Kurzweil-Stieltjes integral (Introduction to the modern theory of Stieltjes integration)

Milan Tvrdý

Institute of Mathematics, Academy of Sciences of the Czech Republic

51 Congreso Nacional de la Sociedad Matemática Mexicana, 2018

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

AREAS OF PLANAR REGIONS

Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous and nonnegative,

 $g: [a, b] \rightarrow \mathbb{R}$ be continuous and nondecreasing.

Consider the content **P** of the region $\{(x, y) \in \mathbb{R}^2 : x = g(t), 0 \le y \le f(t), t \in [a, b]\}.$

Motivations

AREAS OF PLANAR REGIONS

Let $f : [a, b] \rightarrow \mathbb{R}$ be continuous and nonnegative,

 $g: [a, b] \rightarrow \mathbb{R}$ be continuous and nondecreasing.

Consider the area **P** of the region $\{(x, y) \in \mathbb{R}^2 : x = g(t), 0 \le y \le f(t), t \in [a, b]\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Thomas Joannes Stieltjes (*1856 - ⁺1894)

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○

э

Motivations

- Moments (static, moment of inertia, etc).
- Line integrals of the 1st and 2nd kinds.
- Functional analysis:

Riesz

 Φ is a continuous linear functional on C([a, b]) if and only if:

there is a function p of bounded variation on [a, b] such that

$$\Phi(x) = \int_a^b x \ dp$$
 for any $x \in C([a, b]).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Notations

- $-\infty < a < b < \infty$,
- function $f: [a, b] \to \mathbb{R}$ is *regulated* on [a, b], if $f(s+):=\lim_{\tau \to s+} f(\tau) \in \mathbb{R}$ for $s \in [a, b)$, $f(t-):=\lim_{\tau \to t-} f(\tau) \in \mathbb{R}$ for $t \in (a, b]$.
- $\Delta^+ f(s) = f(s+) f(s), \ \Delta^- f(t) = f(t) f(t-), \ \Delta f(t) = f(t+) f(t-).$
- G([a, b]) (or G) is the space of regulated functions on [a, b].
 (G is Banach space with respect to the norm ||f||_∞ = sup_{t∈[a,b]} ||f(t)||).
- BV = BV([a, b]) = {f: [a, b] → ℝ : var^b_a f < ∞} is the space of functions with bounded variation.
- function $f:[a, b] \to R$ is *finite step function*, if there is a division $a = \alpha_0 < \alpha_1 < \alpha_2 < \ldots < \alpha_m = b$ of [a, b] such that f is constant on every (α_{j-1}, α_j) , S([a, b]) (or S) is the set of finite step functions on [a, b].
- Regulated functions are uniform limits of finite step functions, they have at most countably many points of discontinuity. Every function *f* of bounded variation is a difference f = g h of nondecreasing functions *g* and *h*.

•
$$S([a,b]) \subsetneq BV([a,b]) \subsetneq G([a,b]).$$

Riemann-Stieltjes integral

 tagged partition of [*a*, *b*]: *P* = (*α*, *ξ*), *α* = {*a* = α₀ < α₁ < ··· < α_m = *b*}, *ξ* = {ξ₁, ξ₂, ..., ξ_m}, α_{j-1} ≤ ξ_j ≤ α_j;
 integral sum: for *f*, *g* : [*a*, *b*] → ℝ and a tagged partition *P* = (*α*, *ξ*) we put

$$\mathsf{S}(P) = \sum_{j=1}^m f(\xi_j) \left[g(\alpha_j) - g(\alpha_{j-1}) \right].$$

ν(P) = ν(α) (= m) is usually the number of the subintervals determined by P (or α) and |α| = max_j(α_j - α_{j-1}).

