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POSITIVE SOLUTIONS OF INEQUALITY WITH
p-LAPLACIAN IN EXTERIOR DOMAINS
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Abstract. In the paper the differential inequality
Apu+ B(z,u) <0,
where Apu = div(||Vul[P"2Vu), p > 1, B(z,u) € C(R" x R,R) is studied. Sufficient

conditions on the function B(z,u) are established, which guarantee nonexistence of an
eventually positive solution. The generalized Riccati transformation is the main tool.
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1. INTRODUCTION
In the paper we study positive solutions of the partial differential inequality
(1) Apu+ B(z,u) <0,
where Apu = div(||Vu|P~2Vu) is the p-Laplace operator, p > 1, B(z,u): R" x R —
R is a continuous function, | - || is the usual Euclidean norm in R™. Inequality (1)
covers several equations and inequalities studied in literature. If p = 2 then (1)

reduces to the semilinear Schrédinger inequality

(2) Au+ B(z,u) <0,
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studied in [6], [7]. Another important special case of (1) is the half-linear differential

equation
3 Apu+ c(z)|ulP"sgnu = 0,
( P g

studied in [2], [3]. For important applications of equations with p-Laplacian see [1].

The aim of this paper is to introduce sufficient conditions for nonexistence of a
solution which would be eventually positive (i.e., positive outside of some ball in R™).
Remark that in a similar way one can study also negative solutions of the inequality

Apu+ B(z,u) =0,

and a combination of these results produces criteria for nonexistence of a solution of
the inequality

(4) u[Apu+ B(z,u)] <0

which would have no zero outside of some ball in R™, the so called weak oscillation
criteria. A simple version of this procedure is used in Corollary 6. A more elaborated
version of this procedure can be found in [6].

The following notation is used throughout the paper: (-,-) denotes the scalar

p

product, ¢ = =1 is the conjugate number to the number p,

Qa,b) = {z € R*: a < ||z]| < b},
Qo =Qa,00) ={z € R": a< |z},
So =00, = {z € R": |lz|| = a},

and wy = [, g, 1do is the measure of the n-dimensional unit sphere in R™.

2. RICCATI TRANSFORMATION

The main tool used for the study of positive solutions is the generalized Riccati
transformation. The special case of this transformation has been used in [6], where
inequality (2) is studied. A simple version of this transformation, convenient for the
half-linear equation, has been introduced in [2].

Our approach combines both these methods. We use the transformation

[ Vu()|[P~*Vu(z)
p(u(z))

(5) a(x) = —a(=[])

998



a € C([ag,00),RT), ¢ € CY(RT,RT) which maps a positive C'! function u(z) into

an n-vector function w(zx).

Lemma 1. Let u be a positive solution of (1) on Q,,. The n-vector function w(x)
is well-defined by (5) and satisfies the Riccati-type inequality

(6) div(z) > CUeDB@.u) | o'(lz]

on Qg,, where V() = Ma1 18 the outward unit normal vector to the sphere Sy

Proof. Letu(x) > 0 be a solution of (1) on €,, and let w(z) be defined by (5).
From (5) it follows that

diva = ﬁAPu - ||Vu||P*2<Vu, V(@Lu)»

and in view of (1)

B(z,u) o VulP~?
p(u) p(u)

ay'(u)

©*(u)

holds (the dependence on = € €, is suppressed in the notation). In view of (5) this

.S «
divad >

(Vu,7) + Vul[?

inequality is equivalent to (6). O

3. NONEXISTENCE OF POSITIVE SOLUTION
The main result of the paper is the following

Theorem 1. Let ag > 0. Suppose that there exist functions
a € C'([ag,00),R"), ¢ € C(RT,RY), ceC(R",R),

and numbers k, I, k > 0, [ > 1, such that
(i) B(z,u) = c(z)p(u) for z € R™, u > 0,
(i) ¢'(u)p?=2(u) > k for u >0,
see . p71 —
(i) Hm for, ) [a(lale@) = 3(5)" lo/(lel)[ et P (2])] dz = +ox,
. . r _1 1l=-n
(iv) lim Jo, @77 (r) 7t dr = +oo.

Then (1) has no positive solution on S, for arbitrary a > 0.
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Proof. Suppose, by contradiction, that u is a solution of (1) positive on Q, for
some a > ag. Lemma 1 and the assumptions (i), (i) imply

!
divid > ac+ 2 (7,@) + o' ~9k| ¢
Q

/

k a la=2 k
et al-1Fe [M (L)) ate ke
l q kq I*
where [* = l_% is the conjugate number to the number [. The Young inequality
implies

||]|2 n < _la?72/ _,> n l(loﬂ*2|o/|)p
w 14 -
q gk p gk

Combining both these inequalities we obtain

0.

