# Kurzweil-Stieltjes integral (Introduction to the modern theory of Stieltjes integration) 

Milan Tvrdý

Institute of Mathematics, Academy of Sciences of the Czech Republic


51 Congreso Nacional de la Sociedad Matemática Mexicana, 2018

## Motivations

## AREAS OF PLANAR REGIONS

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and nonnegative, $g:[a, b] \rightarrow \mathbb{R}$ be continuous and nondecreasing.
Consider the content $\mathbf{P}$ of the region $\quad\left\{(x, y) \in \mathbb{R}^{2}: x=g(t), 0 \leq y \leq f(t), \quad t \in[a, b]\right\}$.


## Motivations

## AREAS OF PLANAR REGIONS

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and nonnegative, $g:[a, b] \rightarrow \mathbb{R}$ be continuous and nondecreasing.
Consider the area $\mathbf{P}$ of the region $\quad\left\{(x, y) \in \mathbb{R}^{2}: x=g(t), 0 \leq y \leq f(t), \quad t \in[a, b]\right\}$.


$$
\begin{gathered}
\mathrm{S}(\boldsymbol{\alpha}, \boldsymbol{\xi})=\sum_{j=1}^{m} f\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right] \rightarrow \mathbf{P}:=\int_{a}^{b} f d g \\
a=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m}=b, \quad \boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{5}\right\}, \xi_{j} \in\left[\alpha_{j-1}, \alpha_{j}\right] .
\end{gathered}
$$



Thomas Joannes Stieltjes
(*1856-+1894)

## Motivations

- Moments (static, moment of inertia, etc).
- Line integrals of the 1st and 2nd kinds.
- Functional analysis:


## Riesz

$\Phi$ is a continuous linear functional on $C([a, b])$ if and only if:
there is a function $p$ of bounded variation on $[a, b]$ such that

$$
\Phi(x)=\int_{a}^{b} x d p \quad \text { for any } x \in C([a, b]) .
$$

## Notations

- $-\infty<a<b<\infty$,
- function $f:[a, b] \rightarrow \mathbb{R}$ is regulated on $[a, b]$, if $f(s+):=\lim _{\tau \rightarrow s+} f(\tau) \in \mathbb{R}$ for $s \in[a, b), f(t-):=\lim _{\tau \rightarrow t-} f(\tau) \in \mathbb{R}$ for $t \in(a, b]$.
- $\Delta^{+} f(s)=f(s+)-f(s), \Delta^{-} f(t)=f(t)-f(t-), \Delta f(t)=f(t+)-f(t-)$.
- $G([a, b])($ or $G)$ is the space of regulated functions on $[a, b]$. $\left(G\right.$ is Banach space with respect to the norm $\left.\|f\|_{\infty}=\sup _{t \in[a, b]}\|f(t)\|\right)$.
- $B V=B V([a, b])=\left\{f:[a, b] \rightarrow \mathbb{R}: \operatorname{var}_{a}^{b} f<\infty\right\}$ is the space of functions with bounded variation.
- function $f:[a, b] \rightarrow R$ is finite step function, if there is a division $\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\alpha_{2}<\ldots<\alpha_{m}=b$ of $[a, b]$ such that $f$ is constant on every $\left(\alpha_{j-1}, \alpha_{j}\right)$,
$S([a, b])$ (or $S$ ) is the set of finite step functions on $[a, b]$.
- Regulated functions are uniform limits of finite step functions, they have at most countably many points of discontinuity.
Every function $f$ of bounded variation is a difference $f=g-h$ of nondecreasing functions $g$ and $h$.
- $S([a, b]) \varsubsetneqq B V([a, b]) \varsubsetneqq G([a, b])$.


## Riemann-Stieltjes integral

- tagged partition of [a, b]: $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$,

$$
\boldsymbol{\alpha}=\left\{\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{m}=b\right\}, \boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{m}\right\}, \alpha_{j-1} \leq \xi_{j} \leq \alpha_{j} ;
$$

- integral sum: for $f, g:[a, b] \rightarrow \mathbb{R}$ and a tagged partition $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ we put

$$
\mathrm{S}(P)=\sum_{j=1}^{m} f\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]
$$

- $\quad \nu(P)=\nu(\boldsymbol{\alpha})(=m)$ is usually the number of the subintervals determined by $P$ (or $\boldsymbol{\alpha})$ and $\quad|\boldsymbol{\alpha}|=\max _{j}\left(\alpha_{j}-\alpha_{j-1}\right)$.


