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AN EXTENSION OF COMPACT OPERATORS BY COMPACT
OPERATORS WITH NO NONTRIVIAL MULTIPLIERS

SAEED GHASEMI AND PIOTR KOSZMIDER

ABSTRACT. We construct a nonhomogeneous, separably represented, type I
and approximately finite dimensional C*-algebra such that its multiplier al-
gebra is equal to its unitization. This algebra is an essential extension of the
algebra K(¢2(c)) of compact operators on a nonseparable Hilbert space by the
algebra K(¢2) of compact operators on a separable Hilbert space, where ¢ de-
notes the cardinality of continuum. Although both KC(¢2(c)) and K(£2) are
stable, our algebra is not. This sheds light on the permanence properties of
the stability in the nonseparable setting. Namely, unlike in the separable case,
an extension of a stable nonseparable C*-algebra by K(¢2) does not have to
be stable. Our construction can be considered as a noncommutative version
of Mréwka’s W-space; a space whose one point compactification is equal to its
Cech-Stone compactification and is induced by a special uncountable family
of almost disjoint subsets of N.

1. INTRODUCTION

Perhaps the simplest example of a locally compact space whose one-point com-
pactification is equal to the Cech-Stone compactification is the first uncountable
ordinal w; with the order topology. This follows from the well-known fact that
every real or complex valued continuous function on w; is eventually constant.
Another example of such spaces is K \ {z}, where K is a compact extremally
disconnected space and z is a nonisolated point (Exercise 1H of [14]). A noncom-
mutative version of this fact was proved in [25] in the context of II; factors. In [20]
Mrowka constructed a locally compact space with the same property that the one-
point compactification and Cech-Stone compactification coincide which moreover
has the simplest nontrivial Cantor-Bendixson decomposition, i.e., after removing a
countable dense subset of isolated points we are left with an uncountable discrete
space. In other words, it is a separable scattered space of Cantor-Bendixson height
2 (see 6.4. of [15]). Such spaces are induced by uncountable almost disjoint families
of infinite subsets of N (every two distinct members of the family have finite in-
tersection). On the level of Banach spaces of continuous functions or commutative
C*-algebras Mrowka’s space X satisfies the following short exact sequence

0— co L> Co(X) — CQ(C) — 0,

where t[co] is an essential ideal Cy(X), i.e., N is a dense open subset of X. Here
¢ denotes the cardinality of the continuum. In other words, Cy(X) is an essential
extension of ¢y(c) by ¢o (see I1.8.4 of [6]).

The research of the second named author was partially supported by grant PVE Ciéncia sem
Fronteiras - CNPq (406239/2013-4).
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In this paper we produce a noncommutative version of this phenomenon. It is
widely accepted that the noncommutative version of the ideal of finite subsets of N,
or the commutative C*-algebra cg, is the C*-algebra of all compact operators on
a separable Hilbert space. The same analogy exists for finite subsets of ¢ and the
C*-algebra of all compact operators on the Hilbert space ¢53(c) of density ¢. The
roles of the one point compactification and the Cech-Stone compactification of a
locally compact, noncompact space X are played by the unitization of a nonunital
C*-algebra A (which will be denoted by A) and the multiplier algebra M(A) of
A, respectively. Thus we are interested in an essential extension of the algebra of
compact operators K(¢2(c)) by K(42), i.e., a C*-algebra A satisfying the short exact
sequence

(%) 0 — K(ly) & A — K(la(c)) — 0,

where ([KC(¢3)] is an essential ideal of A. In the main theorem of this paper, The-
orem 6.1, we construct such an algebra A with the required additional property
that the multiplier algebra M(A) of A is *-isomorphic to the unitization of A. In
other words, the corona algebra M(A)/A of our A is *-isomorphic to C. In fact A
has the property that the space QM (A) of all quasi-multipliers of A coincides with
M(A) and therefore QM(A)/A is also *-isomorphic to C. The algebra A of The-
orem 6.1 is a nonseparable subalgebra of B(¢3), which is type I and approximately
finite dimensional in the sense that any finite subset can be approximated from
a finite dimensional subalgebra. Moreover A is a scattered C*-algebra (see [13]),
which means all of its subalgebras are also approximately finite dimensional ([18]).
Note that the various equivalent definitions of approximately finite dimensional C*-
algebras which are equivalent in the separable case are no longer equivalent in the
nonseparable context (see [12] where a different terminology is used).

For C*-algebras B and C, an extension of B by C is a short exact sequence of
C*-algebras

0=+C—-A—=B—=0.

The goal of the extension theory is, given B and C, to classify all the extensions
of B by C up to a suitable equivalence relation. The set of all equivalence classes
of extensions of B by C can be equipped with a proper addition which turns it
into an abelian semigroup, usually denoted by Exzt(B,C), or simply Ext(B) if C =
KC(€2). The reader may refer to [5] for the details and various definitions regarding
extensions of C*-algebras, however in this paper we are not concerned about the
structure of Ext semigroups, although we hope that the extension we construct is a
contribution to a more general and future project of understanding the semigroup
Ext(K(l2(k)) for wy < k < ¢. The “extension questions” for C*-algebras ask
whether the C*-algebra A in the extension

0—-C—->A—->B—0,

satisfies property P, given that both B and C satisfy P. One of the features of our
extension is that B and C are as simple as possible (besides B being nonseparable),
while A is quite pathological, which makes it interesting for the questions of this
sort.

In particular if P is the stability property of a C*-algebra (recall that a C*-
algebra is stable if it is isomorphic to its tensor product by K(¢2)) then the above
question is usually called “the extension question for stable C*-algebras” (see [24]).
If C = K(¢2) and B is a separable C*-algebra, then A is stable if and only if B is
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stable (see Proposition 6.12 of [24]; this is essentially a result of BDF-theory ([7])).
In fact a result of Blackadar ([4]) shows that this holds also if B and C in the above
short exact sequence are any separable AF-algebras. This result is extended to
extensions of more general separable C*-algebras in [24]. Therefore our example
shows that these results do not hold even in quite basic nonseparable context, as
the C*-algebra A from Theorem 6.1 satisfies (x) while it is nonstable. The latter
is because the multiplier algebra of any stable algebra with a projection contains
a copy of B({y) (by 3.8. of [1]). However, A and therefore A (which is isomorphic
to M(A)) are scattered C*-algebras as mentioned above, and consequently all of
their subalgebras are AF ([18]). Hence M(.A) does not contain a copy of B({z).
We need to add however, that a result of Rgrdam shows that there are separable
extensions of K(¢2) which are not stable ([23]).

On a different note, it is worth noticing that our C*-algebra A is complemented in
the Banach space M(.A) as it is co-one-dimensional closed subspace. This fact does
not hold for many nonseparable C*-algebras (see 3.7 of [26]). It is also interesting
to note that any separable subalgebra Ay of A is included in a separable subalgebra
B C A satisfying

0= K(ly) & B — K(ly) — 0,

—_~—

where ([/C(€2)] is essential. All such algebras B are isomorphic to K(¢2) ® K(¢2),
the noncommutative version of Cy(w?) (Proposition 2.16), where w? is the ordinal

w X w with the order topology. Also note that IC(¢2) @K (¢ (c)) is a stable C*-algebra
which satisfies the short exact sequence from (x), and clearly is not isomorphic to
our algebra which is not stable. These facts have well-known analogues in the
commutative context which is surveyed in [15] devoted to applications of almost
disjoint families in topology. One should add that there are many noncommutative
constructions based on almost disjoint families (see the begining of Section 2.2 for
the definition) like in this paper or in papers [8], [27], [3].

