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Abstract

We study convergence of a finite volume scheme for the compressible (barotropic) Navier–Stokes sys-
tem. First we prove the energy stability and consistency of the scheme and show that the numerical
solutions generate a dissipative measure-valued solution of the system. Then by the weak-strong unique-
ness principle, we conclude the convergence of the numerical solution to the strong solution as long as the
latter exists. Numerical experiments for standard benchmark tests support our theoretical results.
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1 Introduction

We study the flow of a viscous fluid governed by the compressible Navier–Stokes system:

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp = µ∆xu + (µ+ λ)∇xdivxu
(1.1)

in the time–space domain (0, T ) × Ω. Here % = %(t, x), and u = u(t, x) are the fluid density and velocity,
constants µ > 0, λ ≥ −µ are the viscosity coefficients. The pressure p is assumed to satisfy the isentropic
state equation

p(%) = a%γ , a > 0, γ > 1. (1.2)

For the sake of simplicity we impose the periodic boundary conditions, meaning that the domain Ω can
be identified by the flat torus Ω = ([0, 1]|0,1)d, d = 1, 2, 3. The problem is (formally) closed by prescribing
the initial conditions

%(0) = %0 ∈ Lγ(Ω), %0 > 0, u(0) = u0 ∈ L2(Ω;Rd). (1.3)

In the literature we can find a variety of numerical schemes for viscous compressible flows starting from
the finite difference methods, such as the MAC scheme, e.g. [18, 19, 21], the finite element schemes, e.g. [1,
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received funding from the Czech Sciences Foundation (GAČR), Grant Agreement 16–03230S. The Mathematical Institute of
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24, 33], the finite volume schemes, e.g. [7, 10, 20, 26] or the discontinuous Galerkin schemes, e.g. [6, 9, 22].
In this paper we want to concentrate on the finite volume methods that are standardly used for physical
or engineering applications, see, e.g. [17, 25, 26, 29, 32, 33] and the references therein. In the cell-centered
finite volumes the unknown quantities (numerical solution) are located at the centers of mass of the mesh
cells (finite volume cells). This is very typical for the compressible inviscid flows governed by the Euler
equations. By means of the Gauss theorem the inviscid fluxes at cell interfaces are approximated by suitable
numerical flux functions. The latter are based on the flux-vector splitting or upwinding strategy as we will
explain below.

For the compressible Navier-Stokes equations in addition the viscous fluxes need to be approximated,
which means that the gradients of the numerical solution are to be represented at the cell interfaces. Having
piecewise discontinuous approximate functions this requires and additional reconstruction step, which is
usually realized by introducing the so-called dual grid around the cell interfaces of a primary grid. We
refer a reader to Kozel et al. [17, 25, 29], where the viscous terms are approximated by the second order
central differences using a dual finite volume grid of octahedrons constructed over each face of the primary
hexagonal finite volume grid. In [26] and [8] the barycentric subdivision is used to define dual finite volumes,
in [31, 32] a special reconstruction satisfying maximum principle is developed for the viscous fluxes. A nice
overview of various finite volume methods with the gradient approximations at cell interfaces can be found
in [3].

Despite high frequently used in practical simulations, the convergence of finite volume methods for
multi-dimensional viscous compressible flows still remains open in general. For a mixed finite element–
discontinuous Galerkin method, the convergence to a weak solution has been shown by Karper in his pi-
oneering work [24] under the assumption that the adiabatic coefficient γ > 3. It should be pointed out
that the generalization of the proof of Karper [24] for other numerical schemes is highly non-trivial and still
open. In [23] Jovanović obtained the error estimate for the isentropic Navier–Stokes equations for entropy
dissipative finite volume–finite difference methods under some rather restrictive assumptions on the global
smooth solution. In [13] Feireisl and Lukáčová proposed a new way of the convergence proof via the dissipa-
tive measure-valued (DMV) solutions. They improved the result of [24] and showed the convergence of the
mixed finite element-finite volume method for the isentropic Navier–Stokes equations for physically relevant
range of adiabatic coefficient γ ∈ (1, 2).

The main aim of this paper is to demonstrate that the strategy proposed in [13] can be adapted to
investigate the convergence of finite volume methods. More precisely, we consider the first order cell-centered
finite volume method, where the inviscid fluxes are approximated by the upwinding and the viscous fluxes
by the central differences. See also our recent works [14], [15] where analogous finite volume schemes have
been applied to show the convergence for the complete Euler system. We adapt this approach to a time-
implicit finite volume method for the barotropic Navier–Stokes system and show the stability as well as the
convergence of numerical solutions to the (unique) strong solution of (1.1). To the best of our knowledge,
there is no convergence proof of a finite volume method for the multi-dimensional Navier–Stokes system (1.1)
available in literature assuming only the existence of the strong solution.

The rest of the paper is organized as follows. In Section 2 we introduce the mesh, basic notations, the
numerical method, and some preliminary (in)equalities. Next, in Section 3 we show the energy stability of
the scheme and derive all necessary a priori bounds. Then we establish the consistency formulation of the
scheme in Section 4. Further, we address the convergence of approximate solutions in Section 5. Finally, we
present some numerical experiments in Section 6.

2 Numerical scheme

We introduce the basic notations, mesh, space and time discretizations, and, finally, we define the numerical
scheme along with some useful (in)equalities.

2.1 Space discretization

Mesh. A discretization of Ω is given by M = (T , E), where:
• The primary grid T is the set of all compact regular quadrilateral elements K such that

Ω =
⋃
K∈T

K.
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Let hi be the mesh size in the i-th Cartesian direction, and h = maxi=1,...,d hi be the mesh size. The mesh

is regular in the sense that there exists a positive ηh such that ηh = maxi=1,...,d

{
h
hi

}
.

• We denote by E the set of all faces, and by Ei the set of all faces that are orthogonal to the standard
basis vector ei, i = 1, . . . , d, of the Cartesian coordinate system. By E(K) we denote the set of faces of an
element K, and define Ei(K) = E(K)∩Ei. Each face σ ∈ E is associated with a normal vector n. The points
xK and xσ stand for the centers of mass of an element K ∈ T and a face σ ∈ E , respectively.

• The intersection K ∩ L, for K, L ∈ T , K 6= L, is either a vertex, or an edge, or a face σ ∈ E . For

any σ ∈ E we write σ = K|L if σ = E(K) ∩ E(L), and further write σ =
−−→
K|L if xL = xK + hiei or

xL = xK + (hi − 1)ei for any σ ∈ Ei. Similarly, we write K =
−−→
[σσ′] for σ, σ′ ∈ Ei(K) if xσ′ = xσ + hiei. For

any σ = K|L ∈ Ei, i ∈ 1, . . . , d, we also denote by dσ = hi the periodic distance between the points xK and
xL.

• By |K| and |σ| we denote the (d– and (d − 1)–dimensional) Lebesgue measure of an element K, and a
face σ, respectively. Obviously, |K| = hi|σ| for any σ ∈ Ei(K). In what follows, we shall suppose

|K| ≈ hd, |σ| ≈ hd−1 for any K ∈ T , σ ∈ E .

Function space. In order to define a finite volume scheme we introduce the space of piecewise constant
functions Qh defined on the primary grid T . We also introduce a standard projection operator

ΠT : L1(Ω)→ Qh. ΠT φ =
∑
K∈T

1K
1

|K|

∫
K
φ dx.

For a piecewise (elementwise) continuous function v we define

vout(x) = lim
δ→0+

v(x+ δn), vin(x) = lim
δ→0+

v(x− δn), v(x) =
vin(x) + vout(x)

2
, JvK = vout(x)− vin(x)

whenever x ∈ σ ∈ E . Hereafter we mean by v ∈ Qh that v ∈ Qh(Ω;Rd), i.e., vi ∈ Qh, for all i = 1, . . . , d.