Definition (Riemann-Stieltjes (RS) integral)

$$I = (RS) \int_{a}^{b} f \, dg \iff \begin{cases} \text{for every } \varepsilon > 0 \text{ there is a } \delta > 0 \text{ such that} \\ \left| S(P) - I \right| < \varepsilon \\ \text{for every } P = (\alpha, \xi) \text{ such that } |\alpha| < \delta. \end{cases}$$
$$\int_{c}^{c} f \, dg = 0, \quad \int_{b}^{a} f \, dg = -\int_{a}^{b} f \, dg.$$

Riemann-Stieltjes integral

- If $g \in BV([a, b])$ and $\{f_n\} \subset C[a, b]$ is such that $f_n \rightrightarrows f$ on [a, b], then $\lim_{n \to \infty} \int_a^b f_n \ dg = \int_a^b f \ dg \in \mathbb{R}.$
- If $f \in C[a, b]$ and $\{g_n\} \subset BV([a, b])$ is such that $g_n \to g$ in BV([a, b]), then $\lim_{n \to \infty} \int_a^b f \, dg_n = \int_a^b f \, dg \in \mathbb{R}.$

• (RS)
$$\int_a^b f \ dg \in \mathbb{R}$$
 for each $g \in BV([a, b])$ if and only if $f \in C[a, b]$.

• (RS)
$$\int_a^b f \, dg \in \mathbb{R}$$
 for each $f \in C[a, b]$ if and only if $g \in BV([a, b])$.

(ロ) (同) (三) (三) (三) (○) (○)

Jaroslav Kurzweil (*1926)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● 今へ⊙

KS integral

Notation

• gauge:
$$\delta: [a,b]
ightarrow (0,\infty);$$

• tagged partition of interval: $P = (\alpha, \xi)$,

$$\boldsymbol{\alpha} = \{ \boldsymbol{a} = \alpha_0 < \alpha_1 < \dots < \alpha_{\nu(P)} = \boldsymbol{b} \}, \ \boldsymbol{\xi} = \{ \xi_1, \xi_2, \dots, \xi_{\nu(P)} \}, \ \alpha_{j-1} \le \xi_j \le \alpha_j \}$$

• integral sum: for $f:[a,b] \to \mathbb{R}$, $g:[a,b] \to \mathbb{R}$ and $P = (\alpha, \xi)$ we set $S(P) = \sum_{j=1}^{\nu(P)} f(\xi_j) [g(\alpha_j) - g(\alpha_{j-1})].$

• δ -fine partition: $P = (\alpha, \xi)$ is δ -fine if $[\alpha_{j-1}, \alpha_j] \subset (\xi_j - \delta(\xi_j), \xi_j + \delta(\xi_j))$ for all j.

Definition

$$I = \int_{a}^{b} f \, dg \quad \iff \quad \begin{cases} \text{for every } \varepsilon > 0 \text{ there is a } \delta : [a, b] \to (0, \infty) \text{ such that} \\ \left| S(P) - I \right| < \varepsilon \\ \text{for every } \delta - \text{fine tagged partition } P. \end{cases}$$

$$\int_c^c f \, dg = 0, \quad \int_b^a f \, dg = - \int_a^b f \, dg.$$

RS integral

Notation

- gauge: $\delta \in (0,\infty);$
- tagged partition of interval: $P = (\alpha, \xi)$,

$$\boldsymbol{\alpha} = \{ \boldsymbol{a} = \alpha_0 < \alpha_1 < \dots < \alpha_{\nu(P)} = \boldsymbol{b} \}, \ \boldsymbol{\xi} = \{ \xi_1, \xi_2, \dots, \xi_{\nu(P)} \}, \ \alpha_{j-1} \le \xi_j \le \alpha_j;$$

• integral sum: for $f:[a,b] \to \mathbb{R}$, $g:[a,b] \to \mathbb{R}$ and $P = (\alpha, \xi)$ we set $S(P) = \sum_{j=1}^{\nu(P)} f(\xi_j) [g(\alpha_j) - g(\alpha_{j-1})].$

• δ -fine partition: $P = (\alpha, \xi)$ is δ -fine if $|\alpha| < 2\delta$ for all *j*.

Definition

(for every $\varepsilon > 0$ there is a $\delta \in (0,\infty)$ such that

$$I = (RS) \int_{a}^{b} f \, dg \quad \Longleftrightarrow \quad \left| S(P) - I \right| < \varepsilon$$

(for every δ – fine tagged partition *P*.