The structure of the paper is as follows. In Section 2 we recall and prove pre-
liminary results concerning liftings of “systems of almost matrix units” 7 = {7} ¢ :
&,n < k} C B({y), which form systems of matrix units in the Calkin algebra. The
results are related to the liftings of families of almost orthogonal projections (fam-
ilies of orthogonal projections in the Calkin algebra), which were analyzed in [28]
and [10]. Our C*-algebra A from Theorem 6.1 is generated by a specific “maximal”
system of almost matrix units 7 and all operators in IC(¢2). A result of [28] states
that maximal almost disjoint families of subsets of N do not necessarily give rise
to maximal families of almost orthogonal projections. This is enough to suggest
that Mréwka’s original almost disjoint family ([20]) can not be directly used for our
purpose in the noncommutative setting.

In Section 3, for any system of almost matrix units 7 = {7}, ¢ : £&,n < K} C B({2)
and an operator R € B(¢3) which is a quasi-multiplier of A(7T), we assign a k X k-
matrix A7 (R). The matrix A7 (R) carries a great load of information about R, and
its analysis is crucial in the remaining parts of the paper.

In Section 4 we prove some results related to a system of almost matrix units
labeled by pairs of branches of the Cantor tree. In particular, it is essential later
to use the Borel structure of the standard topology on the Cantor tree in the form
of the “prefect set property” of Borel subsets of the tree.
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Section 5 is devoted to a simple method of modifying a system of almost matrix
units called pairing. Finally in Section 6 we present the main construction which
uses all the previously developed theory.

The general scenario of the construction and the proof of the properties of our al-
gebra follows the main steps of [20]. However there are two-fold complications. The
usual problems related to passing from the commutative to the noncommutative
context, and the combinatorial difficulties related to the fact that the objects cor-
responding to almost disjoint families, namely the systems of almost matrix units,
are labeled by pairs and not single indices. The natural idea is to construct a sys-
tem of almost matrix units S C B(¢3) such that the C*-subalgebra A(S) generated
by K(¢3) and the elements of S has no nontrivial (quasi-)multipliers, meaning that
multipliers of the algebra A(S) are the elements of A(S) and the compact pertur-
bations of the multiples of the identity. The method of eliminating (or “killing” as
it is usually called in set theory) is the above-mentioned pairing from Section 6.

The notation and terminology should be standard and attempts to follow texts
like [21], [2], [6], [10]. For T, S € B({2), we often write T =N S if T — S € K({2).
The map ¢ is always defined so that §, 3 = 1 if @ = 8 and 0 otherwise. [X]<¥
denotes the family of all finite subsets of a set X and [X]? denotes the family of all
two-elements sets of X. For C*-algebras A C B(f) we identify the unitization A
with the subalgebra of B(¢2) generated by A and the identity operator 15(,).

We would like to thank Hannes Thiel for bringing the paper [26] to our attention
and to Ilijas Farah for pointing out some gaps in the previous versions of the paper
and for valuable comments.

2. PRELIMINARIES

2.1. Compact operators. The following elementary lemma sums up the basic
properties of the compact operators which will be used throughout this paper.

Lemma 2.1. Suppose that {e, : n € N} is an orthonormal basis for the Hilbert
space bs and S is a bounded linear operator on 5.
(1) If Zpenl|S(en)|| < oo, then S is compact,
(2) If S is compact, wy, € span(e, : n € Fy) are norm 1 vectors, for pairwise
disjoint finite F, C N and all k € N, then (||S(wg)||)ken — 0,
(8) If S is noncompact, then there is € > 0 such that for every k € N there is
a finite subset Fiy C N with k < min(Fy) and wy € span(e, : n € Fy) of
norm 1 such that ||S(wg)| > €.

Proof. The above clauses easily follow from the fact that an operator S is compact
if and only if lim,,_, ||S(1 — R, )| = 0, where R, is the projection on the span of
{e;:i<n}. O

Note that there are noncompact linear operators S : fo — {5 satisfying S(e,) —
0. For example, consider the operator S defined by S((2,)nen)(k) = Zicr, z:/VE,
where (Ij)ren form pairwise disjoint consecutive intervals in N of size k. Consid-
ering wy = ﬁx 1., where xg, is the characteristic function on I, one can easily

verify that (2) fails.

2.2. Families of almost orthogonal projections. A family {4, : £ < k} of
subsets of N is called an almost disjoint family if A¢ N A, is finite for distinct
&,n < k. Suppose p(N) denotes the Boolean algebra of all subsets of N and Fin
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is the ideal of all finite subsets of N. Almost disjoint families correspond to sets
of pairwise incomparable elements (antichains) of p(N)/Fin. An almost disjoint
family is called maximal if it is maximal with respect to the inclusion. For a
fixed orthonormal basis for the Hilbert space {5, ©(N)/Fin naturally embeds in
the poset of projection of the Calkin algebra. In other words, any almost disjoint
family {A¢ : £ < k} would naturally give rise to a family of diagonalized projections
{P¢ : £ < Kk} on {5 such that P;P, is a compact (finite dimensional) projection, for
any distinct £, < k. The following is a natural generalization of such families.

Definition 2.2 ([28]). For a Hilbert space H, a family P of noncompact projections
of B(H) is called almost orthogonal if the product of any two distinct elements of it
is compact. Such a family P is called maximal if for every noncompact projection
Q € B(H) the operator PQ is noncompact, for some P € P.

Having fixed an orthonormal basis (e, : n € N) for ¢3(N) and given a family
F C p(N) one can consider the orthogonal projections P4 for A € F onto the
closed span of {e, : n € A}. As it was observed in [28], almost orthogonal families
of projections corresponding in the above sense to maximal almost disjoint families
do not have to be maximal.

Recall that a “masa” of B({3) is a maximal abelian subalgebra of B({3). A
masa is called atomic if it is isomorphic to /., the algebra of all operators that are
diagonalized by a fixed basis for ¢3. The following is Lemma 5.34 of [10].

Lemma 2.3. Let 7 : B({2) — B(l2)/K(£2) be the quotient map. Given any sequence
{P, : n € N} of projections in B({2) such that ©(P;) and w(P;) commute for all
i,j € N, there is an atomic masa A in B({3) such that n[A] contains each w(P;)
forieN.

Lemma 2.4. Suppose that {P, : n € N} is an almost orthogonal family of pro-
jections of B(£2). Then there are pairwise orthogonal projections {R,, : n € N} in
B(¢3) such that P, =X R,,, for every n € N.

