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Motivation – gene regulatory networks

Neighbourhood of mating response genes [Rung, Schlitt, et al, 2002]



Motivation – gene regulatory networks

Angiogenic signaling network. [Abdollahi et al, PNAS 2007]



Stochastic models of reaction kinetics

Degradation

A
k−→ ∅

Naive stochastic simulation algorithm (SSA):

Initialization: ∆t > 0 small, for t = 0 set A(0) = n0.

(a1) Generate a random number r uniformly distributed in (0, 1)

(b1) If r < A(t)k∆t then A(t + ∆t) = A(t)− 1;
else A(t + ∆t) = A(t)



Naive SSA: degradation
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Gillespie SSA for degradation

A
k−→ ∅

Initialization: set A(0) = n0.

(a2) Generate a random number r uniformly distributed in (0, 1)

(b2) Compute the next reaction time τ =
1

A(t)k
ln

[
1

r

]
(c2) Update the number of molecules: A(t + τ) = A(t)− 1

Set t := t + τ and go to (a2)



Chemical reactions of higher-order

order reaction propensity units of k

0 ∅ k−→ A kν m−3sec−1

1 A
k−→ ∅ A(t)k sec−1

2 A + B
k−→ ∅ A(t)B(t)k/ν m3sec−1

2 2A
k−→ ∅ A(t)(A(t)− 1)k/ν m3sec−1

3 A + B + C
k−→ ∅ A(t)B(t)C (t)k/ν2 m6sec−1

3 2A + B
k−→ ∅ A(t)(A(t)− 1)B(t)k/ν2 m6sec−1

3 3A
k−→ ∅ A(t)(A(t)− 1)(A(t)− 2)k/ν2 m6sec−1



System with two species

2A
k1−→ ∅, A + B

k2−→ ∅, ∅ k3−→ A, ∅ k4−→ B,

Gillespie SSA:

(a4) Generate two random numbers: r1, r2 ∼ U(0, 1)

(b4) Compute propensities:
α1(t) = k1A(t)(A(t)− 1), α2(t) = k2A(t)B(t),
α3 = k3, α4 = k4, and α0 = α1(t) + α2(t) + α3 + α4

(c4) Next reaction time τ =
1

α0
ln

[
1

r1

]
(d4) Update the numbers of molecules:

r2 ∈ I1 r2 ∈ I2 r2 ∈ I3 r2 ∈ I4
A(t + τ) A(t)− 2 A(t)− 1 A(t) + 1 A(t)
B(t + τ) B(t) B(t)− 1 B(t) B(t) + 1

0 I1
α1
α0

I2
α1+α2
α0

I3
α1+α2+α3

α0
I4 1

Set t := t + τ and go to (a4)



System with two species

Trajectories

A(0) = B(0) = 0, k1 = 10−3, k2 = 10−2, k3 = 1.2, k4 = 1 sec−1

As = 9.6, Bs = 12.2
as = 10, bs = 10



System with two species

Stationary distribution

k1 = 10−3, k2 = 10−2, k3 = 1.2, k4 = 1 sec−1

As = 9.6, Bs = 12.2
as = 10, bs = 10



General Gillespie SSA
Notation
q . . . number of chemical reactions
αj(t) . . . propensity function of j-th reaction, j = 1, 2, . . . , q
αj(t)dt = probability that j-th reaction occurs in [t, t + dt)

Algorithm

(a5) Generate random numbers r1, r2 uniformly distributed in (0, 1)

(b5) Compute propensity αj(t) of each reaction and α0 =
∑q

j=1 αj

(c5) Next reaction time τ =
1

α0
ln

[
1

r1

]
(d5) Compute which reaction occurs at time t + τ . Find j such that

r2 ≥
1

α0

j−1∑
i=1

αi (t) and r2 <
1

α0

j∑
i=1

αi (t)