## Definition (Riemann-Stieltjes (RS) integral)

$$
\begin{aligned}
& \quad I=(\mathrm{RS}) \int_{a}^{b} f d g \Longleftrightarrow\left\{\begin{array}{l}
\text { for every } \varepsilon>0 \text { there is a } \delta>0 \text { such that } \\
\text { for every } P=(\boldsymbol{\alpha}, \boldsymbol{\xi}) \text { such that }|\boldsymbol{\alpha}|<\delta .
\end{array}\right. \\
& \int_{c}^{c} f d g=0, \quad \int_{b}^{a} f d g=-\int_{a}^{b} f d g .
\end{aligned}
$$

## Riemann-Stieltjes integral

- If $g \in B V([a, b])$ and $\left\{f_{n}\right\} \subset C[a, b]$ is such that $f_{n} \rightrightarrows f$ on $[a, b]$, then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d g=\int_{a}^{b} f d g \in \mathbb{R}
$$

- If $f \in C[a, b]$ and $\left\{g_{n}\right\} \subset B V([a, b])$ is such that $g_{n} \rightarrow g$ in $B V([a, b])$, then

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f d g_{n}=\int_{a}^{b} f d g \in \mathbb{R}
$$

- (RS) $\int_{a}^{b} f d g \in \mathbb{R}$ for each $g \in B V([a, b])$ if and only if $f \in C[a, b]$.
- (RS) $\int_{a}^{b} f d g \in \mathbb{R}$ for each $f \in C[a, b]$ if and only if $g \in B V([a, b])$.


Jaroslav Kurzweil
(*1926)

## KS integral

## Notation

- gauge: $\delta:[a, b] \rightarrow(0, \infty)$;
- tagged partition of interval: $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$,

$$
\boldsymbol{\alpha}=\left\{\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{\nu(P)}=\boldsymbol{b}\right\}, \boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{\nu(P)}\right\}, \alpha_{j-1} \leq \xi_{j} \leq \alpha_{j} ;
$$

- integral sum: for $f:[a, b] \rightarrow \mathbb{R}, g:[a, b] \rightarrow \mathbb{R}$ and $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ we set

$$
\mathrm{S}(P)=\sum_{j=1}^{\nu(P)} f\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]
$$

- $\delta$-fine partition: $\boldsymbol{P}=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ is $\delta$-fine if $\left[\alpha_{j-1}, \alpha_{j}\right] \subset\left(\xi_{j}-\delta\left(\xi_{j}\right), \xi_{j}+\delta\left(\xi_{j}\right)\right)$ for all $j$.


## Definition

$$
\begin{aligned}
& I=\int_{a}^{b} f d g \Longleftrightarrow\left\{\begin{array}{l}
\text { for every } \varepsilon>0 \text { there is a } \delta:[a, b] \rightarrow(0, \infty) \text { such that } \\
|S(P)-I|<\varepsilon
\end{array}\right. \\
& \text { for every } \delta-\text { fine tagged partition } P .
\end{aligned}
$$

## RS integral

## Notation

- gauge: $\delta \in(0, \infty)$;
- tagged partition of interval: $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$,

$$
\boldsymbol{\alpha}=\left\{\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{\nu(P)}=\boldsymbol{b}\right\}, \boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{\nu(P)}\right\}, \alpha_{j-1} \leq \xi_{j} \leq \alpha_{j} ;
$$

- integral sum: for $f:[a, b] \rightarrow \mathbb{R}, g:[a, b] \rightarrow \mathbb{R}$ and $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ we set

$$
\mathrm{S}(P)=\sum_{j=1}^{\nu(P)} f\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]
$$

- $\delta$-fine partition: $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ is $\delta$-fine if $|\boldsymbol{\alpha}|<2 \delta$ for all $j$.


