · ·

A

<<Kd−1(A, v)

A

::Kd(A, v)

A

DD
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2 Krylov subspace methods

Krylov subspace methods are based on a sequence of projections onto the
nested Krylov subspaces that form the search spaces.

Linear algebraic system Ax = b: x0 (possibly zero), r0 = b − Ax0.

xn ∈ x0 + Sn = x0 + Kn(A, r0) such that rn = b − Axn ⊥ Cn, n = 1, 2, . . .

n-dimensional constraints space Cn determines the different methods.

Eigenvalue problem Ax = λx: v (nonzero), find (λn, xn) such that

xn ∈ Kn(A, v) and rn = Axn − λnxn ⊥ Cn.

Examples: The Lanczos and Arnoldi methods, where Cn = Kn(A, v).
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2 Examples of Krylov subspace methods for Ax = b

Method is well defined when xn is uniquely determined for n = 1, 2, . . . , d − 1,
and xd = x (in exact arithmetic).

Conjugate gradient (CG) method: Sn = Cn = Kn(A, r0).

Well defined for HPD matrices A; short recurrences.
Orthogonality rn ⊥ Kn(A, v) is equivalent to optimality:

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A.

GMRES method: Sn = Kn(A, r0), Cn = AKn(A, r0).

Well defined for nonsingular matrices A; full recurrences.
Orthogonality rn ⊥ AKn(A, v) is equivalent to optimality:

‖b − Axn‖2 = min
z∈x0+Kn(A,r0)

‖b − Az‖2.

Numerous other Krylov subspace methods. Some of them are not well defined
in the above sense (e.g. BiCGStab or QMR).
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2 Conjugate gradients (CG), orthogonal projections and optimality

‖x − xn‖A = min
u∈ x0+Kn(A,r0)

‖x − u‖A

with the formulation via the Lanczos process, w1 = r0/‖r0‖ ,

A Wn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A, r0) AWn(A, r0) ,

and the CG approximation given by

Tn yn = ‖r0‖e1 , xn = x0 + Wn yn .

An = Qn A Qn = WnW ∗
n AWnW ∗

n = Wn Tn W ∗
n ,

Clearly, the projection process is very highly nonlinear in both A and r0 .
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2 (Petrov-) Galerkin framework

Projection idea in Krylov subspace methods is analogous to the Galerkin framework
in numerical solution of PDEs (here for convenience we take C = S).

Let S be an infinite dimensional Hilbert space, a(·, ·) : S × S → R be a bounded
and coercive bilinear form, f : S → R be a bounded linear functional.

Weak formulation: Find u ∈ S with

a(u, v) = f(v) for all v ∈ S .

Discretization: Find uh ∈ Sh ⊂ S with

a(uh, vh) = f(vh) for all vh ∈ Sh.

Galerkin orthogonality:

a(u − uh, vh) = 0 for all vh ∈ Sh.
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2 Operator problem formulation - motivation for part 7

Equivalently, there exists a bounded and coercive operator A : S → S#, with
the problem formulated as the following equation in the dual space:

Au = f.

Or, using the Riesz map τ : S# → S defined by the inner product in S , as the
following operator preconditioned equation in the function space

τAu = τf.

Discretization then gives

τhAhuh − τhfh ⊥ Sh.

Krylov subspace methods (here CG for A self-adjoint with respect to the duality
pairing) can be formulated in infinite dimensional Hilbert spaces and extended to
Banach spaces.
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2 CG in infinite dimensional Hilbert spaces - motivation for part 7

r0 = f −Au0 ∈ S#, p0 = τr0 ∈ S . For n = 1, 2, . . . , nmax :

αn−1 =
〈rn−1, τrn−1〉
〈Apn−1, pn−1〉

un = un−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉
pn = τrn + βnpn−1

Superlinear convergence for (identity + compact) operators.

Karush (1952), Hayes (1954), Vorobyev (1958)

Here the Riesz map τ indeed serves as a preconditioner.
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2 Summary and motivation

Krylov subspace methods for solving linear algebraic problems are based on
linear projections onto nested subspaces.

Krylov subspaces and therefore the resulting methods are highly nonlinear in
the data defining the problem.

The nonlinearity allows to adapt to the problem as the iteration proceeds.
This is not apparent, e.g., from the derivation of CG based on the
minimization of the quadratic functional, and this fact has affected negatively
the presentation of Krylov subspace methods in textbooks.

The adaptation can be better understood via the model reduction and moment
matching properties of Krylov subspace methods.
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3. Model reduction and moment matching

References:

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 3
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3 Jacobi matrix and the conjugate gradient method

Tn =




γ1 δ2

δ2

. . .
. . .

. . .
. . .

. . .

. . .
. . . δn

δn γn




is the Jacobi matrix of the orthogonalization coefficients and the CG method is
formulated by

Tntn = ‖r0‖ e1, xn = x0 + Vntn .
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3 The projected system, A HPD, CG method

Let the columns of Vn = [v1, . . . , vn] form an orthonormal basis of Kn(A, r0).

Matrix formulation of xn ∈ x0 + Kn(A, r0) and rn ⊥ Kn(A, r0):

xn = x0 + Vntn

and tn ∈ C
n is found by solving

V ∗
n AVn tn = ‖r0‖e1.

This can be viewed as a model reduction from a (large) system of order N to a
(small) system of order n.

Intuition: Projected system should capture fast a sufficient part of information
contained in the original data.

Intuition: Powering the operator tends to transfer dominant information as
quickly as possible into the projected system.
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3 Distribution functions and moments

Let A be HPD with spectral decomposition A = Y ΛY ∗, where
0 < λ1 < λ2 < · · · < λN (distinct eigenvalues for simplicity).

Suppose ωk = |(v1, yk)|2 > 0, k = 1, . . . , N , and define the distribution function

ω(λ) =






0, if λ < λ1,∑ℓ
k=1 ωk, if λℓ ≤ λ < λℓ+1, for ℓ = 1, . . . , N − 1,

1, if λN ≤ λ.