Proof. By Lemma 2.3 there is an atomic masa A in B(¢3) such that 7[A] D {7 (P,) :
n € N}. Since A is isomorphic to £o = C(ON), the ideal of compact operators in
A is isomorphic to ¢g = Co(BN,N*) = {f € C(BN) : fIN* = 0}, where N* =
BN\ N. Therefore A/(K(¢2) N A) =2 C(BN)/Co(BN,N*) = C(N*). As n(P,) are
orthogonal projections, they correspond to the characteristic functions of pairwise
disjoint clopen subsets of N*. Such sets are given by pairwise disjoint elements
of p(N)/Fin. For any such family in p(N)/Fin we can choose pairwise disjoint
representatives in p(N), which define disjoint clopen subsets of SN and therefore
pairwise orthogonal projections R,, in A such that 7(R,) = 7(P,). O

In the following R|X denotes the restriction of the operator R to the closed
subspace X of /5.

Lemma 2.5. Suppose that R € B({2) is noncompact and self-adjoint. Then there
is a closed infinite dimensional subspace X C {5 such that R|X is invertible in
B(X) and R commutes with the orthogonal projection Px onto X.

Proof. By the spectral theorem there are a measure space (M, u), an isomorphism
of Hilbert spaces U : f5 — Lo(M, ), and a measurable function f such that URU*
is equal to the operator My on Lo(M, 1) acting by multiplication by f. Since R
is noncompact, we have f # 0. Putting A, = {& € M : |f(z)| > 1/n}, we have
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My =limy, oo Mgy, , where the convergence is in the operator norm as f — fxa,
is a function bounded by 1/n. Let P, = U*M,,,U. Each P, is a projection which
commutes with R and R is bounded away from zero on the range of P, for each
n € N. Moreover (RP,)nen converges (in the norm) to R. As R is noncompact,
for some n the projection P, is infinite dimensional. Hence we obtain the lemma
by letting X = P, [(2]. O

Lemma 2.6. Suppose that P is a mazimal almost orthogonal family of projections
of B(¢3) and S € B({2) is a self-adjoint and noncompact operator. Then there are
Py, P, € P such that PSP, is noncompact.

Proof. Let X C {5 be an infinite dimensional subspace such that S|X is invertible
and Py commutes with S, which exists by Lemma 2.5. By the maximality of P we
find P; € P such that Px P; is noncompact. Therefore Px P; Px is a self-adjoint
and noncompact operator. Using Lemma 2.5 again for Px P Py, there is an infinite
dimensional subspace Y C X such that (PxP;Px)|Y is invertible. So PxP;Px
acts on Y as an isomorphism of Banach spaces, transforming Y into its image
(Px P, Px)[Y] which is an infinite dimensional subspace of X. Since S acts as an
isomorphism of Banach spaces on X, it follows that S Px P; Px is noncompact. Also
since S commutes with Py, the operator Px.SP; Px is noncompact, and therefore
S P, is noncompact. Working with SP; instead of S, similarly we find P, € P such
that P, SP; is noncompact. O

2.3. Systems of almost matrix units. Let x be a cardinal and A be a C*-
algebra. A family {ag o : a, 8 < k} of nonzero elements of A satisfying the following
matrix units relations:

® aj , = Gq,p for all a, B <K,

® a5 00y, = Oay08,, for all o, 8,7, < K,

is called a system of matrix units in A.

Proposition 2.7. Let A be the C*-algebra generated by a system of its matriz units
{ane : &,m < k}. Then A is *-isomorphic to the algebra K(¢2(k)) of all compact
operators on fa(k).

Proof. Let {e¢ : £ < k} be an orthonormal basis for ¢5(x) and the operators {T;, ¢ :
&, m < k} are the system of matrix units in B({2(k)) defined by T, ¢(e¢) = e, and
Tye(eg) = 0 for &' # €. For every finite subset I of &, let Br be the C*-subalgebra
generated by {7}, ¢ : {,n € F'}, which is clearly isomorphic to Mg, the algebra of
all |F| x |F| matrices. Let B be the inductive limit of the algebras Bp, along the
set Fj, of finite subsets of x and the *-homomorphisms ¢¢ r : Bp — Bg for F C G
and F,G € F,, defined by ¢g r(Ty¢) = Ty e, for £,n € F. Clearly B = K({2(k)).
The map which sends a, ¢ to T}, ¢ extends to a *-isomorphism from A onto B. [

Definition 2.8. Suppose that T = {T, ¢ : {&,n < &} C B(l2) is a family of non-
compact operators. We say that T is a system of almost matriz units if and only
if for every o, 8,€,n < kK,

(1) The = Te,

(2) Tgo Tye =" danTpe-

Definition 2.9. Suppose that T ={T, ¢ : {,n < k} C B(l2) is a system of almost
matriz units and {P: : £ < K} is a collection of almost orthogonal projections in
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B(ly). We say that T is based on P if Tg e =N Pe for all € < k. We say that T
is a mazximal system of almost matriz units if it is based on a mazximal family of
almost orthogonal projections.

Lemma 2.10. Every system of almost matriz units is based on a family of almost
orthogonal projections.

Proof. By the almost matrix units relations 2.8 we have that TEe . Te ¢ and
Te¢Te e =N Tege, s0 [Tt ¢]ic(e,) is a projection in the Calkin algebra. Therefore we
can find a projection P € B(fz) such that Py =* Ty ¢ (see Lemma 5.3. of [10]). O

In the rest of this section we use some elementary facts about partial isometries
i.e., elements of B(¢2) which are isometries on a subspace of ¢o and zero on its
orthogonal complement. For an element U € B({2) being a partial isometry is
equivalent to each of the conditions (i) U = UU*U, (ii) U* = U*UU*, (iii) U*U
is a projection, (iv) UU* is a projection (2.3.3. [21]). Moreover recall that by the
polar decomposition, any T' € B(f2) can be written as T = U|T|, where U is a
partial isometry whose kernel is equal to the kernel of T (2.3.4. [21]).

Lemma 2.11. Suppose that P = {P: : £ < k} C B({2) is a family of almost
orthogonal projections. Then there is a system of almost matriz units T based on

P.

Proof. Since P¢ for { < k are infinite dimensional projections, there are partial
isometries T¢ o € B(¢2) such that T¢0Teo = Py and T o1 = P, for each § < k.
Let To,e = T¢,. We have T¢ o = PeT¢ o and Ty ¢ = Tp¢ Pe. For €,m < k, define

Tery = TeoTo,y.

It is clear that {T¢ , : &, < k} satisfies the condition (1) of Definition 2.8. For (2)
note that if o, < k then

TO,aTn,O = TO,ozPoanTn,Oa

which is compact if £ # 7, by the almost orthogonality of Pes and T3.oTn e =
Tse. O

Lemma 2.12. Every system of almost matriz units can be extended to a mazximal
one.

Proof. Suppose that 7 = {T,,¢ : £,n < K} is a system of almost matrix units.
Let P = {P: : £ € k} be a family of projections such that Tz ¢ =X P as in
Lemma 2.10. Extend P to a maximal family of almost orthogonal projections
P ={P:: &€ r}U{P:: &€ X} for some set X disjoint from k. Use Lemma
2.11 to construct a system of almost matrix units {7}, ¢ : £&,n € X U{0}} based on
{P: : £ € XU{0}}. For £ € k and n € X define

The =TyoToe, Ten=TeoTon-

It is straightforward to check that {7}, ¢ : {,n € kK UX} forms a system of almost
matrix units based on P’.
(]

The next lemma is a version of Lemma III 6.2 from [9].
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Lemma 2.13. Suppose that {T;,; : i,j € N} is a system of almost matriz units in
B(l2). Then there is a system {E;; : i,j € N} of matriz units in B({2) such that
Ej; =K T} for every i,7 € N.

