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Abstract. In the paper the differential inequality

∆pu +B(x, u) 6 0,

where ∆pu = div(‖∇u‖p−2∇u), p > 1, B(x, u) ∈ C( � n × � , � ) is studied. Sufficient
conditions on the function B(x, u) are established, which guarantee nonexistence of an
eventually positive solution. The generalized Riccati transformation is the main tool.
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1. Introduction

In the paper we study positive solutions of the partial differential inequality

(1) ∆pu+B(x, u) 6 0,

where ∆pu = div(‖∇u‖p−2∇u) is the p-Laplace operator, p > 1, B(x, u) : � n × � →

� is a continuous function, ‖ · ‖ is the usual Euclidean norm in � n . Inequality (1)

covers several equations and inequalities studied in literature. If p = 2 then (1)

reduces to the semilinear Schrödinger inequality

(2) ∆u+B(x, u) 6 0,
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studied in [6], [7]. Another important special case of (1) is the half-linear differential

equation

(3) ∆pu+ c(x)|u|p−1 sgnu = 0,

studied in [2], [3]. For important applications of equations with p-Laplacian see [1].

The aim of this paper is to introduce sufficient conditions for nonexistence of a

solution which would be eventually positive (i.e., positive outside of some ball in � n ).

Remark that in a similar way one can study also negative solutions of the inequality

∆pu+B(x, u) > 0,

and a combination of these results produces criteria for nonexistence of a solution of

the inequality

(4) u[∆pu+B(x, u)] 6 0

which would have no zero outside of some ball in � n , the so called weak oscillation

criteria. A simple version of this procedure is used in Corollary 6. A more elaborated

version of this procedure can be found in [6].

The following notation is used throughout the paper: 〈·, ·〉 denotes the scalar

product, q = p
p−1 is the conjugate number to the number p,

Ω(a, b) = {x ∈ � n : a 6 ‖x‖ 6 b},

Ωa = Ω(a,∞) = {x ∈ � n : a 6 ‖x‖},

Sa = ∂Ωa = {x ∈ � n : ‖x‖ = a},

and ω1 =
∫

S1

1 dσ is the measure of the n-dimensional unit sphere in � n .

2. Riccati transformation

The main tool used for the study of positive solutions is the generalized Riccati

transformation. The special case of this transformation has been used in [6], where

inequality (2) is studied. A simple version of this transformation, convenient for the

half-linear equation, has been introduced in [2].

Our approach combines both these methods. We use the transformation

(5) ~w(x) = −α(‖x‖)
‖∇u(x)‖p−2∇u(x)

ϕ(u(x))
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α ∈ C1([a0,∞), � + ), ϕ ∈ C1( � + , � + ) which maps a positive C1 function u(x) into

an n-vector function ~w(x).

Lemma 1. Let u be a positive solution of (1) on Ωa0
. The n-vector function ~w(x)

is well-defined by (5) and satisfies the Riccati-type inequality

div ~w(x) >
α(‖x‖)B(x, u(x))

ϕ(u(x))
+
α′(‖x‖)

α(‖x‖)
〈~ν(x), ~w(x)〉(6)

+ α1−q(‖x‖)ϕq−2(u(x))ϕ′(u(x))‖~w(x)‖q

on Ωa0
, where ~ν(x) = x

‖x‖ is the outward unit normal vector to the sphere S‖x‖.

���������
. Let u(x) > 0 be a solution of (1) on Ωa0

and let ~w(x) be defined by (5).

From (5) it follows that

div ~w =
α

ϕ(u)
∆pu− ‖∇u‖p−2

〈

∇u,∇
( α

ϕ(u)

)〉

and in view of (1)

div ~w >
αB(x, u)

ϕ(u)
−
α′‖∇u‖p−2

ϕ(u)
〈∇u, ~ν〉 +

αϕ′(u)

ϕ2(u)
‖∇u‖p

holds (the dependence on x ∈ Ωa0
is suppressed in the notation). In view of (5) this

inequality is equivalent to (6). �

3. Nonexistence of positive solution

The main result of the paper is the following

Theorem 1. Let a0 > 0. Suppose that there exist functions

α ∈ C1([a0,∞), � + ), ϕ ∈ C1( � + , � + ), c ∈ C( � n , � ),

and numbers k, l, k > 0, l > 1, such that

(i) B(x, u) > c(x)ϕ(u) for x ∈ � n , u > 0,

(ii) ϕ′(u)ϕq−2(u) > k for u > 0,

(iii) lim
r→∞

∫

Ω(a0,r)

[

α(‖x‖)c(x) − 1
p

(

l
kq

)p−1
∣

∣α′(‖x‖)
∣

∣

p
α1−p(‖x‖)

]

dx = +∞,

(iv) lim
r→∞

∫ r

a0

α
1

1−p (r) r
1−n

p−1 dr = +∞.

