Seznam významných publikací Laboratoře výpočetní mechaniky.
Multiphysics
- del Corro E., Peňa-Álvarez M., Sato K., Morales-García A., Bouša M., Mračko M., Kolman R., Pacáková B., Kavan L., Kalbáč M., Frank O. Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation. Physical Review B 95(8), 2017. Source
- del Corro E., Peňa-Álvarez M., Mračko M., Kolman R., Kalbáč M., Kavan L., Frank O. Graphene under direct compression: Stress effects and interlayer coupling. Physica Status Solidi B 253(12): 2336-2341, 2016. Source
- Adámek J., Horáček J., Seidl J., Müller H.W., Schrittwieser R., Mehlmann F., Vondráček P., Pták S. Direct Plasma Potential Measurements by Ball-Pen Probe and Self-Emitting Langmuir Probe on COMPASS and ASDEX Upgrade. Contributions to Plasma Physics 54(3): 279-284, 2014. Source
Continuum mechanics
- Okrouhlík M. Why is the stress tensor symmetric? International Journal of Mechanical Engineering Education 40(4), 342-352, 2012. Source
- Okrouhlík M. The Quest for Truth, particularly in Mechanics. Estonian Journal of Engineering 19(4), 253-272, 2013. Source
Theory of wave propagation and Composite materials
- Adámek V., Valeš F., Červ J. Numerical Laplace inversion in problems of elastodynamics: Comparison of four algorithms. Advances in Engineering Software 113, 120-129, 2017. Source
- Červ J., Adámek V., Valeš F., Gabriel D., Plešek J. Wave motion in a thick cylindrical rod undergoing longitudinal impact. Wave Motion 66, 88-105, 2016. Source
- Červ J., Plešek J. Implicit and explicit secular equations for Rayleigh waves in two-dimensional anisotropic media. Wave Motion 50(7): 1105-1117, 2013. Source
- Červ J., Kroupa T., Trnka J. Influence of principal material directions of thin orthotropic structures on Rayleigh-edge wave velocity. Composite Structures 92(2): 568-577, 2010. Source
FEM in wave propagation and dispersion analysis
- Sorokin S., Kolman R., Kopačka J. The boundary integral equations method for analysis of high-frequency vibrations of an elastic layer. Archive of Applied Mechanics 87(4): 737-750, 2017. Source
- Cimrman R., Novák M., Kolman R., Tůma M., Plešek J., Vackář J. Convergence study of isogeometric analysis based on Bézier extraction in electronic structure calculations. Applied Mathematics and Computation in press, 2017. Source
- Kolman R., Plešek J., Červ J., Okrouhlík M., Pařík P. Temporal-spatial dispersion and stability analysis of finite element method in explicit elastodynamics. International Journal for Numerical Methods in Engineering 106(2), 113-128, 2016. Source
- Kolman R., Cho S.S., Park K.C. Efficient implementation of an explicit partitioned shear and longitudinal wave propagation algorithm. International Journal for Numerical Methods in Engineering 107(7): 543-579, 2016. Source
- Kolman R., Berezovski A., Blažek J., Cho S.S., Gabriel D., Kopačka J., Plešek J. Comparative study of finite element method, isogeometric analysis, and finite volume method in one-dimensional elastic wave propagation. Appear to Computational Mechanics 2014.
- Kolman R., Plešek J., Okrouhlík M. Complex wavenumber Fourier analysis of the B-spline based finite element method. Wave Motion 51(2), 348-359, 2014. Source
- Okrouhlík M. Dispersion and time integration schemes in finite-element analysis - a practical pictorial manual. International Journal of Mechanical Engineering Education 41(1), 44-71, 2013. Source
- Kolman R., Plešek J., Okrouhlík M., Gabriel D. Grid dispersion analysis of plane square biquadratic serendipity finite elements in transient elastodynamics. International Journal for Numerical Methods in Engineering 96(1), 1-28, 2013. Source
- Kolman R., Cho S.S., Park K.C. Non-spurious oscillations time integration method in finite element analysis of non-linear wave propagation of stress discontinuities. In 4rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering COMPDYN 2013 Eds. PAPADRAKAKIS, M. - PAPADOPOULOS, V. - PLEVRIS, Kos, Greece, June 12-14, 2013, CD-ROM.
- Plešek J., Kolman R., Gabriel D. Dispersion Error of Finite Element Discretizations in Elastodynamics. Computational Technology Reviews 1, 251-279, 2010. Source
- Gabriel D., Plešek J., Kolman R., Valeš F. Dispersion of elastic waves in the contact-impact problem of a long cylinder. Journal of Computational and Applied Mathematics 234(6): 1930-1936, 2010. Source
- Okrouhlík M., Pták S. Pollution-free energy production by a proper misuse of finite element ahalysis. Engineering Computations 20(5/6): 601-610, 2003.
