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Computer Modeling of Chemical Reactions and Enzyme Catalysis 

Outline 
 

Working Examples on Chemical Reactivity 
- Computational Investigations of Asymmetric Organocatalysis 
- Divergent Pathways and Competitive Mechanisms of 

Metathesis Reactions between 3-Arylprop-2-ynyl esters and 
Aldehydes 

 
Simulations of Thermodynamic Properties 
- Free-Energy Perturbation 
- Thermodynamic Integration 
- Potential of Mean Force 
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Challenges in Computational Homogeneous Catalysis 

En Route to Quantitative Accuracy (~2 kcal.mol-1) in 
“Computational Catalysis” 

Accuracy of TS barriers 
(electronic structure) 

Conformational Complexity 

Solvation Effects  
xxxxxxx 

Nuclear Quantum Effects 
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Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes 

reaction region 

representative catalyst (Lewis base) 

Computational ingredients: 
Conformational Complexity, Dispersion/Solvation Effects, Entropic Effects 

 chiral phosphoramides (Denmark, 1994) 
 axially chiral biquinoline N,N’-dioxide (Nakajima) 
 bipyridine N,N’-dioxides and N,N’N’’-trioxides (Hayashi, Kotora, Kwong, …) 
 pyridine-derived N-monooxides (Kočovský, Malkov) 
 “non-pyridine-type” N-monooxide derived from proline (Hoveyda) 
 N-oxides derived from tetrahydroisoquinolines (Govender) 
 sulfoxides, sulfonamides, phosphine oxides (BINAPO), dinitrones,…  
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Hrdina, R.; Opekar, F.; Roithová, J.; Kotora, M.: Chem. Commun. 2009, 2314. 

Dissociative (Cationic)/Associative (Mechanism) 
Solvent-Dependent Enantionselectivity  
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(Possibly) New Mechanism (Polar-pocket or “Enzymatic-like”) 

Ducháčková, L; Kadlčíková, A.; Kotora, M. ; Roithová, J.: Oxygen Superbases as Polar 
Binding Pockets in Nonpolar Solvents. J. Am. Chem. Soc. 2010, 132, 12660. 
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Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes 
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Scheme 1. Allylation of aldehydes 1 with allyl and crotyl trichlorosilanes 2-4.a

aFor a-m, see Table 1.
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Entry Aldehyde Ar Catalyst 
(mol%) 

Solvent Temp  
(oC) 

Time  
(h) 

Yield  
(%)b 

     ee  
(%)c,d 

1 1a Ph   (+)-9  (5)    MeCN -40 18 ?95 96 (S) 
2 1b 4-CF3-C6H4   (+)-9  (5)    MeCN -40 18  86 93 (S) 
3 1c 4-MeO-C6H4   (+)-9  (5)    MeCN -40 18 ?95 96 (S) 
4 1d 3-MeO-C6H4   (+)-9  (5)    MeCN -40 18   87 95 (S) 
5 1e 2-MeO-C6H4   (+)-9  (5)    MeCN -40 18 ?95 89 (S) 
6 1f 4-Cl-C6H4   (+)-9  (5)    MeCN -40 18 80 94 (S) 
7 1g 3-Cl-C6H4   (+)-9  (5)    MeCN -40 18 81 97 (S) 
8 1h 2-Cl-C6H4   (+)-9  (5)    MeCN -40 18 75 92 (S) 
9 1i 3,5-Me2-C6H4   (+)-9  (5)    MeCN -40 18 0 – 