Proof. Let Abe a C*-algebra generated in B(¢3) by {1}, : i,j € N} and the compact
operators. Then since B = A/K({2) is generated by {[T}|x ) € A/K(L2) : 4,5 €
N}, it is isomorphic to K(¢2) (see Lemma 2.14). Since K¢(B) = Z is a free abelian
group, A is a trivial extension (see Exercise 16.4.7 of [5]), i.e., the short exact
sequence

0—=K() > A—=B—0

splits, which means {[T}i]x(,) € B : 1,5 € N} lift. O

2.4. U-type C*-algebras. If T = {T¢, : {,n < K} is a system of almost matrix
units, we use A(7) to denote the C*-subalgebra of B({2) generated by {T¢ , : {,n <
k} and the compact operators in B(¢3).

Lemma 2.14. Suppose that T = {T¢, : &,n < K} is a system of almost matriz
units in B(lz). The C*-algebra A(T) satisfies the short exact sequence

0= K(ly) 4 A(T) 5 K(£a(r)) = 0,

where ([K(ls)] is an essential ideal of A(T). If K is uncountable, then the extension
is not split, i.e., there is no o : K(la(k)) — A(T) such that wo o is the identity on
K(ta(r)).-

Proof. The map ¢ is the inclusion. Since K(¢2) C A(T) C B(¢3) and K(43) is an

essential ideal in B(¢3), we conclude that ([/C(¢2)] is an essential ideal of A(T).
The operators {[Te ylic(e,) € A/K(f2) : §,n < rk} generate A(T)/K({z) (by the

definition of A(7)) and satisfy the matrix unit relations in B(¢2)/K(¢2), that is

i [Tém];kc(ez) = [Thelxes),

o [Tsalc)Telkie) = danTs.elcw)-
Thus A(T)/K(l3) =2 K(¢2(k)) by Proposition 2.7. If £ is uncountable, then we ob-
serve that C(¢2(x)) can not be embedded into B(¢3) and so it can not be embedded
into A(T). This follows from the fact that B(f2) does not contain any uncount-
able family of pairwise orthogonal projections, while IC(¢2(k)) clearly does, if k is
uncountable. (]

We say a C*-algebra is W-type if it is of the form A(T) for a system of almost
matrix units 7. These C*-algebras are the natural noncommutative analogues of
the W-spaces in topology, which are induced by almost disjoint families (see Defi-
nition 2.6 of [15]). In topology W-spaces are classical examples of separable locally
compact Hausdorff scattered (every nonempty subset has a relative isolated point)
spaces with the Cantor-Bendixson height two. Granting the role of isolated points
to minimal projections in C*-algebras, one can define scattered C*-algebras. A
projection p in a C*-algebra A is called minimal if pAp = Cp and a C*-algebra is
scattered if every nonzero subalgebra has a minimal projection (see [13] for more
on scattered C*-algebras). Just like the scattered spaces, these algebras can be
analyzed using the “Cantor-Bendixson sequences”. For a C*-algebra A let T4%(A)
denote the subalgebra of A generated by the minimal projections of A. The sub-
algebra Z4*(A) turns out to be an ideal isomorphic to a subalgebra of all compact
operators in any faithful representation of A and in fact is the largest ideal with
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this property (Proposition 3.15 and Proposition 3.16 of [13]). A C*-algebra A
is scattered if and only if there is an ordinal ht(A) and a increasing sequence of
closed ideals (Zo)a<pi(a) such that Zo = {0}, Zjya) = A, if a is a limit ordinal
Ia = U,@<(XI[3, and

Ia+1/Ia - IAt(-A/Ia)7

for every o < ht(A) (Theorem 1.4 of [13]). The sequence (Zo)a<ni(a) is called
the Cantor-Bendixson sequence for A and the ordinal ht(.A) is called the Cantor-
Bendixson height or simply the height of A.

Proposition 2.15. Suppose that T = {T¢, : §&,m < K} is a system of almost
matriz units. The C*-algebra A(T) is a scattered C*-algebra of height 2. Therefore
A(T) is GCR (type I) and AF, in the sense that every finite set of elements can be
approzimated from a finite dimensional subalgebra.

Proof. Since K(¢2) C A(T) C B({3), by Proposition 3.21 of [13] we have Z; =
TAA(T)) = K(£3) and also To /T, = T4 (A/TA*(A(T)) = K(¢2(x)) by Lemma
2.14, and therefore Zo = A(T).

The composition series (0,/K(¢2), A(T)) witnesses the fact that A(T) is GCR
(see IV.1.3 of [6]). Also every scattered C*-algebra is AF (see [19], cf. [13]). O

Let us conclude this section by observing the contrast between the separable and
nonseparable case for the extensions of an algebra of compact operators by compact
operators.

Proposition 2.16. Suppose that B is a C*-algebra satisfying the short exact se-
quence

0— K(l) 5 B L K(ls) — 0,
where i[KC(l2)] is an essential ideal of B. Then B is *-isomorphic to E(?g/) QK (l2).

Proof. Tt is enough to show that B is unique up to *-isomorphism. Since Ky (K(¢3))
is a free abelian group the sequence above splits (Exercise 16.4.7 of [5]). All the
nonunital split essential extensions of K(¢2) by KC(¢2) are equivalent and therefore
isomorphic (see I1.8.4.30 of [6]).

(]

3. MULTIPLIERS OF SYSTEMS OF ALMOST MATRIX UNITS

Let A be a nondegenerate subalgebras of B(¢2). A multiplier of (or a multiplier
for) A is an operator T in B({3) such that TA C A and AT C A. An operator
T in B(¢3) is called a quasi-multiplier of A if ATA C A. We denote the set of
multipliers of A by M(A) and the set of all quasi-multipliers of A4 by QM (A). It
is well-known that QM (A) is a norm closed *-invariant subspace of A" and M (A)
is a C*-subalgebra of A" and of course A C M(A) C QM(A) (see 3.12 of [22]).