- Lundberg B., Okrouhlík M.. Approximate transmission equivalence of elastic bar transitions under 3-D conditions. Journal of Sound and Vibration 256(5): 940-954, 2001. Source
Isogeometric analysis
- Cimrman R., Novák M., Kolman R., Tůma M., Plešek J., Vackář J. Convergence study of isogeometric analysis based on Bézier extraction in electronic structure calculations. Applied Mathematics and Computation in press, 2017. Source
- Kolman R., Okrouhlík M., Berezovski A., Gabriel D., Kopačka J., Plešek J. B-spline based finite element method in one-dimensional discontinuous elastic wave propagation. Applied Mathematical Modelling 46: 382-395, 2017. Source
- Kolman R., Sorokin S.V., Bastl B., Kopačka J., Plešek J. Isogeometric analysis of free vibration of simple shaped elastic samples, Journal of the Acoustical Society of America 137(4): 2089-2100, 2015. Source
- Kolman R., Plešek J., Okrouhlík M. Complex wavenumber Fourier analysis of the B-spline based finite element method. Wave Motion 51(2), 348-359, 2014. Source
- Kolman R. Isogeometric free vibration of elastic block. Engineering Mechanics 19(4): 279-291, 2012.
Numerical methods and Solvers
- González J.A., Kolman R., Cho S.S., Park K.C. International Journal for Numerical Methods in Engineering 113(2): 277-295, 2018. Source
- Pařík P., Plešek J. Sparse direct solver for large finite element problems based on the minimum degree algorithm. Advances in Engineering Software 113: 2-6, 2017. Source
Plasticity
- Welling C.A., Marek R., Feigenbaum H.P., Dafalias Y.F., Plešek J., Hrubý Z., Parma S. Numerical convergence in simulations of multiaxial ratcheting with directional distortional hardening. International Journal of Solids and Structures 126-127: 105-121, 2017. Source
- Marek R., Plešek J. Hrubý Z., Parma S., Feigenbaum H., Dafalias Y. Numerical Implementation of a Model with Directional Distortional Hardening. J. Eng. Mech. 10.1061/(ASCE)EM.1943-7889.0000954, 04015048, 2015. Source
- Parma S., Plešek J., Hrubý Z. Marek R., Feigenbaum H., Dafalias Y. Analysis and calibration of a simple directional distortional hardening model for metal plasticity. Appear to International Journal of Plasticity 2014.
- Feigenbaum H. P., Dugdale J., Dafalias Y.F., Kourousis K. I., Plešek J. Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules. International Journal of Solids and Structures 49(22): 3063-3076, 2012. Source
- Plešek J., Feigenbaum H. P., Dafalias Y.F. Convexity of Yield Surface with Directional Distortional Hardening Rules. Journal of Engineering Mechanics-ASCE 136(4): 477-484, 2010. Source
- Feigenbaum H. P., Plešek J., Dafalias Y.F. A Simple Model for Directional Distortional Hardening in Metal Plasticity with a Convex Yield Surface. Proceedings 22nd Canadian Congress of Applied Mechanics. Halifax, Nova Scotia: Dalhousie University, 2009 - (Militzer, J.; Kalamkarov, A.).
- Hrubý Z., Plešek J., Tin S. Finite element Investigation of the Elastic-Plastic Response Underneath Various Indentors and its Application in Ni-Based Alloys Indentation Processes. Computational Plasticity X. Fundamentals and Applications. Barcelona. Technical University of Catalonia, 2009.
