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Abstract

We study spherical completeness of ball spaces and its stability under ex-
pansions. We introduce the notion of an ultra-diameter, mimicking diameters
in ultrametric spaces. We prove some positive results on preservation of spher-
ical completeness involving ultra-diameters with values in narrow partially
ordered sets. Finally, we show that in general, chain intersection closures of
ultrametric spaces with partially ordered value sets do not preserve spherical
completeness.
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1 Introduction

In [2, 3, 4, 5, 6, 7], ball spaces are studied in order to provide a general framework for
fixed point theorems that in some way or the other work with contractive functions.
A ball space (X,B) is a nonempty set X together with any nonempty collection of
nonempty subsets of X. The completeness property necessary for the proof of fixed
point theorems is then encoded as follows. A chain of balls (also called a nest) in
(X,B) is a nonempty subset of B which is linearly ordered by inclusion. A ball
space (X,B) is called spherically complete if every chain of balls has a nonempty
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intersection. Further, we say that a ball space (X,B) is chain intersection closed if
the intersection of every chain in B is either empty or a member of B. We define
ci(B) to be the family of all nonempty sets of the form

⋂
C , where C ⊆ B is a

chain (recall that, by default, chains of sets are supposed to be nonempty). More
formally,

ci(B) =
{⋂

C : ∅ 6= C ⊆ B, C is a chain
}
\ {∅}.

Hence a ball space (X,B) is chain intersection closed if and only if ci(B) = B. In
the present paper, we study the process of obtaining a chain intersection closed ball
space from a given ball space and the question under which conditions the spherical
completeness of (X,B) implies the spherical completeness of (X, ci(B)).

Main inspiration for these definitions and questions is taken from the theory of
ultrametric spaces and their ultrametric balls. An ultrametric d on a set X is a
function from X×X to a partially ordered set Γ with smallest element ⊥, such that
for all x, y, z ∈ X and all γ ∈ Γ,

(U1) d(x, y) = ⊥ if and only if x = y,

(U2) if d(x, y) ≤ γ and d(y, z) ≤ γ, then d(x, z) ≤ γ,

(U3) d(x, y) = d(y, x) (symmetry).

Condition (U2) is the ultrametric triangle law; if Γ is linearly ordered, it can be
replaced by

(UT) d(x, z) ≤ max{d(x, y), d(y, z)}.
A closed ultrametric ball is a set Bα(x) := {y ∈ X : d(x, y) ≤ α}, where x ∈ X and
α ∈ Γ. The problem with general ultrametric spaces is that closed balls Bα(x) are
not necessarily precise, that is, there may not be any y ∈ X such that d(x, y) = α.
Therefore, we prefer to work only with precise ultrametric balls, which we can write
in the form

B(x, y) := {z ∈ X : d(x, z) ≤ d(x, y)},
where x, y ∈ X. We obtain the ultrametric ball space (X,Bd) from (X, d) by taking
Bd to be the set of all such balls B(x, y). Specifically, Bd := {B(x, y) : x, y ∈ X}.

More generally, an ultrametric ball is a set BS(x) := {y ∈ X : d(x, y) ∈ S},
where x ∈ X and S is an initial segment of Γ. We call X together with the collec-
tion of all ultrametric balls the full ultrametric ball space of (X, d). Any nonempty
intersection of a chain (B(xi, yi))i∈I is such an ultrametric ball BS(x), where S is
the initial segment {γ ∈ Γ: γ ≤ d(xi, yi) for all i ∈ I}. If Γ is linearly ordered, then
BS(x) is the intersection of the chain {B(x, y) : y ∈ X such that d(x, y) /∈ S}; hence
in this case, the full ultrametric ball space is just (X, ci(Bd)).

Theorem 1.1. Let (X,Bd) be the ball space of an ultrametric space (X, d) with
linearly ordered value set. Then the following assertions hold:

1) The ball space (X, ci(Bd)) is chain intersection closed.

2) If (X,Bd) is spherically complete, then so is (X, ci(Bd)).
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We will deduce this theorem from the more general Theorem 2.2 in the next section.

Assume that {Bi : i ∈ I} is any collection of balls in ci(Bd) such that Bi ∩
Bj 6= ∅ for all i, j ∈ I. Then from the ultrametric triangle law and the assumption
that the value set is linearly ordered it follows that {Bi : i ∈ I} is in fact a chain.
Hence it follows from part 1) of our theorem that ci(Bd) is closed under nonempty
intersections of arbitrary collections of balls.