The moments of ω(λ) are given by

∫
λkdω(λ) =

N∑

ℓ=1

ωℓ{λℓ}k = v∗
1Akv1, k = 0, 1, 2, . . .

Analogous construction applied to Tn = V ∗
n AVn yields a distribution function

ω(n)(λ) with moments given by

∫
λkdω(n)(λ) =

n∑

ℓ=1

ω
(n)
ℓ {λ(n)

ℓ }k = eT
1 T k

ne1, k = 0, 1, 2, . . .
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3 Stieltjes recurrence and Jacobi matrix

Let φ0(λ) ≡ 1, φ1(λ), . . . , φn(λ) be the first n + 1 orthonormal

polynomials corresponding to the distribution function ω(λ) .

Then, writing Φn(λ) = [φ0(λ), . . . , φn−1(λ)]∗ ,

λ Φn(λ) = Tn Φn(λ) + δn+1 φn(λ) en

represents the Stieltjes recurrence (1893-4), see Chebyshev (1855), Brouncker
(1655), Wallis (1656), Toeplitz and Hellinger (1914) with the Jacobi matrix

Tn ≡




γ1 δ2

δ2 γ2

. . .

. . .
. . .

δn

δn γn




, δl > 0 , ℓ = 2, . . . , n .
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3 Fundamental relationship with Gauss quadrature

ω(n)(λ) is the distribution function determined by the n-node Gauss-Christoffel
quadrature approximation of the Riemann-Stieltjes integral with ω(λ).
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3 Continued fraction corresponding to ω(λ)

FN (λ) ≡ 1

λ − γ1 − δ2
2

λ − γ2 − δ2
3

λ − γ3 − . . .

. . .

λ − γN−1 − δ2
N

λ − γN

The entries γ1, . . . , γN and δ2, . . . , δN represent coefficients of the Stieltjes
recurrence.
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3 Partial fraction decomposition

b∗(λI − A)−1b =

∫ U

L

dω(µ)

λ − µ
=

N∑

j=1

ωj

λ − λj
=

RN (λ)

PN (λ)
,

RN (λ)

PN(λ)
≡ FN (λ)

The denominator Pn(λ) corresponding to the nth convergent Fn(λ) of FN (λ) ,
n = 1, 2, . . . is the nth orthogonal polynomial in the sequence determined by
ω(λ) ; see Chebyshev (1855).
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3 Fundamental relationship with Gauss quadrature

The first 2n moments of the reduced model match those of the original model

The n-node Gauss-Christoffel quadrature has algebraic degree 2n − 1, hence

v∗
1Akv1 = eT

1 T k
ne1 for k = 0, 1, . . . , 2n − 1.

Moment matching properties can also be derived for non-Hermitian matrices
using the Vorobyev method of moments

For the infinite dimensional Hilbert spaces and self-adjoint bounded operators
it was described by Vorobyev (1958, 1965).
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3 The problem of moments in Hilbert space

Let z0, z1, . . . , zn be n + 1 linearly independent elements of Hilbert space V .
Consider the subspace Vn generated by all possible linear combinations of
z0, z1, . . . , zn−1 and construct a linear operator Bn defined on Vn such that

z1 = Bnz0,

z2 = Bnz1,

...

zn−1 = Bnzn−2,

Enzn = Bnzn−1,

where Enzn is the (orthogonal or oblique) projection of zn onto Vn .
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3 Approximation of bounded linear operators

Let B be a bounded linear operator on Hilbert space V . Choosing an
element z0 , we first form a sequence of elements z1, . . . , zn, . . .

z0, z1 = Bz0, z2 = Bz1 = B2z0, . . . , zn = Bzn−1 = Bnzn−1, . . .

For the present z1, . . . , zn are assumed to be linearly independent. Determine a
sequence of operators Bn defined on the sequence of nested subspaces Vn such
that

z1 = Bz0 = Bnz0,

z2 = B2z0 = (Bn)2z0,

...

zn−1 = Bn−1z0 = (Bn)n−1z0,

Enzn = EnBnz0 = (Bn)nz0.
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3 Model reduction using Krylov subspaces

Using the projection En onto Vn we can write for the operators constructed
above (here we need the linearity of B )

Bn = En B En .

The finite dimensional operators Bn can be used to obtain approximate solutions
to various linear problems. The choice of the elements z0, . . . , zn, . . . as above
gives Krylov subspaces that are determined by the operator and the initial element
z0 (e.g. by a partial differential equation, boundary conditions and outer forces).

Challenges:

Convergence

Krylov subspace methods in infinite dimensional Hilbert spaces?
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4. Convergence and spectral information

References

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 5, Sections 5.1 - 5.7

T. Gergelits and Z.S., Composite convergence bounds based on Chebyshev
polynomials and finite precision conjugate gradient computations, Numer. Alg.
65, 759-782 (2014)
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4 Convergence bounds for the CG method

The CG optimality property

‖x − xn‖A = min
z∈x0+Kn(A,r0)

‖x − z‖A = min
p∈Pn(0)

‖p(A)(x− x0)‖A

yields the convergence bounds

‖x − xn‖A

‖x − x0‖A
≤ min

p∈Pn(0)
max

1≤j≤N
|p(λj)| ≤ min

p∈Pn(0)
max

λ∈[λ1,λN ]
|p(λ)|

≤ 2

(√
κ − 1√
κ + 1

)n

, κ =
λN

λ1
.

The worst-case behavior of the method is completely determined by the
distribution of the eigenvalues of A.

The widely known κ-bound is derived using Chebyshev polynomials on the
interval [λ1, λN ]. It does not depend on any other properties of A, b, x0.

The κ-bound is linear and it can not capture the adaptation of the CG method
to the problem!
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4 CG, large outliers and condition numbers

Consider the desired accuracy ǫ , κs(A) ≡ λN−s/λ1 . Then

k = s +

⌈
ln(2/ǫ)

2

√
κs(A)

⌉

CG steps will produce the approximate solution xn satisfying

‖x − xn‖A ≤ ǫ ‖x − x0‖A .