## Definition

$$
\begin{aligned}
& \quad I=(\mathrm{RS}) \int_{a}^{b} f d g \quad \Longleftrightarrow\left\{\begin{array}{l}
\text { for every } \varepsilon>0 \text { there is a } \delta \in(0, \infty) \text { such that } \\
|\mathrm{S}(P)-I|<\varepsilon \\
\text { for every } \delta-\text { fine tagged partition } P .
\end{array}\right. \\
& (\mathrm{RS}) \int_{c}^{c} f d g=0, \quad(\mathrm{RS}) \int_{b}^{a} f d g=-(\mathrm{RS}) \int_{a}^{b} f d g .
\end{aligned}
$$

## KS integral

## Notation

- gauge: $\delta:[a, b] \rightarrow(0, \infty)$;
- tagged partition of interval: $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$,

$$
\boldsymbol{\alpha}=\left\{\boldsymbol{a}=\alpha_{0}<\alpha_{1}<\cdots<\alpha_{\nu(P)}=\boldsymbol{b}\right\}, \boldsymbol{\xi}=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{\nu(P)}\right\}, \alpha_{j-1} \leq \xi_{j} \leq \alpha_{j} ;
$$

- integral sum: for $f:[a, b] \rightarrow \mathbb{R}, g:[a, b] \rightarrow \mathbb{R}$ and $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ we set

$$
\mathrm{S}(P)=\sum_{j=1}^{\nu(P)} f\left(\xi_{j}\right)\left[g\left(\alpha_{j}\right)-g\left(\alpha_{j-1}\right)\right]
$$

- $\delta$-fine partition: $\boldsymbol{P}=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ is $\delta$-fine if $\left[\alpha_{j-1}, \alpha_{j}\right] \subset\left(\xi_{j}-\delta\left(\xi_{j}\right), \xi_{j}+\delta\left(\xi_{j}\right)\right)$ for all $j$.


## Definition

$$
\begin{aligned}
& I=\int_{a}^{b} f d g \Longleftrightarrow\left\{\begin{array}{l}
\text { for every } \varepsilon>0 \text { there is a } \delta:[a, b] \rightarrow(0, \infty) \text { such that } \\
|\mathrm{S}(P)-I|<\varepsilon
\end{array}\right. \\
& \text { for every } \delta-\text { fine tagged partition } P .
\end{aligned}
$$

## KS integral

ASSUME: $\quad f, g:[a, b] \rightarrow \mathbb{R}$ and $f_{n}:[a, b] \rightarrow \mathbb{R}, n \in \mathbb{N}$, are such that

- the integrals $\int_{a}^{b} f_{n} d g$ exist for all $n \in \mathbb{N}$,
- at least one of the following conditions is satisfied:
- $g \in B V([a, b])$ and $f_{n} \rightrightarrows f$,
- $g$ is bounded and $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{B V}=0$.

THEN: the integral $\int_{a}^{b} f d g$ exists as well, and

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d g=\int_{a}^{b} f d g .
$$

ASSUME: $\quad f, g:[a, b] \rightarrow \mathbb{R}$ and $g_{n}:[a, b] \rightarrow \mathbb{R}, n \in \mathbb{N}$, are such that

- the integrals $\int_{a}^{b} f d g_{n}$ exist for all $n \in \mathbb{N}$,
- at least one of the following conditions is satisfied:
- $f \in B V([a, b])$ and $g_{n} \rightrightarrows g$,
- $f$ is bounded and $\lim _{n \rightarrow \infty} \operatorname{var}_{a}^{b}\left(g_{n}-g\right)=0$.

THEN: the integral $\int_{a}^{b} f d g$ exists as well, and

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f d g_{n}=\int_{a}^{b} f d g
$$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{\tau}^{b} f d g=g(b)-g(\tau)$.

Let $\quad \delta(x)= \begin{cases}\frac{1}{4}(\tau-x) & \text { for } x<\tau, \\ \eta & \text { for } x=\tau\end{cases}$
and let $P=(\boldsymbol{\alpha}, \boldsymbol{\xi})$ be $\delta$-fine. Then $\quad \alpha_{\nu(P)-1}<\xi_{\nu(P)}=\alpha_{\nu(P)}=\tau$
$\Longrightarrow \mathrm{S}(P)=\left[g(\tau)-g\left(\alpha_{\nu(P)-1}\right)\right] \rightarrow[g(\tau)-g(\tau-)] \Longrightarrow \int_{a}^{\tau} f d g=g(\tau)-g(\tau-)$
$\Longrightarrow \int_{a}^{b} f d g=g(b)-g(\tau)+g(\tau)-g(\tau-)=g(b)-g(\tau-)$.

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b]$ and $f=\chi_{[\tau, b]} \Longrightarrow \int_{a}^{b} f d g=g(b)-g(\tau-)$.


## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$,
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$,
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b] \Longrightarrow$

$$
\int_{a}^{b} \chi_{[\tau, b]} d g=g(b)-g(\tau-), \quad \int_{a}^{b} \chi_{(\tau, b]} d g=g(b)-g(\tau+) .
$$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$.
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$.
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b] \Longrightarrow$

$$
\begin{aligned}
& \int_{a}^{b} \chi_{[\tau, b]} d g=g(b)-g(\tau-), \quad \int_{a}^{b} \chi_{(\tau, b]} d g=g(b)-g(\tau+) \\
& \int_{a}^{b} \chi_{[a, \tau]} d g=g(\tau+)-g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} d g=g(\tau-)-g(a)
\end{aligned}
$$

## Integration of finite step functions

- $f(x) \equiv c, g:[a, b] \rightarrow \mathbb{R} \Longrightarrow \int_{a}^{b} f d g=c[g(b)-g(a)]$,
- $f:[a, b] \rightarrow \mathbb{R}, g(x) \equiv c \Longrightarrow \int_{a}^{b} f d g=0$,
- $g:[a, b] \rightarrow \mathbb{R}$ regulated, $\tau \in[a, b] \Longrightarrow$

$$
\begin{aligned}
& \int_{a}^{b} x_{[\tau, b]} d g=g(b)-g(\tau-), \quad \int_{a}^{b} \chi_{(\tau, b]} d g=g(b)-g(\tau+), \\
& \int_{a}^{b} \chi_{[a, \tau]} d g=g(\tau+)-g(a), \quad \int_{a}^{b} \chi_{[a, \tau)} d g=g(\tau-)-g(a), \\
& \int_{a}^{b} \chi_{[\tau]} d g= \begin{cases}g(b)-g(b-) & \text { for } \tau=b, \\
g(\tau+)-g(\tau-) & \text { for } \tau \in(a, b), \\
g(b)-g(b-) & \text { for } \tau=b,\end{cases}
\end{aligned}
$$

- $f:[a, b] \rightarrow \mathbb{R} \tau \in[a, b] \Longrightarrow$

$$
\begin{aligned}
& \int_{a}^{b} f d \chi_{[a, \tau]}=\int_{a}^{b} f d \chi_{[a, \tau)}=-f(\tau), \quad \int_{a}^{b} f d \chi_{[\tau, b]}=\int_{a}^{b} f d \chi_{(\tau, b]}=f(\tau), \\
& \quad \int_{a}^{b} f d \chi_{[\tau]}= \begin{cases}-f(a) & \text { for } \tau=a, \\
0 & \text { for } \tau \in(a, b), \\
f(b) & \text { for } \tau=b .\end{cases}
\end{aligned}
$$

## Existence of the KS integral

- $f \in \mathcal{G}([a, b]), g \in G([a, b]) \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$ and $\int_{a}^{b} g d f \in \mathbb{R}$
if at least one of $f, g$ is a finite step function.
- If - $g \in B V([a, b])$,
- $\int_{a}^{b} f_{k} d g$ exists for each $k$,
- $\quad f_{k} \rightrightarrows f$,
then $\int_{a}^{b} f_{k} d g \rightarrow \int_{a}^{b} f d g \in \mathbb{R}$.
- $f \in G([a, b]), g \in B V([a, b]) \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$.
- If $\quad . \quad f \in B V([a, b])$,
- $\int_{a}^{b} f d g_{k}$ exists for each $k$,
- $g_{k} \rightrightarrows g$,
then $\int_{a}^{b} f d g_{k} \rightarrow \int_{a}^{b} f d g \in \mathbb{R}$.
- $f \in B V([a, b]), g \in G([a, b]) \Longrightarrow \int_{a}^{b} f d g \in \mathbb{R}$.


## Existence of the KS integral

## Theorem

Assume: $f$ and $g$ are regulated on $[a, b]$ and at least one of them has a bounded variation. THEN: both integrals $\int_{a}^{b} f d g$ and $\int_{a}^{b} g d f$ exist.