(RS)
$$\int_c^c f \, dg = 0$$
, (RS) $\int_b^a f \, dg = -(RS) \int_a^b f \, dg$.

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

KS integral

Notation

• gauge:
$$\delta: [a,b]
ightarrow (0,\infty);$$

• tagged partition of interval: $P = (\alpha, \xi)$,

$$\boldsymbol{\alpha} = \{ \boldsymbol{a} = \alpha_0 < \alpha_1 < \dots < \alpha_{\nu(P)} = \boldsymbol{b} \}, \ \boldsymbol{\xi} = \{ \xi_1, \xi_2, \dots, \xi_{\nu(P)} \}, \ \alpha_{j-1} \le \xi_j \le \alpha_j \}$$

• integral sum: for $f:[a,b] \to \mathbb{R}$, $g:[a,b] \to \mathbb{R}$ and $P = (\alpha, \xi)$ we set $S(P) = \sum_{j=1}^{\nu(P)} f(\xi_j) \left[g(\alpha_j) - g(\alpha_{j-1}) \right].$

• δ -fine partition: $P = (\alpha, \xi)$ is δ -fine if $[\alpha_{j-1}, \alpha_j] \subset (\xi_j - \delta(\xi_j), \xi_j + \delta(\xi_j))$ for all *j*.

Definition

$$I = \int_{a}^{b} f \, dg \quad \iff \quad \begin{cases} \text{for every } \varepsilon > 0 \text{ there is a } \delta : [a, b] \to (0, \infty) \text{ such that} \\ & \left| S(P) - I \right| < \varepsilon \\ & \text{for every } \delta - \text{fine tagged partition } P. \end{cases}$$

$$\int_c^c f \, dg = 0, \quad \int_b^a f \, dg = - \int_a^b f \, dg.$$

KS integral

$$\begin{array}{ll} \underline{\text{ASSUME:}} & f,g:[a,b] \to \mathbb{R} \ \text{and} \ f_n:[a,b] \to \mathbb{R}, \ n \in \mathbb{N}, \ \text{are such that} \\ \bullet & \text{the integrals} \ \int_a^b f_n \ dg \ \text{exist for all} \ n \in \mathbb{N}, \\ \bullet & \text{at least one of the following conditions is satisfied:} \\ \bullet & g \in BV([a,b]) \ \text{and} \ f_n \rightrightarrows f, \\ \bullet & g \ \text{is bounded and} \ \lim_{n \to \infty} \|f_n - f\|_{BV} = 0. \\ \hline \underline{\text{THEN:}} & \text{the integral} \ \int_a^b f \ dg \ \text{exists as well, and} \\ & \lim_{n \to \infty} \int_a^b f_n \ dg = \int_a^b f \ dg. \end{array}$$

ASSUME:
$$f, g: [a, b] \to \mathbb{R}$$
 and $g_n: [a, b] \to \mathbb{R}$, $n \in \mathbb{N}$, are such that
the integrals $\int_a^b f \, dg_n$ exist for all $n \in \mathbb{N}$,
at least one of the following conditions is satisfied:
• $f \in BV([a, b])$ and $g_n \Rightarrow g$,
• f is bounded and $\lim_{n \to \infty} \operatorname{var}_a^b(g_n - g) = 0$.
THEN: the integral $\int_a^b f \, dg$ exists as well, and
 $\lim_{n \to \infty} \int_a^b f \, dg_n = \int_a^b f \, dg$.