This statement qualitatively explains superlinear convergence of
CG at the presence of large outliers in the spectrum, assuming
exact arithmetic.
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4 Adaptive Chebyshev bound?
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4 Moment problem illustration

For a given n find a distribution function with n mass points in such a way that
it in a best way captures the properties of the original distribution function
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4 CG and Gauss quadrature errors

At any iteration step n , CG represents the matrix formulation of the n-point
Gauss quadrature of the R-S integral determined by A and r0 ,

∫
f(λ) dω(λ) =

n∑

i=1

ω
(n)
i f(θ

(n)
i ) + Rn(f) .

For f(λ) ≡ λ−1 the formula takes the form

‖x − x0‖2
A

‖r0‖2
= n-th Gauss quadrature +

‖x − xn‖2
A

‖r0‖2
.

This has became a base for the CG error estimation (see above); see the surveys in
S and Tichý, 2002; Meurant and S, 2006; Liesen and S, 2013.
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4 Gauss quadrature (CG) with tight clusters

Replacing single eigenvalues by tight clusters can make a difference;
see Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).

The point is obvious. Orthogonal polynomials can be very sensitive to certain
changes of the underlying distribution function.

Otherwise CG behaves almost linearly and it can be described by contraction.
In such case - is it worth using?
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4 Sensitivity of the Gauss Quadrature
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4 Simplified problem - only the largest eigenvalue is replaced
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4 Theorem - O’Leary, S, Tichý (2007)

Consider distribution functions ω(x) and ω̃(x) . Let

pn(x) = (x − x1) . . . (x − xn) and p̃n(x) = (x − x̃1) . . . (x − x̃n)

be the nth orthogonal polynomials corresponding to ω and ω̃ respectively,
with

p̂c(x) = (x − ξ1) . . . (x − ξc)

their least common multiple. If f ′′ is continuous, then the difference
∆n

ω,ω̃ = |In
ω − In

ω̃ | between the approximations In
ω to Iω and In

ω̃ to Iω̃ ,
obtained from the n-point Gauss quadrature, is bounded as

|∆n
ω,ω̃| ≤

∣∣∣∣
∫

p̂c(x)f [ξ1, . . . , ξc, x] dω(x) −
∫

p̂c(x)f [ξ1, . . . , ξc, x] dω̃(x)

∣∣∣∣

+

∣∣∣∣
∫

f(x) dω(x) −
∫

f(x) dω̃(x)

∣∣∣∣ .
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4 Modified moments do not tell the story
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Condition numbers of the matrix of the modified moments (GM) and the matrix of
the mixed moments (MM). Left - enlarged supports, right - shifted supports.
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4 Summary of the CG/Lanczos part

1 Gauss-Christoffel quadrature for a small number of quadrature nodes can be
highly sensitive to small changes in the distribution function enlarging its
support.

2 In particular, the difference between the corresponding quadrature
approximations (using the same number of quadrature nodes) can be many
orders of magnitude larger than the difference between the integrals being
approximated.

3 This sensitivity in Gauss-Christoffel quadrature can be observed
for discontinuous, continuous, and even analytic distribution functions,
and for analytic integrands uncorrelated with changes in the distribution
functions and with no singularity close to the interval of integration.
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4 Convergence results for the GMRES method

For diagonalizable A = Y ΛY −1 the GMRES optimality property

‖rn‖2 = min
z∈x0+Kn(A,r0)

‖b − Az‖2 = min
p∈Pn(0)

‖p(A)r0‖2

yields the convergence bound

‖rn‖2

‖r0‖2
≤ κ(Y ) min

p∈Pn(0)
max

1≤j≤N
|p(λj)|.

The eigenvalue distribution and the GMRES convergence are (closely) related
only when κ(Y ) is small (A is close to normal).

In general, the eigenvalues alone do not describe GMRES convergence:

Any non-increasing convergence curve is attainable by GMRES for a matrix
having any prescribed set of eigenvalues.
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The eigenvalue distribution and the GMRES convergence are (closely) related
only when κ(Y ) is small (A is close to normal).

In general, the eigenvalues alone do not describe GMRES convergence:

Any non-increasing convergence curve is attainable by GMRES for a matrix
having any prescribed set of eigenvalues.
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4 Any GMRES convergence with any spectrum

Given any spectrum and any sequence of the nonincreasing residual norms, a
complete parametrization is known of the set of all GMRES associated matrices
and right hand sides.

The set of problems for which the distribution of eigenvalues alone does not
correspond to convergence behavior is not of measure zero and it is not pathological.

Widespread eigenvalues alone can not be identified with poor convergence.

Clustered eigenvalues alone can not be identified with fast convergence.

Equivalent orthogonal matrices; pseudospectrum indication.
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4 Any GMRES convergence with any spectrum

1◦ The spectrum of A is given by {λ1, . . . , λN} and GMRES(A,b) yields
residuals with the prescribed nonincreasing sequence (x0 = 0)

‖r0‖ ≥ ‖r1‖ ≥ · · · ≥ ‖rN−1‖ > ‖rN‖ = 0 .

2◦ Let C be the spectral companion matrix, h = (h1, . . . , hN )T ,
h2

i = ‖ri−1‖2 − ‖ri‖2 , i = 1, . . . , N . Let R be a nonsingular upper triangular
matrix such that Rs = h with s being the first column of C−1 , and let
W be unitary matrix. Then

A = WRCR
−1

W
∗ and b = Wh .