Diffusive upwind flux. Given the velocity filed v ∈ Qh, the upwind flux for any function r ∈ Qh is
defined at each face σ ∈ E by

Up[r,v] = rupv · n = rin[v · n]+ + rout[v · n]− = r v · n− 1

2
|v · n| JrK ,

where

[f ]± =
f ± |f |

2
and rup =

{
rin if u · n ≥ 0,

rout if u · n < 0.

Furthermore, we consider a diffusive numerical flux function of the following form

Fh(r,v) = Up[r,v]− hε JrK , ε > 0. (2.1)

Discrete divergence. We define the discrete divergence operator as

divhuh(x) :=
∑
K∈T

(divhuh)K1K , (divhuh)K :=
1

|K|
∑

σ∈E(K)

|σ|uh · n, for all uh ∈ Qh. (2.2)

2.2 Time discretization

For a given time step ∆t ≈ h > 0, we denote the approximation of a function vh at time tk = k∆t by vkh for
k = 1, . . . , NT (= T/∆t). The time derivative is discretized by the backward Euler method,

Dtv
k
h =

vkh − v
k−1
h

∆t
, for k = 1, 2, . . . , NT .
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Furthermore, we introduce the piecewise constant extension of discrete values,

%h(t, ·) = %0
h for t < ∆t, %h(t, ·) = %kh for t ∈ [k∆t, (k + 1)∆t), k = 1, 2, . . . , NT ,

uh(t, ·) = u0
h for t < ∆t, uh(t, ·) = ukh for t ∈ [k∆t, (k + 1)∆t), k = 1, 2, . . . , NT ,

and ph = p(%h), for which the discrete time derivative then reads

Dtvh =
vh(t, ·)− vh(t−∆t, ·)

∆t
.

We shall write A
<∼ B if A ≤ cB for a generic positive constant c independent of h.

2.3 Numerical scheme

Using the above notation we introduce the implicit finite volume scheme to approximate system (1.1).

Definition 2.1 (Numerical scheme). Given the initial values (%0
h,u

0
h) = (ΠT %0,ΠT u0), find (%h,uh) ∈

Qh ×Qh satisfying for k = 1, . . . , NT the following equations∫
Ω
Dt%

k
hφh dx−

∑
σ∈E

∫
σ
Fh(%kh,u

k
h) JφhK dSx = 0, for all φh ∈ Qh, (2.3a)∫

Ω
Dt(%

k
hu

k
h) · φh dx−

∑
σ∈E

∫
σ

Fh(%khu
k
h,u

k
h) · JφhK dSx−

∑
σ∈E

∫
σ
pkhn · JφhK dSx

= −µ
∑
σ∈E

∫
σ

1

dσ

r
ukh

z
· JφhK dSx− (µ+ λ)

∫
Ω

divhu
k
h divhφh dx, for all φh ∈ Qh. (2.3b)

The weak formulation (2.3) of the scheme can be rewritten in the standard per cell finite volume formu-
lation for all K ∈ T ,

Dt%
k
K +

∑
σ∈E(K)

|σ|
|K|

Fh(%kh,u
k
h) = 0,

Dt(%
k
hu

k
h)K +

∑
σ∈E(K)

|σ|
|K|

(
Fh(%khu

k
h,u

k
h) + pkhn− µ

q
ukh

y

dσ
− (µ+ λ)divhu

k
hn

)
= 0. (2.4)

Approximate solutions resulting from scheme (2.3) enjoy the following properties:

1. Conservation of mass.
Taking φh ≡ 1 in the equation of continuity (2.3a) yields the total mass conservation∫

Ω
%h(t, ·) dx =

∫
Ω
%0
h dx = M0 > 0, t ≥ 0.

2. Existence of numerical solution.
The discrete problem (2.3) admits a solution (%kh,u

k
h) for any k = 1, . . . , NT . We refer a reader to [21,

Theorem 3.5] for the proof, as it can be done exactly in the same way.

3. Positivity of numerical density.
Any solution (%kh,u

k
h) to (2.3) satisfies %kh > 0 provided %k−1

h > 0, k = 1, . . . , NT , see [21, Lemma 3.2] for the
proof.

2.4 Preliminaries

To investigate theoretical properties of our finite volume method it is convenient to define a dual grid. We
emphasize that the dual grid is not needed for the implementation of the scheme.
Dual grid. A dual element Dσ is associated to a generic face σ = K|L ∈ E , where Dσ = Dσ,K ∪Dσ,L, and
Dσ,K (resp. Dσ,L) is built by half of K (resp. L), see Figure 1 for an example of such cell. We denote the set
of all dual cells as D. Furthermore, we define Di = {Dσ}σ∈Ei , i = 1, . . . , d. Note that the dual grid verifies
for each fixed i the equality and Ω =

⋃
σ∈Ei Dσ.
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K L•
xK

•
xL

•
xσ

σ
=
−−
→

K
|LDσ,K Dσ,L

Figure 1: Dual grid

Let W
(i)
h , i = 1, . . . , d, be the space of piecewise constant functions defined on the dual grid Di. By

q = (q1, . . . , qd) ∈ Wh :=
(
W

(1)
h , . . . ,W

(d)
h

)
we mean that qi ∈ W

(i)
h , for all i = 1, . . . , d. We define the

standard projection of φ ∈ L1(Ω) into the discrete functional spaces Wh,

ΠD : L1(Ω)→Wh, ΠD = (Π
(1)
D , . . . ,Π

(d)
D ), Π

(i)
D φ =

∑
σ∈Ei

1Dσ
|Dσ|

∫
Dσ

φ dx.

Discrete differential operators. We need some discrete operators that are not directly used to discretize
the Navier-Stokes system, but are essential to establish the consistency formulation in Section 4. For any
rh ∈ Qh and qh = (q1,h, . . . , qd,h) ∈Wh, we define the difference operators based on the dual grid

ð(i)
E rh(x) :=

∑
σ∈Ei

1Dσ

(
ð(i)
E rh

)
Dσ

,
(
ð(i)
E rh

)
Dσ

:=
rL − rK
dσ

, for all σ =
−−→
K|L ∈ Ei,

and the primary grid

ð(i)
T qi,h(x) :=

∑
K∈T

(
ð(i)
T qi,h

)
K

1K , i = 1, . . . , d,

where (
ð(i)
T qi,h

)
K

:=
qi,h|σ′ − qi,h|σ

h
, for all σ, σ′ ∈ Ei and K =

−−→
[σσ′].

Using the above notations we define the gradient operators for rh ∈ Qh and qh ∈Wh by

∇Erh(x) := (ð(1)
E rh, . . . ,ð

(d)
E rh)(x) and ∇T qh := (ð(1)

T q1,h, . . . ,ð
(d)
T qd,h)(x),

respectively. Note that the divergence operator divh defined in (2.2) can be rewritten for all uh ∈ Qh

divhuh =

d∑
i=1

ð(i)
T ui,h, (2.5)

which for a regular rectangular grid is equivalent to

divhuh =
d∑
i=1

ð(i)
T

(
Π

(i)
D uh

)
.

Moreover, we define the Laplace operator for rh ∈ Qh on the primary grid

∆hrh(x) =

d∑
i=1

∆
(i)
h rh(x) =

∑
K∈T

(∆hrh)K1K , ∆
(i)
h rh(x) =

∑
K∈T

(∆
(i)
h rh)K1K ,

where i = 1, . . . , d, and

(∆
(i)
h rh)K :=

1

|K|
∑

σ∈Ei(K)

|σ|JrhK
dσ

, (∆hrh)K :=
1

|K|
∑

σ∈E(K)

|σ|JrhK
dσ

, for all K ∈ T .