- RS $\subset K S=P S$.
- (LS) $\int_{[c, d]} f d g \in \mathbb{R} \Longrightarrow$

$$
\int_{c}^{d} f d g \in \mathbb{R} \quad \text { and } \quad(\mathrm{LS}) \int_{[c, d]} f d g=f(c) \Delta^{-} g(c)+\int_{c}^{d} f d g+f(d) \Delta^{+} g(d)
$$

- $\int_{a}^{b} f d g \in \mathbb{R}, a \leq c \leq d \leq b \Longrightarrow$

$$
\int_{a}^{b} f \chi_{[c, d]} d g=f(c) \Delta^{-} g(c)+\int_{c}^{d} f d g+f(d) \Delta^{+} g(d)
$$

## Further convergence theorems

## Theorem

## Assume:

- $f, f_{k} \in G([a, b]), g, g_{k} \in B V([a, b])$ for $k \in \mathbb{N}$,
- $\quad f_{k} \rightrightarrows f, \quad g_{k} \rightrightarrows g$,
- $\quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} g_{k} ; k \in \mathbb{N}\right\}<\infty$.

THEN: $\int_{a}^{t} f_{k} d g_{k} \rightrightarrows \int_{a}^{t} f d g \quad$ on $[a, b]$.

## Bounded convergence

Assume: $f \in G([a, b]),\left\{f_{n}\right\} \subset G([a, b])$ and

- $\left\|f_{n}\right\|_{\infty} \leq M<\infty$ for $n \in \mathbb{N}$,
- $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for $x \in[a, b]$.

THEN:

$$
\lim _{k \rightarrow \infty} \int_{a}^{b} f_{n} d g=\int_{a}^{b} f d g \quad \text { for every } g \in B V([a, b])
$$

## Integration by parts

Let $f \in G[a, b], g \in B V[a, b]$. Then both integrals

$$
\int_{a}^{b} f d g \text { and } \int_{a}^{b} g d f
$$

exist and it holds

$$
\int_{a}^{b} f d g+\int_{a}^{b} g d f=f(b) g(b)-f(a) g(a)-\sum_{a \leq t<b} \Delta^{+} f(t) \Delta^{+} g(t)+\sum_{a<t \leq b} \Delta^{-} f(t) \Delta^{-} g(t)
$$

## Substitution

Let $h \in B V[a, b], f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are such that $\int_{a}^{b} f d g$ exists.
Then, if one from the integrals

$$
\int_{a}^{b} h(t) d\left[\int_{a}^{t} f d g\right], \quad \int_{a}^{b} h f d g
$$

exists, the same is true also for the remaining one and

$$
\int_{a}^{b} h(t) d\left[\int_{a}^{t} f d g\right]=\int_{a}^{b} h f d g
$$

## Hake Theorem

## Theorem (Hake)

- $\int_{a}^{t} f d g$ exists for every $t \in[a, b)$ and $\lim _{t \rightarrow b-}\left(\int_{a}^{t} f d g+f(b)[g(b)-g(t)]\right)=I \in \mathbb{R}$

$$
\Longrightarrow \int_{a}^{b} f d g=1
$$

- $\int_{t}^{b} f d g$ exists for every $t \in(a, b]$ and $\lim _{t \rightarrow a+}\left(\int_{t}^{b} f d g+f(a)[g(t)-g(a)]\right)=I \in \mathbb{R}$

$$
\Longrightarrow \int_{a}^{b} f d g=I
$$

## Corollaries

- If $f \in G([a, b]), g \in G([a, b])$ and at least one of them has a bounded variation, then

$$
h(t)=\int_{a}^{t} f d g \text { is regulated on }[a, b]
$$

In particular, if $g \in B V([a, b])$, then also $h \in B V([a, b])$.

- $\Delta^{+} h(t)=f(t) \Delta^{+} g(t)$ for $t \in[a, b), \quad \Delta^{-} h(s)=f(s) \Delta^{-} g(s)$ for $s \in(a, b]$.


## Hake Theorem

## Theorem (Hake)

- $\int_{a}^{t} f d g$ exists for every $t \in[a, b)$ and $\lim _{t \rightarrow b-}\left(\int_{a}^{t} f d g+f(b)[g(b)-g(t)]\right)=I \in \mathbb{R}$

$$
\Longrightarrow \int_{a}^{b} f d g=1
$$

- $\int_{t}^{b} f d g$ exists for every $t \in(a, b]$ and $\lim _{t \rightarrow a+}\left(\int_{t}^{b} f d g+f(a)[g(t)-g(a)]\right)=I \in \mathbb{R}$

$$
\Longrightarrow \int_{a}^{b} f d g=I
$$

## Corollaries

- If $f \in G([a, b]), g \in G([a, b])$ and at least one of them has a bounded variation, then

$$
h(t)=\int_{a}^{t} f d g \text { is regulated on }[a, b]
$$

In particular, if $g \in B V([a, b])$, then also $h \in B V([a, b])$.