Greenbaum, Pták, Arioli and S (1994 - 98); Liesen (1999); Eiermann and Ernst
(2001); Meurant (2012); Meurant and Tebbens (2012, 2014); .....
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4 Convection-diffusion model problem
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Quiz: In one case the convergence of GMRES is substantially faster than in the
other; for the solution see Liesen, S (2005).
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5. Inexact computation and numerical stability

References

J. Liesen. and Z.S., Krylov Subspace Methods, Principles and Analysis. Oxford
University Press (2013), Chapter 5, Sections 5.8 - 5.11

T. Gergelits and Z.S., Composite convergence bounds based on Chebyshev
polynomials and finite precision conjugate gradient computations, Numer. Alg.
65, 759-782 (2014)
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5 CG convergence behavior in finite precision arithmetic
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FP computation
exact computation

Rounding errors in finite precision CG

computations cause a delay of conver-

gence.
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exact computation with clusters
exact comp. with single eigenvalues

CG in finite precision corresponds to

an exact CG computation for a matrix,

where each eigenvalue is replaced by a

tight cluster.
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5 Delay of convergence and numerical rank of Krylov subspaces
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The number of steps of the delay corre-

spond to the rank-deficiency of the com-

puted Krylov subspaces.
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shifted FP computation
exact computation

Shifting the finite precision curve by the

number of delayed iteration steps yields

the curve for the exact computation.

The statements above can be proven by rigorous mathematical means!
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5 Mathematical model of FP CG

CG in finite precision arithmetic can be seen as the exact arithmetic CG for the
problem with the slightly modified distribution function with larger support, i.e.,
with single eigenvalues replaced by tight clusters.

Paige (1971-80), Greenbaum (1989),
Parlett (1990), S (1991), Greenbaum and S (1992), Notay (1993), ... , Druskin,
Kniznermann, Zemke, Wülling, Meurant, ...
Recent reviews and updates in Meurant and S, Acta Numerica (2006); Meurant
(2006); Liesen and S (2013).

One particular consequence is becoming very relevant: In FP computations, the
composite convergence bounds eliminating large outlying eigenvalues at the cost of
one iteration per eigenvalue (see Axelsson (1976), Jennings (1977)) are not valid.
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5 Optimality in finite precision Lanczos (CG) computations?

In exact arithmetic, local orthogonality properties of CG are equivalent to the
global orthogonality properties and therefore also to the CG optimality recalled
above.

In finite precision arithmetic the local orthogonality properties are preserved
proportionally to machine precision, but the global orthogonality and therefore
the optimality wrt the underlying distribution function is lost.

In finite precision arithmetic computations (or, more generally, in inexact
Krylov subspace methods) the optimality property does not have any easily
formulated meaning with respect to the subspaces generated by the computed
residual (or direction) vectors.

Using the results of Greenbaum from 1989, it does have, however, a well
defined meaning with respect to the particular distribution functions defined
by the original data and the rounding errors in the steps 1 through n.
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5 Optimality in finite precision Lanczos (CG) computations?

Consider the following mathematically equivalent formulation of CG

A Wn = Wn Tn + δn+1wn+1e
T
n , Tn = W ∗

n(A, r0) AWn(A, r0) ,

and the CG approximation given by

Tn yn = ‖r0‖e1 , xn = x0 + Wn yn .

Greenbaum proved that the Jacobi matrix computed in finite precision
arithmetic can be considered a left principal submatrix of a certain larger
Jacobi matrix having all its eigenvalues close to the eigenvalues of the original
matrix A.

This is equivalent to saying that convergence behavior in the first n steps of
the given finite precision Lanczos computation can equivalently be described as
the result of the exact Gauss quadrature for certain distribution function that
depends on n having tight clusters of points of increase around the original
eigenvalues of A.
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5 Analysis of the FP CG behaviour
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5 Numerical stability of GMRES

In finite precision, the loss of orthogonality using the modified Gram-Schmidt
GMRES is inversely proportional to the normwise relative backward error

‖b − Axn‖2

‖b‖2 + ‖A‖2‖xn‖2
.

Loss of orthogonality (blue) and normwise relative backward error (red) for a
convection-diffusion model problem with two different “winds”:
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It can be shown that the MGS-GMRES is normwise backward stable.
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5 Delay of convergence due to inexactness
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Here numerical inexactness due to roundoff. How much may we relax accuracy of
the most costly operations without causing an unwanted delay and/or affecting the
maximal attainable accuracy? That will be crucial in exascale computations.
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5 Reaching an arbitrary accuracy in AFEM?
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Inexactness and maximal attainable accuracy in matrix computations?
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6. Functional analysis and infinite dimensional
considerations

References

J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method in the
Context of Solving PDEs. SIAM Spotlight Series, SIAM (2015), Chapter 9
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6 Bounded invertible operators

Let V be an infinite dimensional Hilbert space, B a bounded linear operator on
V that has a bounded inversion. Consider the problem

B u = f , f ∈ V .

The identity operator on an infinite dimensional Hilbert space is not compact.

Since BB−1 = I , it follows that B can not be compact.

Approximation of B by finite dimensional operators
Bn : V → Vn , Vn is finite dimensional?
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6 Compact and finite dimensional operators

A uniform (in norm) limit of finite dimensional operators Bn is a compact
operator.

Every compact operator on a Hilbert space is a uniform limit of a sequence of
finite dimensional operators.

A uniform limit of compact operators is a compact operator.

Bounded invertible operators in Hilbert (holds also for Banach) spaces can not be
approximated in norm to an arbitrary accuracy by neither compact nor finite
dimensional operators! Approximation can be considered only in the sense of strong
convergence (pointwise limit); for the method of moments see Vorobyev (1958, 1965)

‖Bn w − Bw‖ → 0 ∀w ∈ V .
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6 Invalid argument in convergence analysis

Let Zh be a numerical approximation of the bounded operator Z such that, with
an appropriate extension, ‖Z − Zh‖ = O(h) .

Then we have [(λ − Z)−1 − (λ − Zh)−1] = O(h) uniformly for λ ∈ Γ , where
Γ surrounds the spectrum of Z with a distance of order O(h) or more. For any
polynomial p

p(Z) − p(Zh) =
1

2πi

∫

Γ

p(λ)[(λ − Z)−1 − (λ − Zh)−1 ] dλ ,

and it seems that one can investigate p(Z) instead of p(Zh) .