In addition, it is worth mentioning that

∆
(i)
h rh = ð(i)

T (ð(i)
E rh), i = 1, . . . , d.
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Integration by parts. Let us start with recalling the algebraic identity

uhvh − uh vh =
1

4
JuhK JvhK (2.6)

together with the product rule
JuhvhK = uh JvhK + JuhK vh , (2.7)

which are valid for any uh, vh ∈ Qh. A direct application of the product rule (2.7) further implies

JrhvhK JvhK−
1

2
JrhK

q
|vh|2

y
= rh JvhK2 for rh ∈ Qh, vh ∈ Qh, (2.8)

and the following lemma.

Lemma 2.2. For any rh ∈ Qh and vh ∈ Qh it holds∑
σ∈E

∫
σ

(rh JvhK + vh JrhK) · n dSx = 0. (2.9)

Proof. For the functions rh, vh constant on each element K ∈ T it holds that∑
σ∈E

∫
σ

(rh JvhK + vh JrhK) · n dSx =
∑
σ∈E

∫
σ

JrhvhK · n dSx = −
∑
K∈T

rKvK ·
∑

σ∈E(K)

∫
σ

n dSx = 0.

Consequently, for any rh, φh ∈ Qh and qh ∈ Wh, it is easy to observe the following discrete integration
by parts formulae ∫

Ω
∆hrhφh dx = −

∫
Ω
∇Erh · ∇Eφh dx =

∫
Ω
rh∆hφh dx, (2.10a)∫

Ω
qi,hð

(i)
E rh dx = −

∫
Ω
rhð

(i)
T qi,h dx, for all i = 1, . . . , d. (2.10b)

Useful estimates. Next, we list some basic inequalities used in the numerical analysis. We assume the
reader is fairly familiar with this matter, for which we refer to the monograph [10], and the article paper
[19]. If φ ∈ C1(Ω) we have∣∣∣ JΠT φK

∣∣∣
σ
. h‖φ‖C1 , for any x ∈ σ ∈ E , and ‖φ−ΠT φ‖Lp(Ω) . h‖φ‖C1 . (2.11)

Furthermore, if φ ∈ C2(Ω) we have for all 1 < p ≤ ∞

‖∇xφ−∇EΠT φ‖Lp . h, ‖∇EΠT φ‖Lp . ‖φ‖C1 + h, (2.12)∥∥∇xφ−∇T ΠD
(
ΠT φ

)∥∥
Lp

. h, ‖divxφ− divh(ΠT φ)‖Lp . h. (2.13)

If in addition, φ ∈ C3(Ω) we get

‖∆hΠT φ−∆xφ‖Lp . h‖φ‖C3 , ‖∆hΠT φ‖Lp . ‖φ‖C2 + h‖φ‖C3 , for all 1 < p ≤ ∞. (2.14)

The inverse estimates [4] for rh ∈ Qh read

‖rh‖Lp(Ω) . h
d( 1
p
− 1
q

)‖rh‖Lq(Ω) for any 1 ≤ q ≤ p ≤ ∞. (2.15)

Finally, we need a discrete analogous of the Sobolev-type inequality that can be proved exactly as [16,
Theorem 11.23].

Lemma 2.3 (Sobolev inequality). Let the function r ≥ 0 be such that

0 <

∫
Ω
r dx = cM , and

∫
Ω
rγ dx ≤ cE for γ > 1.

Then the following Poincaré-Sobolev type inequality holds true

‖v‖L6(Ω) ≤ c ‖∇Ev‖
2
L2(Ω) + c

(∫
Ω
r|v| dx

)2
<∼ c ‖∇Ev‖2L2(Ω) + cM + c

∫
Ω
r|v|2 dx (2.16)

for any v ∈ Qh, where the constant c depends on cM and cE but not on the mesh parameter.
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The following lemma shall be useful for analysing the error between the continuous convective term and
its numerical analogue.

Lemma 2.4. For any rh,vh ∈ Qh, and φ ∈ C1(Ω), it holds∫
Ω
rhvh · ∇xφ dx−

∑
σ∈E

∫
σ
Fh[rh,vh] JΠT φK dSx

=
∑
σ∈E

∫
σ

(
1

2
|vh · n|+ hε +

1

4
JvhK · n

)
JrhK JΠT φK dSx+

∫
Ω
rhvh ·

(
∇xφ−∇T ΠD

(
ΠT φ

))
dx.

Proof. Using the basic equalities (2.6)–(2.9), we have∫
Ω
rhvh · ∇xφ dx =

∑
K∈T

∫
K
rhvh · ∇xφ dx

=
∑
K∈T

∫
K
rhvh · (∇xφ−∇T ΠD

(
ΠT φ

)
) dx+

∑
K∈T

∫
∂K

rhvh · nΠT φ dSx

=

∫
Ω
rhvh · (∇xφ−∇T ΠD

(
ΠT φ

)
) dx−

∑
σ∈E

∫
σ

JrhvhK · nΠT φ dSx

=

∫
Ω
rhvh · (∇xφ−∇T ΠD

(
ΠT φ

)
) dx+

∑
σ∈E

∫
σ
rhvh · n JΠT φK dSx

=

∫
Ω
rhvh · (∇xφ−∇T ΠD

(
ΠT φ

)
) dx+

∑
σ∈E

∫
σ

(rhvh − rh vh) · n JΠT φK dSx

+
∑
σ∈E

∫
σ
rh vh · n JΠT φK dSx±

∑
σ∈E

∫
σ

(
1

2
|vh · n|+ hε

)
JrhK JΠT φK dSx

=

∫
Ω
rhvh · (∇xφ−∇T ΠD

(
ΠT φ

)
) dx+

∑
σ∈E

∫
σ

1

4
JrhK JvhK · n JΠT φK dSx

+
∑
σ∈E

∫
σ
Fh[rh,vh] JΠT φK dSx+

∑
σ∈E

∫
σ

(
1

2
|vh · n|+ hε

)
JrhK JΠT φK dSx.

3 Stability

In this section we show the stability of the scheme and derive the energy estimates that will be necessary
for the consistency formulation in Section 4. For simplicity, we will hereafter denote the norms ‖·‖Lq(Ω) and
‖·‖Lp(0,T ;Lq(Ω)) by ‖·‖Lq and ‖·‖LpLq , respectively.

To begin, we recall the discrete internal energy balance, which is a result of the renormalization of the
continuity equation, see, e.g. [12, Section 4.1] or [21, Lemma 3.1]. Indeed, multiplying (2.3a) by H′(%kh) gives
rise to the result of the following lemma.

Lemma 3.1 ( Discrete internal energy balance). Let (%h,uh) ∈ Qh × Qh satisfy the discrete continuity
equation (2.3a). Then there exists ξ ∈ co{%k−1

h , %kh} and ζ ∈ co{%kK , %kL} for any σ = K|L ∈ E such that∫
Ω
DtH(%kh) dx−

∑
σ∈E

∫
σ

ukh · n
r
p(%kh)

z
dSx

= −∆t

2

∫
Ω
H′′(ξ)|Dt%

k
h|2 dx− 1

2

∑
σ∈E

∫
σ
H′′(ζ)

r
%kh

z2
(hε + |uh · n|) dSx,

(3.1)

where H(%) = p(%)
γ−1 .

Next, we recall the renormalization of the transport equation, see [12, Lemma A.1, Section A.2].
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Lemma 3.2 (Discrete renormalized transport equation). Suppose that bkh ∈ Qh, χ ∈ C2(R). Then there
exists ξ ∈ co{bk−1

h , bkh}, ζ ∈ co{bkh, (bkh)out} for any φh ∈ Qh such that∫
Ω
Dt(%

k
hb
k
h)χ′(bkh)φh dx−

∑
σ∈E

∫
σ
Up[%khb

k
h,u

k
h]

r
χ′(bkh)φh

z
dSx

=

∫
Ω
Dt

(
%khχ(bkh)

)
φh dx−

∑
σ∈E

∫
σ
Up[%khχ(bkh),uh] JφhK dSx+

∆t

2

∫
Ω
χ′′(ξ)%k−1

h |Dtb
k
h|2φh dx

+
∑
σ∈E

∫
σ
hε

r
%kh

z r(
χ(bkh)− χ′(bkh)bkh

)
φh

z
dSx

− 1

2

∑
K∈T

∑
σ⊂∂K

∫
σ
φhχ

′′(ζ)
r
bkh

z2
(%kh)out

[
ukh · n

]−
dSx.

