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Why “weak” solutions?

Everything Should Be
Made as Simple as
Possible, But Not Simpler...
Albert Einstein [1874-1965]

Weak solutions

m The largest possible class of objects that can be identified as “solution” of
the a given problem, here a system of partial differential equations. The
weaker the better

m Weak solutions are easy to be identified as asymptotic limits of
approximate solutions, notably solutions of numerical schemes.

m A weak solution coincides with the (unique) strong solution as long as the
latter exists. Weak—strong uniqueness principle



Nonlinear balance laws

Field equations

9:U + div,F(U) = G(U), U = [Us,..., Uum], U=U(t,x)
€(0,T), xe R"

physical space: t the time variable, x the spatial variables

Initial state

U, Uy in state space F C RM

Admissibility conditions

0:S(U) + diviFs(U) = (> ))G(U)VuS(U

S - entropy




Approximate problems - numerics

Approximate problem - discretization

D:U, + diviF,(U,) = G,(U,) + error,

U, — U in some sense, U exact solution

Tools

m Make the target space for the limit as large as possible - easy
convergence proof

m Show weak—strong uniqueness




What can be weak...

Weak derivatives - functions replaced by their spatial averages

v = v(t, x) z/v(t‘7 x)o(t, x) dxdt

Dv =~ —/v(t,x)Dc;S(t,x) dxdt
¢ smooth test function

v(t,x) = i L

m — v dxdt
1B(t,x)|—0 |B(t, x)| B(t,x)

weak convergence — convergence in averages

Measure—valued (MV) solution
v=v(t,x) & (Vi V), {V}ex family of probability measures
F(v) = (Vit,x); F(v)) for any Borel function F

(MV) convergence = convergence in the weak topology of measures




Weak formulation of a general system

Probability (Young) measure

Vt,x € P(]:)
Field equations

[ [, vesv) w} :0

= ‘/OT AN <Vt,><; U> 8t<,0 + <Vt,x; F(U)> . thp _ <Vt,><; G(U)> (dedt

© smooth compactly supported in [0, T) x RV

Admissibility conditions

[/RN (Vexi S(U)) 30] :_; )

/OT/RN Vers S(U)) Dot (Ven: Fs(U))-Vgo— (Ve G(U)VuS(U)) wdx dt




Dynamics of compressible fluids

Phase variables

mass density o = o(t,x), t€ (0, T), x€ Q c R?
(absolute) temperature ¥ = ¥(t,x), t € (0,T), x € Q C R®
(bulk) velocity field u=u(t,x), t€ (0,T), xe Qc R?

Standard formulation

Oro + divi(ou) =0
9e(ou) + divi(ou @ u) + V.p(e,9) =0

1 1
0. (3ol + gelo.0) ) + div. [ (3ol + ce(0.0) + p(2,) ) u] =0

Impermeability condition




Complete Euler system in conservative variables

Conservative variables

mass density o = o(t,x), t € (0,T), xe QC R®
(total energy) E = E(t,x), t€ (0,T), xc QC R®

momentum m = m(t,x), t € (0,T), xe Q C R®

p=(y—1)ee, p=(v-1) (E—%%>

Field equations

6tQ + divxm =0

dem + divy <$) +Vp=0

OE + divy [(E +p) %} =0




Entropy

Gibbs’ relation

¥Ds = De + pD (1)
4

Entropy balance
De(0s) + divi(sm) > [0

Entropy in the polytropic case




Several concepts of solutions

Classical solutions

The phase variables are smooth (differentiable), the equations are satisfied
in the standard sense. Classical solutions are often uniquely determined by
the data. The main issue here is global in time existence that may fail for
generic initial data

Weak (distributional) solutions

Limits of classical solutions, limits of regularized problems. Equations are
satisfies in the distributional sense. Weak solutions may not be uniquely
determined by the data.

Viscosity solutions

Limits of the Navier-Stokes-Fourier system for vanishing transport
coefficients.

Limits of approximate (numerical) schemes

Zero step limits of numerical schemes. Examples are Lax—Friedrichs and
related schemes mimicking certain approximations - e.g. a model
proposed by H.Brenner.




Admissible (entropy) weak solutions

Field equations

t=7

/ / [00:¢p + ou - V] dxdt
o Ja

for all o € C'([0, T] x Q)

t=T1 T
= / / |:m - Orp + m©m Vg + pdivxcp] dxdt
t=0 o Ja o

for all @ € C'([0, T] x &, R?), ¢ -nlag =0

Jt=0

qt=7 T
:/ / {Eatcp—l- {(E—!—p) T} ~thp] dxdt
t=0 0o Ja 4
for all ¢ € C'([0, T] x Q)

Entropy inequality

t=1 T
0sp dx} > / / 050t + sm - V| dxdt
|:~/Q t:0 0 Q [ ' ]

forall g € CY([0, T] x Q), ¢ >0




Infinitely many weak solutions

Initial data

0(0,-) = 00, u(0,-) = ug, ¥(0,-) = do.