But the assumption ‖Z − Zh‖ = O(h) , h → 0 does not hold for any bounded
invertible infinite dimensional operator Z .
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6 Finite dimensional approximations of infinite dimensional operators

If the infinite dimensional linear operator is bounded with the bounded
inversion, then convergence of its finite dimensional approximations can be
considered onlu in a pointwise sense.

Spectral and norm equivalence of operators leads to bounds on the condition
number of the discretized problems that are independent of the (Galerkin)
discretization

V. Faber, T. Manteuffel and S. Parter, On the Theory of Equivalent Operators and
Application to the Numerical Solution of Uniformly Elliptic Partial Differential
Equations. Advances in Applied Math. 11, 109-163 (1990)
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7. Operator preconditioning, discretization and
algebraic computation

References

J. Málek and Z.S., Preconditioning and the Conjugate Gradient Method in the
Context of Solving PDEs. SIAM Spotlight Series, SIAM (2015)

J. Papež, J.Liesen and Z.S., Distribution of the discretization and algebraic
error in numerical solution of partial differential equations, Linear Alg. Appl.
449, 89-114 (2014)

J. Papež, Z.S., and M. Vohraĺık, Estimating and localizing the algebraic and
total numerical errors using flux reconstructions, (2016, submitted for
publication)

J. Papež and Z.S., On a residual-based a posteriori error estimator for the total
error, (2016, submitted for publication, revised Dec. 2016)
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7 Functional analysis and iterative methods

R. C. Kirby, SIREV (2010):

“We examine condition numbers, preconditioners and iterative methods for FEM
discretization of coercive PDEs in the context of the solvability result, the
Lax-Milgram lemma.

Moreover, useful insight is gained as to the relationship between Hilbert space and
matrix condition numbers, and translating Hilbert space fixed point iterations into
matrix computations provides new ways of motivating and explaining some classic
iteration schemes. [ ... ] This paper is [ ... ] intending to bridge the functional
analysis techniques common in finite elements and the linear algebra community.”
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7 Functional analysis and iterative methods

K. A. Mardal and R. Winther, NLAA (2011):

“The main focus will be on an abstract approach to the construction of
preconditioners for symmetric linear systems in a Hilbert space setting [ ... ] The
discussion of preconditioned Krylov space methods for the continuous systems will be
a starting point for a corresponding discrete theory.

By using this characterization it can be established that the conjugate gradient
method converges [ ... ] with a rate which can be bounded by the condition number [
... ] However, if the operator has a few eigenvalues far away from the rest of the
spectrum, then the estimate is not sharp. In fact, a few ‘bad eigenvalues’ will have
almost no effect on the asymptotic convergence of the method.”
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7 Functional analysis and iterative methods

O. Axelsson and J. Karátson, Numer. Alg. (2009):

“To preserve sparsity, the arising system is normally solved using an iterative
solution method, commonly a preconditioned conjugate gradient method [ ... ] the
rate of convergence depends in general on a generalized condition number of the
preconditioned operator [ ... ]

if the two operators (original and preconditioner) are equivalent, then the
corresponding PCG method provides mesh independent linear convergence [ ...]

if the two operators (original and preconditioner) are compact-equivalent, then
the corresponding PCG method provides mesh independent superlinear
convergence.”
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7 Mesh independent condition number

R. Hiptmair, CMA (2006):

“There is a continuous operator equation posed in infinite-dimensional spaces that
underlines the linear system of equations [ ... ] awareness of this connection is key
to devising efficient solution strategies for the linear systems.

Operator preconditioning is a very general recipe [ ... ]. It is simple to apply, but
may not be particularly efficient, because in case of the
[ condition number ] bound of Theorem 2.1 is too large, the operator preconditioning
offers no hint how to improve the preconditioner. Hence, operator preconditioner
may often achieve [ ... ] the much-vaunted mesh independence of the
preconditioner, but it may not perform satisfactorily on a given mesh.”
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7 Linear asymptotic behavior?

V. Faber, T. Manteuffel and S. V. Parter, Adv. in Appl. Math. (1990):

“For a fixed h, using a preconditioning strategy based on an equivalent operator may
not be superior to classical methods [ ... ] Equivalence alone is not sufficient for a
good preconditioning strategy. One must also choose an equivalent operator for
which the bound is small.

There is no flaw in the analysis, only a flaw in the conclusions drawn from the
analysis [ ... ] asymptotic estimates ignore the constant multiplier. Methods with
similar asymptotic work estimates may behave quite differently in practice.”
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7 Notation

Let V be an infinite dimensional Hilbert space with the inner product

(·, ·)V : V × V → R, the associated norm ‖ · ‖V ,

V # be the dual space of bounded (continuous) linear functionals on V with the
duality pairing

〈·, ·〉 : V # × V → R .

For each f ∈ V # there exists a unique τf ∈ V such that

〈f, v〉 = (τf, v)V for all v ∈ V .

In this way the inner product (·, ·)V determines the Riesz map

τ : V # → V .
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7 Weak formulation of the BVP, assumptions

Let a(·, ·) = V × V → R be a bounded and coercive bilinear form. For u ∈ V
we can write the bounded linear functional a(u, ·) on V as

Au ≡ a(u, ·) ∈ V # , i.e. ,

〈Au, v〉 = a(u, v) for all v ∈ V .

This defines the bounded and coercive operator

A : V → V #, inf
u∈V, ‖u‖V =1

〈Au, u〉 = α > 0, ‖A‖ = C .

The Lax-Milgram theorem ensures that for any b ∈ V # there exists a unique
solution x ∈ V of the problem

a(x, v) = 〈b, v〉 for all v ∈ V .
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7 Operator problem formulation

Equivalently,
〈Ax − b, v〉 = 0 for all v ∈ V ,

which can be written as the equation in V # ,

Ax = b , A : V → V #, x ∈ V, b ∈ V # .