(3.2)

3.1 Total energy balance

Now, we are ready to derive the discrete counterpart of the total energy balance.

Theorem 3.3 (Discrete energy balance). Let (%h,uh) be a numerical solution obtained from scheme (2.3).
Then, for any k = 1, . . . , NT , there exists ξ ∈ co{%k−1

h , %kh} and ζ ∈ co{%kK , %kL} such that, for any σ = K|L ∈
E ,

Dt

∫
Ω

(
1

2
%kh|ukh|2 +H(%kh)

)
dx+ hε

∑
σ∈E

∫
σ
%kh

r
ukh

z2
dSx+ µ

∥∥∥∇Eukh∥∥∥2

L2
+ (µ+ λ)

∫
Ω
|divhu

k
h|2 dx

= −∆t

2

∫
Ω
H′′(ξ)|Dt%

k
h|2 dx− 1

2

∑
σ∈E

∫
σ
H′′(ζ)

r
%kh

z2 (
hε + |ukh · n|

)
dSx

− ∆t

2

∫
Ω
%k−1
h |Dtu

k
h|2 dx− 1

2

∑
σ∈E

∫
σ
(%kh)up|ukh · n|

r
ukh

z2
dSx.

(3.3)

Proof. First, taking φh = ukh in (2.3b) we get∫
Ω
Dt(%

k
hu

k
h) · ukh dx−

∑
σ∈E

∫
σ

Fh(%khu
k
h,u

k
h) ·

r
ukh

z
dSx−

∑
σ∈E

∫
σ
pkhn ·

r
ukh

z
dSx

= −µ
∥∥∥∇Eukh∥∥∥

L2
− (µ+ λ)

∫
Ω
|divhu

k
h|2 dx

Next, we use relation (3.2) for bh = ukh, χ(|ukh|) = 1
2 |u

k
h|2, and φh = 1 to compute

∫
Ω
Dt(%

k
hu

k
h) · ukh dx−

∑
σ∈E

∫
σ

Up[%khu
k
h,u

k
h] ·

r
ukh

z
dSx

=

∫
Ω
Dt

(
1

2
%kh|ukh|2

)
dx−

∑
σ∈E

∫
σ

Up

[
1

2
%kh|ukh|2,ukh

]
J1K︸︷︷︸
=0

dSx+
∆t

2

∫
Ω
%k−1
h |Dtu

k
h|2 dx

−
∑
σ∈E

∫
σ
hε

r
%kh

z s
1

2
|ukh|2

{
dSx− 1

2

∑
K∈T

∑
σ⊂∂K

∫
σ
(%kh)out

[
ukh · n

]− r
ukh

z2
dSx

=

∫
Ω
Dt

(
1

2
%kh|ukh|2

)
dx+

∆t

2

∫
Ω
%k−1
h |Dtu

k
h|2 dx−

∑
σ∈E

∫
σ
hε

r
%kh

z s
1

2
|ukh|2

{
dSx

+
1

2

∑
σ∈E

∫
σ
(%kh)out

[
ukh · n

]− r
ukh

z2
dSx.
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Further, summing up the previous two observations we infer that

Dt

∫
Ω

1

2
%h|ukh|2 dx+ µ

∥∥∥∇Eukh∥∥∥
L2

+ (µ+ λ)

∫
Ω
|divhu

k
h|2 dx

=
∑
σ∈E

∫
σ
pkhn ·

r
ukh

z
dSx−

∑
σ∈E

∫
σ
hε

r
%khu

k
h

z r
ukh

z
dSx+

∑
σ∈E

∫
σ
hε

r
%kh

z s
1

2
|ukh|2

{
dSx

− ∆t

2

∫
Ω
%k−1
h |Dtu

k
h|2 dx− 1

2

∑
σ∈E

∫
σ
(%kh)up|ukh · n|

r
ukh

z2
dSx.

(3.4)

Finally, combining (3.4) with (3.1) and using the equalities (2.8)–(2.9) we get

Dt

∫
Ω

(
1

2
%kh|ukh|2 +H(%kh)

)
dx+ hε

∑
σ∈E

∫
σ
%kh

r
ukh

z2
dSx+ µ

∥∥∥∇Eukh∥∥∥2

L2
+ (µ+ λ)

∫
Ω
|divhu

k
h|2 dx

= −∆t

2

∫
Ω
H′′(ξ)|Dt%

k
h|2 dx− 1

2

∑
σ∈E

∫
σ
H′′(ζ)

r
%kh

z2 (
hε + |ukh · n|

)
dSx

− ∆t

2

∫
Ω
%k−1
h |Dtu

k
h|2 dx− 1

2

∑
σ∈E

∫
σ
(%kh)up|ukh · n|

r
ukh

z2
dSx,

which completes the proof.

3.2 Uniform bounds

Having established all necessary ingredients, we are ready to discuss the available a priori bounds for
solutions of scheme (2.3). From the total energy balance (3.3) and the Sobolev inequality (2.16), we directly
get the estimates comprised in the following corollary.

Corollary 3.4. Let (%h,uh) satisfy scheme (2.3) for γ > 1. Then the following estimates hold∥∥%hu2
h

∥∥
L∞L1 . 1, (3.5a)

‖%h‖L∞Lγ . 1, (3.5b)

‖%huh‖
L∞L

2γ
γ+1

. 1, (3.5c)

‖∇Euh‖L2L2 . 1, (3.5d)

‖divhuh‖L2L2 . 1, (3.5e)

‖uh‖L2L6 . 1, (3.5f)

hε
∫ T

0

∑
σ∈E

∫
σ
%h JuhK2 dSxdt . 1, (3.5g)

∫ T

0

∑
σ∈E

∫
σ
H′′(ζ) J%hK2 (hε + |uh · n|) dSxdt . 1, (3.5h)

where ζ ∈ co{%K , %L} for any σ = K|L ∈ E.

To show the consistency of the numerical scheme we shall need further bounds on the numerical solution,
which can be derived provided the adiabatic coefficient in (1.2) lies in the physically realistic range γ ∈ (1, 2).

Lemma 3.5. Let (%h,uh) satisfy scheme (2.3), h ∈ (0, 1) and γ ∈ (1, 2). Then there hold

‖%h‖L2L2
<∼ h−

ε+2
2γ , (3.6a)

‖%huh‖L2L2
<∼ h−

ε+2
2γ . (3.6b)

Proof. We start the proof by recalling the Sobolev inequality for the broken norm

‖fh‖2L6
<∼ ‖fh‖2L2 +

∑
σ∈E

∫
σ

JfhK2

dσ
dSx = ‖fh‖2L2 + ‖∇Efh‖2L2 , ∀fh ∈ Qh,
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and the algebraic inequality

aγ(%
γ/2
L − %γ/2K )2 ≤ ∂2H(z)

∂%2
(%L − %K)2, ∀ z ∈ co{%L, %K}, %L, %K > 0 if γ ∈ (1, 2).

Then we indicate from the estimate of the density jumps (3.5h) that∥∥∥∇E%γ/2h

∥∥∥2

L2L2
=

∫ T

0

∑
σ∈E

∫
σ

1

dσ

r
%
γ/2
h

z2
dSx

<∼ h−(ε+1).