Existence via convex integration

Let N =2,3. Let go, Yo be piecewise constant (arbitrary) positive.
Then the exists ug € L such that the Euler system admits infinitely
many admissible weak solution in (0, T) x Q.




Dissipative measure—valued (DMV) solutions
Parameterized measure

Fo={ezomeR Eco0)}, Q@ =(T)xQ
phase space physical space

{Vixtexeqr, Yex € P(F)
Field equations

al’ <Vt,x; Q> + divy <Vt,x; m> =0

mgm

at <Vt,x; m> + divx <Vt,x;

> + Vi <Vt,x; P> = Dx,U/C

Gt/ (Vixi E) dx+D =0, 0t (Vix; 05) + dive (Vix; sm) >0
Q

Compatibility

/ /|,uc|dxdt§ C/ Ddt
0 Q 0




Why to go measure—valued?

Motto: The larger (class) the better

m Universal limits of | numerical | schemes

m Limits of more complex physical systems - vanishing viscosity/heat
conductivity limit

Singular limits (low Mach etc.)

Weak-strong uniqueness

A (DMV) solution coincides with a smooth solution with the same initial
data as long as the latter solution exists




Thermodynamic stability

Thermodynamic stability in the standard variables

dp(o,9) de(o0,9)

90 o0~ °

>0,

Thermodynamic stability in the conservative variables

(0, m, E) — os(o,m, E)

is a (strictly) concave function

Thermodynamic stability in the polytropic case

95=95<Q%), p=(y—1)oe

S'(2)>0, (1-7)S'(2)-~S"(2)Z >0




Relative energy

Relative energy in the standard variables

€ (o.9,u|5.9,4)
1 . _ - s
= Seolu—1i* + 9,H;(3,5)(0 - &) — H3(, D)

Hz(o,9) = g(e(g, 9) — Vs (o, 19))

Relative energy in the conservative variables

= —J[os — Do(05)(0 — 8) — Vm(05) - (m — 1) — e (05)(E — E)




Relative energy inequality

Relative energy revisited

¢ (o.m. E[6,7,) = £~ 35(0,m, E) - m-ﬁ+%g\ﬁ|2+p(§,1§)
~ (et@ ) - st + 2ED)

Relative energy inequality

[ (e (om elo.) o] <20 [




Stability of strong solutions

Measure—valued strong uniqueness

Suppose the thermodynamic functions p, e, and s comply with the
hypothesis of thermodynamic stability. Let (o, m, E) be a smooth (C*)
solution of the Euler system and let (Y;«; D) be a dissipative
measure—valued solution of the same system with the same initial data,
meaning

Yo,x = Ggq(x).mo(x). Eo(x) for a.a. x € Q.

Then
D=0, Yix = 0t,x),m(t,x),E(t,x)

for a.a. (t,x) € (0, T) x Q.




Maximal dissipation principle

Entropy production rate

0:(0s) + divk(om) E] >0

Dissipative ordering

Vi = Vi iffor>02in [0, T) x Q

.
/ /{<V§,x;$(97m,E)>8ts@+<V§,X;S(g7m,E)%>.VXSO} dxdt
0 Q
! m
s/ /{<v§x;s(g,m75)>a@+<vix;3(g,m7E)f>.VM} docdt
0 Q 0

Maximal dissipation principle

A (DMV) solution is admissible if it is maximal with respect to the
ordering >=. A maximal (DMV) solution exists.




Generating MV solutions - zero viscosity limit

Navier—Stokes—Fourier system

Or0 + divk(ou) = 0
Ot(ou) + divx (ou ® u) + Vip = ediv,S
O (0€) + divi (0eu) +eVyiq = €S : Viu — pdiveu

Physical dissipation

S(¢, Vxu) = p(9) (qu + Viu— %divxuﬂ) ,

q=—r(9)VI




Generating MV solutions - artificial viscosity

Lax—Friedrichs numerical scheme

Oro + divi(pu) = edivi(AVp)
Ot(ou) + divy (ou ® u) + Vip = edive(AV«(ou))

OtE + divi((E + p)u) = edivi(AVLE)

Entropy preserving

(0S) + divs(eSu)| > [edivi(A\oVS)) + “defect”




Brenner’'s model

Two velocities principle
u—u, =eKV,log(o)

Field equations

Oro + divi(oum) =0
9¢(ou) + divk (ou ® um) + Vip(p, 9) = edivyS

0. (e luf + e, 0) ) + dive (oG ol + e, 0))un ) + v (o(e, 0

+ edivy,q = ediv.(Su)

Constitutive relations

S=u <qu +Viu— %divw) , 4= —kVi1,