The structure of ultrametric spaces with partially ordered value sets is in general
much more complex than in the case of linearly ordered value sets. But we can at
least prove the following. Recall that a partially ordered set (“poset”) is narrow if
it contains no infinite sets of pairwise incomparable elements.

Theorem 1.2. Let (X,Bd) be the ball space of an ultrametric space with countable
narrow value set. Then the assertions of Theorem 1.1 hold.

This theorem will be proven at the end of Section 3, where we study intersection
closures for the more general class of ball spaces that admit functions which we
call “ultra-diameters”. These are functions that associate to every ball a value in a
poset having a special property related to ultrametrics. For instance, for a ball space
consisting of precise balls in an ultrametric space (X, d), the function B(x, y) 7→
d(x, y) is an ultra-diameter.

Take two ball spaces (X,B) and (X,B′) on the same set X. We call (X,B′) an
expansion of (X,B) if B ⊆ B′. In general, we cannot expect the existence of chain
intersection closed expansions which preserve spherical completeness. Example 4.4
in Section 4 shows that the condition “narrow” cannot be dropped in Theorem 1.2:

Theorem 1.3. There exists a countable spherically complete ultrametric space with
partially ordered value set whose ultrametric ball space does not admit any expansion
that is chain intersection closed and spherically complete.

However, we do not know whether the countability assumption can be dropped in
Theorem 1.2. Example 4.6 in Section 4 presents an uncountable narrow spherically
complete ball space which does not admit any expansion that is chain intersection
closed and spherically complete. But in contrast to Example 4.4, it cannot be trans-
formed into an ultrametric space.

2 Chain intersection closure

Let B be a nonempty family of nonempty sets. Using transfinite recursion, we define
ciα(B) for each ordinal α, as follows.

ci0(B) = B, ciα(B) = ci

(⋃
ξ<α

ciξ(B)

)
for α > 0.
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Finally, we define the chain intersection rank of B, denoted by cir(B), to be the
smallest ordinal α such that ciα+1(B) = ciα(B). Thus, cir(B) = 0 if and only if
B is chain intersection closed, while cir(B) ≤ 1 means that in order to make B
chain intersection closed, it suffices to extend it by adding all nonempty intersections
of chains. In general, we call (X, ciα(B)), with α = cir(B), the chain intersection
closure of (X,B). It could also be described as a ball space (X,B′), where B′ ⊇ B
is minimal such that B′ ∪ {∅} is stable under intersections of chains.

A ball space (X,B) will be called tree-like if for every B1, B2 ∈ B the following
implication holds.

(I) B1 ∩B2 6= ∅ =⇒ B1 ⊆ B2 or B2 ⊆ B1.

Note that if (X,B) is tree-like then the poset (B,⊇) is a generalized tree in the sense
that for every B ∈ B the set {C ∈ B : C ⊇ B} is linearly ordered. The converse may
be false, as the relation B1∩B2 6= ∅ does not imply the existence of any B ∈ B with
B ⊆ B1 ∩ B2. Perhaps the simplest counterexample is B = {{0, 1}, {1, 2}}, where
(B,⊇) is a tree consisting of two incomparable elements, however (I) is violated.
But the following is apparent form our discussion:

Lemma 2.1. Let (X,B) be a ball space such that B is closed under finite intersec-
tions. If (B,⊇) is a generalized tree, then (X,B) is a tree-like ball space.

This is our main theorem on tree-like ball spaces.

Theorem 2.2. Let (X,B) be a tree-like ball space. Then

(1) cir(B) ≤ 1,

(2) (X, ci(B)) is tree-like,

(3) (X, ci(B)) is spherically complete whenever (X,B) is.

Proof. Let D be a chain in ci(B). For each D ∈ D , choose a chain CD ⊆ B such
that D =

⋂
CD. Let C =

⋃
D∈D CD. Then

⋂
C =

⋂
D . We claim that C ⊆ B is

a chain. Indeed, fix C1, C2 ∈ C and consider D1, D2 ∈ D such that Ci ∈ CDi for
i = 1, 2. Since D is a chain, we may assume that D1 ⊆ D2 (the other possibility is
the same). Now C1 ∩ C2 ⊇ D1; since D1 is nonempty, we may apply (I) to obtain
that either C1 ⊆ C2 or C2 ⊆ C1. This proves (1) and (3).