Applying the above inequalities, the inverse estimate and the estimate (3.5b) we derive

‖%h‖L1L∞ =

∫ T

0

∥∥∥%γ/2h

∥∥∥2/γ

L∞
dt ≤

∫ T

0

(
h−1/2

∥∥∥%γ/2h

∥∥∥
L6

)2/γ
dt

≤ h−1/γ

∫ T

0

(∥∥∥%γ/2h

∥∥∥2

L2
+
∥∥∥∇E%γ/2h

∥∥∥2

L2

)1/γ

dt ≤ h−1/γ

(
‖%h‖L1Lγ +

∥∥∥∇E%γ/2h

∥∥∥2/γ

Lγ/2L2

)
≤ h−1/γ

(
‖%h‖L1Lγ +

∥∥∥∇E%γ/2h

∥∥∥2/γ

L2L2

)
≤ h−

ε+2
γ .

Further application of the above inequality together with the Gagliardo-Nirenberg interpolation inequality,
Hölder’s inequality, and the density estimate (3.5b) immediately yield (3.6a), i.e.,

‖%h‖L2L2 =

(∫ T

0
‖%h‖2L2 dt

)1/2

≤
(∫ T

0
‖%h‖L1 ‖%h‖L∞ dt

)1/2

≤ ‖%h‖
1/2
L∞L1 ‖%h‖

1/2
L1L∞

<∼ h−
ε+2
2γ .

Finally, the estimate (3.6b) can be shown in the following way

‖%huh‖L2L2
<∼ ‖√%h‖L2L∞ ‖

√
%huh‖L∞L2 = ‖%h‖

1/2
L1L∞

∥∥%hu2
h

∥∥1/2

L∞L1

<∼ h−
ε+2
2γ .

4 Consistency

Next step towards the convergence of the approximate solutions is the consistency of the numerical scheme.
In particular, we require the numerical solution to satisfy the weak formulation of the continuous problem
up to a residual term vanishing for h→ 0.

Theorem 4.1. Let (%h,uh) be a solution of the approximate problem (2.3) on the time interval [0, T ] with
1 < γ < 2 and 0 < ε < min {1, 2(γ − 1)}. Then

−
∫

Ω
%0
hφ(0, ·) dx =

∫ τ

0

∫
Ω

[%h∂tφ+ %huh · ∇xφ] dx dt+

∫ T

0
e1,h(t, φ) dt, (4.1)

for any φ ∈ C3
c ([0, T )× Ω);

−
∫

Ω
%0
hu

0
hφ(0, ·) dx =

∫ T

0

∫
Ω

[%huh · ∂tφ + %huh ⊗ uh : ∇xφ + phdivxφ] dx dt,

− µ
∫ T

0

∫
Ω
∇Euh : ∇xφdx dt− (µ+ λ)

∫ T

0

∫
Ω

divhuh divxφdx dt+

∫ T

0
e2,h(t,φ) dt

(4.2)

for any φ ∈ C3
c ([0, T ]× Ω;Rd);

‖ej,h(·, φ)‖L1(0,T ) . hβ (‖φ‖C2 + h‖φ‖C3) , j = 1, 2, for some β > 0.

Proof. Let φ ∈ C3
c ([0, T )×Ω) and φ ∈ C3

c ([0, T )×Ω;Rd). We test the equations (2.3a) and (2.3b) with ΠT φ
and ΠT φ, respectively, and deal with each term separately.
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Step 1 – time derivative terms:∫ T

0

∫
Ω
DtrhΠT φ dx dt =

∫ T

0

∫
Ω

rh(t)− rh(t−∆t)

∆t
φ(t) dx dt

=
1

∆t

∫ T

0

∫
Ω
rh(t)φ(t) dx dt− 1

∆t

∫ T−∆t

−∆t

∫
Ω
rh(t)φ(t+ ∆t) dx dt

= −
∫ T

0

∫
Ω
rh(t)Dtφ(t) dx dt+

1

∆t

∫ T

T−∆t

∫
Ω
rh(t)φ(t+ ∆t) dx dt− 1

∆t

∫ 0

−∆t

∫
Ω
rh(t)φ(t+ ∆t) dx dt

= −
∫ T

0

∫
Ω
rh(t)Dtφ(t) dx dt−

∫
Ω
r0
hφ(0) dx,

where rh stands for %h or %hui,h, i = 1, . . . , d. Thus, we have∫ T

0

∫
Ω
Dt%hΠT φ dx dt = −

∫ T

0

∫
Ω
%h(t)Dtφ(t) dx dt−

∫
Ω
%0
hφ(0) dx, (4.3a)∫ T

0

∫
Ω
Dt(%huh)ΠT φdx dt = −

∫ T

0

∫
Ω
%h(t)uh(t)Dtφ(t) dx dt−

∫
Ω
%0
hu

0
hφ(0) dx, (4.3b)

for the continuity and the momentum equations, respectively.

Step 2 – convective terms:
To deal with the convective terms, it is convenient to recall Lemma 2.4:∫ T

0

∫
Ω
rhuh · ∇xφ dx dt−

∫ T

0

∑
σ∈E

∫
σ
F [rh,uh] JΠT φK dSxdt =

4∑
j=1

Ej(rh),

where

E1(rh) =
1

2

∫ T

0

∑
σ∈E

∫
σ
|uh · n| JrhK JΠT φK dSxdt,

E2(rh) =
1

4

∫ T

0

∑
σ∈E

∫
σ

JuhK · n JrhK JΠT φK dSxdt,

E3(rh) =

∫ T

0

∑
σ∈E

∫
σ
hε JrhK JΠT φK dSxdt,

E4(rh) =

∫ T

0

∫
Ω
rhuh ·

(
∇xφ−∇T ΠD

(
ΠT φ

))
dx dt,

are the error terms to be estimated. Again, rh is either %h or %hui,h, i = 1, . . . , d.

• Firstly, for the error term E1 we can write

E1(rh) =
1

2

∫ T

0

∑
σ∈E

∫
σ
|uh · n| JrhK JΠT φK dSxdt =

1

2

∫ T

0

∑
σ∈E

∫
σ
|ui,h| JrhK JΠT φK dSxdt

=
1

2

∫ T

0

d∑
i=1

∑
σ∈Ei

∫
Dσ

hi|ui,h|ð
(i)
E rhð

(i)
E ΠT φ dx dt

= −1

2

∫ T

0

d∑
i=1

∑
K∈T

∫
K
hirhð

(i)
T

(
|ui,h|ð

(i)
E ΠT φ

)
dx dt

= −1

2

∫ T

0

d∑
i=1

∑
K∈T

∫
K
rKhi

(
ΠT |ui,h| ð

(i)
T (ð(i)

E ΠT φ) +
(
ð(i)
T |ui,h|

)
ΠT (ð(i)

E ΠT φ)

)
dx dt,

where we have used the integration by parts formula (2.10b), the product rule

r2q2 − r1q1 =
r1 + r2

2
(q2 − q1) +

q1 + q2

2
(r2 − r1).
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Further, employing the inequality
(
a+b

2

)2 ≤ a2+b2

2 twice, we claim ‖ΠT |ui,h|‖L2

<∼ ‖ui,h‖L2 . Similarly,

we claim
∥∥∥ð(i)
T ui,h

∥∥∥
L2

<∼
∥∥∥ð(i)
E ui,h

∥∥∥
L2

as
(
ð(i)
T ui,h

)
K

= ΠT

(
ð(i)
E ui,h

)
K

. Then applying Hölder’s inequality,

interpolation error estimates (2.12), (2.14), the velocity estimates (3.5d), (3.5f), the fact |∂xui| ≥ ∂x|ui|, and

noticing ∆
(i)
h r := ð(i)

T ð(i)
E r, we derive

E1(rh) = −1

2

∫ T

0

d∑
i=1

∑
K∈T

∫
K
rKhi

(
ΠT |ui,h| ð

(i)
T (ð(i)

E ΠT φ) +
(
ð(i)
T |ui,h|

)
ΠT (ð(i)