10 1j 2,6-Me2-C6H4   (+)-9  (5)    MeCN -40 18 0 – 
11 1a Ph (–)-15e  (10)    CHCl3 -40 18 60 90 (S) 
12 1b 4-CF3-C6H4 (–)-15e  (10)    CHCl3 -40 18 34 85 (S) 
13 1c 4-MeO-C6H4 (–)-15e  (10)    CHCl3 -40 18 25 91 (S) 
14 1e 2-MeO-C6H4 (–)-15e  (10)    CHCl3 -40 18 53 75 (S) 
15 1f 4-Cl-C6H4 (–)-15e  (10)    CHCl3 -40 18 63 88 (S) 
16 1g 3-Cl-C6H4 (–)-15e  (10)    CHCl3 -40 18 54 89 (S) 
17 1h 2-Cl-C6H4 (–)-15e  (10)    CHCl3 -40 18 75 86 (S) 
18 1i 3,5-Me2-C6H4 (–)-15e  (10)    MeCN -20 18  0 ? 
19 1a Ph (+)-16  (5)    MeCN -20 18  87    72 (S)e 
20 1k 4-F-C6H4 (+)-16  (5)    MeCN -20 18  58    70 (S)e 
21 1c 4-MeO-C6H4 (+)-16  (5)    MeCN -20 18  72    70 (S)e 
22 1i 3,5-Me2-C6H4 (+)-16  (5)    MeCN -20 18  73    62 (S)e 
23 1a Ph (+)-10  (5)    CH2Cl2 -40   2   68    87 (R)f 
24 1b 4-CF3-C6H4 (+)-10  (5)    CH2Cl2 -40   2   85    96 (R)f 
25 1c 4-MeO-C6H4 (–)-10  (5)    CH2Cl2 -40 18   70    16 (S)f,g 
26 1e 4-MeO-C6H4 (+)-10  (5)    CH2Cl2 -20 18   75    72 (R) 
27 1e 4-MeO-C6H4 (+)-10  (5)    CH2Cl2   0 18   82    45 (R) 
26 1d 3-MeO-C6H4 (+)-10  (5)    CH2Cl2 -40 12   73    80 (R)f 
27 1e 2-MeO-C6H4 (+)-10  (5)    CH2Cl2 -40 12   40    37 (R)f 
28 1i 3,5-Me2-C6H4 (+)-10  (5)    CH2Cl2 -40 16   68     81 (R)h 
29 1j 2,6-Me2-C6H4 (+)-10  (5)    CH2Cl2 -40 18 0 – 

 

Table: The Allylation of Aldehydes 1a-k with Allyltrichlorosilane 5a Catalyzed by Lewis Bases  
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“Non-catalysed” reaction  

∆G 
(kcal.mol-1) 

0.0 

20.7 
28.1 

-10.3 

RC 

RC 

TS 

TS 

∆E‡ = 15.3 kcal.mol-1 …CCSD(T)/aug-cc-pVDZ 
∆E‡ = 15.6 kcal.mol-1 …RI-DFT(PBE)+D/TZVPP 
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Pyridine-N-oxide: associative mechanism 
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Second-sphere mechanism (ruled out) 
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QUINOX Catalyst  
N−

O OMe

(R)
-
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-10
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+

ee (calc) = 82%  

ee (exp) = 87%  
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mechanism config. reactant complex transition state product complex 

associative R 24.4 29.3 -2.0 
 S -a 28.7 -4.8 

dissociative R 25.0 25.6 -2.0 
 S 17.8 23.3 -4.8 

 

Table: The calculated thermochemical data for 
METHOX as a catalyst. All values are in kcal.mol-1. 
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METHOX Catalyst  

Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; Ramírez-López, P.; Biedermannová, 
L.; Langer, V.; Rulíšek, L.; Kočovský, P.: Chem. Eur. J. 2013, 19, 9167-9185.  
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a ∆Egp is the difference in the in vacuo energies between R, S isomers 
b ∆Gsolv is the difference in solvation free energies between R, S isomers 
c ∆(-T∆S)gp is the difference in the in vacuo entropic terms between R, S isomers 
d ∆Edisp is the difference in the dispersion energy stabilizations between R, S isomers 

Catalyst config ∆Egp
a ∆Gsolv

b ∆(-T∆S)gp
c ∆Edisp

d 

QUINOX R 0.0 0.0 0.0 0.0 
(associative TS) S -0.3 0.7 0.5 1.1 

METHOX R 0.0 0.0 0.0 0.0 
(dissociative TS) S -3.2 -0.4 -0.6 1.9 

 

Table: The decomposition of the free energy barriers into the contributions 
originating in zero-point energy corrections, entropy, solvation energies, and 
dispersion energies. All values are in kcal.mol-1. 