Lemma 3.1. Suppose that T = {T,¢ : {,n < r} C B({2) is a system of almost
matriz units. Then the following are equivalent:

(1) € QM(A(T))

(2) for every & n < Kk there is )\ZW(R) € C such that

TynRTe e =* )‘Z;jg (R)Tné :



10 SAEED GHASEMI AND PIOTR KOSZMIDER

Proof. Suppose that R is a quasi-multiplier of A(7) and &, 1 < k are given. Then
S =T, ,RI¢ ¢ is an operator in A satisfying S =K T,7nST¢ ¢. The only operators
in A with this property are compact perturbations of constant multiples of Tj, ¢.
The other implication follows immediately from the definition of A(T). O

If R is a quasi-multiplier of A(7), let A7 (R) denote the s x x matrix ()\Zg (R))en<s
over C. If 7T is clear from the context, we often drop the superscript 7, and write
A(R) = (pe(R)e e

In the following, we use I, to denote the x X x matrix which has constant 1
on the diagonal and zero everywhere else, where « is a cardinal. We will also use
1B(¢,) to denote the unit element of B(¢2). When considering « x x matrices we can
treat some of them as operators in B(¢3(k)). Namely, for a fixed (the canonical)
orthonormal basis {e¢ : & < k} for ly(k), we identify operators Tas € B(l2(k))
defined by Ths(e¢)(n) = my,¢ with the kK X K matrix M = (mg ). So, for example,
Ty, is the unit of B(¢3(k)) and Ty is compact if M is a matrix which has only finitely
many nonzero entries. In particular, we will say that a matrix M is a matrix of a
compact operator if T is compact. The operations of addition, multiplication by
scalar and the transposition of £ X k matrices should be clear.

Lemma 3.2. Assume T is a system of almost matrix units of size k and R € B({s)
is a quasi-multiplier of A(T). Then AT (R) is a matriz of a bounded linear operator
on l3(k) of norm not bigger than |R||. In particular, all rows and columns of the
matriz AT (R) are in la(k).

Proof. It is enough to prove that for any finite F' C  and for any (c¢)eer C C such
that Yeep|ce| < 1 we have

(*) \/EneﬂEseF}\n,sCf\z <RIl

Using Lemma 2.13 we have a system of matrix units (E, ¢ ) ccr in B(¢2) such that
T, ¢ =" E, ¢ for every &,n € F. It follows that

EynRE¢e = Ny e(R)Ey ¢ + Sy e,

where ) ¢ is a compact operator, for each £, € F'. For a given ¢ > 0 we will find
a norm one vector w € £y such that [|[R(w)||* > ¥, cr|SeecrA ece|® — &, which will
prove ().

By considering an infinite orthonormal basis in the ranges of each E¢ ¢ for £ € F'
and using Lemma 2.1 (2) we can find norm 1 vectors we in the ranges of Eg ¢,
respectively, such that

SnerSeer|ce|*[|Sne(we)? <,

and w, = E, ¢(we) for {,n € F. The last statement follows from the fact that
E, ¢s are partial isometries, so all the orthonormal bases may be considered to be
the images of a fixed orthonormal basis in E,, ,,.

So by the pairwise orthogonality of E¢¢s for & € F and by the Pythagorean
theorem we have

IR(Seercewe)||? > Sper|Secriyecel® — e,

which completes the proof. [
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In particular by Lemma 3.2 all columns and rows can have at most countably
many nonzero entries. Therefore if x is an uncountable cardinal and R is a quasi-
multiplier of A(T), then for every £ < k there is n < x such that )\Zé(R) =0.

Lemma 3.3. Assume T is a system of almost matriz units of size k. The map AT
from QM(A(T)) into B(l2(k)) is a norm one linear operator such that A7 (R*) =
AT (R)* for every quasi-multiplier R of A(T).

Proof. The linearity of A7 is immediate. The fact that [|[A7| < 1 follows from
Lemma 3.2. For the last part, note that T77 ZR'Tee = (Te e RT, )" = ()\§ (BT )" =
A

Z;?(R)ﬂ7 ¢, and therefore )\T ((R7) =7 77(R) O

Lemma 3.4. Suppose that T = {T,¢ : £, < &} C B(l2) is a system of almost
matriz units. For every k X K matriz (An.¢)en<r 0f a compact operator on ly(k)
there is R € A(T) such that A\, ¢(R) = A\ ¢ for every &,m < k (see Definition 3.1).

Proof. Since (Ay.¢)¢n<r is @ matrix of a compact operator on B({s(k)) (denote this
operator by §), there is a countable A C  such that \¢,, = 0if (£,7) € A x A.
This follows from the fact that the image of the unit ball under a compact operator
is compact and metrizable, and hence separable which implies that the matrix of
the operator must have at most countably many nonzero rows. Now since each row
of the matrix (A ¢)¢n<w belongs to £5(k), there can be at most countably many
nonzero entries.

Apply Lemma 2.13 to obtain a system of matrix units (E, ¢)¢nea in B(¢2) such
that E, ¢ = T, ¢ for £,n € A. Let (F,,)nen be an increasing sequence of finite sets
such that | J,,cy Fn = A. Let By, be the subalgebra of (Y¢cr, Fe ¢ ) B(l2)(Zeer, Fe ¢)
of all operators of the form

(%) Yener, Qb g,

where a,, ¢ € C for every ,n € F},. From the matrix unit relations and Proposition
2.7 it follows that B, is *-isomorphic to the algebra of | F},| x| F},| matrices. Therefore
the norm of the operator as in (x) is equal to the matrix norm of the matrix (o, ¢)¢ .
The norm of this operator in B(¢3)) is the same.

Let S, € B(¢2(k)) be given by S, = Pp,SPr,, where Px is the orthogonal
projection from f(x) onto f5(X) for X C k. Then since (A, )¢, is a matrix of
a compact operator S, the operators S,, converge in the norm to S. Consider the
operators

Ry =Yg per, Anebng.
By the above comments about the norms of operators in B,, we conclude that
IR, — Rl = ||Sn — Sm|| for every n,m € N, and therefore (R,,),en forms a
Cauchy sequence in B(¢2) with all elements in A(7) and hence converges to some
operator R € A(T). Since for every £, € A, there is large enough n € N such that
En,anE£,§ = )‘777§E77,57 we conclude that Tn,nRTS,E =K EW’WREEHE = )‘W’ﬁE’fi’f for
all¢,n € A. So )\Zg(R) = \¢ for all £, » € A. On the other hand if (§,7) ¢ Ax A,
then T¢ ¢ R, T, € K(l2) for alln € Nas {Tee : £ € A} U{E¢¢ : £ € A} is still
almost orthogonal, and thus /\Zg(R) = 0. It follows that A7 (R) = (A\y.¢)en<r as
required. [

The key to the proof of our main theorem is to characterize each quasi-multiplier
R of A(T) based on how “complex” the matrix A(R) is. This is captured in the
following definition.
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Definition 3.5. Assume that T = {T, ¢ : £&,n < Kk} is a system of almost matriz
units, and R € QM(A(T)). We say
e R is a trivial quasi-multiplier of A(T), if A7 (R) = M\, + M, for a matriz
of a compact operator M on B({s(k)) and )\ € C,
e R is a o-trivial quasi-multiplier of A(T), if AT(R) = M. + M, for a k x k
matriz M with at most countably many nonzero entries and some X € C,
e R is a c-trivial quasi-multiplier of A(T), if AT(R) = XM, + M, for a k x
matriz M with less than continuum many nonzero entries and some X € C.

Lemma 3.6. Assume that T is a maximal system of almost matriz units of size
k. Given two quasi-multipliers R, R’ of A(T), if A(R) = A(R'), then R="R'. In
particular,

(1) if A(R) is a compact k X k-matriz, then R € A(T),

(2) if A(R) = M., for some X € C, then R =K Xpg4,),

(8) If R is a trivial quasi-multiplier of A(T), then R € .1/4_(\7{)

Proof. Suppose that R— R’ is not compact. Then by Lemma 2.6, there are £, < &
such that T¢ ¢ (R — R')T;,,,, is noncompact, and hence by Lemma 3.3 we have that
Ne(B— B) = Aey(R) = Ae y(R)) 0.

