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Complete Euler system

Phase variables

mass density ¢ = o(t,x), t € (0, T),
(absolute) temperature ¥ = 9(t,x), t € (0, T),

(bulk) velocity field u=u(t,x), t € (0, T),

Standard formulation

Oro + divi(ou) =0
9e(ou) + divi(ou @ u) + V.p(e,9) =0

1 1
0. (3ol + gelo.0) ) + div. [ (3ol + ce(0.0) + p(2,) ) u] =0

Impermeability condition




Complete Euler system in conservative variables

Conservative variables

mass density o = o(t,x), t € (0,T), xe QC R®
(total energy) E = E(t,x), t€ (0,T), xc QC R®

momentum m = m(t,x), t € (0,T), xe Q C R®

p=(y—1)ee, p=(v-1) (E—%%>

Field equations

6tQ + divxm =0

dem + divy <$) +Vp=0

OE + divy [(E +p) %} =0




Entropy

Gibbs’ relation

¥Ds = De + pD (1)
4

Entropy balance
De(0s) + divi(sm) > [0

Entropy in the polytropic case




Several concepts of solutions

Classical solutions

The phase variables are smooth (differentiable), the equations are satisfied
in the standard sense. Classical solutions are often uniquely determined by
the data.

Weak (distributional) solutions

Limits of classical solutions, limits of regularized problems. Equations are
satisfies in the distributional sense. Weak solutions may not be uniquely
determined by the data.

Limits of approximate (numerical) schemes

Zero step limits of numerical schemes.




Admissible (entropy) weak solutions

Field equations

t=7

/ / [00:¢p + ou - V] dxdt
o Ja

for all o € C'([0, T] x Q)

t=T1 T
= / / |:m - Orp + m©m Vg + pdivxcp] dxdt
t=0 o Ja o

for all @ € C'([0, T] x &, R?), ¢ -nlag =0

Jt=0

qt=7 T
:/ / {Eatcp—l- {(E—!—p) T} ~thp] dxdt
t=0 0o Ja 4
for all ¢ € C'([0, T] x Q)

Entropy inequality

t=1 T
0sp dx} > / / 050t + sm - V| dxdt
|:~/Q t:0 0 Q [ ' ]

forall g € CY([0, T] x Q), ¢ >0




Infinitely many weak solutions

Initial data

0(0,-) = 00, u(0,-) = ug, ¥(0,-) = do.

Existence via convex integration

Let N =2,3. Let go, Yo be piecewise constant (arbitrary) positive.
Then the exists ug € L such that the Euler system admits infinitely
many admissible weak solution in (0, T) x Q.




Dissipative measure—valued (DMV) solutions
Parameterized measure

—do> 3 =
F {g_o,meR,Ee[o,oo)}, Qr 0,T) xQ

phase space physicalspace

{Vextexear, Yex € P(F)
Field equations

al’ <Vt,x; Q> + divy <Vt,x; m> =0

mgm

at <Vt,x; m> + divx <Vt,x;

> + Vi <Vt,x; P> = Dx,U/C

Gt/ (Vixi E) dx+D =0, 0t (Vix; 05) + dive (Vix; sm) >0
Q

Compatibility

/ /|,uc|dxdt§ C/ Ddt
0 Q 0




Why to go measure—valued?

Motto: The larger (class) the better

m Universal limits of | numerical | schemes

m Limits of more complex physical systems - vanishing viscosity/heat
conductivity limit

Singular limits (low Mach etc.)

Weak-strong uniqueness

A (DMV) solution coincides with a smooth solution with the same initial
data as long as the latter solution exists




Thermodynamic stability

Thermodynamic stability in the standard variables

dp(o,9) de(o0,9)

90 o0~ °

>0,

Thermodynamic stability in the conservative variables

(0, m, E) — os(o,m, E)

is a (strictly) concave function

Thermodynamic stability in the polytropic case

95=95<Q%), p=(y—1)oe

S'(2)>0, (1-7)S'(2)-~S"(2)Z >0




Relative energy

Relative energy in the standard variables

€ (o.9,u|5.9,4)
1 . _ - s
= Seolu—1i* + 9,H;(3,5)(0 - &) — H3(, D)

Hz(o,9) = g(e(g, 9) — Vs (o, 19))