(e5) The j-th reaction takes place. Update numbers of molecules.
Set t := t + τ and go to (a5)



System with multiple favourable states

Schlögl system

3A
k1,k2

 2A A

k3,k4

 ∅

Concentration: a(t) = A(t)/ν

da

dt
= −k1a3 + k2a

2 − k3a + k4

Average number of molecules: A(t) = a(t)ν

dA

dt
= −k1

ν2
A
3

+
k2
ν
A
2 − k3A + k4ν



Schlögl system
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Schlögl system
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Schlögl system
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Schlögl system

k1
ν2

= 2.5× 10−4,
k2
ν

= 0.18, k3 = 37.5, k4ν = 2200 [min−1]



Self-induced stochastic resonance

Schnakenberg system

2A + B
k1→ 3A ∅

k2,k3

 A ∅ k4→ B

Concentration:

da

dt
= k1a

2b + k2 − k3a

db

dt
= −k1a2b + k4

Average numbers of molecules:

dA

dt
=

k1
ν2

A
2
B + k2ν − k3A

dB

dt
= −k1

ν2
A
2
B + k4



Schnakenberg system

k1
ν2

= 4× 10−5, k2ν = 50, k3 = 10, k4ν = 25 [sec−1]

A(0) = 10, B(0) = 10



Schnakenberg system

k1
ν2

= 4× 10−5, k2ν = 50, k3 = 10, k4ν = 100 [sec−1]

A(0) = 10, B(0) = 10



Schnakenberg system

k4ν = 25 sec−1 k4ν = 100 sec−1



Stochastic differential equations (SDE)

X (t + dt) = X (t) + f (X (t), t)dt + g(X (t), t) dW

dW . . . white noise, dW ≈
√

∆tξ, with ξ ∼ N(0, 1)

Simulation algorithm
X (0) = x0, ∆t > 0 small

(a6) ξ ∼ N(0, 1)

(b6) X (t + ∆t) = X (t) + f (X (t), t)∆t + g(X (t), t)
√

∆tξ
Set t := t + ∆t and go to (a6)



Example 1: f (x , t) = 0, g(x , t) = 1

Trajectories:

X (t + dt) = X (t) + dW
X (t + dt) = X (t) + dW1

Y (t + dt) = Y (t) + dW2



Example 2: f (x , t) = 1, g(x , t) = 1

Trajectories:
X (t + dt) = X (t) + dt + dW



Example 3: two favourable states

Trajectories:
f (x , t) = −k1x3 + k2x

2 − k3x + k4, g(x , t) = k5
k1 = 10−3, k2 = 0.75, k3 = 165, k4 = 104, k5 = 200,
X (t + dt) = X (t) + f (X (t), t)dt + g(X (t), t)dW



Example 1: f = 0, g = 1 (revisited)

Stationary probability distribution:
X (t + dt) = X (t) + dW



Example 3: two favourable states (revisited)

Stationary probability distribution:
f (x , t) = −k1x3 + k2x

2 − k3x + k4, g(x , t) = k5
k1 = 10−3, k2 = 0.75, k3 = 165, k4 = 104, k5 = 200,
X (t + dt) = X (t) + f (X (t), t)dt + g(X (t), t)dW



Example 3: two favourable states (revisited)

Mean exit time:
τsim = 64.7
τxs1 = 59.45



Stochastic equations for chemical kinetics

N∑
i=1

νrjiXi
kj−→

N∑
i=1

νpjiXi , j = 1, 2, . . . , q

Notation:

I Well mixed reactor: N chemical species, q reactions (R1, . . . ,Rq)

I X = [X1, . . . ,XN ], Xi (t) = number of molecules, i = 1, . . . ,N

I αj(x) is propensity function of reaction Rj , j = 1, . . . , q
(αj(x) dt = probability that one reaction Rj occurs in
[t, t + dt), given X(t) = x)

I νji = νpji − νrji , change of Xi during reaction Rj ,

I ν j = [νj1, . . . , νjN ]