•
$$f(x) \equiv c, g: [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)].$$

• $f: [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0.$
• $g: [a, b] \to \mathbb{R}$ regulated, $\tau \in [a, b]$ and $f = \chi_{[\tau, b]} \implies \int_{\tau}^{b} f \, dg = g(b) - g(\tau).$
Let $\delta(x) = \begin{cases} \frac{1}{4} (\tau - x) & \text{for } x < \tau, \\ \eta & \text{for } x = \tau \end{cases}$

•
$$f(x) \equiv c, g: [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)].$$

• $f: [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0.$
• $g: [a, b] \to \mathbb{R}$ regulated, $\tau \in [a, b]$ and $f = \chi_{[\tau, b]} \implies \int_{\tau}^{b} f \, dg = g(b) - g(\tau).$
Let $\delta(x) = \begin{cases} \frac{1}{4} (\tau - x) & \text{for } x < \tau, \\ \eta & \text{for } x = \tau \end{cases}$

•
$$f(x) \equiv c, g: [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)].$$

• $f: [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0.$
• $g: [a, b] \to \mathbb{R}$ regulated, $\tau \in [a, b]$ and $f = \chi_{[\tau, b]} \implies \int_{\tau}^{b} f \, dg = g(b) - g(\tau).$
Let $\delta(x) = \begin{cases} \frac{1}{4} (\tau - x) & \text{for } x < \tau, \\ \eta & \text{for } x = \tau \end{cases}$

•
$$f(x) \equiv c, g: [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)].$$

• $f: [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0.$
• $g: [a, b] \to \mathbb{R}$ regulated, $\tau \in [a, b]$ and $f = \chi_{[\tau, b]} \implies \int_{\tau}^{b} f \, dg = g(b) - g(\tau).$
Let $\delta(x) = \begin{cases} \frac{1}{4} (\tau - x) & \text{for } x < \tau, \\ \eta & \text{for } x = \tau \end{cases}$

•
$$f(x) \equiv c, g: [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)].$$

• $f: [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0.$
• $g: [a, b] \to \mathbb{R}$ regulated, $\tau \in [a, b]$ and $f = \chi_{[\tau, b]} \implies \int_{\tau}^{b} f \, dg = g(b) - g(\tau).$
Let $\delta(x) = \begin{cases} \frac{1}{4} (\tau - x) & \text{for } x < \tau, \\ \eta & \text{for } x = \tau \end{cases}$

•
$$f(x) \equiv c, g: [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)].$$

• $f: [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0.$
• $g: [a, b] \to \mathbb{R}$ regulated, $\tau \in [a, b]$ and $f = \chi_{[\tau, b]} \implies \int_{\tau}^{b} f \, dg = g(b) - g(\tau).$
Let $\delta(x) = \begin{cases} \frac{1}{4} (\tau - x) & \text{for } x < \tau, \\ \eta & \text{for } x = \tau \end{cases}$
and let $P = (\alpha, \xi)$ be δ -fine. Then $\alpha_{\nu(P)-1} < \xi_{\nu(P)} = \alpha_{\nu(P)} = \tau$
 $\implies S(P) = [g(\tau) - g(\alpha_{\nu(P)-1})] \to [g(\tau) - g(\tau -)] \implies \int_{a}^{\tau} f \, dg = g(\tau) - g(\tau -)$
 $\implies \int_{a}^{b} f \, dg = g(b) - g(\tau) + g(\tau) - g(\tau -) = g(b) - g(\tau -).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Integration of finite step functions

•
$$f(x) \equiv c, g : [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)].$$

• $f : [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0.$

• $g:[a,b] \to \mathbb{R}$ regulated, $\tau \in [a,b]$ and $f = \chi_{[\tau,b]} \implies \int_a^b f \, dg = g(b) - g(\tau-).$

•
$$f(x) \equiv c, g: [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)],$$

• $f: [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0,$
• $g: [a, b] \to \mathbb{R}$ regulated, $\tau \in [a, b] \implies \int_{a}^{b} \chi_{[\tau, b]} \, dg = g(b) - g(\tau -), \quad \int_{a}^{b} \chi_{(\tau, b)} \, dg = g(b) - g(\tau +).$

•
$$f(x) \equiv c, g: [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)].$$

• $f: [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0.$
• $g: [a, b] \to \mathbb{R}$ regulated, $\tau \in [a, b] \implies$
 $\int_{a}^{b} \chi_{[\tau, b]} \, dg = g(b) - g(\tau -), \quad \int_{a}^{b} \chi_{(\tau, b]} \, dg = g(b) - g(\tau +),$
 $\int_{a}^{b} \chi_{[a, \tau]} \, dg = g(\tau +) - g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} \, dg = g(\tau -) - g(a).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

