
Transition State Theory

(Teorie aktivovaného komplexu)

- lecture 8 -



d – length representing the activated state 
at the top of the barrier 

v° – mean velocity of crossing towards products

v° = (kBT/2pmrc)
1/2

(Maxwell-Boltzmann distribution used)

whit mrc as the effective mass of the complex 

in the coordinate of reaction

t = d/v° - the average time of crossing the barrier

n = 1/t = v°/d - the frequency at which activated
complexes pass over the barrier

Rate of reaction =  k[A]…  = n  [TS] = (kBT/2pmrc)
1/2/d  [TS]

[TS] – is the number of activated complexes per 
unit volume lying in the length d of reaction 
coordinate – concentration of “Transtion State”

 k = (kBT/2pmrc)
1/2/d

[TS]

[A]…

}Concentrations of reactants

Eyring’s derivation:

Fig. 1

eq. 1



…and since K =
[TS]

[A]…
QTS

QA…

where K is the equilibrium constant 

and Q(TS/A) is the complete partition function (of the activated state/reactant) for unit volume: 
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eq. 2=

K =

with DU0, e’f and ef defined in Fig. 1

eq. 3

Combining eqs. 2 and 3:

QTS

QA…

°

°

°

°
= e

DU0 /kBT-Qf

e
DU0 /kBT-

eq. 4

Combining eqs. 2 and 4:


k = (kBT/2pmrc)

1/2/d
QTS

QA… e
DU0 /kBT-

Instead of using QTS , it is convenient to use a new partition function, QTS, 
which does not include the contribution qtrans,TS due to translational motion 
in the one degree of freedom along the reaction coordinate: 

QTS = qtrans,TS  QTS

with qtrans,TS = (2pmrckBT)1/2/h  d QTS

QA…

The combination of eqs. 5 and 6 gives: eq. 6

eq. 5

kBT

h
e

DU0 /kBT- eq. 7k =

here, a length, d, can be also considered as a volume in 
one dimension.

≠

≠

≠

Thus:



 e-DG /RT
≠

= e-DU0 /RT
≠ Q

QA

≠

eq. 8

The combination of eqs. 7 and 8 gives:

k =
kBT

h
e-DG≠/RT

It is known from lecture 5 :

DG(in solution) = DEelec + DZPVE + (DEsolv) – DRTlnQ

= DU0,gp + (DEsolv) – DRTlnQ = DU0 – D(RTlnQ)

}

“internal energy of solute at 0K”

eq. 9!



K≠ =

kact

kdeact

k

kdeact

vreact = kreact[A] = n [TS]   kreact = k K

=  
[TS]

[A]

where:

= e
-(GTS-GA)/kBT

Since:

G = U0 + PV - kBT lnQ 

Then, combination of eq. 2a and 3a gives:

eq. 1a

eq. 2a

eq. 3a

Alternative derivation I Consider the simple unimolecular reaction:

kact

Insertion of eq. 4a into eq. 1a gives :

Q A

QTS
e-(UTS,0-UA,0)/kBT eq. 5akreact = k

K≠ = Q A

Q TS
e-(UTS,0-UA,0)/kBT e -(PVTS-PVA)/kBT  ~~ Q A

Q TS
e-(UTS,0-UA,0)/kBT eq. 4a

(where U0 = Eelec +             )S
i

modes

hvi 
1
2



Reactant:
3N-6 vibrational degrees of freedom

Transition State:
3N-7 vibrational degrees of freedom => one ‘lost’ degree is the reaction coordinate

Partition function for the TS in the 3N-7 vibrational space (Q≠) can be obtained after a separation 
of the vibrational partition function for the reaction-coordinate degree of freedom (qrc) from QTS

(from eq. 5a):

QTS = qrcQ
≠ = Q≠ Q≠ eq. 6a

Q A

Q
e-(UTS,0-UA,0)/kBTkreact =

1

1 - e-hn ≠/kBT hn ≠
kBT

~~

Then, insertion of eq. 6a into eq. 5a gives:

≠
k

hn ≠
kBT eq. 7a

and since   k = n ≠ (frequency of a reactive mode leading to the formation of products):

Q A

Q
e-(UTS,0-UA,0)/kBTkreact =

≠

h

kBT eq. 8a

Eqs. 7 and 8a are identical, thus considering eq. 8, one ends up with Eyring equation again.  