E ΠT φ)

)
dx dt

<∼
d∑
i=1

hi

(∫ T

0

∑
K

∫
K
r2
K

)1/2 [(∫ T

0

∑
K∈T

∫
K

(ΠT |ui,h|)2
K

)1/2 ∥∥∥∆
(i)
h ΠT φ

∥∥∥
L∞L∞

+

(∫ T

0

∑
K∈T

∫
K

(
ð(i)
T ui,h

)2
)1/2 ∥∥∥ΠT (ð(i)

E ΠT φ)
∥∥∥
L∞L∞

]

<∼ h
d∑
i=1

‖rh‖L2L2

(∥∥∥∆
(i)
h ΠT φ

∥∥∥
L∞L∞

‖ui,h‖L2L2 +
∥∥∥ð(i)
E ΠT φ

∥∥∥
L∞L∞

∥∥∥ð(i)
E ui,h

∥∥∥
L2L2

)
<∼ h ‖rh‖L2L2 (‖∆hΠT φ‖L∞L∞ ‖uh‖L2L2 + ‖∇EΠT φ‖L∞L∞ ‖∇Euh‖L2L2)
<∼ h ‖rh‖L2L2 .

Consequently, applying the density estimate (3.6a), and the momentum estimate (3.6b) indicates

E1(rh) . hβ, β = 1− ε+ 2

2γ
> 0, provided ε < 2(γ − 1),

for rh being %h or %hui,h, i = 1, . . . , d.

• Secondly, we deal with the error term E2. In accordance with (2.11), we have

E2(rh)
<∼ h

∑
σ∈E

∫
σ
| JuhK · n JrhK | dSxdt.

For rh being %h, we further write

E2(%h)
<∼ h

(∫ T

0

∑
σ∈E

∫
σ

JuhK2 dSxdt

)1/2(∫ T

0

∑
σ∈E

∫
σ

J%hK2 dSxdt

)1/2

<∼ hh1/2

(∫ T

0

∑
σ∈E

∫
σ
%h

2 dSxdt

)1/2

<∼ h3/2h−1/2 ‖%h‖L2L2
<∼ hβ, β = 1− ε+ 2

2γ
> 0, as soon as ε < 2(γ − 1).

Here we have used Hölder’s inequality, (3.5d), (3.6a), and the fact | J%hK | < 2%h.

For rh being %hui,h, we get

E2(%huh)
<∼ h

∫ T

0

∑
σ∈E

∫
σ
| JuhK · n| |J%hK uh + JuhK %h| dSxdt := T1 + T2.

To control the residual term T1 we apply Hölder’s inequality, (3.5a), (3.5g), inverse estimate (2.15) and the
inequality | J%hK | < 2%h to obtain

T1
<∼ h

∫ T

0

∑
σ∈E

∫
σ
| JuhK · n|%h|uh|dSxdt

<∼ h

(∫ T

0

∑
σ∈E

∫
σ
%h JuhK2 dSx

)1/2(∫ T

0

∑
σ∈E

∫
σ
%h|uh|2 dSx

)1/2

<∼ h(1−ε)/2.
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Further, applying (3.5g) we can control the residual term T2 as

T2 = h

∫ T

0

∑
σ∈E

∫
σ
| JuhK · n| JuhK |%h dSxdt

<∼ h1−ε.

Therefore, we claim that provided ε < 2(γ − 1) we have

E2(rh) . hβ, β > 0

for rh being %h or %hui,h, i = 1, . . . , d.

• Next, we consider the error term E3. Analogously as above, the integration by parts formula (2.10a),
Hölder’s inequality, and the interpolation error (2.14) yield

E3(rh) = hε
∫ T

0

∑
σ∈E

∫
σ

JrhK JΠT φK dSxdt = −hε+1

∫ T

0

∫
Ω
rh∆hΠT φ dx dt

. hε+1 ‖rh‖L1L1 (‖φ‖C2 + h ‖φ‖C3) . hε+1 ‖rh‖L1L1 .

Using the estimates (3.5b) and (3.5c) we can conclude for rh being %h or %hui,h, i = 1, . . . , d, that

E3(rh) . hε+1.

• Finally, using the estimates of kinetic energy (3.5a) and momentum (3.5c) together with the interpolation
error (2.13) we obtain for rh being %h or %hui,h, i = 1, . . . , d that

E4(rh) =

∫ T

0

∫
Ω
rhuh ·

(
∇xφ−∇T ΠD

(
ΠT φ

))
dx dt . h ‖φ‖C2 ‖rhuh‖L1L1 . h ‖rhuh‖L∞L1 . h.

Consequently, we conclude the consistency formulation of the convective terms in both equations (2.3a) and
(2.3b), by collecting the above estimates of the four terms Ej , j = 1, . . . , 4,∫

Ω
%huh · ∇xφ dx−

∑
σ∈E

∫
σ
F [%h,uh] JΠT φK dSx . hβ1 , (4.4a)∫

Ω
%huh ⊗ uh : ∇xφdx−

∑
σ∈E

∫
σ
F [%huh,uh] JΠT φK dSx . hβ2 , (4.4b)

for some β1, β2 > 0 provided ε < min{1, 2(γ − 1)}.

Step 3 – viscosity terms:
In accordance with (2.12) and (3.5d) we can control the viscosity terms. Indeed, we have∫ T

0

∫
Ω
∇Euh : ∇xφdx dt−

∫ T

0

∑
σ∈E

∫
σ

1

dσ
JuhK · JΠT φK dSxdt

=

∫ T

0

∫
Ω
∇Euh : (∇xφ−∇EΠT φ) dx dt . ‖∇Euh‖L2L2 h ‖φ‖C2 . h,

(4.5a)

and for the divergence term we get∫ T

0

∫
Ω

divhuh divh
(
ΠT φ

)
dx−

∫ T

0

∫
Ω

divhuh divxφdx dt

=

∫ T

0

∫
Ω

divhuh

(
divh

(
ΠT φ

)
− divxφ

)
dx dt . ‖divhuh‖L2L2 h ‖φ‖C2 . h,

(4.5b)

by using (3.5e) and (2.13).
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Step 4 – pressure term:
The pressure term can be controlled by using the integration by parts formula (2.9), the interpolation error
(2.13), and the estimate (3.5b), i.e.,∫ T

0

∑
σ∈E

∫
σ
phn · JΠT φK dSxdt−

∫ T

0

∫
Ω
phdivxφdx dt

= −
∫ T

0

∑
σ∈E

∫
σ

ΠT φ · n JphK dSxdt−
∫ T

0

∑
K∈T

∫
K
phdivxφdx dt

=

∫ T

0

∑
K∈T

pK
∑

σ∈E(K)

∫
σ

ΠT φ · n dSxdt−
∫ T

0

∑
K∈T

∫
K
phdivxφdx dt

=

∫ T

0

∑
K∈T

∫
K
ph
(
divh

(
ΠT φ

)
− divxφ

)
dx dt . ‖ph‖L∞L1 h ‖φ‖C2 . h.

(4.6)

Collecting the inequalities (4.3)–(4.6) we complete the proof of Theorem 4.1.

5 Convergence

In this section, we show the main result, the convergence of the numerical solution to the strong solution
of the system (1.1) on the lifespan of the latter. To this end we start by introducing the concept of
the dissipative measure-valued (DMV) solutions to (1.1). The interested reader may consult [11] for the
discussion about the concept of DMV solutions and the DMV–strong uniqueness principle that will be used
later in this section.