- $\Delta^{+} h(t)=f(t) \Delta^{+} g(t)$ for $t \in[a, b), \quad \Delta^{-} h(s)=f(s) \Delta^{-} g(s)$ for $s \in(a, b]$.
!!! For better understanding I refer to the SAKS-HENSTOCK LEMMA !!!


## Continuous linear functionals

## Riesz theorem

$\Phi$ is continuous linear functional on $C[a, b]\left(\Phi \in(C[a, b])^{*}\right) \Leftrightarrow$
there is $p \in B V([a, b])$ such that $p(a)=0, p$ is right continuous on $(a, b)(p \in N B V([a, b]))$ and

$$
\Phi(x)=\Phi_{p}(x):=\int_{a}^{b} x d p \text { for every } x \in C[a, b]
$$

Mapping $p \in \operatorname{NBV}([a, b]) \rightarrow \Phi_{p} \in(C[a, b])^{*}$ is isometric isomorphism.

$$
G_{L}([a, b])=\{x \in G([a, b]): x(t-)=x(t) \text { for } t \in(a, b]\}
$$

## Theorem

$\Phi$ is continuous linear functional on $G_{L}([a, b])\left(\Phi \in\left(G_{L}([a, b])\right)^{*}\right) \Leftrightarrow$ there is $p \in B V([a, b])$ such that

$$
\Phi(x)=\Phi_{p}(x):=p(b) x(b)-\int_{a}^{b} p d x \quad \text { for } x \in G_{L}[a, b]
$$

Mapping $p \in B V([a, b]) \rightarrow \Phi_{p} \in\left(G_{L}([a, b])\right)^{*}$ is isomorphism.

## Generalized linear differential equations

(L) $\quad x(t)=\widetilde{x}+\int_{t_{0}}^{t} d A x+f(t)-f\left(t_{0}\right), \quad t \in[a, b]$.

## Theorem

## ASSUME:

- $\quad A \in B V\left([a, b], \mathbb{R}^{n \times n}\right)$ and $t_{0} \in[a, b]$.
- $\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0$ for $t \in\left(t_{0}, b\right]$,
$\operatorname{det}\left[I+\Delta^{+} A(s)\right] \neq 0$ for $s \in\left[a, t_{0}\right)$.
THEN: for each $f \in G\left([a, b], \mathbb{R}^{n}\right)$ and $\tilde{x} \in \mathbb{R}^{n}$, (L) has 1 ! solution $x \in G\left([a, b], \mathbb{R}^{n}\right)$.


## Generalized linear differential equations

$$
\begin{aligned}
x_{k}(t) & =\widetilde{x}_{k}+\int_{a}^{t} d\left[A_{k}\right] x+f_{k}(t)-f_{k}(a), \\
x(t) & t \in[a, b] . \\
x+\int_{a}^{t} d[A] x+f(t)-f(a), & t \in[a, b] .
\end{aligned}
$$

$A_{k}, A \in B V\left([a, b], \mathbb{R}^{n \times n}\right), \quad f_{k}, f \in G\left([a, b], \mathbb{R}^{n}\right), \quad \tilde{x}_{k}, \tilde{x} \in \mathbb{R}^{n} \quad$ for $k \in \mathbb{N}$.

## Theorem

Assume:

- $\operatorname{det}\left[I-\Delta^{-} A(t)\right] \neq 0 \quad$ for $t \in(a, b]$,
- $\quad A_{k} \rightrightarrows A \quad$ on $[a, b], \quad \alpha^{*}:=\sup \left\{\operatorname{var}_{a}^{b} A_{k}: k \in \mathbb{N}\right\}<\infty$,
- $\quad \widetilde{x}_{k} \rightarrow \tilde{x}, \quad f_{k} \rightrightarrows f$ on $[a, b]$.

THEN: $\quad x_{k} \rightrightarrows x \quad$ on $[a, b]$.

## References

## G.A. Monteiro, A. Slavík and M. Tvrdý <br> Kurzweil-Stieltjes Integral. Theory and Applications.

World Scientific, Series in Real Analysis - Vol. 15, 2018

- Preface
- 1. Introduction
- 2. Functions of bounded variation
- 3. Absolutely continuous functions
- 4. Regulated functions
- 5. Riemann-Stieltjes integral
- 6. Kurzweil-Stieltjes integral
- 7. Generalized linear differential equations
- 8. Miscellaneous additional topics
- Bibliography