•
$$f(x) \equiv c, g: [a, b] \to \mathbb{R} \implies \int_{a}^{b} f \, dg = c [g(b) - g(a)],$$

• $f: [a, b] \to \mathbb{R}, g(x) \equiv c \implies \int_{a}^{b} f \, dg = 0,$
• $g: [a, b] \to \mathbb{R}$ regulated, $\tau \in [a, b] \implies$
 $\int_{a}^{b} \chi_{[\tau, b]} \, dg = g(b) - g(\tau -), \quad \int_{a}^{b} \chi_{(\tau, b]} \, dg = g(b) - g(\tau +),$
 $\int_{a}^{b} \chi_{[a, \tau]} \, dg = g(\tau +) - g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} \, dg = g(\tau -) - g(a),$
 $\int_{a}^{b} \chi_{[\tau]} \, dg = \begin{cases} g(b) - g(b -) & \text{for } \tau = b, \\ g(\tau +) - g(\tau -) & \text{for } \tau \in (a, b), \\ g(b) - g(b -) & \text{for } \tau = b, \end{cases}$
• $f: [a, b] \to \mathbb{R} \ \tau \in [a, b] \Longrightarrow$
 $\int_{a}^{b} f \, d\chi_{[a, \tau]} = \int_{a}^{b} f \, d\chi_{[a, \tau)} = -f(\tau), \quad \int_{a}^{b} f \, d\chi_{[\tau, b]} = \int_{a}^{b} f \, d\chi_{(\tau, b]} = f(\tau),$
 $\int_{a}^{b} f \, d\chi_{[\tau]} = \begin{cases} -f(a) & \text{for } \tau = a, \\ 0 & \text{for } \tau \in (a, b), \\ f(b) & \text{for } \tau = b. \end{cases}$

Existence of the KS integral

•
$$f \in G([a,b]), g \in G([a,b]) \implies \int_a^b f \, dg \in \mathbb{R}$$
 and $\int_a^b g \, df \in \mathbb{R}$

if at least one of f, g is a finite step function.

• If •
$$g \in BV([a, b])$$
,
• $\int_{a}^{b} f_{k} dg$ exists for each k ,
• $f_{k} \Rightarrow f$,
then $\int_{a}^{b} f_{k} dg \rightarrow \int_{a}^{b} f dg \in \mathbb{R}$.
• $f \in G([a, b]), g \in BV([a, b]) \implies \int_{a}^{b} f dg \in \mathbb{R}$.
• If • $f \in BV([a, b])$,
• $\int_{a}^{b} f dg_{k}$ exists for each k ,
• $g_{k} \Rightarrow g$,
then $\int_{a}^{b} f dg_{k} \rightarrow \int_{a}^{b} f dg \in \mathbb{R}$.
• $f \in BV([a, b]), g \in G([a, b]) \implies \int_{a}^{b} f dg \in \mathbb{R}$.

Theorem

<u>ASSUME</u>: *f* and *g* are regulated on [*a*, *b*] and at least one of them has a bounded variation. <u>THEN</u>: both integrals $\int_{a}^{b} f \, dg$ and $\int_{a}^{b} g \, df$ exist.

• RS
$$\subset$$
 KS = PS.
• (LS) $\int_{[c,d]} f dg \in \mathbb{R} \implies$
 $\int_{c}^{d} f dg \in \mathbb{R}$ and (LS) $\int_{[c,d]} f dg = f(c) \Delta^{-}g(c) + \int_{c}^{d} f dg + f(d) \Delta^{+}g(d).$
• $\int_{a}^{b} f dg \in \mathbb{R}, a \leq c \leq d \leq b \implies$
 $\int_{a}^{b} f \chi_{[c,d]} dg = f(c) \Delta^{-}g(c) + \int_{c}^{d} f dg + f(d) \Delta^{+}g(d).$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Theore	m			
Assume:				
۲	$f, f_k \in G([a,b]), g, g_k \in BV([a,b]) ext{ for } k \in \mathbb{N},$			
	$f_k ightarrow f, g_k ightarrow g,$			
•	$\alpha^* := \sup\{\operatorname{var}_a^b g_k; k \in \mathbb{N}\} < \infty.$			
<u>Then</u> :	$\int_{a}^{t} f_{k} dg_{k} \Longrightarrow \int_{a}^{t} f dg \text{on } [a, b].$			