In order to show (2), fix Di =
⋂

Ci, i = 1, 2, where C1, C2 are chains in B and
suppose D1 ∩ D2 6= ∅. Then C1 ∩ C2 6= ∅ for every C1 ∈ C1, C2 ∈ C2, therefore
by (I) the family C1 ∪ C2 is a chain. Now, if C1 is co-initial in (C1 ∪ C2,⊆) then
D1 ⊆ D2. Otherwise, C2 must be co-initial in (C1 ∪ C2,⊆), yielding D2 ⊆ D1. This
shows (2).

Every ultrametric space with linearly ordered value set is tree-like, since in this
case property (I) follows from the ultrametric triangle law. Hence Theorem 1.1 is a
special case of Theorem 2.2.

4



The following example shows that the chain intersection rank of a ball space can
be arbitrarily large.

Example 2.3. Let A be an arbitrary family of nonempty sets. We claim that there
is a family of sets B which is a generalized tree both with ⊆ and with ⊇ and such
that ci(B) = B ∪A . This will also show that the chain intersection rank can have
arbitrarily large values.

For each A ∈ A choose a countable set E(A) = {eA,n}n∈ω so that E(A)∩E(B) =
∅ whenever A 6= B. Define En(A) = A ∪ {eA,i : i ≥ n}. Let

B = {En(A) : n ∈ ω, A ∈ A }.

Clearly, {En(A)}n∈ω is a chain satisfying
⋂
n∈ω En(A) = A for every A ∈ A , there-

fore A ⊆ ci(B). On the other hand, Ek(A) and E`(B) are comparable with respect
to inclusion if and only if A = B, therefore ci(B) = B ∪ A . Using transfinite in-
duction, we can repeat this construction as long as we wish, obtaining families of
sets with arbitrarily large chain intersection ranks.

The result above motivates the following definition. Namely, we say that a ball
space (X,B) is chain intersection stable if for every nonempty family F consisting
of chains in B such that {

⋂
C : C ∈ F} is a chain, there exists a chain U ⊆ B

satisfying ⋂
U =

⋂
C∈F

⋂
C .

Clearly, if (X,B) is chain intersection stable then cir(B) ≤ 1 and spherical com-
pleteness is preserved when passing from B to ci(B). In order to prove that a
concrete ball space (X,B) is chain intersection stable, some diagonalization argu-
ment needs to be invoked. In the proof of Theorem 2.2, simply the union of all chains
is a chain. So we have:

Corollary 2.4. Every tree-like ball space is chain intersection stable. In particular,
every ultrametric space with linearly ordered value set is chain intersection stable.

On the other hand, a ball space with chain intersection rank≤ 1 is not necessarily
chain intersection stable. Indeed, if in Example 2.3 there is a chain in A with
nonempty intersection not contained in A , then the intersection over this chain is
not equal to the intersection over any chain in B.

We shall see in the proof of Theorem 3.4 that sometimes a quite nontrivial
diagonalization is needed to prove that a given ball space is chain intersection stable.

3 Ultra-diameters

Recall that a function f : (P,≤P ) → (Q,≤Q) is order preserving or increasing if
x0 ≤P x1 implies f(x0) ≤Q f(x1), while it is called strictly order preserving or
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strictly increasing if additionally f(x0) 6= f(x1) whenever x0 6= x1. Below we define
the concept of an ultra-diameter, from a family of sets to a fixed poset. Note that
every family of sets is a poset with inclusion or reversed inclusion. On the other
hand, every poset is isomorphic to a family of sets with inclusion (as well as reversed
inclusion).

An ultra-diameter on a family of nonempty sets B is a function δ : B → Γ, where
Γ is a poset, satisfying

(D1) δ is increasing (i.e., δ(B0) ≤ δ(B1) whenever B0 ⊆ B1),

(D2) if B0, B1 ∈ B, B0 ∩B1 6= ∅, and δ(B0) ≤ δ(B1) then B0 ⊆ B1.

Of course, the identity function idB : B → B is an ultra-diameter. In general,
the idea is to find Γ as simple as possible, so that there is still an ultra-diameter
from B to Γ. The adjective “ultra” is motivated by (generalized) ultrametric spaces
in which the precise balls have a natural ultra-diameter.

The proof of the following lemma is straightforward, by applying (U2) and (U3).

Lemma 3.1. Let (X, d) be an ultrametric space with value poset Γ. Let x, y ∈ X be
such that γ = d(x, y). Then B(x, y) = B(x′, y′) for every x′, y′ ∈ B(x, y) satisfying
d(x′, y′) = γ.