- Hlaváček I., Plešek J., Gabriel D. Validation and sensitivity study of an elastoplastic problem using the Worst Scenario Method. Computer Methods in Applied Mechanics and Engineering 195: 763-774, 2006. Source
Contact-impact problems and Domain decomposition methods
- Kopačka J., Tkachuk A., Gabriel D., Kolman R., Bischoff M., Plešek J. On stability and reflection‐transmission analysis of the bipenalty method in contact‐impact problems: A one‐dimensional, homogeneous case study. International Journal for Numerical Methods in Engineering 113(10), 1607-1629, 2018. Source
- Kopačka J., Gabriel D., Plešek J., Ulbin M. Assessment of methods for computing the closest point projection, penetration, and gap functions in contact searching problems. International Journal for Numerical Methods in Engineering 105(11), 803-833, 2016. Source
- Gabriel D., Plešek J., Kolman R., Valeš F. Dispersion of elastic waves in the contact-impact problem of a long cylinder. Journal of Computational and Applied Mathematics 234(6): 1930-1936, 2010. Source
- Dobiáš J., Pták S., Dostál Z., Vondrák V. Total FETI based algorithm for contact problems with additional non-linearities. Advances in Engineering Software 41(1): 46-51, 2010. Source
- Dostál Z., Horák D., Kučera R., Vondrák V., Haslinger J., Dobiáš J., Pták S. FETI based algorithms for contact problems: scalability, large displacements and 3D Coulomb friction. Computer Methods in Applied Mechanics and Engineering 194(2-5): 395-409, 2005. Source
- Gabriel D., Plešek J., Ulbin M. Symmetry preserving algorithm for large displacement frictionless contact by the pre-discretization penalty method. International Journal for Numerical Methods in Engineering 61(15): 2615-2638, 2004. Source
Large deformations
- Plešek J., Kruisová A. Formulation, validation and numerical procedures for Hencky´s elasticity model. Computers & Structures 84(17-18): 1141-1150, 2006. Source
- Poživilová A., Plešek J. Tangent moduli of the Hencky material model derived from the stored energy function at finite strains. Materials Science Forum 482: 327-330, 2005. Source
Molecular dynamic simulations and Fracture mechanics
- Machová A., Uhnáková A., Hora P. Growth of 3D edge cracks in mode I and T-stress on the atomistic level. Computational Materials Science 138: 315-322, 2017. Source
- Landa M., Machová A., Uhnáková A., Pokluda J., Lejček P. Crack growth in Fe–2.7 wt% Si single crystals under cyclic loading and 3D atomistic results in bcc iron. International Journal of Fatigue 87: 63-70, 2016. Source
- Uhnáková A., Machová A., Hora P., Červená O. Growth of a brittle crack (001) in 3D bcc iron crystal with a Cu nano-particle. Computational Materials Science 83: 229-234, 2014. Source
- Machová A., Pokluda J., Uhnáková A., Hora P. 3D atomistic studies of fatigue behaviour of edge crack (0 0 1) in bcc iron loaded in mode I and II. International Journal of Fatigue 66: 11-19, 2014. Source
- Uhnáková A., Pokluda J., Machová A., Hora P. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron loaded in mode II. Computational Materials Science 61:12-19, 2012.
- Uhnáková A., Machová A., Hora P. 3D atomistic simulation of fatigue behavior of a ductile crack in bcc iron. International Journal of Fatigue 33(9): 1182-1188, 2011.
- Uhnáková A., Pokluda J., Machová A., Hora P. 3D atomistic simulation of fatigue behaviour of cracked single crystal of bcc iron loaded in mode III. International Journal of Fatigue 33(12): 1564-1573, 2011.
- Uhnáková A., Machová A., Hora P., Červ J., Kroupa T. Stress wave radiation from the cleavage crack extension in 3D bcc iron crystals. Computational Materials Science 50(2): 678-685, 2010. Source
- Prahl J., Machová A., Spielmannová A., Karlík M., Landa M., Haušild P., Lejček P. Ductile-brittle behavior at the (110)[001] crack in bcc iron crystals loaded in mode I. Engineering Fracture Mechanics 77(2): 184-192, 2010.
- Spielmannová A., Machová A., Hora P. Transonic twins in 3D bcc iron crystal. Computational Materials Science 48(2): 296-302, 2010.
- Spielmannová A., Machová A., Hora P. Crack-induced stress, dislocations and acoustic emission by 3-D atomistic simulation in bcc iron. Acta Materialia 57(14): 4065-4073, 2009.
- Machová A., Spielmannová A., Hora P. 3D atomistic simulation of the interaction between a ductile crack and a Cu nanoprecipitate. Modelling and Simulation in Materials Science and Engineering 17(3): 1-19, 2009.
- Hora P., Pelikán V., Machová A., Spielmannová A., Prahl J., Landa M., Červená O. Crack induced slip processes in 3D. Engineering Fracture Mechanics 75: 3612-3623, 2008.
- Prahl J., Machová A., Landa M., Haušild P., Karlík M., Spielmannová A., Clavel M., Haghi-Ashtiani P. Fracture of Fe-3wt.% Si single crystals. Materials Science and Engineering A-Structural materials 462(1-2): 178-182, 2007.
- Beltz E.G., Machová A. Reconciliation of continuum and atomistic models for the ductile versus brittle response of iron. Modelling and Simulation in Materials Science and Engineering 15: 65-83, 2007. Source
- Pelikán V., Hora P., Machová A., Landa, M. Ductile-brittle behavior of microcracks in 3D. Materials Science Forum 482: 131-135, 2005.
- Beltz G. E., Machová A. Effect of T-stress on dislocation emission in iron. Scripta Materialia 50: 483-487, 2004.