Definition 5.1 (DMV solution). We say that a parametrized family of probability measures {Vt,x}(t,x)∈(0,T )×Ω,

Vt,x ∈ L∞weak
(

(0, T )× Ω; P(Q)
)
, Q =

{
[%,u]

∣∣∣ % ∈ [0,∞), u ∈ RN
}
,

is a dissipative measure-valued (DMV) solution of the Navier–Stokes system in (0, T ) × Ω, with the initial
condition V0,x ∈ P(Q) and dissipative defect D ∈ L∞(0, T ), D ≥ 0, if the following holds:

• [∫
Ω
〈Vt,x; %〉φ(t, ·) dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[〈Vt,x; %〉∂tφ+ 〈Vt,x; %u〉 · ∇xφ] dx dt

for any 0 ≤ τ ≤ T and φ ∈ C1
(
[0, T ]× Ω

)
;

• [∫
Ω
〈Vt,x; %u〉φ(t, ·) dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[〈Vt,x; %u〉∂tφ + 〈Vt,x; %u⊗ u + p(%)I〉 : ∇xφ] dx dt

−
∫ τ

0

∫
Ω
S(∇xu) : ∇xφdx dt+

∫ τ

0
〈rM ;∇xφ〉dt

for any 0 ≤ τ ≤ T and φ ∈ C1
c

(
[0, T ]× Ω;Rd

)
, where

ut,x = 〈Vt,x; u〉 , u ∈ L2(0, T ;W 1,2(Ω;Rd)),

S(∇xu) = µ(∇xu +∇txu) + λdivxuI, and rM ∈ L1
(
0, T ;M(Ω)

)
;

• [∫
Ω
〈Vt,x;

1

2
%u2 +H(%)〉 dx

]t=τ
t=0

+

∫ τ

0

∫
Ω
S(∇xu) : ∇xu dx dt+D(τ) ≤ 0,

for a.a. 0 ≤ τ ≤ T . The dissipation defect D dominates the concentration measure rM , specifically,∣∣〈rM (τ);φ〉
∣∣ . ξ(τ)D(τ) ‖φ‖C(Ω) , for some ξ ∈ L1(0, T ).
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5.1 Convergence to dissipative measure-valued solution

In this subsection, we show that any Young measure generated by a family of numerical solutions is a DMV
solution in the sense of Definition in 5.1.

Theorem 5.2. Let {(%kh,ukh)}NTk=1 be a family of solutions that satisfy the energy stability (3.3) and the
consistency formulation (4.1)–(4.2), with ∆t ≈ h, 1 < γ < 2, 0 < ε < min{1, 2(γ − 1)}, and the initial data
satisfying

%0 ∈ Lγ(Ω), %0 > 0, u0 ∈ L2(Ω;Rd).

Then any Young measure {Vt,x}(t,x)∈(0,T )×Ω generated by (%kh,u
k
h) for h→ 0 represents a dissipative measure-

valued solution of the Navier–Stokes system (1.1) in the sense of Definition 5.1.

Proof. We may use the energy estimates (3.3) to deduce that, at least for suitable subsequences,

%h → % weakly-(*) in L∞(0, T ;Lγ(Ω)), % ≥ 0

uh → u weakly in L2((0, T )× Ω;Rd),

where u ∈ L2(0, T ;W 1,2(Ω)), ∇Euh → ∇xu weakly in L2((0, T )× Ω;Rd×d),

%huh → %̃u weakly-(*) in L∞(0, T ;L
2γ
γ+1 (Ω;Rd)).

where the superscript ‘∼’ denotes the L1-weak limit.
Note that, the limit functions satisfy the equation of continuity in the form

−
∫

Ω
%0φ(0, ·) dx =

∫ T

0

∫
Ω

[%∂tφ+ %̃u · ∇xφ] dx dt, for all φ ∈ C∞c ([0,∞)× Ω),

which can be further rewritten as[∫
Ω
%φ(t, ·) dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[%∂tφ+ %̃u · ∇xφ] dx dt (5.1)

for any 0 ≤ τ ≤ T and any φ ∈ C∞([0, T ]× Ω).
In accordance with the weak convergence statement derived in the preceding part, the family [%h,uh]

generates a Young measure - a parameterized measure [2, 28]

Vt,x ∈ L∞((0, T )× Ω;P([0,∞)×Rd)) for a.e. (t, x) ∈ (0, T )× Ω, with V0,x = δ[%0(x),u0(x)],

such that
〈Vt,x, g(%,u)〉 = g̃(%,u)(t, x) for a.e. (t, x) ∈ (0, T )× Ω,

for any g ∈ C([0,∞)×Rd) such that

g(%h,uh)→ g̃(%,u) weakly in L1((0, T )× Ω).

Accordingly, the equation of continuity (5.1) can be written as[∫
Ω
%φ(t, ·) dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[%∂tφ+ 〈Vt,x, %u〉 · ∇xφ] dx dt (5.2)

For the consistency formulation of the momentum equation (4.2), we apply a similar treatment. Whence
letting h→ 0 in (4.2) gives rise to[∫

Ω
〈Vt,x; %u〉 ·φφφ(t, ·) dx

]t=τ
t=0

=

∫ τ

0

∫
Ω

[
〈Vt,x; %u〉 · ∂tφφφ+ 〈Vt,x; %u⊗ u + p(%)I〉 : ∇xφφφ

]
dx dt

−
∫ τ

0

∫
Ω

[
µ∇xu : ∇xφφφ+ (µ+ λ)divxu · divxφφφ

]
dx dt+

∫ τ

0

∫
Ω
rM : ∇xφφφ dx dt

(5.3)

for any 0 ≤ τ ≤ T , φφφ ∈ C∞c ([0, T ]× Ω;Rd) where the concentration remainder reads

rM = {%u⊗ u + p(%)I} − 〈Vt,x; %u⊗ u + p(%)I〉 ∈ [L∞(0, T ;M(Ω))]d×d.
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Similarly, the energy inequality (3.3) can be written as[∫
Ω

1

2

〈
Vt,x; %|u|2 +H(%)

〉
dx

]t=τ
t=0

+

∫ τ

0

∫
Ω

(
µ|∇xu|2 + (µ+ λ)|divxu|2

)
dx dt+D(τ) ≤ 0 (5.4)

for a.e. τ ∈ [0, T ], with the dissipation defect D satisfying∫ τ

0
‖rM‖M(Ω) dt ≤

∫ τ

0
D(t) dt, D(τ) ≥ lim inf

h→0

∫ τ

0
‖∇Euh‖2L2 dt−

∫ τ

0

∫
Ω
|∇xu|2 dx dt, (5.5)

cf. [11, Lemma 2.1].
Collecting (5.2)–(5.5) implies that the Young measure {Vt,x}t,x∈(0,T )×Ω represents a dissipative measure-

valued solution of the Navier–Stokes system (1.1) in the sense of Definition 5.1. Seeing that validity of (5.2)
and (5.3) can be extended to the class of test functions from C1([0, T ] × Ω;Rd), we have proved Theorem
5.2.

5.2 Convergence to strong solution

In the previous subsection, we have shown that the numerical solution generates the dissipative measure-
valued solution. We admit that the conclusion of Theorem 5.2 is rather weak, also due to the non-uniqueness
of Young measure. However, we may directly use the DMV-strong uniqueness principle established in [11,
Theorem 4.1] to obtain convergence to the strong solution as long as it exists.

Theorem 5.3 (Convergence to strong solution). In addition to the hypotheses of Theorem 5.2, suppose
that the Navier–Stokes system (1.1) endowed with the initial data (%0,u0) admits a regular solution (%,u)
belonging to the class

%,∇x%,u,∇xu ∈ C([0, T ]× Ω), ∂tu ∈ L2
(

0, T ;C(Ω;Rd)
)
, % > 0.

Then
%h → % (strongly) in Lγ ((0, T )× Ω) , uh → u (strongly) in L2

(
(0, T )× Ω;Rd

)
.

Indeed, the DMV–strong uniqueness implies that the Young measure generated by the family of numerical
solutions coincides at a.a. point (t, x) with the Dirac mass supported by the smooth solution of the problem.
In particular, the numerical solutions converge strongly and no oscillations occur.