I p(x, t) = probability that X(t) = x



Stochastic equations for chemical kinetics

Chemical master equation (CME) – exact

∂

∂t
p(x, t) =

q∑
j=1

[αj(x− ν j)p(x− ν j , t)− αj(x)p(x, t)]

Chemical Langevin equation (CLE) – approximate

dXi = fi (X(t))dt +

q∑
j=1

dji (X(t))dWj

where fi (X(t)) =

q∑
j=1

νjiαj(X(t)), dji (X(t)) = νji

√
αj(X(t))

Chemical Fokker-Planck equation (CFP) ⇔ CLE

∂

∂t
p(x, t) =

1

2

N∑
i=1

N∑
k=1

∂2

∂xi∂xk

 q∑
j=1

dji (x)djk(x)

 p(x, t)


−

N∑
i=1

∂

∂xi

[
fi (x)p(x, t)

]



Schlögl system (revisited)

3A
k1,k2

 2A A

k3,k4

 ∅

k1
ν2

= 2.5× 10−4,
k2
ν

= 0.18, k3 = 37.5, k4ν = 2200 [min−1]

xs1 = 95, xu = 235, xs2 = 392, τ(xs1) = 15.6



Diffusion – position jump process

X (t + dt) = X (t) +
√

2D dWx

Y (t + dt) = Y (t) +
√

2D dWy

Z (t + dt) = Z (t) +
√

2D dWz

D = 10−4 mm2sec−1, t = 10 min 106 realizations



Reflecting boundary condition

Simulation algorithm
X (0) = x0, ∆t > 0 small

(a7) ξ ∼ N(0, 1)

(b7) X (t + ∆t) = X (t) +
√

2D∆tξ

(c7) If X (t + ∆t) < 0 then X (t + ∆t) = −X (t)−
√

2D∆tξ
If X (t + ∆t) > L then X (t + ∆t) = 2L− X (t)−

√
2D∆tξ

Set t := t + ∆t and go to (a7)



Reflecting boundary condition

D = 10−4 mm2sec−1, L = 1 mm, t = 4 min, h = 25 µm
X (0) = 0.4 mm, ∆t = 0.1 sec



Compartment based model

t = 4 min 10 realizations
K = 40, h = 1/K , d = D/h2 = 0.16 sec−1 1 molecule
Nmol = 1000, A16(0) = A17(0) = 500
a(0) = δ0.4(x)

comp diff.m



Compartment based reaction-diffusion

A
k1−→ ∅ in [0, L], ∅ kp−→ A in [0, L/5],

t = 10 min t = 30 min
K = 40, h = 1/K , d = D/h2 = 0.16 sec−1

k1 = 10−3 sec−1, kp = 0.012 µm−1sec−1, k2 = kph
Ai (0) = 0, a(0) = 0 compRD lin.m



Compartment based reaction-diffusion
2A

k1−→ ∅, A + B
k2−→ ∅ in [0, L],

∅ k3−→ A in [0, 9L/10], ∅ k4−→ B in [2L/5,K ],

t = 30 min compRD nonlin.m

K = 40, h = 1/K , d = D/h2 = 0.16 sec−1

k1 = 10−3, k2 = 10−2, k3 = 1.2, k4 = 1 sec−1 per one compartment
A(0) = B(0) = 0, a(0) = b(0) = 0



Pattern formation – French flag

A
k1−→ ∅ in [0, L], ∅ kp−→ A in [0, L/5], +diffusion

deterministic stochastic



Pattern formation – Turing instability
Schnakenberg system

2A + B
k1→ 3A ∅

k2,k3

 A ∅ k4→ B

+ diffusion DA = 10−5, DB = 10−3 [mm2sec−1]

L = 1 mm, K = 40, h = L
K = 25 µm

Ai (0) = as = 200, Bi (0) = bs = 75
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