Bounded convergence

ASSUME: $f \in G([a, b]), \{f_n\} \subset G([a, b])$ and $f_n\|_{\infty} \leq M < \infty$ for $n \in \mathbb{N}$, $f_n(x) = f(x)$ for $x \in [a, b]$. <u>THEN:</u> $\lim_{k \to \infty} \int_a^b f_n \ dg = \int_a^b f \ dg$ for every $g \in BV([a, b])$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Integration by parts

Let $f \in G[a, b]$, $g \in BV[a, b]$. Then both integrals

$$\int_{a}^{b} f \, dg \quad \text{and} \quad \int_{a}^{b} g \, df$$

exist and it holds

$$\int_{a}^{b} f \, dg + \int_{a}^{b} g \, df = f(b) \, g(b) - f(a) \, g(a) - \sum_{a \le t < b} \Delta^{+} f(t) \, \Delta^{+} g(t) + \sum_{a < t \le b} \Delta^{-} f(t) \, \Delta^{-} g(t) \, .$$

Substitution

Let
$$h \in BV[a, b]$$
, $f: [a, b] \to \mathbb{R}$ and $g: [a, b] \to \mathbb{R}$ are such that $\int_a^b f \, dg$ exists.
Then if one from the integrals

$$\int_a^b h(t) d\Big[\int_a^t f dg\Big], \quad \int_a^b h f dg,$$

exists, the same is true also for the remaining one and

$$\int_a^b h(t) d\left[\int_a^t f dg\right] = \int_a^b h f dg.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

Hake Theorem

Theorem (Hake)

•
$$\int_{a}^{t} f \, dg \text{ exists for every } t \in [a, b) \text{ and } \lim_{t \to b^{-}} \left(\int_{a}^{t} f \, dg + f(b) \left[g(b) - g(t) \right] \right) = l \in \mathbb{R}$$

$$\implies \int_{a}^{b} f \, dg = l.$$

•
$$\int_{t}^{b} f \, dg \text{ exists for every } t \in (a, b] \text{ and } \lim_{t \to a^{+}} \left(\int_{t}^{b} f \, dg + f(a) \left[g(t) - g(a) \right] \right) = l \in \mathbb{R}$$

$$\implies \int_{a}^{b} f \, dg = l.$$

Corollaries

• If $f \in G([a, b])$, $g \in G([a, b])$ and at least one of them has a bounded variation, then $h(t) = \int_{a}^{t} f \, dg$ is regulated on [a, b].

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

In particular, if $g \in BV([a, b])$, then also $h \in BV([a, b])$.

•
$$\Delta^+ h(t) = f(t) \Delta^+ g(t)$$
 for $t \in [a, b)$, $\Delta^- h(s) = f(s) \Delta^- g(s)$ for $s \in (a, b]$.

Hake Theorem

Theorem (Hake)

•
$$\int_{a}^{t} f \, dg \text{ exists for every } t \in [a, b) \text{ and } \lim_{t \to b^{-}} \left(\int_{a}^{t} f \, dg + f(b) \left[g(b) - g(t) \right] \right) = l \in \mathbb{R}$$

$$\implies \int_{a}^{b} f \, dg = l.$$

•
$$\int_{t}^{b} f \, dg \text{ exists for every } t \in (a, b] \text{ and } \lim_{t \to a^{+}} \left(\int_{t}^{b} f \, dg + f(a) \left[g(t) - g(a) \right] \right) = l \in \mathbb{R}$$

$$\implies \int_{a}^{b} f \, dg = l.$$

Corollaries

• If $f \in G([a, b])$, $g \in G([a, b])$ and at least one of them has a bounded variation, then $h(t) = \int_{a}^{t} f \, dg$ is regulated on [a, b].