Eyring equation 
Alternative derivation II

K≠

k = n ≠ K≠

n ≠

n ≠

K≠

since DG≠ = -RTlnK≠ :

rate constant of elementary reaction:

A, B – reactants
TS – transition state
K≠ – equilibrium between TS and reactant(s)
n≠ – frequency of a reactive mode leading to 

the formation of products

k = n ≠ e-DG ≠/RT

Postulated : energy of a reactive mode 
equals to the averaged energy of 
one vibrational degree of freedom
given by equipartition theorem:                                                                    

½hn ≠= ½kBT
k = e-DG≠/RTkBT

h kB – Boltzmann constant

h – Planck constant

T – temperature= e-DH≠/RT eDS≠/RkBT

h

eq. 10



-Arrhenius versus Eyring equation-

Phenomenological Arrhenius equation:

k = A e  ln k =- Ea/RT Ea
-

R

1

T
+ ln A

Arrhenius plot

Standard Eyring equation:

DH≠

-
R

1

T
+ ln (kB/h)ln k/T

DS≠

R
+=

Relationship between Arrhenius and Eyring parameters

Arrhenius activation energy Ea is defined: 
(analogy to the van’t Hoff equation)

Ea = RT2    d(lnk)

dT
eq. 13

Insertion of eq. 10 into eq. 13 gives: Ea = RT + RT2                       =   RT + DH≠ = Ea

d(lnK≠)

dT
eq. 14

Considering eq. 14 + comparing  Arrhenius and Eyring equations gives:

k =
kBT

h
e-DH≠/RT eDS ≠/R



e1 kBT/h e = A
DS ≠/R eq. 15

eq. 11

eq. 12

1/T

ln k

0

ln A slope: -Ea/R

Eyring plot

1/T

ln k/T

0

ln (kB/h)
+DS≠/R

slope: -DH≠/R

Fig. 2

Fig. 3



Limitations and assumptions of Eyring’s transition state theory:

2. No tunneling through the barrier considered

1. No recrossing considered

 Recrossing dynamics: 
some trajectories reaching the top of the barrier return back to the reactant state,
thus krecrossing-corrected  kEyring

 No-recrossing condition: 
“one-dimensional” motion normal to the TS (reaction mode) is separable from the tangent to the TS (bath modes)

3. Assumption that the reaction system will pass over 
the lowest first-order saddle point on the potential energy system

4. Assumption of long-lived intermediates along a reaction coordinate 
(Boltzmann distribution of energies before continuing to the next step)



Correction to the Eyring equation:

Tunneling through the barrier (ttunnel )

kcorrected = ttunnel kEyring = ttunnel

kBT

h
e-DG≠/RT eq. 16

ttunnel ≥ 1tunneling factor:

‘one-dimensional’ approximations for the tunneling:

(i) Wigner tunneling factor: tWigner = 1 +        
24
1 (h |n  | /kBT)2≠

eq. 17

 This correction for tunneling assumes a parabolic potential for the nuclear motion near the transition state

where |n≠| is the magnitute of imaginary frequency of a reaction mode at TS

|n≠| reflects a curvature of the potential (Hessian) at the top of the barrier and correlates with the thickness 
of the barrier.  A larger |n≠| reflects a larger curvature at TS and this implies steeper, narrower barrier,
thus, higher probability for tunneling, i.e., a larger ttunnel factor.

…Crude approximation



(ii) Bell tunneling factor 

(iii) Eckart tunneling factor:

 TheRate program

The Eckart method fits the Eckart barrier function to the computed barrier along the intrinsic reaction 
coordinate (IRC), in mass weighted coordinates, using energies of the reactants, product and transition 

state. The transmission coefficient, t, due to tunneling is calculated by integration of the barrier 
“penetration” probability as a function of the energy. 

The effect of t on the barrier is calculated:  ΔΔEtun = -RT ln(t)

IRC – mass-weighted steepest descent path on the potential energy surface (PES), starting from the transition 
structure (TS), that is, first-order saddle point.



Kinetic Isotope effects (KIE)

R3C—1H +  O=FeIV R3C• +  1HO — FeIII 

Example of primary KIE:

kH

R3C—2H +  O=FeIV R3C• +  2HO — FeIII 
kD

kH 

kD
KIE =

In terms of Eyring’s TST, combining eqs. 18 and 10 :

=
kLight Isotope

kHeavy Isotope

eq. 18

KIEEyring =
-DG≠ /RTe H

-DG≠ /RTDe
= e(DG≠ - DG≠ ) /RT

HD

eq. 19
Tunneling-corrected KIE (derived from eq. 16) :

KIE = e HD(DG≠ - DG≠ ) /RTtH 

tD
eq. 20

= eDDH≠ /RT
D-H e D-H

-DDS≠ /R

~~ 0~~ eDD(ZPE)
≠
D-H

KIEobserved   > 5 indicates a significant role of the tunneling effect, i.e., rate-determinig step 
(in a multistep reaction) involves a transfer of a light particle 
(e.g., H-atom abstraction)   



Experimental detection of tunneling:

 Large KIE

KIE = 35

KIE = 60

e.g.: taurine dioxygenase (TauD)

Prolyl-4-hydroxylase (P4H)

In both cases: 
rate-determining step is the homolytic C-H bond cleavage alias H-atom abstraction