- Machová A., Beltz G. E. Ductile-brittle behavior of (001)[110] nano-cracks in bcc iron. Materials Science and Engineering A-Structural materials 387-389: 414-418, 2004.
- da Silva K. D., Beltz G. E., Machová A. Tension-shear coupling in slip and decohesion of iron crystals. Scripta Materialia 49: 1163-1167, 2003.
- Machová A. Residual stress in Fe-Cu alloys at 0 and 600 K. Computational Materials Science 24(4): 534-543, 2002.
- Machová A. Britte-ductile behavior in bcc iron containing copper nano-particles. Materials Science and Engineering A-Structural materials 319: 574-577, 2001.
- Machová A. Stress calculations on the atomistic level. Modelling and Simulation in Materials Science and Engineering 9: 327-337, 2001.
- Červ J., Landa M., Machová A. Transonic twinning from the crack tip. Scripta Materialia 43(5): 423-428, 2000.
Computational fluid dynamics
- Šístek J., Novotný J., Mandel J., Čertíková M., Burda P. BDDC by a frontal solver and the stress computation in a hip joint replacement. Mathematics and Computers in Simulation 80(6): 1310-1323, 2010.
- Burda P., Novotný J., Šístek J. Accuracy of semi-GLS stabilization of FEM for solving Navier-Stokes equations and a posteriori error estimates. International Journal for Numerical Methods in Fluids 56(8): 1167-1173, 2008.
- Burda P., Novotný J., Šístek J. Numerical solution of flow problems by stabilized finite element method and verification of its accuracy using a posteriori error estimates. Mathematics and Computers in Simulation 76(1-3): 28-33, 2007.
- Burda P., Novotný J., Šístek J. Finite element solution of Navier-Stokes equations adapted to a priori error estimates. WSEAS Transactions on Mathematics 5(1): 188-195, 2006.
- Burda P., Novotný J., Šístek J. On a modification of GLS stabilized FEM for solving incompressible viscous flows. International Journal for Numerical Methods in Fluids 51(9-10): 1001-1016, 2006.
- Burda P., Novotný J., Šístek J. Stabilization of FEM for incompressible flows by modified GLS algorithm. International Journal for Numerical Methods in Fluids 47(1): 1285-1292, 2005.
- Burda P., Novotný J., Sousedík B. A posteriori error estimates applied to flow in a channel with corners. Mathematics and Computers in Simulation 61(3-6): 375-383, 2003.
Shock waves
- Hirsch E., Plešek J. A theoretical analysis of experimental results of shock wave loading of OFE copper relating the observed internal structure to the deformation mechanism. International Journal of Impact Engineering 32: 1339-1356, 2006. Source
- Okrouhlík M., Lundberg B. Influence of 3D effects on the efficiency of percussive rock drilling. International Journal of Impact Engineering 25: 345-360, 2001. Source
Resonant ultrasound spectroscopy
- Kolman R., Sorokin S., Bastl B., Kopačka J., Plešek J. Isogeometric analysis of free vibration of simple shaped elastic samples. Journal of the Acoustical Society of America 137(4), 2015. Source
- Kolman R., Plešek J., Landa M. Finite Element Computational Technology Resonant Ultrasound Spectroscopy of Composite Materials. Materials Science Forum 482: 343-346, 2005. Source
- Plešek J., Kolman R., Landa M. Using finite element method for the determination of elastic moduli by resonant ultrasound spectroscopy. Journal of the Acoustical Society of America 116(1): 282-287, 2004. Source
Density functional theory calculations
- Kolman R., Okrouhlík M., Berezovski A., Gabriel D., Kopačka J., Plešek J. B-spline based finite element method in one-dimensional discontinuous elastic wave propagation. Applied Mathematical Modelling 46: 382-395, 2017. Source
- Vackář J., Čertík O., Cimrman R., Novák M., Šipr O., Plešek J. Finite Element Method in Density Functional Theory Electronic Structure Calculations. In Advances in the Theory of Quantum Systems in Chemistry and Physics pp. 199-217, Springer Netherlands. 2012.
- Čertík O., Vackář J., Plešek J. Density functional theory calculations using the finite element method. Proceedings of the Estonian Academy of Sciences. 57(3): 155-178, 2008. Source
Sprayed materials
- Kroupa F., Plešek J. Nonlinear elastic behavior in compression of thermally sprayed materials. Materials Science and Engineering A-Structural materials 328(1): 1-7, 2002. Source
Creep
- Plešek J., Korouš J. Explicit integration method with time step control for viscoplasticity and creep. Advances in Engineering Software 33(7-10): 621-630, 2002. Source