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

In particular, if $g \in BV([a, b])$, then also $h \in BV([a, b])$.

•
$$\Delta^+ h(t) = f(t) \Delta^+ g(t)$$
 for $t \in [a, b)$, $\Delta^- h(s) = f(s) \Delta^- g(s)$ for $s \in (a, b]$.

III For better understanding I refer to the SAKS-HENSTOCK LEMMA III

Riesz theorem

 Φ is continuous linear functional on C[a, b] ($\Phi \in (C[a, b])^*$) \Leftrightarrow

there is $p \in BV([a, b])$ such that p(a) = 0, p is right continuous on (a, b) $(p \in NBV([a, b]))$ and

$$\Phi(x)=\Phi_p(x):=\int_a^b x\;dp\;\;\;$$
 for every $x\in C[a,b].$

Mapping $p \in NBV([a, b]) \rightarrow \Phi_p \in (C[a, b])^*$ is isometric isomorphism.

$$G_L([a,b]) = \{x \in G([a,b]) : x(t-) = x(t) \text{ for } t \in (a,b]\}$$

Theorem

 Φ is continuous linear functional on $G_L([a, b]) \ (\Phi \in (G_L([a, b]))^*) \Leftrightarrow$ there is $p \in BV([a, b])$ such that

$$\Phi(x) = \Phi_p(x) := p(b) x(b) - \int_a^b p \ dx$$
 for $x \in G_L[a, b]$.

Mapping $p \in BV([a, b]) \rightarrow \Phi_p \in (G_L([a, b]))^*$ is isomorphism.

(L)
$$x(t) = \widetilde{x} + \int_{t_0}^t dA x + f(t) - f(t_0), \quad t \in [a, b].$$

Theorem

ASSUME:

•
$$A \in BV([a, b], \mathbb{R}^{n \times n})$$
 and $t_0 \in [a, b]$.

• det
$$[I - \Delta^{-}A(t)] \neq 0$$
 for $t \in (t_0, b]$,

det $[I + \Delta^+ A(s)] \neq 0$ for $s \in [a, t_0)$.

<u>THEN</u>: for each $f \in G([a, b], \mathbb{R}^n)$ and $\tilde{x} \in \mathbb{R}^n$, (L) has 1! solution $x \in G([a, b], \mathbb{R}^n)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$\begin{aligned} x_k(t) &= \widetilde{x}_k + \int_a^t d[A_k] \, x + f_k(t) - f_k(a), \quad t \in [a, b]. \\ x(t) &= \widetilde{x} + \int_a^t d[A] \, x + f(t) - f(a), \qquad t \in [a, b]. \end{aligned}$$

 $A_k, A \in BV([a, b], \mathbb{R}^{n \times n}), \quad f_k, f \in G([a, b], \mathbb{R}^n), \quad \widetilde{x}_k, \widetilde{x} \in \mathbb{R}^n \quad \text{ for } k \in \mathbb{N} \,.$

Theore	n		1	
ASSUME:				
٩	$\det [I - \Delta]$	$[-A(t)] \neq 0$ for $t \in (a, b]$,		
۹	$A_k ightrightarrow A$	on $[a, b]$, $\alpha^* := \sup\{\operatorname{var}_a^b A_k : k \in \mathbb{N}\} < \infty$,		
٩	$\widetilde{x}_k \to \widetilde{x},$	$f_k \rightrightarrows f$ on $[a, b]$.		
<u>Then</u> :	$x_k ightarrow x$	on [<i>a</i> , <i>b</i>].	l	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

G.A. Monteiro, A. Slavík and M. Tvrdý

Kurzweil-Stieltjes Integral. Theory and Applications.

World Scientific, Series in Real Analysis - Vol. 15, 2018

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Preface
- 1. Introduction
- 2. Functions of bounded variation
- 3. Absolutely continuous functions
- 4. Regulated functions
- 5. Riemann-Stieltjes integral
- 6. Kurzweil-Stieltjes integral
- 7. Generalized linear differential equations
- 8. Miscellaneous additional topics
- Bibliography