 Deviation from Arrhenius/Eyring plots at low temperatures

Some experimental works demonstrate a large tunneling effect based on the large AH/AD ratio
(A – Arrhenius prefactor is defined in terms of classical Eyring theory by eq. 15)  



KIEEckart=12

KIEEckart=51

C-H cleavage
by FeIVO:

Shaik, JACS
2015



Larger proton donor-acceptor distance (larger width of the barrier)  Larger KIE 
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Overlap of  hydrogen and deuterium  wavefunctions, 
respectively

Proton-Coupled Electron Transfer: Moving Together and 

Charging Forward

Hammes-Schiffer (Perspective in JACS 2015)

(concepts and theory from Marcus theory for electron transfer and analogous 
theories for proton transfer) : More specifically the expression derived in the vibronically nonadiabatic
limit using the Fermi golden rule formalism in conjunction with a dynamical treatment based on the time
Integral of the probability flux time correlation function…
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The overlaps decrease for both hydrogen and deuterium as the proton donor-acceptor
distance increases, but the deuterium falls off faster because of its larger mass.

Vibronic 
parabolas



Soybean Lipoxygenase

KIEexpt = 80

 reproduced by above mentioned PCET theory
and shown that KIE large due to small overlap
between the reactant and product vibrational wavefunctions

Mutant and Crystallographic studies:

KIEexpt = 500-700

 expt/calc… larger proton donor-acceptor distance (about 0.1-0.2 Ang)



An extension of the TST – variational TST

 Variational Transition State Theory (VTST) - modification of eq. 8a:

Within Eyring’s TST, it is not garanteed that the free energy associated with the TS 
structure is the highest free energy of any point along the minimum-energy path (MEP) 
– it is only garanteed that it is the highest point of potential energy along the MEP.

e.g.:

Q A

Q
e -(UTS,0-UA,0)/kBTkreact (T,s) =

≠

h

kBT eq. 21min
s

(T,s)

Within VTST, the reference position is moved (s) along the MEP that is employed for the computation of the 
activated complex free energy, either backward or forward from the TS structure, until the rate constant is 
minimized. By convention,  s = 0 is the saddle point on the MEP. In practice, minimization of the rate constant with 
respect to s is accomplished by standard search techniques for situations where analytic gradients of the function 
to be minimized are not available. The variational TS can move with changes in temperature T. 



0.0
rCH-rOH

-0.4 0.4

VMEP – Potential energy profile

Va – vibrationally adiabatic energy profile
G



Alternative theories to the TST

 Rice-Ramsperger-Kassel-Marcus (RRKM) theory

Transition state theory formulated for a system of constant energy, 
as opposed to constant temperature – i.e. microcanonical TST (TST) ; 

for the unimolecular case TST = RRKM.
=> more appropriate for gas-phase reactivity

Assumption of RRKM theory:

1. Collisional activation, followed by intramolecular vibrational relaxation 
leading to the transition state.

2. Energized molecules pass through the transition state just once (as in TST)

3. Internal degrees of freedom of the energized molecules are designated as 
either adiabatic (quantum state does not change during reaction) or 
active (energy exchanged between active modes during reactions). Note, 
most internal modes would be active. Slow energy flow would reflect 
weak anharmonic coupling of modes.



 Kramers theory

Using a model for Brownian motion over the barrier, where the reacting particle experiences
friction due to the surrouding solvent molecules, Kramers was able to derive an expression
for the rate contant:

kKramers =
m


kEyring

nB

The Kramers rate is always lower than the rate calculated with TST. The reason is that 
now it is not sufficient for the particle to reach the top of the barrier, it has to have 
sufficient velocity to go over it, or it will be sent back to the reactant well.

m – mass of the reactive
particle

nB – barrier frequency

 – friction constant  

This equation holds in the limit of high friction.



“Pelzer and Wigner in their 1932 paper estimated the rate of conversion of para-hydrogen into normal hydrogen. In

this very early paper one may find all the elements of much more sophisticated work which abounded in the second 

half of the 20th century…. To compute the reaction rate, they use a thermal equilibrium distribution in the vicinity 

of the saddle point of the potential energy surface and estimate the unidirectional classical flux in the direction from 

reactants to products. Already here, they note that they ignore the possibility of recrossings of the saddle point, 

pointing out that their probability at room temperature would be rather small. To get the rate they use the flux over 

population method after harmonically expanding the potential energy surface about the saddle point. The Pelzer 

and Wigner paper is the very first use of transition state theory to estimate reaction rates. It is however written in 

a rather specific form, as applied to the hydrogen exchange reaction. Eyring’s later paper of 1935 provides general

formulas which were then applied to many different activated reactions.”

Pollak E., Talkner, P CHAOS 15, 026116 (2005)

Historical retrospective