We will consider A self-adjoint with respect to the duality pairing 〈·, ·〉 .
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7 Discretization using Vh ⊂ V

Let Φh = (φ
(h)
1 , . . . , φ

(h)
N ) be a basis of the subspace Vh ⊂ V ,

let Φ#
h = (φ

(h)#
1 , . . . , φ

(h)#
N ) be the canonical basis of its dual V #

h .

The Galerkin discretization then gives

Ahxh = bh , xh ∈ Vh , bh ∈ V #
h , Ah : Vh → V #

h .

Using the coordinates xh = Φhx , bh = Φ#
h b , the discretization results in the

linear algebraic system

Ax = b .

87 / 126

7 Computation

Preconditioning needed for accelerating the iterations is then often build up
algebraically for the given matrix problem, giving (here illustrated as the left
preconditioning)

M
−1

Ax = M
−1

b .

Then the CG method is applied to the (symmetrized) preconditioned system, i.e.,
(PCG) (M-preconditioned CG) is applied to the unpreconditioned system. The
schema of the solution process:

A, 〈b, ·〉 → A,b→ preconditioning → PCG applied to Ax = b .
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7 A bit different view

⇒

Formulation of the model, discretization and algebraic computation, including the
evaluation of the error, stopping criteria for the algebraic solver, adaptivity etc. are
very closely related to each other.
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7 Operator formulation of the problem

Recall that the inner product (·, ·)V defines the Riesz map τ .
It can be used to transform the equation in V #

Ax = b , A : V → V #, x ∈ V, b ∈ V # .

into the equation in V

τAx = τb, τA : V → V, x ∈ V, τb ∈ V ,

This transformation is called operator preconditioning.
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7 The mathematically best preconditioning?

With the choice of the inner product (·, ·)V = a(·, ·) we get

a(u, v) = 〈Au, v〉 = a(τAu, v)

i.e.,
τ = A−1 , and the preconditioned system x = A−1b .

The inner product can be defined using an operator

B ≈ A , (·, ·)V = (·, ·)B = 〈Bu, v〉 .

Then
τ = B−1 , and the preconditioned system B−1Ax = B−1b .

What does it mean B ≈ A ?

Concept of norm equivalence and spectral equivalence of operators.
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7 CG in infinite dimensional Hilbert spaces

r0 = b −Ax0 ∈ V #, p0 = τr0 ∈ V . For n = 1, 2, . . . , nmax

αn−1 =
〈rn−1, τrn−1〉
〈Apn−1, pn−1〉

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

βn =
〈rn, τrn〉

〈rn−1, τrn−1〉
pn = τrn + βnpn−1

Hayes (1954); Vorobyev (1958, 1965); Karush (1952); Stesin (1954)
Superlinear convergence for (identity + compact) operators.
Here the Riesz map τ indeed serves as the preconditioner.
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7 Discretization of the infinite dimensional CG

Using the coordinates in the bases Φh and Φ#
h of Vh and V #

h

respectively, ( V #
h = AVh ) ,

〈f, v〉 → v
∗
f ,

(u, v)V → v
∗
Mu, (Mij) = ((φj , φi)V )i,j=1,...,N ,

Au → Au , Au = AΦhu = Φ#
h Au ; (Aij) = (a(φj , φi))i,j=1,...,N ,

τf → M
−1

f , τf = τΦ#
h f = ΦhM

−1
f ;

we get with b = Φ#
h b , xn = Φh xn , pn = Φh pn , rn = Φ#

h rn

the algebraic CG formulation
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7 Galerkin discretization gives matrix CG in Vh

r0 = b − Ax0, solve Mz0 = r0, p0 = z0 . For n = 1, . . . , nmax

αn−1 =
z∗

n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

Mzn = rn , solve for zn

βn =
z∗

nrn

z∗
n−1rn−1

pn = zn + βnpn−1

Günnel, Herzog, Sachs (2014); Málek, S (2015)
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7 Philosophy of the a-priori robust bounds

The bound

κ̂(M−1
A) =

λmax(M−1A)

λmin(M−1A)
≤

supu,v∈V, ‖u‖V =1,‖v‖V =1 |〈Au, v〉|
infu∈V, ‖u‖V =1〈Au, u〉

is valid independently of the discretization, see, e.g., Hiptmair (2006). If the bound
is small enough, then the matter about the rate of convergence and its monitoring
is resolved.
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7 Observations

Unpreconditioned CG, i.e. M = I , corresponds to the discretization basis Φ
orthonormal wrt (·, ·)V .

Orthogonalization of the discretization basis with respect to the given inner
product in V will result in the unpreconditioned CG that is applied to the
transformed (preconditioned) algebraic system. The resulting orthogonal
discretization basis functions do not have local support and the transformed
matrix is not sparse.

Orthogonalization is not unique. For the same inner product we can get
different bases and different discretized systems with exactly the same
convergence behaviour.
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7 Algebraic preconditioning?

Consider an algebraic preconditioning with the (SPD) preconditioner

M̂ = L̂L̂
∗ = L̂ (QQ

∗) L̂∗

Where QQ∗ = Q∗Q = I .

Question: Can any algebraic preconditioning be expressed in the operator
preconditioning framework? How does it link with the discretization and the choice
of the inner product in V ?
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7 Change of the basis and of the inner product

Transform the discretization bases

Φ̂ = Φ ((L̂Q)∗)−1, Φ̂# = Φ#
L̂Q .

with the change of the inner product in V (recall (u, v)V = v∗Mu )

(u, v)new,V = (Φ̂û, Φ̂v̂)new,V := v̂
∗
û = v

∗
L̂QQ

∗
L̂

∗
u = v

∗
L̂L̂

∗
u = v

∗
M̂u .

The discretized Hilbert space formulation of CG gives the algebraically
preconditioned matrix formulation of CG with the preconditioner M̂

(more specifically, it gives the unpreconditioned CG applied to the algebraically
preconditioned discretized system).
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7 Sparsity, locality, global transfer of information

Sparsity of matrices of the algebraic systems is always presented as an advantage of
the FEM discretizations.