Then (1) has no positive solution on Ωa for arbitrary a > 0.
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���������
. Suppose, by contradiction, that u is a solution of (1) positive on Ωa for

some a > a0. Lemma 1 and the assumptions (i), (ii) imply

div ~w > αc+
α′

α
〈~ν, ~w〉 + α1−qk‖~w‖q

= αc+ α1−q kq

l

[‖w‖q

q
+

〈

~w
lαq−2α′

kq
~ν
〉]

+ α1−q k

l∗
‖~w‖q,

where l∗ = l
l−1 is the conjugate number to the number l. The Young inequality

implies
‖~w‖q

q
+

〈

~w
lαq−2α′

qk
~ν
〉

+
1

p

( lαq−2|α′|

qk

)p

> 0.

Combining both these inequalities we obtain

div ~w > αc− α1−q kq

lp

( lαq−2|α′|

qk

)p

+ α1−q k

l∗
‖~w‖q

= αc−
1

p

( l

qk

)p−1

|α′|pα1−p + α1−q k

l∗
‖~w‖q .

Integration of the last inequality over Ω(a, r) and the Gauss-Ostrogradski divergence

theorem gives

∫

Sr

〈~w, ~ν〉 dσ −

∫

Sa

〈~w, ~ν〉 dσ >
k

l∗

∫

Ω(a,r)

α1−q‖~w‖q dx

+

∫

Ω(a,r)

[

αc−
1

p

( l

qk

)p−1

p|α′|pα1−p
]

dx.

By assumption (iii) there exists r0, r0 > a, such that

∫

Ω(a,r)

[

αc−
1

p

( l

qk

)p−1

|α′|pα1−p
]

dx+

∫

Sa

〈~w, ~ν〉 dσ > 0 for r > r0.

Hence

(7)

∫

Sr

〈~w, ~ν〉 dσ >
k

l∗
g(r)

holds for r > r0, where

g(r) =

∫

Ω(a,r)

α1−q(‖x‖)‖~w(x)‖q dx.

The Hölder inequality gives

(8)

∫

Sr

〈~w, ~ν〉 dσ 6

(

∫

Sr

‖w‖q dσ
)

1

q

(

∫

Sr

1 dσ
)

1

p

= α
1

p (r)(g′(r))
1

q ω
1

p

1 r
n−1

p .
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From (7) and (8) we obtain

(g′(r))
1

q α
1

p (r)ω
1

p

1 r
n−1

p >
k

l∗
g(r) for r > r0

and equivalently

g′(r)

gq(r)
ω

q

p

1 >

( k

l∗

)q

α− q

p (r)r(1−n) q

p =
( k

l∗

)q

α
1

1−p (r)r
1−n

p−1 for r > r0.

Integration of this inequality over the interval (r0,∞) gives a convergent integral on

the left-hand side and a divergent integral on the right-hand side of this inequality,

by virtue of the assumption (iv). This contradiction completes the proof. �

������� ��!
1. For ϕ(u) = up−1 we have ϕ′(u)ϕq−2(u) = p− 1 and the assumption

(ii) holds with k = p − 1. Conversely, ϕ(u) >
(

k
p−1

)p−1
up−1 is necessary for (ii)

to be satisfied. Remark also that neither sign restrictions, nor radial symmetry, are

supposed for the function c(x) in (i).

Corollary 2 (Leighton type criterion). Let p > n. Suppose that there exists a

continuous function c(x) such that

(9) B(x, u) > c(x)up−1 for u > 0

and

(10) lim
r→∞

∫

Ω(1,r)

c(x) dx = +∞.

Then (1) has no positive solution on Ωa for arbitrary a > 0.

���������
. Follows from Theorem 1 for α(r) ≡ 1 and ϕ(u) = up−1. �

������� ��!
2. Remark that (10) is known to be a sufficient condition for oscillation

of (3) provided p > n, see [2]. It is also known that the condition p > n in this

criterion cannot be omitted.

Corollary 3. Suppose that (9) holds and there exists m > 1 such that

(11) lim
r→∞

∫

Ω(1,r)

[

‖x‖p−nc(x) −m
∣

∣

∣

p− n

p

∣

∣

∣

p 1

‖x‖n

]

dx = +∞.