(1) Suppose that R € QM(A(T)) is such that (A¢,(R))en<r is a matrix of
a compact operator on f3(k). By Lemma 3.4 we obtain R' € A(T) such that
Aen(R) = Ae (R for every &,m < k. By the first part of the lemma we conclude
that R — R’ is compact, and therefore R € A(T), since A(T) includes all compact
operators.

(2) Note that Mg, is clearly a quasi-multiplier of A(7"), and A(Aljg(,)) is the
matrix Al,. Now use the first part of the lemma to conclude the statement.

(8) Suppose A7 (R) = M.+ M, for a matrix of a compact operator M and \ € C.
By Lemma 3.4 there is R’ € A(T) such that A(R') = M. Then A(R — R') = A\,

and by (2) we have R — R’ =X Mg(y,). Therefore R € A(T). O

Lemma 3.7. Assume that k is a cardinal and T = {T¢, : §,m < K} is a mazimal
system of almost matriz units and R € QM(A(T)). If A(R) has at most countably
nonzero entries, then it is a kK X k matrix of a compact operator.

Proof. Assume A(R) = (A\;¢)¢n<k- By re-enumerating the T¢ ;s we may assume
that if A¢, # 0, then &, < w. Also by Lemma 2.4 we may assume that {T¢¢ : £ <
w} are pairwise orthogonal.

By Lemma 3.2, A(R) is a matrix of a bounded linear operator on ¢5(x). Suppose
that A(R) is a matrix of a noncompact operator on ¢2(x). Aiming at a contradiction,
we will construct a projection P such that T¢ ¢ RP is compact for all { < w but RP
is noncompact. By the argument similar to Lemma 2.6 this will give an ordinal
& < k such that T, ¢, RP is noncompact, which by the assumption implies that
w <& < K. Then T, ¢, R is also noncompact, so again there is 179 < & such that
Tey 0 RT 0 no 1s noncompact, which means that A, n, # 0 and (&,m0) € w X w,
contradicting the hypothesis of the lemma.

To construct P we will construct its range spanned by its orthonormal basis
(v : k € w). Tt will be enough to choose the vectors vg in such a way that for each
¢ < w we have that ||T¢ ¢R(vy)|| < 1/2% for all k € [£,w) and ||R(vy)|| does not
converge to 0 when k — oo. Then as P(v;) = vy and (v : k € N) can be extended
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to an orthonormal basis of ¢, we will obtain from Lemma 2.1 (1) that T¢ ¢RP is
compact for every £ < w and from Lemma 2.1 (2) that RP is noncompact.

Using the fact that A(R) is a matrix of a bounded linear operator (Lemma
3.2) which is not compact, by induction on k£ € N (using Lemma 2.1 (3)), we can
construct finite pairwise disjoint F, C N = w and (an)ner, such that for some
e >0,

(1) E7L€Fk|‘f7"n|2 S 1a

(2) IMR)(Bneranxnp)ll = V/EeerEnen antenl® > ¢,

(3) |Enepkan/\§7n|2 < EneFk‘/\f,nP < 1/2k for all f < k.
The condition (3) follows from (1) and the fact that the rows of A(R) are in £5(k)
(Lemma 3.2). Using the compactness of the operators T¢ ¢ RT, 5, — A¢ T p, we find
wy, € Im(T,, ) of norm one such that ||EecoXnerm, (Te e Rl n — AenTen)(wn)| <
£/2. Putting vy, = ¥,cp, anw, we obtain

(a) H/R(Uk)” 2 [|Z¢cwEnern Te, e RTn n(anwy)| = \/EéenmnGFkanAE,nP_E/Z >

€/2,

(b) | Te.eR(vi)ll = [ Ener, Te.c RTn n (o) < 1/2", for all § < k.
As noted before this is sufficient to obtain a contradiction from the conjunction of
the hypothesis that A(R) is a matrix of a noncompact operator and the set of its
nonzero entries is countable. ]

It was noted by the referee that the proof of above lemma can be simplified using
the countable degree-1 saturation of the Calkin algebra (see [11]).

Corollary 3.8. Assume that k is a cardinal and T = {T¢, : &,n < K} is a
mazimal system of almost matriz units and R € QM(A(T)). If R is a o-trivial
quasi-multiplier of A(T), then R is a trivial quasi-multiplier of A(T).

Proof. Assume that A7 (R) is of the form Al + M where A\ € C and M is a matrix
with countably many nonzero entries. Therefore A7 (R — AMpg(e,y) is M, which has
at most countably many nonzero entries, which by Lemma 3.7 means that M is a
matrix of a compact operator and so R is a trivial quasi-multiplier of A(7). O

4. THE CANTOR TREE SYSTEM OF ALMOST MATRIX UNITS

Let 2<N be the set of all maps s : {0,...,n} — {0,1} for n € N or s = () and by
2N denote the Cantor space, the space of all maps ¢ : N — {0, 1}, equipped with
the product topology. For each & € 2N we can associate a set

A ={se2N:sC¢},

which is usually called the “branch through £”. It is easy to see that {Ag : & € 2N}
is an almost disjoint family of subsets of 2<N of size continuum. In this section H
denotes the separable Hilbert space £5(2<N). For each ¢ € 2" define a projection
Tee € B(H) by

Teela)(s) = {g‘(s) if s € A,

for each z € H and s € 2<N. Then Py = {T¢¢ : £ € 2V} is a family of almost
orthogonal projections in B(H).

Let {es : s € 2<N} be the canonical orthonormal basis for H, i.e., e,(t) = 1 if
t = s and e,(t) = 0, otherwise. For every &, 1 € 2N, define a linear bounded operator

otherwise,
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Type:H — Hby Ty elegn) = eq for every k € N and T, ¢(e;) = 0 if ¢ is not equal
to &k for any k € N. It is easy to see that Ton = {T,,¢ : £&,n € 2} is a system
of almost matrix units (Definition 2.8) based on Pyn (Definition 2.9). We will call
this system of almost matrix units “the Cantor tree system of matrix units”. In
the rest of this section the operators T}, ¢ will always refer to the members of Tan.

Recall that a family F of subsets of a Polish space (a separable completely
metrizable space) is said to have the perfect set property, if every uncountable
element of F has a perfect subset. In particular every uncountable element of F
must have cardinality continuum. In the following lemma we use the fact that the
family of Borel sets has the perfect set property (e.g., 13.6 of [17]).

Lemma 4.1. Assume R € B(H) is a quasi-multiplier of A(Tav) and U is a Borel
subset of C, then the set

ToN
Bff = {(n,€) € 2" x 2" : A % (R) e U}

is Borel in 2N x 2N, In particular, Bg” 1s either countable or of size continuum.