By Lemma 3.1, the function δ : Bd → Γ given by the formula

δ(B(x, y)) = d(x, y)

is well defined. It obviously satisfies (D1). If B(x, y)∩B(u,w) 6= ∅ and, say, d(x, y) ≤
d(u,w) then by the ultrametric triangle law (U2) we get B(x, y) ⊆ B(u,w), therefore
δ satisfies (D2), showing that it is an ultra-diameter on Bd.

Not every ultra-diameter comes from an ultrametric, simply because an ultra-
metric is defined on points, hence on a countable set it attains countably many
values only. On the other hand, one can have an uncountable family B of subsets
of a fixed countable set, with an ultra-diameter δ : B → Γ where Γ is uncountable
and δ attains all possible values (in fact, Γ could be B and δ could be the identity).

Recall that a poset is narrow if it contains no infinite sets of pairwise incom-
parable elements. Besides linearly ordered sets, finite products of ordinals endowed
with the coordinate-wise ordering provide examples of narrow posets. For our next
theorem, we will need two lemmas that reflect important and well known properties
of narrow posets. Recall that a family D of sets is linked if B ∩ B′ 6= ∅ for any
B,B′ ∈ D .

Lemma 3.2. Let δ : B → Γ be an ultra-diameter such that Γ is narrow. Then every
infinite linked family D ⊆ B contains a chain C such that |C | = |D |. Let (P,≤) be a
narrow poset, A ⊆ P infinite. Then there exists a chain C ⊆ A such that |C| = |A|.
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Proof. Given a pair {B,B′} in D color it green if B ⊆ B′ or B′ ⊆ B. Otherwise,
color it red. By the Erdős-Dushnik-Miller Theorem, there is C ⊆ D of the same
cardinality as D and such that all pairs in C have the same color. Suppose that
this color is red. Then δ(B), δ(B′) are incomparable in Γ, because of the definition
of an ultra-diameter and the fact that B ∩ B′ 6= ∅. But Γ is narrow, so the set
{δ(B) : B ∈ C } is finite, a contradiction. Thus the color of every pair of balls in C
is green, that is, C is a chain.

Recall that a set A in a poset (P,≤) is directed if for every a0, a1 ∈ A there is
b ∈ A with a0 ≤ b and a1 ≤ b. It turns out that every directed narrow poset contains
a cofinal subset isomorphic to a finite product of regular cardinals, see [1]. The
following fact can also be found in [1]. We give a proof for the sake of completeness.

Lemma 3.3. Every narrow poset is a finite union of directed subsets.

Proof. Let (P,≤) be a narrow poset. Passing to a suitable cofinal subset, we may
assume it is well-founded. Now the narrowness implies that the set of all initial
segments of P is well-founded. Thus, supposing P is not a finite union of directed
subsets, we may choose a minimal (with respect to inclusion) initial segment I ⊆ P
with the same property. In particular, I is not directed, so there are a, b ∈ I such that
no x ∈ I satisfies a ≤ x, b ≤ x. Define Ia = {x ∈ I : b 6≤ x} and Ib = {x ∈ I : a 6≤ x}.
Then Ia, Ib are proper initial segments of I and I = Ia ∪ Ib. By minimality, Ia and
Ib are finite unions of directed subsets, therefore so is I, a contradiction.

We will now generalize Corollary 2.4 to a larger class of ball spaces.

Theorem 3.4. Let (X,B) be a ball space such that B admits an ultra-diameter
with values in a countable narrow poset. Then (X,B) is chain intersection stable.

Proof. Let δ : B → Γ be an ultra-diameter such that Γ is a countable narrow poset.
Note that each chain in B is countable. Indeed, by (D1) and (D2), if B0 ⊆ B1 and
δ(B0) = δ(B1) then B0 = B1, therefore δ is one-to-one on each chain in B.

Let {Cα}α<κ be a family of chains in B such that, setting Cα :=
⋂

Cα, it holds
that Cβ ( Cα whenever α < β < κ, where κ is a fixed infinite regular cardinal. We
need to show that C∞ :=

⋂
α<κCα =

⋂
α<κ

⋂
Cα is the intersection of some chain

in B. If Cα = ∅ for some α < κ then C∞ = ∅ and there is nothing to prove, so let
us assume Cα 6= ∅ for every α < κ.