Origin of the stereoselectivity 
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Malkov, A. V.; Ramírez-López, P.; Biedermannová, L.; Rulíšek, L.; Dufková, L.; Kotora, M.; Zhu, F.; 
Kočovský, P.: J. Am. Chem. Soc. 2008, 130, 5341. Malkov, A. V.; Stončius, S.; Bell, M.; Castelluzzo, F.; 
Ramírez-López, P.; Biedermannová, L.; Langer, V.; Rulíšek, L.; Kočovský, P.: Chem. Eur. J. 2013, 19, 9167.  
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Mechanistic Dichotomy in the Asymmetric Allylation of Aldehydes 
with Allyltrichlorosilanes Catalyzed by Chiral Pyridine N-Oxides  
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Summary and Outlook 
Conformational complexity (competing reaction pathways) 
Entropic effects (ideal gas + PCM solvation = ??, Cl - translational entropy) 
Solvation Effects (non-innocent solvents, ionic systems, COSMO-RS) 
Accuracy of TS barriers (2 kcal.mol-1 is optimistic error bar in medium-
sized, well-defined models, while it can easily overcome 5 kcal.mol-1 in more 
complex systems) 
…tunneling, “non-TST” systems,… 
 
En Route from Quantitative Insight to Simpler Concepts? 
Qualitative Concepts (60’s – 80’s) 

Towards Accurate Numbers (90’s -2012) 

Quantitative Concepts (and Guidance for Experiments??) 
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Divergent Pathways and Competitive Mechanisms of Metathesis 
Reactions between 3-Arylprop-2-ynyl esters and Aldehydes 

The formation of carbon–carbon bonds is at the heart of synthetic organic chemistry 

Trujillo, C.; Sánchez-Sanz, G.; Karpavičienė, I.; Jahn, U.; Čikotienė, I.; Rulíšek, L.: Divergent Pathways 
and Competitive Mechanisms of Metathesis Reactions between 3-Arylprop-2-ynyl esters and Aldehydes: 
An Experimental and Theoretical Study. Chem. Eur. J. 2014, 20, 10360-10370. 
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Experimental Data 
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Scheme: Two plausible mechanistic pathways. Path 1 (red arrows): Classical alkyne–carbonyl 
metathesis route, followed by 1,3 carboxylate migration (as proposed  originally). Path 2 (blue 
arrows): A novel nucleophilic addition/rearrangement cascade reaction. LA=BF3·Et2O. Depicted 
structures represent either energy minima or transition states. 
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Computations: Benchmarking Against CCSD(T) => 
ωB97XD functional + COSMO-RS 
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Figure: The equilibrium geometries of two key transition states that divert the 
reaction to path 1 or 2. 
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Figure. Gibbs energy levels for paths 1 (black) and 2 (red) calculated at the DFT(wB97XD)/6-311 
G(2d,p)//RI-PBED3/def2-SVP level of theory and COSMO-RS solvation method for the reaction 
between 1a and 2a. 
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Figure. Gibbs energy levels for paths 1 (black) and 2 (red) calculated at the DFT(wB97XD)/6-311 
G(2d,p)//RI-PBED3/def2-SVP level of theory and COSMO-RS solvation method for the reaction 
between 1a and 2b. 
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Figure. Gibbs energy levels for paths 1 (black) and 2 (red) calculated at the DFT(wB97XD)/6-311 
G(2d,p)//RI-PBED3/def2-SVP level of theory and COSMO-RS solvation method for the reaction 
between 1b and 2d. 
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Explicit Models for Condensed Phases 

Partition function 

Statistical Thermodynamics (Lecture 5) 
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We may rewrite U as 

Carrying Monte Carlo or MD 
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Analogously, for A 

Carrying Monte Carlo or MD 
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Free Energy Perturbation (Zwanzig, 1954) 

Example: HCN → HNC reaction 
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In practice, a simulation windows for each coupling parameter 
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Slow Growth Method 
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Thermodynamic Integration 

Potential of Mean Force 
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