-
Proof. Let A, ¢ = )‘n,zéN (R) for every &,n € 2N,

Claim. v, : 2V x 2V — C defined by
Ya(n.€) = (Rley,) ecl,)

is a continuous function, for every n € N.
Proof of the Claim. Fix n € N. For s,t € 2" let O, ; denote the clopen set {(n,§) €
2N % 2N s C ¢ & t C n}. Note that 1, is constant on O 4, for every (s,t) € 27 x 2™.
In fact, ¥, (n,€) = (R(es), ;) for every (n,€) € Os. Since 2V x 28 = Us.tean Os,ts
the range of 1, is finite, and it is continuous, which completes the proof of the
claim.

For each &,n € 2N, since W, ¢ = A\, Ty ¢ — Tpy.nRT¢ ¢ is a compact operator in
B(H), we have lim,, o [|[Wy,e(eg|, )|l = 0 (see Lemma 2.1 (2)), and therefore

m [(Wy e(eg),)s el )| = 0.

li
n— oo
This means that

<TnmRT£,£(€£|n)venln> - <)‘n’£Tn,£(€£\n)venln> = Ane <en\n’en|n> = Ape-
Thus, for each &, € 28

Un(n,€) = <R(€n\n)ae§\n> = <Tn717RT57£(e£|7l)venln>’

converges to A, ¢. So the map ¢ : 2V x 2V — C given by ¢(n,&) = A, ¢ is the
pointwise limit of continuous functions ¢, for n € N, hence it is Borel (Ex. 11.2 (i)
[17]), which means Bff = ¢~1[U] is Borel.

O

Corollary 4.2. If R is a c-trivial quasi-multiplier of A(Tyn), then R is a o-trivial
quasi-multiplier of A(Tan).
Proof. Suppose that A72¥(R) = Ay + M where A\ € C and M has less then

continuum nonzero entries. Note that A7z (R — Mp)) = Mav + M — XNopn = M
by Lemma 3.3. So Bg\—{é;s(m is a Borel subset of 2 x 2V (Lemma 4.1), and of
cardinality less then c¢. Therefore the perfect set property for Borel sets, implies
that Bg _315”{) is countable, so M has at most countably many nonzero entries,

which means that R is o-trivial. O
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5. PAIRING SYSTEMS OF ALMOST MATRIX UNITS

In this section we introduce a method of eliminating nontrivial quasi-multipliers
of A(T) by pairing the elements of 7 into a new system of almost matrix units.

Definition 5.1. Let X be a set which is partitioned into two subsets of the same
cardinality, X = Y U (X \Y) and suppose that p : Y — (X \Y) is a bijection.
Suppose that T = {T, ¢ : &,n € X} is a system of almost matriz units in B({2). We
sayU = {Up¢ : §,m € Y} is a pairing of T along p if and only if for every §,n €Y
the following holds:

Un.e =~ Toe + To(n).p(e)-

Proposition 5.2. Let X, Y, p and T be as above. Then any pairing U of T along
p is a system of almost matriz units. If T is maximal, then U is also mazximal.

Proof. Let U = {Uy ¢ : £,m € Y} be a pairing of T along p. Then for every {,n € Y
we have
K
Une =" The + Tom).p(e)-

We check that U = {U,¢ : §,n € Y} is a system of almost matrix units:
(Un,e)* =" (T e + To(m).p(e)" =N Tey + To(€).om) =K Ug for all £,n €Y. For all
a,B,&,m €Y, since Y Np[Y] =0 and p is a bijection, a straightforward calculation
show that

Us,aUn.e = 5a,nUﬁ,§'

Now suppose that 7 = {T} ¢ : {,n € X} is a maximal system of almost matrix
units, that is, there is a maximal family {P¢ : £ € X} of almost orthogonal projec-
tions (see Definition 2.9) such that T; ¢ =* P¢ for each ¢ € X. We will show that
U is also a maximal system of almost matrix units. We need to produce a maximal
family @ = {Q¢ : £ € Y'} of almost orthogonal projections, such that ¢/ is based on
Q.

Using Lemma 2.4 for each pair s = {, p(§)}, separately for every £ € Y find
orthogonal projections Pg,PpS(g) € B(¢3) such that F =K P and Pps(g) =K .P”@)
and PgP;(g) = 0. For each € Y define Q¢ = P¢ + P;(g) for s = {&, p(§)}, which is
a projection as it is the sum of two orthogonal projections and moreover

(+) Qe =" Te e + To(e) pe) =" Uese-

It remains to prove that Q is a maximal family of almost orthogonal projections.
Suppose that P is a projection in B(¢2). By the maximality of {Pr : { € X},
there is a € X such that P, P is not a compact operator. Let £ € Y be such that
a € {& p(&)}, so we have

ToaUes =" Toa(Tee + Tpe) o) = Lo
by Definition 2.8 (2), as the domain and the range of p are disjoint. Therefore

To.aUeeP =X T, P =" P,P. Thus T, oUg ¢ P and consequently by (x) Ug ¢ P =K
Q¢ P are noncompact, which shows that U/ is maximal as well. (]

Lemma 5.3. Suppose X,Y and p are as in Definition 5.1. Let T = {T,¢:&,n €
X} be a system of almost matriz units and U be a pairing of T along p. Suppose
that R € B({2) is a quasi-multiplier for A{U). Then R is a quasi-multiplier of A(T)
and

u _\T _\T
)‘7775 (R) = >‘n7§ (R) = )‘p(n)m(i)(R)’
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T _\T o
Aoy (B) =Xy e(R) =0
foreach &neY.

P?”OOf. We have T&EU&& =K T&g(Tg,g + Tp(5)7p(£)) =K T&E? as Y N p[Y] =) and by
the almost matrix units relations. Similarly Ug ¢T¢ ¢ = T¢ ¢. Then

Tn nRTEE =* )‘n g(R) U3

again since Y N p[Y] = 0.

Similarly Ue.¢Tpe)p(e) =" Tye)pe) and Toe) pe)Use =" Tp(e),pie) and so
Tony,om BLoe).06) =" Ane (B) Do), p(6)-

To prove the second part of the lemma note that X (R)(T;,.¢ + Tp) p0e)) =5
A%’,{_,g(R)Unf =k Unmeﬁé = (Tn 1t o), p(n))R(T£ e+t T, p(E)) =K )‘WTE(R)TH ¢t
An,p(ﬁ)(R)Tn’P(f) + )\ ( )T p(n).e + /\p(n) p(g)(R) p(m),p(e)- Multiplying the above
equalities by 7, from the left and Tp(¢),p(e) from the right, using 2.8 (2) and the
fact that p(n) ;é n # p(&) # & we obtain that 0 =~ )‘n o 5)(R) mpe)- Since Ty ¢

is noncompact, it follows that )\T o(¢) (1) = 0. We obtain AT o), (F) = 0 in a similar
way multiplying the above equahtles by T¢ ¢ from the right and 7)) ,(,) from the
left.

Lemma 5.4. Suppose X,Y and p are as in Definition 5.1. Let T = {T,¢ : &, n €
X} be a system of almost matriz units and U be a pairing of T along p. If R € B({2)
is a o-trivial (c-trivial) quasi-multiplier for A(U), then R is a o-trivial (c-trivial)
quasi-multiplier of A(T).