Let Cα = {Bα,n}n∈ω, where Bα,n ⊇ Bα,m whenever n < m. Take any Bα,n ∈ Cα

and Bβ,m ∈ Cβ with α ≤ β < κ. Then ∅ 6= Cβ ⊆ Bα,n ∩ Bβ,m. This proves that the
set

⋃
α<κ Cα is linked. If

⋃
α<κ Cα is finite, the assertion of our theorem is trivial,

thus we may assume it is infinite. Hence by Lemma 3.2,
⋃
α<κ Cα contains a chain

of cardinality |
⋃
α<κ Cα|. By what we have shown in the beginning, this cardinality

must be countable.
Since all Cα, α < κ, are distinct, for every α there must exist some Bα,n that

does not appear in Cγ for any γ < α. This means that
⋃
α<κ Cα must contain at

least κ many balls. We conclude that κ = ω.
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Note that W :=
⋃
α<ω Cα is narrow, as a poset endowed with inclusion. Indeed,

suppose {Wn}n∈ω ⊆ W . Then there are k < ` < ω such that δ(Wk) ≤ δ(W`) or
δ(W`) ≤ δ(Wk). On the other hand, Wk ∩ W` ⊇ Cm 6= ∅ for a big enough m,
therefore by (D2) we get Wk ⊆ W` or W` ⊆ Wk.

By Lemma 3.3,
⋃
α<ω Cα = W0 ∪ · · · ∪ Wk−1, where each Wi is ⊇-directed. Fix

α < ω. For each n ∈ ω there is i < k such that Bα,n ∈ Wi, so there is jα < k such
that Bα,n ∈ Wjα for infinitely many n, say, nα,k, k ∈ ω. It follows that there is some
j < k and an infinite set M ⊆ ω such that jα = j for every α ∈M . Now

CM :=
⋃
α∈M

{Bα,nα,k : k < ω}

is contained in Wj, therefore it is ⊇-directed. We have that
⋂

CM =
⋂

C = C∞.
Finally, since CM is ⊇-directed, it contains a chain D ⊆ B that is cofinal in (CM ,⊇),
meaning that for each B ∈ CM there is D ∈ D satisfying B ⊇ D. Hence

⋂
D =⋂

CM = C∞. This completes the proof.

Take an ultrametric space (X, d) such that the value poset of d is countable and
narrow. Then Theorem 3.4 applies. Hence (X,Bd) is chain intersection stable and
assertions 1) and 2) of Theorem 1.1 hold. This proves Theorem 1.2.

4 Negative results

We will first present an example showing that Theorem 1.2 is no longer true when
the value set is not narrow. We will need the following simple fact which provides
many examples of (generalized) ultrametric spaces.

Proposition 4.1. Take any set X and T a subset of P(X) such that for every two
distinct elements x, y ∈ X there is a smallest set BT (x, y) ∈ T containing x and y.
Set uT (x, y) := BT (x, y) if x 6= y and uT (x, x) := ∅. Then uT is an ultrametric on
X with value set contained in T ∪ {∅}, which is partially ordered by inclusion, with
⊥ = ∅. With respect to this ultrametric,

B(x, y) = BT (x, y).

Proof. If x 6= y then by definition, x, y ∈ BT (x, y), so uT (x, y) 6= ∅ = ⊥. This
together with the definition of uT (x, x) proves (U1). Furthermore, (U3) holds since
BT (x, y) = BT (y, x). In order to prove the ultrametric triangle law (U2), take
x, y, z ∈ X and a set S ∈ T such that BT (x, y) ⊆ S and BT (y, z) ⊆ S. Then
x, z ∈ S and by the definition of BT (x, z), we find that BT (x, z) ⊆ S.

To prove the second assertion, we observe that

z ∈ B(x, y)⇐⇒ uT (x, z) ≤ uT (x, y)⇐⇒ BT (x, z) ⊆ BT (x, y).

Hence if z ∈ B(x, y), then z ∈ BT (x, y). Conversely, if z ∈ BT (x, y), then x, z ∈
BT (x, y) and by the definition of BT (x, z), we find that BT (x, z) ⊆ BT (x, y),
whence z ∈ B(x, y). This proves that B(x, y) = BT (x, y).

8



The following is an immediate consequence of Proposition 4.1.

Corollary 4.2. Each ball space in which for every two distinct elements x, y there
is a smallest ball containing x and y admits a canonical induced ultrametric.

Examples 4.3. 1) If B is the ball space of all closed ultrametric balls in an ul-
trametric space with linearly ordered value set, then the value set of the induced
ultrametric consists of exactly all precise balls.