Then (1) has no positive solution on Ωa for arbitrary a > 0.

���������
. Follows from Theorem 1 for α(r) = rp−n and ϕ(u) = up−1, m = lp−1.

�
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������� ��!
3. If the limit lim

r→∞

1
ln r

∫

Ω(1,r)
‖x‖p−nc(x) dx exists, or if this limit

equals +∞, then (11) is equivalent to the condition

lim
r→∞

1

ln r

∫

Ω(1,r)

‖x‖p−nc(x) dx > ω1

∣

∣

∣

p− n

p

∣

∣

∣

p

.

This condition is very close to the criterion for oscillation of the half-linear equa-

tion [5, Corollary 2.1], which contains “lim sup” instead of “lim” and one additional

condition

lim inf
r→∞

[

rp−1
(

C0 −

∫

Ω(1,r)

‖x‖1−nc(x) dx
)]

> −∞,

where

C0 = lim
r→∞

p− 1

rp−1

∫ r

1

tp−2

∫

Ω(1,t)

‖x‖1−nc(x) dx dt.

Among other, the constant
∣

∣

p−n

p

∣

∣

p
is here shown to be optimal.

Corollary 4. Let p > n, p > 2, (9) and

lim
r→∞

∫

Ω(·,r)

ln(‖x‖)c(x) dx = +∞.

Then (1) has no positive solution on Ωa for arbitrary a > 0.
���������

. Let a > e, p > n, p > 2, α(r) = ln r. Since

lim
r→∞

α
1

1−p (r)r
1−n

p−1

1
r ln r

= lim
r→∞

r
p−n

p−1 ln
p−2

p−1 r > 1,

the condition (iv) of Theorem 1 holds. Further,
∫

Ω(e,r)

|α′(‖x‖)|pα1−p(‖x‖) dx = ω1

∫ r

e

ξn−1−p ln1−p ξ dξ

6 ω1

∫ r

e

ξ−1 ln1−p ξ dξ = ω1
1

p− 2
[1 − ln2−p r].

Hence lim
r→∞

∫

Ω(e,r) |α
′(‖x‖)|pα1−p(‖x‖) dx exists and (12) is equivalent to the condi-

tion (iii) of Theorem 1. Now Theorem 1 implies the conclusion. �

The choice α(r) = lnβ r leads to

Corollary 5. Let p > n, let (9) hold and suppose that there exists β, β ∈ (0, p−1)

such that

lim
r→∞

∫

Ω(·,r)

lnβ(‖x‖)c(x) dx = +∞.

Then (1) has no positive solution on Ωa for arbitrary a > 0.
���������

. The proof is a complete analogue of the proof of Corollary 4. �
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Following terminology in [6], a function f : Ω → � is called weakly oscillatory if
and only if f(x) has a zero in Ω ∩ Ωa for every a > 0. The inequality (4) is called

weakly oscillatory in Ω whenever every solution u of the inequality is oscillatory in Ω.

Corollary 6. Let B(x, u) : � n+1 → � be a continuous function which is odd
with respect to the variable u, i.e. let B(x,−u) = −B(x, u). Let the assumptions of

Theorem 1 be satisfied. Then inequality (4) is weakly oscillatory in � n .

���������
. Suppose that there exists a > 0 such that inequality (4) has a solution

u without zeros on Ωa. If u is a positive function, then Theorem 1 yields a contra-

diction. Further, if u is a negative solution on Ωa, then v(x) := −u(x) is a positive

solution of (4) on Ωa and the same argument as in the first part of this proof leads

to a contradiction. �

3.1. Perturbed half-linear differential inequality. Let us consider a per-

turbed half-linear differential inequality

(13) ∆pu+ c(x)|u|p−1 sgnu+

m
∑

i=1

qi(x)ψi(u) 6 0,

where c(x), qi(x) are continuous functions, ψi(u) are continuously differentiable,

positive and nondecreasing for u > 0. Define

q(x) = min{c(x), q1(x), q2(x), . . . , qm(x)}

and

ϕ(u) = up−1 +

m
∑

i=1

ψi(u).

Then

c(x)|u|p−1 sgnu+

m
∑

i=1

qi(x)ψi(u) > q(x)ϕ(u), ϕ′(u)ϕq−2(u) > p− 1

and hence Theorem 1 can be applied. Remark that since qi may change sign, a

standard argument based on the Sturmian majorant and a comparison with half-

linear differential equation (3) cannot be applied (as has been explained for p = 2

already in [6]).
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