Relative energy in the conservative variables

= —J[os — Do(05)(0 — 8) — Vm(05) - (m — 1) — e (05)(E — E)




Relative energy inequality

Relative energy revisited

¢ (o.m. E[6,7,) = £~ 35(0,m, E) - m-ﬁ+%g\ﬁ|2+p(§,1§)
~ (et@ ) - st + 2ED)

Relative energy inequality

[ (e (om elo.) o] <20 [




Stability of strong solutions

Measure—valued strong uniqueness

Suppose the thermodynamic functions p, e, and s comply with the
hypothesis of thermodynamic stability. Let (o, m, E) be a smooth (C*)
solution of the Euler system and let (Y;«; D) be a dissipative
measure—valued solution of the same system with the same initial data,
meaning

Yo,x = Ggq(x).mo(x). Eo(x) for a.a. x € Q.

Then
D=0, Yix = 0t,x),m(t,x),E(t,x)

for a.a. (t,x) € (0, T) x Q.




Maximal dissipation principle

Entropy production rate

0:(0s) + divk(om) E] >0

Dissipative ordering

Vi = Vi iffor>02in [0, T) x Q

.
/ /{<V§,x;$(97m,E)>8ts@+<V§,X;S(g7m,E)%>.VXSO} dxdt
0 Q
! m
s/ /{<v§x;s(g,m75)>a@+<vix;3(g,m7E)f>.VM} docdt
0 Q 0

Maximal dissipation principle

A (DMV) solution is admissible if it is maximal with respect to the
ordering >=. A maximal (DMV) solution exists.




Generating MV solutions, limits weak — MV

Navier—Stokes—Fourier system

Oro + divx(ou) = 0,

Ot(ou) + divy (ou ® u) + Vi(p + apr) = vdiv,sS,
Or (o(e + aer)) + divx (o(e + aer)u) + wViq
=S : Veu — pdiveu — A9 — 9)°.

Constitutive assumptions, radiative components

S(o, Vxu) = (qu +Viu— %divxu]l) ,

q=—k(9)Vy0




Limit (weak) — (MV)

Vanishing dissipation limit

Suppose that p and e are interrelated through the polytropic EOS with
v = g and “other mostly technical conditions”. Let

v=w=c¢, a&% a>1, A=, B< 1.

Let (9s, Y, uc)e>0 be a family of weak solutions to the
Navier—Stokes—Fourier system periodic in the space variable.

Then (e, U<, us)s>0 generates a Young measure Y and the energy defect
measure a function D - a (DMV) solution of the Euler system.




Limits of Euler flows with strong stratification

Scaled Euler system
0ro + divx(ou) =0

. 1 1
O (ou) + divi(ou @ u) + E—QVXP(@, J) = 20Vx®,

1, , 1 . 1 - 1
0. (Goluf + Soee.)) + dive | (Golul* + S oe(e.) ) u

. 1 1
+divy <€—2p(g7 ﬁ)u) = ?gVXCD -u.

Geometry

Q=7T7x(0,1), 7> = [0,1]|101} — the two dimensional torus

u~n|aQ—O




Initial data

Stationary problem

p=cl, $=0(z) =~z

vx(Qsé) = _stxd): 0s = exp (_6

Well-prepared initial data
00,e = 0s + 595)1;7 190,5 = é + 519(()1;7 uo,e

1 1
10821100 (@) + 11952 100 () + lu0,e | oo (ammy < €,
o =0, 9§l =0, woe = U in L'(Q) as e — 0,

Uo € W R?), k>3, Up = [Ug, U3, 0], divalp = 0.




Target problem

Euler system

U+ U-V,U+ V,M=0, diveU =0, x, € T2,

Stratified initial data

U(0, x) = Uo(xn, 2) = [U(}(xh,z)7 Ug(xh,z),O]




Singular limit (MV) — strong

Convergence to the target system

Let { Y, }ee@,myxa, D° be a family of dissipative measure-valued
solutions to the scaled system scaled Euler system, with the well prepared
initial data
YOE,X = 500,5700,5110,576\/90,5190,2'
Then
D —0in L™(0, T),

and

Yo — 595,95U,6v955 in L*(0, T;M+(f)weakf(*))7

where [gs, ©] is the static state and U is the unique solution to the
incompressible 2D Euler system