Remark 5.4. We have constructed solution on a space-periodic domain Ω. When considering a polyhedral
domain, the existence of smooth solutions remains open and may be a delicate task. To avoid this problem,
one has to approximate a smooth domain by a family of polyhedral domains analogously as in [13]. Note,
however, this problem does not occur in the case of periodic domain.

If, in addition, we assume the density is uniformly bounded, meaning independently of the numerical
step, the results of Theorems 5.2 and 5.3 remain valid on an unstructured grid as well. Indeed, the only
difference of the proof would be in showing the consistency of the convective terms in (4.4). The estimate
of the error terms E1(%h) and E1(%huh) could be done without the discrete integration by parts thanks

to L∞−bound on the density. Another way would be to introduce new discrete operators ð(i)
E rh, ð

(i)
T qi,h

between the dual and the unstructured primary grid, such that the discrete integration by parts holds.
Moreover, in view of the conditional regularity result [30], we obtain the unconditional convergence to the
strong solution since the DMV solution with bounded density is regular.

Theorem 5.5 (Convergence with bounded density ). Let d = 3. In addition to the hypotheses of Theorem
5.2, suppose that

• the initial data belong to the class

%0 ∈W 3,2(Ω), u0 ∈W 3,2(Ω;Rd);

• bulk viscosity vanishes, meaning

λ+
2

3
µ = 0;
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•
‖%h‖L∞((0,T )×Ω) ≤ c

uniformly for h→ 0.

Then

%h → % (strongly) in Lq ((0, T )× Ω) , q ≥ 1, uh → u (strongly) in L2
(

(0, T )× Ω;Rd
)
,

(%,u) is the strong solution to the Navier–Stokes system (1.1) with the initial data (%0,u0).

The condition on vanishing bulk viscosity is technical and we refer to [30] for the discussion of its
necessity. We point out that Theorem 5.5 guarantees unconditional convergence of the scheme without
the a priori hypothesis of the existence of smooth solution. In other words, uniform boundedness of the
numerical densities implies the existence of global smooth solution as long as the initial data are sufficiently
regular. It is also worth noting that boundedness of the numerical densities is still a considerably weaker
assumptions than the hypothesis made by Jovanović [23].

6 Numerical experiment

In this section we show the numerical performance of scheme (2.3) in two space dimensions. Note that
scheme (2.3) is nonlinear, thus we solve it numerically by a fix-point iteration. For each sub-iteration, we
set the time step as ∆t = CFL h

(|u|+c)max
, where CFL = 0.3, c =

√
γp/ρ. We set the viscosity coefficients

µ = λ = 0.01 and the adiabatic coefficient γ = 1.4 in all experiments. Moreover, we choose the artificial
diffusion ε = 0.6 which satisfies the assumption of 0 < ε < min{1, 2(γ − 1)}.

Experiment 1. First we validate the accuracy of the scheme by a smooth solution

ρref = cos(2π(x+ y)), uref =

(
sin(2πt)

cos(2π(x+ y))
,− sin(2πt)

cos(2π(x+ y))

)T
.

We compute the relative error eφh for φ ∈ {%,u,∇u} in the corresponding norms, and the experimental
order of convergence (EOC), where

eφh =
‖φh − φref‖
‖φref‖

, EOC = log2

eφ2h
eφh

,

and φref denotes the reference solution. From the numerical results, we observe the first order of convergence
of the scheme, see Table 1.

Table 1: Numerical convergence for Experiment 1.

h ‖e∇xu‖L2(L2) EOC ‖eu‖L2(L2) EOC ‖e%‖L1(L1) EOC ‖e%‖L∞(Lγ) EOC

1/32 4.21e-02 – 3.43e-03 – 1.24e-03 – 4.28e-02 –
1/64 1.78e-02 1.24 1.39e-03 1.30 4.95e-04 1.32 1.81e-02 1.24
1/128 7.75e-03 1.20 5.88e-04 1.24 2.04e-04 1.28 7.86e-03 1.21
1/256 .51e-03 1.14 2.59e-04 1.18 8.69e-05 1.23 3.50e-03 1.17

Experiment 2. In this experiment, we simulate the Gresho–vortex flow [5, 27, 21]. The initial state is
the vortex of radius r0 = 0.2 located at (0.5, 0.5) with

%(0,x) = 1, u(0,x) =

(
y − 0.5
0.5− x

)
ur(r)

r
, with ur(r) =

√
γ


2r/r0 if 0 ≤ r < r0/2,

2(1− r/r0) if r0/2 ≤ r < r0,
0 if r ≥ r0,

where r =
√

(x− 0.5)2 + (y − 0.5)2. We present the evolution of the flow in Figure 2 for the mesh size
h = 1/128. We can clearly recognize that the solution is in a good agreement with those presented in the
literature, see [21]. To further invest the numerical convergence, we present in Table 2 the errors for different
mesh parameters and the reference solution is computed at a fine mesh h = 1/1024. We observe again the
first order of convergence as expected.
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(a) density % (b) velocity component u1 (c) velocity component u2

Figure 2: Time evolution of the Gresho–vortex: solution at t = 0.01, 0.05, 0.1, 0.15, 0.2 from top to bottom,
solution of density and velocity components from left to right

Conclusion

We have studied a finite volume method for the multi–dimensional compressible isentropic Navier–Stokes
equations on regular quadrilateral mesh in a periodic domain. Due to the artificial diffusion in the numerical
flux function (2.1) we have slightly better a priori estimate for the discrete density. The solutions of the
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Table 2: Numerical convergence for Experiment 2.

h ‖e∇xu‖L2(L2) EOC ‖eu‖L2(L2) EOC ‖e%‖L1(L1) EOC ‖e%‖L∞(Lγ) EOC

1/32 7.98e-01 – 3.68e-02 – 3.90e-04 – 1.03e-02 –
1/64 4.42e-01 0.85 1.89e-02 0.96 2.16e-04 0.85 5.81e-03 0.83
1/128 2.17e-01 1.03 8.95e-03 1.07 1.06e-04 1.03 2.83e-03 1.04
1/256 9.43e-02 1.20 3.86e-03 1.21 4.72e-05 1.17 1.25e-03 1.18

scheme were shown to exist while preserving the positivity of the discrete density. Moreover, we have shown
the stability of the scheme by deriving the unconditional balance of the discrete total energy in Theorem 3.3.
Furthermore, we have established the consistency formulation provided the artificial diffusion coefficient is
large enough, see Theorem 4.1. In addition, we have shown in Theorem 5.2 that the numerical solutions
of scheme (2.3) generate a DMV solution of the Navier–Stokes system (1.1). Finally, using the recent
result on the DMV–strong uniqueness principle and the conditional regularity result [30], we have proven
the convergence to the strong solution on its lifespan and uncondtional convergence to regular solution,
cf. Theorem 5.3 and Theorem 5.5, respectively. Numerical experiments are also presented to support the
theoretical results. To the best of our knowledge, this is the first rigorous result concerning convergence of
a finite volume method for the compressible isentropic Navier–Stokes equations in the multi–dimensional
setting.
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[21] R. Hošek and B. She. Stability and consistency of a finite difference scheme for compressible viscous
isentropic flow in multi-dimension. J. Numer. Math. 26(3): 111–140, 2018.

[22] M. Ioriatti and M. Dumbser. Semi-implicit staggered discontinuous Galerkin schemes for axially sym-
metric viscous compressible flows in elastic tubes. Comput. & Fluids 167, 166–179, 2018.
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[25] P. Louda, J. Př́ıhoda, and K. Kozel. Numerical simulation of 3D backward facing step flows at various
Reynolds numbers. EPJ Web of Conferences 92 02049, 2015.

[26] A. Meister and T. Sonar. Finite-volume schemes for compressible flows. Surv. Math. Ind 8: 1–36, 1998.
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