Sparsity means locality of information in the individual matrix rows/columns.
Getting a sufficiently accurate approximation to the solution may then require
many matrix-vector multiplications (a large dimension of the Krylov space).

Preconditioning can be interpreted in part as addressing the unwanted consequence
of sparsity (locality of the supports of the basis functions). Globally supported
basis functions (hierarchical bases preconditioning, DD with coarse space
components, multilevel methods, hierarchical grids etc.) can efficiently handle the
transfer of global information.
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7 Example - Nonhomogeneous diffusion tensor
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P1 FEM ; cond =2.57e+03
P1 FEM ichol ; cond =2.67e+01
P1 FEM lapl ; cond =1.00e+02
P1 FEM ichol(1e−02) ; cond =1.72e+00

PCG convergence: unpreconditioned; ichol (no fill-in); Laplace operator
preconditioning; ichol (drop-off tolerance 1e-02). Uniform mesh, condition numbers

2.5e03, 2.6e01, 1.0e02, 1.7e00.
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7 Transformed basis elements
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Original discretization basis element and its transformation corresponding to the
ichol preconditioning.
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7 Transformed basis elements

−1

0

1

−1

0

1
0

0.2

0.4

0.6

0.8

Discretization basis function: P1 FEM lapl; nnz = 225

−1

0

1

−1

0

1
0

0.02

0.04

0.06

0.08

Discretization basis function: P1 FEM ichol(1e−02); nnz = 214

Transformed discretization basis elements corresponding to the lapl (left) and
ichol(tol) preconditioning (right).
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8. HPC computations with Krylov subspace methods?

References

E. Carson, M. Rozložńık, Z.S., P. Tichý, and M. Tůma, On the numerical
stability analysis of pipelined Krylov subspace methods, (2016, submitted for
publication).

103 / 126

8 Personal prehistory

Strakos, Z., Efficiency and Optimizing of Algorithms and Programs on the Host
Computer / Array Processor System, Parallel Computing, 4, 1987, pp. 189-209.

Host Computer (0.2 MFlops) / Array Processor (up to 10 MFlops).

Large instruction overhead and slow data transfers.

Pipelining, several arithmetic units.

Possible overlap of data transfers and arithmetic.

Slow scalar operations.
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8 Challenges for efficient HPC computations

Synchronized recursions.

Matrix-vector multiplication and vector updates are linear and (possibly) fast.
Preconditioning is expensive (substantial global communication).

Scalar coefficients require inner products and synchronization points.

Nonlinearity causes trouble. For the approximation power of the methods,
nonlinearity is essential.

Parallelization can lead to numerical instabilities.

Algorithmic improvements are good, but a more general view is needed.
Is sparsity of the system matrix always good? Is it time to reconsider the FEM
civilization with its technology and axioms?
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8 Parallel (communication sensitive) algorithms?

Block recursion in order to increase arithmetic/communication ratio.

Numerical stability is crucial.

Stopping criteria can save the case. Size of the blocks?

Preconditioning means an approximate solution of a part of the problem.

State-of-the-art in the algorithmic developments:

E. Carson, Communication-Avoiding Krylov Subspace Methods in Theory and
Practice, PhD Thesis, UC at Berkeley, CA, 2015.
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8 from HS CG towards pipelined CG

r0 = b − Ax0, solve Mz0 = r0, p0 = z0 . For n = 1, . . . , nmax

αn−1 =
z∗

n−1rn−1

p∗
n−1Apn−1

xn = xn−1 + αn−1pn−1 , stop when the stopping criterion is satisfied

rn = rn−1 − αn−1Apn−1

Mzn = rn , solve for zn

βn =
z∗

nrn

z∗
n−1rn−1

pn = zn + βnpn−1

In later CG variants we will not consider preconditioning
(for simplicity of presentation).
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8 ST CG (see Rosser (1953)), using the notation in Carson et al. (2016)

Initialization: r0 = b − Ax0, p0 = r0, x−1 = x0, r−1 = r0, e−1 = 0

qi−1 =
(ri−1, Ari−1)

(ri−1, ri−1)
− ei−2

xi = xi−1 + 1
qi−1

[ri−1 + ei−2(xi−1 − xi−2)]

ri = ri−1 + 1
qi−1

[−Ari−1 + ei−2(ri−1 − ri−2)]

evaluate the stopping criterion

ei−1 = qi−1
(ri, ri)

(ri−1, ri−1)

Three-term recurrence, a single synchronization point per iteration,
used in Strakos (1987).
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8 Pipelined CG (see Ghysels and Vanroose (2014))

Initialization: r0, p0 = r0, s0 = Ap0, w0 = Ar0, z0 = Aw0, α0 =
(r0, r0)

(p0, s0)
xi = xi−1 + αi−1pi−1,
ri = ri−1 − αi−1si−1

wi = wi−1 − αi−1zi−1

evaluate the stopping criterion

qi = Awi

βi =
(ri, ri)

(ri−1, ri−1)

αi =
(ri, ri)

(wi, ri) − (βi/αi−1)(ri, ri)

pi = ri + βipi−1

si = wi + βisi−1

zi = qi + βizi−1

Auxiliary recursions for wi, si, zi in order to reduce the synchronization points and
overlap the inner product computation with the matrix-vector multiplication.
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8 Individual added sources of instabilities

Three term recurrences are less stable than coupled two term recurrences.

Auxiliary recurrences do not recompute the recurrence coefficients. This harms
the local orthogonality relations and it can possibly destabilize the whole
computation.

Modification of the computation of recurrence coefficients can have negative
effect to the rate of convergence.

Residual replacement strategy is not well understood and it needs further
substantial analysis.
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8 Numerical illustrations

Matrix bcsstk03 (HB collection), N = 112, x0 = 0, ‖b‖ = 1.

The starting vector b has equal components in the individual invariant
subspaces.