2) If X is a T1 topological space, then each two element set is closed. Therefore,
if B is the ball space of all closed sets in a T1 topological space, then under the
induced ultrametric uT , the values uT (x, y) and uT (x′, y′) are incomparable when-
ever {x, y} 6= {x′, y′}. That is, uT X

2 \{⊥} is an anti-chain. If X is not T1 , then the
complexity of the ordering on uT X

2 \ {⊥} (given by set inclusion) can be seen as a
measure of how far X is from being T1 .

The next example will prove Theorem 1.3:

Example 4.4. Take X = (ω + 1)× ω. For m, k < ω, we set

Bm,k := {(n, k) : m ≤ n ≤ ω} ∪ {(ω, `) : k ≤ ` < ω}

and
T := {Bm,k : m, k ∈ ω} ∪ {{(ω, k), (ω, `)} : k, ` ∈ ω, k 6= `} ∪ {X}.

Then for all distinct (m, k), (n, `) ∈ X with m ≤ n, there is a smallest set in T
containing them:

(1) BT ((m, k), (n, `)) =



Bm,k if m ≤ n < ω and k = ` ,
or m < n = ω and k ≤ `

{(ω, k), (ω, `)} if m = n = ω and k 6= `

X if m ≤ n < ω and k 6= ` ,
or m < n = ω and k > ` ,
or m = n = ω and k = ` .

In view of the symmetry of the sets BT , the assumption m ≤ n is no loss of
generality.

By Proposition 4.1 we obtain an induced ultrametric uT , and the family BT

of its closed ultrametric balls is equal to T . We show that (X, uT ) is spherically
complete.

Take a chain N in T . If N contains a smallest ball, then its intersection
is equal to this ball and hence nonempty. If N does not contain a smallest ball,
then it must be of the form {Bmi,k : i ∈ ω} for some k ∈ ω, where (mi)i∈ω is a
strictly increasing sequence in ω. The intersection of this chain is the nonempty set
{(ω, `) : ` ≥ k}.
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Suppose that (X,B′) is a chain intersection closed expansion of (X,BT ). Then
by what we have just shown,

N = {{(ω, `) : k ≤ ` < ω} : k ∈ ω} ⊆ B′.

We find that (X,B′) is not spherically complete, since N is a nest and its intersec-
tion is empty.

Let us note that the arguments of the proof show that with B′ = BT ∪ N ,
the expansion (X,B′) of (X,BT ) is chain intersection closed. It follows that B′ =
ci(B), showing that while assertion 2) of Theorem 1.1 fails, assertion 1) still holds.

Our final result shows that the assertion of Theorem 3.4 does not remain true
when the countability assumption is dropped.

Theorem 4.5. There exists an uncountable spherically complete narrow ball space,
closed under finite intersections, which is not chain intersection stable and does not
admit any expansion that is chain intersection closed and spherically complete.

This theorem is proved by the following example.

Example 4.6. Let X = ((ω1 + 1) × (ω + 1)) \ {(ω1, ω)}, so that the elements of
X are pairs of ordinals (α, β), where α ≤ ω1, β ≤ ω and (α, β) 6= (ω1, ω). Define
Bα,n = {(x, y) ∈ X : α ≤ x, n ≤ y}. This is the maximal rectangle in X, whose
bottom-left vertex is (α, n). Let

B = {Bα,n : α < ω1, n < ω}.

Then (X,B) is a ball space which is closed under finite intersections, because Bα,n∩
Bβ,m = Bγ,k where γ = max(α, β) and k = max(n,m). It is clear that (B,⊆) is
narrow, as it is isomorphic to ω1 × ω with the product ordering.

If C is a chain in B then
⋂

C 6= ∅. Indeed, this is true if C is countable because
then [α, ω) ⊆

⋂
C for a sufficiently big α < ω1. Otherwise, if for each α < ω1 there

is ξα > α such that Bξα,nα ∈ C for some nα < ω, then there are uncountably many
αs such that nα = n is constant and consequently (ω1, n) ∈

⋂
C , because C is a

chain. This proves that B is spherically complete.
On the other hand, (X,B) is not chain intersection stable, because it con-

tains the chains Cα = {Bα,n}n<ω for which
⋂

Cα = ([α, ω1) × {ω}) ∩ X and hence⋂
α<ω1

⋂
Cα = ∅. Every chain intersection closed expansion of B will contain the

chain {
⋂

Cα}α<ω1 and will thus not be spherically complete.

Note that in contrast to Example 4.4, Proposition 4.1 cannot be applied here to
derive an ultrametric space, because for any two points whose second coordinate is
ω there is no smallest ball in B containing them.
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