Proof. The X x X matrix A7 (R) consists of four blocks ¥ x Y, (X \Y) x Y,
Y x(X\Y)and (X\Y)x (X\Y). Lemma 5.3 implies that the Y x Y-block is
the matrix AY(R), that (X \ Y) x (X \ Y)-block is a copy of the Y x Y-block and
the remaining blocks have only zero entries. This clearly implies the lemma. (I

Lemma 5.5. Suppose that T = {T, ¢ : £&,n € X} is a system of almost matriz
units where X is of size continuum. Then there are Y C X and a bijection p: Y —
(X\Y) such that for every pairingUU of T along p, whenever R is a quasi-multiplier
of A(U), then R is a c-trivial quasi-multiplier of A(T).

Proof. We may assume that X = c. Let (R¢)¢<. be an enumeration (with possible
repetitions) of all quasi-multipliers of A(7") which are not c-trivial. By induction on
a < ¢ we construct distinct 8¢,7¢, € ¢ for i = 1,2, 3 such that {8,792 :i € {1,2,3}}
has six distinct elements for each o < ¢ and such that either

(1) )\Z;l ﬁz( «) 7 0 and )‘Z;ryi(Ra) =0, or

(2) Ma gs (Ra) # M3 s (Ra),
and moreover {8¢,7% i € {1,2,3},a < ¢} =c.

At stage o < ¢ consider the set A, = {B%,~: : i € {1,2,3},6 < a}. Before
defining {%,7%, : i € {1,2,3} we will identify the reason why a quasi-multiplier R,
is not a c-trivial quasi-multiplier of A(7). If it is because A7 (R,) has continuum
nonzero entries off the diagonal, then we find such an entry )\;§ (Ry) with distinct
&n & A,. This can be achieved because by Lemma 3.2 the cardinality of the
set of all nonzero entries A¢, with {,n € A, is less than ¢ and we have assumed
that A7 (R,) has continuum nonzero entries off the diagonal. Now find distinct
&n' ¢ Ay U{&,n} so that ’\n ¢(Ra) = 0. This can be achieved again by Lemma
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3.2. Put BL =¢,4L = ¢, 82 =n,v2 =1 s0 (1) holds. Now take 33,73 be the first
two elements of the set ¢\ (A, U {BL, 82,7L,72}).

Otherwise if A7 (R,,) has less then continuum nonzero entries off the diagonal but
is not a c-trivial quasi-multiplier of A(7). Then it must be the case that A7 (R,)
has two different entries )\25 (Ra) # )\;n(Ra) on the diagonal such that &, & A,
since A, has cardinality less than continuum. So we put 83 = ¢, 43 = 7 so that
(2) holds.

In this case put BL,~2, 82,742 to be the first four elements of the set ¢\ (A, U

{B3,,7421})). The choice of 33,+3 in the first case and BL,~L, 3%2,~42 in the second
case guarantees that {8%,~! : i € {1,2,3},a < ¢} = ¢, which completes the
inductive construction.

We put Y = {8 : i € {1,2,3},a < ¢} and we define p : ¥ — (X \Y) by
p(BL) =74 Let U = {U, ¢ : &, € Y} be a pairing of T along p.

Suppose that R is a quasi-multiplier of A(7) which is not c-trivial, so R = R,
for some « < ¢. We will show that R is not a quasi-multiplier of A({/), which will
prove the required property of U.

If (1) holds, then )‘g}wﬂ?x (R) # )‘Z’(ﬁ}x)’p(
this contradicts Lemma 5.3.

If (2) holds, then Agg,ﬁg (R) # /\&53)71)(53)(5{) as p(B3) = ~2, but this contradicts
Lemma 5.3. This shows that R is not a qu;si—multiplier of A(U) and completes the
proof of the lemma. O

ﬁz)(R) as p(BL) = ~¢ for i = 1,2, but

Lemma 5.6. Suppose that T ={T, ¢ : £&,n € X} is a system of almost matriz units
and p: Y — (X\Y) is a bijection where Y C X and that U is a pairing of T along
p. If R € B(l3) is a quasi-multiplier of A(U) which is a o-trivial quasi-multiplier
of A(Th), where Ty ={T ¢ : §,m €Y'}, for any Y satisfyingY CY' C X, then R
is a o-trivial quasi-multiplier of AU).

Proof. Let A € C be such that A7t (R — AMpg(s,)) is a matrix with countably many
nonzero entries. By Lemma 5.3 there are only countably many nonzero entries of
A (R~ Alg(s,)), because they are all equal to some entries of AR~ AMBe,)), 80
R is a o-trivial quasi-multiplier of A(U).

O

6. THE FINAL CONSTRUCTION

The construction of the C*-algebra indicated in the title of this paper and de-
scribed in the introduction starts with the Cantor tree system of almost matrix
units 7ov and follows the scheme:

pairing with YQ2N pairing, Lemma 5.5. S

U

75N M){T&nig,’r)EQNUX}

Theorem 6.1. There is a type I C*-subalgebra A of B(l2) containing the ideal of
compact operators K(l2) such that A/K(l2) is *-isomorphic to the algebra K(l2(c))
of all compact operators on the Hilbert space of density continuum and the algebra
M(A) of multipliers of A is equal to the unitization A of A.
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Proof. We work with £5(2<Y) instead of /3, as 2<N is countable. Start with the
Cantor tree system of almost matrix units 7ov of Section 4. Extend it to a maximal
system of almost matrix units {7z, : {,n € 28 U X'} for some set X, by Lemma
2.12. Tt is clear that X has cardinality not bigger than continuum. Let Y C 2N be
such that both Y and 2V\ Y have cardinality ¢. Fix a bijection p: ¥ — (2¥\Y)UX.
Now let U be a pairing of {T¢ , : &,n € 28U X} along p. Finally apply the pairing
from Lemma 5.5 (for U instead of T'), to obtain a system S of almost matrix units
with the special properties mentioned in the Lemma 5.5. We claim that A(S) is
the desired C*-algebra.

So suppose that R is in the multiplier algebra M(A(S)) of A(S). Then R is a
quasi-multiplier of A(S). Lemma 5.5 implies that R is a c-trivial quasi-multiplier
of A(U) and so Lemma 5.4 implies that R is a c-trivial quasi-multiplier of A({T¢,, :
¢,mn € 28U X}) and hence for A(73n). This however implies that R is a o-trivial
quasi-multiplier of A(7v) by Corollary 4.2. By Lemma 5.6 (for Y/ = 2%) the
operator R is a o-trivial quasi-multiplier of A({) and again by Lemma 5.6 (for U
as T =T and Y’ =Y) it is o-trivial for A(S). However {T¢, : £,n € 2V U X} was
a maximal system of almost matrix units, so by the last part of Lemma 5.2, the
system U and hence S are maximal systems of almost matrix units. The maximality
of § together with the fact that R is a o-trivial quasi-multiplier of A(S) implies
that R is a trivial quasi-multiplier of A(S) (Corollary 3.8). Trivial quasi-multipliers
of maximal systems of almost matrix units belong to the unitizations of the algebra
generated by them and the compact operators, by Lemma 3.6 (3). Therefore R
belongs to the unitization of A(S), as required.

O
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