We concentrate on the delay of convergence.

Apart from some very particular cases, maximal attainable accuracy is not of
practical importance.
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8 An innocent-looking (three-term) recurrence modification
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Replacing pi = ri + βipi−1 by pi = ri +
βi

αi−1
(xi − xi−1)

can significantly change behavior in finite precision arithmetic.
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8 Adding auxiliary recurrences
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HS CG, modified HS CG with the recursive update

Api = Ari + βiApi−1, i.e. si = Ari + βisi−1,

and GV CG.
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8 Update of the coefficient αi−1
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HS CG and the modified HS CG with explicit matrix-vectors multiplications Ari−1,
Api−1, and αi−1 computed using the relation

1

αi−1
=

rT
i−1Ari−1

‖ri−1‖2
− βi−1

αi−2
.
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8 Residual replacement
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Residual replacement before and after the linear independence of the computed
residual vectors is lost.
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8 Adaptivity and stopping criteria? Papež, S (2016)

Residual-based a posteriori error bound for the total error that accounts for inexact
algebraic computations, for arbitrary vh ∈ Vh

‖∇(u − vh)‖2 ≤ 2C2
1 C2

2

(
J2(vh) + osc2) + 2 C̃ 2

intp(u, vh) ‖∇(uh − vh)‖2 ,

where (using the linear FEM discretization basis functions)

JE(vh) ≡ |E|1/2

∥∥∥∥
[

∂vh

∂nE

]∥∥∥∥
E

, J(vh) ≡



∑

E∈Eint

J2
E(vh)




1/2

.
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8 L-shape domain, Papež, Liesen, S (2014)
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Exact solution u (left) and the discretization error u − uh (right) in the Poisson
model problem, linear FEM, adaptive mesh refinement.

Quasi equilibrated discretization error over the domain.
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8 L-shape domain, Papež, Liesen, S (2014)
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number of CG iterations guaranteeing
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9. Myths about Krylov subspace methods

Myth: A belief given uncritical acceptance by the members of a group especially in
support of existing or traditional practices and institutions.

Webster’s Third New International Dictionary, Enc. Britannica Inc., Chicago (1986)
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9 Widespread statements that are misleading or plainly incorrect

1 Minimal polynomials and finite termination property

2 Chebyshev bounds and CG

3 Spectral information and clustering of eigenvalues

4 Operator-based bounds and functional analysis arguments on convergence

5 Finite precision computations can not be seen as a minor modification of the
exact considerations

6 Linearization of nonlinear phenomenon without noticing that this eliminates
the main principle behind the phenomenon, i.e. the adaptation to the problem

7 Short term recurrences can not guarantee well conditioned basis due to
rounding errors. This is true even for symmetric positive definite problems, and
it remains true also for nonsymmetric problems

8 Sparsity can have positive as well as negative effects to computations
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9 Clustering of eigenvalues in the SPD case

{
Mj

−→ ttttt
Mj

single eigenvalue

λj

−→
many close eigenvalues

λ̂j1 , λ̂j2 , . . . , λ̂jℓ

Replacing a single eigenvalue by a tight cluster can make a substantial difference;
Greenbaum (1989); Greenbaum, S (1992); Golub, S (1994).

If it does not, then it means that CG can not adapt to the problem, and it
converges almost linearly. In such cases - is it worth using?
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9 Minimal polynomials, asymptotics

It is not true that CG (or other Krylov subspace methods used for solving
systems of linear algebraic equations with symmetric matrices) applied to a
matrix with t distinct well separated tight clusters of eigenvalues produces in
general a large error reduction after t steps; see Sections 5.6.5 and 5.9.1 of
Liesen, S (2013). This myth has been disproved more than 20 years ago; see
Greenbaum (1989); S (1991); Greenbaum, S (1992). Still it is persistently
repeated in literature as an obvious fact.

With no information on the structure of invariant subspaces
it is not true that distribution of eigenvalues provides insight into
the asymptotic behavior of Krylov subspace methods (such as GMRES)
applied to systems with generally nonsymmetric matrices; see Sections 5.7.4,
5.7.6 and 5.11 of Liesen, S (2013). As before, the relevant results Greenbaum, S
(1994); Greenbaum, Pták, S (1996) and Arioli, Pták, S (1998) are (almost)
twenty years old.
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9 How the mathematical myths are created?

Rutishauser (1959) as well as Lanczos (1952) considered CG principally
different in their nature from the method based on the Chebyshev polynomials.

Daniel (1967) did not identify the CG convergence with the Chebyshev
polynomials-based bound. He carefully writes (modifyling slightly his notation)

“assuming only that the spectrum of the matrix A lies inside the interval
[λ1, λN ], we can do no better than Theorem 1.2.2.”

That means that the Chebyshev polynomials-based bound holds for any
distribution of eigenvalues between λ1 and λ1 and for any distribution of
the components of the initial residuals in the individual invariant subspaces.

Why we do not read the original works? They are many times most valuable
sources of insight, that can be gradually forgotten and can be overshadowed by
commonly accepted myth ...
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9 Analogy with a priori and a posteriori numerical PDE analysis

Think of a priori and a posteriori numerical PDE analysis!

The Chebyshev bound is a typical a priori bound; it uses no a posteriori
information.

A priori bounds are useful for the purpose they have been derived to.
They can not take over the role of the a posteriori bounds.
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9 Concluding remarks and outlook

Krylov subspace methods adapt to the problem. Exploiting this adaptation is
the key to their efficient use.

Unlike in nonlinear problems and/or multilevel methods, analysis of Krylov
subspace methods can not be based, in general, on contraction arguments.

Individual steps modeling-analysis-discretization-computation should not be
considered separately within isolated disciplines. They form a single problem.
Operator preconditioning follows this philosophy.

Fast HPC computations require handling all involved issues.
A posteriori error analysis and stopping criteria are essential ...

Assumptions must be honored.

Historia Magistra Vitae
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Thank you very much for your kind patience!
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