WV

=21,/
divd > ac — al—q@ (M

|)p 1—qk =1q
(=) et

1/ 1 \p1 k
—ac— - (—) o/ |Pal =P + al=9 || @]9
p \qk *

Integration of the last inequality over (a,r) and the Gauss-Ostrogradski divergence
theorem gives

k
/ <u_1',17>d0—/ (W, V) do > — || 9 da
S, s U Joa,r

o2

By assumption (iii) there exists rg, ro > a, such that

171 \pPt
/ {ac——(—) |a’|pa1_p} dx—l—/ (W,7)do =20 for r > r.
Q(a,r) p qk Sa

Hence

k

@ [ (@7 do > Fat)

holds for r > 7y, where
g(r) = / o' (|| ])) || ()| da.
Q(a,r)

The Holder inequality gives

© [ @aaes ([ 1uiran) ([ 100) =atongenteb
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From (7) and (8) we obtain

and equivalently

! a k\4 kN4 —n
;]q((::)) wy = (l_*) o v ()T = (l_*) ozﬁ(?")r;*1 for r>=ry.
Integration of this inequality over the interval (rq, c0) gives a convergent integral on
the left-hand side and a divergent integral on the right-hand side of this inequality,
by virtue of the assumption (iv). This contradiction completes the proof. (]

Remark 1. For p(u) = uP~! we have ¢'(u)p?"2(u) = p— 1 and the assumption
(ii) holds with & = p — 1. Conversely, ¢(u) > (%)pilul”l is necessary for (ii)
to be satisfied. Remark also that neither sign restrictions, nor radial symmetry, are

supposed for the function c¢(z) in (i).

Corollary 2 (Leighton type criterion). Let p > n. Suppose that there exists a
continuous function ¢(x) such that

(9) B(z,u) > c(z)uP™? for u >0
and
(10) lim c(z)dz = +oo.

r—ee Joa,r)
Then (1) has no positive solution on Q, for arbitrary a > 0.
Proof. Follows from Theorem 1 for a(r) =1 and p(u) = uP~1. O

Remark 2. Remark that (10) is known to be a sufficient condition for oscillation
of (3) provided p > n, see [2]. It is also known that the condition p > n in this

criterion cannot be omitted.

Corollary 3. Suppose that (9) holds and there exists m > 1 such that

p—np 1

(11) lim
po ="

=% Ja(1,r) [

|z]|P"e(x) — m‘ ] dz = +c0.

Then (1) has no positive solution on €, for arbitrary a > 0.

Proof. Follows from Theorem 1 for a(r) = r?~" and p(u) = uP



Remark 3. If the limit lim = fQ 1o l2lP7e(z) da exists, or if this limit

equals o0, then (11) is equlvalent to the condition

1
lim —/ ll][P~" () do:>w1‘
r=ee I Jou,r

This condition is very close to the criterion for oscillation of the half-linear equa-

p—n|p

tion [5, Corollary 2.1], which contains “lim sup” instead of “lim” and one additional

condition

timin [~ (Co —/ ' ~"e(x) dz)] > —oo.

T—00

where

Co= lim 2 /‘P f/ llz||* " e(x) da dt.
r—oo 1P Q(1,2)

Among other, the constant ’%‘ is here shown to be optimal.

Corollary 4. Let p > n, p > 2, (9) and

lim In(||z]])e(z) de = +o0.

= Jo(.,r
Then (1) has no positive solution on €, for arbitrary a > 0.

Proof. Leta>e,p>=n,p>2 a()=Inr. Since

1 1—n
. aTr(r)re1 . p—n _ p—2
lim ——5—— = lim r» 7T ln»—T7r > 1,
r—00 _— r—00
rilnr

the condition (iv) of Theorem 1 holds. Further,

[ a2 dr = [ e rmireag
Q(e,r) .

" 1
< wl/ ' P ede = wn 2[1 — Pyl
e p—=

Hence lim [o, . |o/(lz]))[Pa’~P(|lz]|) dz exists and (12) is equivalent to the condi-

tion (iii) of Theorem 1. Now Theorem 1 implies the conclusion. ]

The choice a(r) = In” r leads to

Corollary 5. Let p > n, let (9) hold and suppose that there exists 3, 8 € (0,p—1)
such that
lim In? (||]|)e(x) dz = +oo.

7—00 Q)

Then (1) has no positive solution on €, for arbitrary a > 0.

Proof. The proof is a complete analogue of the proof of Corollary 4. Il
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Following terminology in [6], a function f:  — R is called weakly oscillatory if
and only if f(z) has a zero in QN ), for every a > 0. The inequality (4) is called
weakly oscillatory in 2 whenever every solution u of the inequality is oscillatory in €.

Corollary 6. Let B(x,u): R"™* — R be a continuous function which is odd
with respect to the variable u, i.e.let B(x,—u) = —B(x,u). Let the assumptions of
Theorem 1 be satisfied. Then inequality (4) is weakly oscillatory in R™.

Proof. Suppose that there exists a > 0 such that inequality (4) has a solution
u without zeros on ,. If u is a positive function, then Theorem 1 yields a contra-
diction. Further, if u is a negative solution on 2,, then v(z) := —u(z) is a positive
solution of (4) on ), and the same argument as in the first part of this proof leads
to a contradiction. O

3.1. Perturbed half-linear differential inequality. Let us consider a per-
turbed half-linear differential inequality

(13) Apu+ c(z)|ulP~ sgnu + Z qi(z);(u) <0,
i=1

where c(z), ¢;(z) are continuous functions, ;(u) are continuously differentiable,
positive and nondecreasing for u > 0. Define

q(z) = min{c(z), ¢1(2), ¢2(2), -, gm (@)}

and

plu) = w !+ ) i),

Then

c(@)lul’~" sgnu + Z qi(@)¢i(u) > q(z)p(n), &' (W) (u) > p—1

and hence Theorem 1 can be applied. Remark that since ¢; may change sign, a
standard argument based on the Sturmian majorant and a comparison with half-
linear differential equation (3) cannot be applied (as has been explained for p = 2
already in [6]).
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