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Abstract. A meet semilattice with a partial join operation satisfying certain axioms is a
JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper
we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we
describe the largest PJP-congruence containing a filter as a class. Then we give several
characterizations of congruence kernels and cokernels for distributive PJP-semilattices.
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1. INTRODUCTION

Partial lattices have been studied by many authors. We refer the reader to [6],
[7], [9], [10], [11] for partial lattices. Cornish and Noor [8], [12] have studied partial
lattices which they preferred to call near lattices. A near lattice N is a meet semi-
lattice such that for any a,b € N, a V b exists whenever there is a common upper
bound of a, b. We also refer the reader to the recent publications [3], [4], [5] for near
lattices. Throughout the paper by semilattice we mean the meet semilattice. First
we introduce the notion of the JP-semilattice.

A meet semilattice S = (S; A, V) with a partial binary operation V is said to be a
join partial semilattice (or JP-semilattice) if for all x,y,z € S,

(i)  Vz exists and z V x = x;

) if x V y exists, then y V z exists and z Vy =y V x;

iii) if xVy, yVz, (2Vy)Vz exist, then xV (yVz) exists and (zVy)Vz =2V (yVz);
) if x V y exists, then x =z A (z V y);

) if y V z exists, then (z Ay) V (x A 2) exists for all z € S.
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Observe that not every semilattice needs to be a JP-semilattice, for example,
the semilattice P given in Figure 1 is not a JP-semilattice. Here bV c exists, but
(a Ab) V (a A c) does not. Moreover, it is easy to see that every near lattice is a
JP-semilattice but the converse is not necessarily true, for example, the semilattice
M given in Figure 1 is a JP-semilattice but not a near lattice.

bVe

Fig. 1

A JP-semilattice S is said to be JP-distributive iff for all x,y, z € S such that yV z
exists one has x A (yVz) = (x Ay) V (z A z) (remember the right-hand side exists by
condition (v) above). It is evident that every distributive semilattice, considered as a
JP-semilattice, is distributive (see [13]). However, the converse is not true. Consider
the JP-semilattice M, given by Figure 2. It is JP-distributive but not distributive
as a semilattice. The authors have studied JP-distributive JP-semilattices in [1].

a c b
0 Moo
Fig. 2

Let S be a JP-semilattice with smallest element 0 and let ¢ € S. An element
d € S is called the pseudocomplement of a € S if a Ad = 0 and for all x € 5,
a ANz = 0 implies z < d. Clearly the pseudocomplement of an element is unique
whenever it exists. The pseudocomplement of an element a € S is denoted by a*.
A JP-semilattice is said to be a pseudocomplemented JP-semilattice (or simply a
PJP-semilattice) if every element has a pseudocomplement.
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Let S be a pseudocomplemented JP-semilattice. The set
Sk(S) = {a*: a € S}

is called the skeleton of S. The elements of Sk(S) are called skeletal. It is evident
that sup{a*,b*} in Sk(S) always exists and we denote it by a* ¥ b*. That is, for
any a,b € Sk(S) we have a ¥ b = sup{a, b} in Sk(S). The following identities hold
for PJP-semilattices as they hold for pseudocomplemented semilattices (see [9]). We
often use the identities in this paper.

* o kEk,
=a ;

a4 x

a < b implies b* < a*;

a

0* =1, the largest element of S;
aAb* =aA (aNb)*;

a € Sk(S) & a =a**;

a,b € Sk(S) = aAnb=(aANb)*;
a,b € Sk(S) = a Vb= (a* ND*)*.

As in the case of distributive lattices, JP-distributivity in JP-semilattices does not
imply the existence of pseudocomplements. For example, consider the distributive
JP-semilattice M, given in Figure 2. Clearly, M, is not pseudocomplemented. In
this paper we concentrate our attention on distributive PJP-semilattices.

Let S be a PJP-semilattice. A semilattice congruence # on S is called a JP-
congruence on S, if x1 = y1(0) and 2 = y2(0) implies 1 V 22 = y1 V y2(0) whenever
21V xg and y1 V y2 exist. A JP-congruence 6 on S is called a PJP-congruence on S,
it £ =y() = 2* = y*(0). A non-empty subset I of a JP-semilattice S is called an
ideal of S if the following conditions hold:

(i) ifiel, je Sandj<i, then j €I, and
(ii) if 4,5 € I and ¢ V j exists, then ¢V j € I.

In Section 2 we give a useful characterization of PJP-congruences. We also give a
description of the smallest PJP-congruence containing a certain ideal as a class.

Let 6 be a PJP-congruence on S. Then ker(f) = {z € S: z = 0(0)} is called the
kernel of 6. A subset J of S is said to be a congruence kernel if J = ker(d) for some
PJP-congruence 6 on S. Observe that in the PJP-semilattice M given in Figure 1,
the ideal T = {0,a,b} is not a kernel of any PJP-congruence on M. If 0 = a(f)
for any PJP-congruence 6 on M, then 1 = a* = b(0), that is, 0 = 1(¢). Thus I is
not a PJP-congruence kernel. An ideal I of a PJP-semilattice S is called a kernel
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ideal if I = ker(6) for some PJP-congruence § on S. The set of all kernel ideals
will be denoted by KI(S). Congruence kernels have been studied by Cornish [6] for
pseudocomplemented distributive lattices and by Blyth [2] for pseudocomplemented
semilattices. In this paper we characterize congruence kernels of distributive PJP-
semilattices. In Section 3 we give characterizations of kernel ideals of distributive
PJP-semilattices.

Let S be a PJP-semilattice. Let 6 be a PJP-congruence on S. Then

Coker(f) ={x € S: z=1(0)}

is called the cokernel of 6. A subset J of S is said to be a congruence cokernel if
J = Coker(8) for some PJP-congruence § on S. A filter F' of S is called a *-filter if

f*eF=fePF
In Section 4, we study cokernel filters. Here we characterize x-filters as a cokernel
filters.
2. PJP-CONGRUENCES

For the basic properties of pseudocomplementation we refer the reader to [9]. First
we have the following useful characterization of PJP-congruences.

Theorem 2.1. Let S be a PJP-semilattice. Then a JP-congruence 6 on S is a
PJP-congruence if and only if

Proof. If §is a PJP-congruence, then clearly the condition holds. Conversely,
let 6 be a JP-congruence such that the condition holds. Let = y(0). Then 2* Ay =
z* Ax =0(0) and so (z* Ay)* = 1(0). This implies

zr=z" N1
z" A (z" Ay)*(0)
=2"Ay* (by Lemma 1.1 (e)).

Similarly, we have y* = z* A y*(#). Hence z* = y*(0) and therefore 6 is a PJP-
congruence. O

The following theorem gives us a description of the smallest PJP-congruence con-
taining a certain ideal as a class.
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Theorem 2.2. Let S be a distributive PJP-semilattice and let I be an ideal of S
such that i,j € I implies (i* A j*)* € I. Define a binary relation ©(I) on S by

x=y(O()) ifandonlyif xAi*=yAi* for somei € I.

Then O(I) is the smallest PJP-congruence containing I as a class.

Proof. Clearly, ©(I) is both reflexive and symmetric. To prove that it is
transitive, let x = y(0(I)) and y = 2(O(I)). Then z Ai* = yAi* and y Aj* = z A j*
for some ¢,j € I. Then by the assumption k = (i* A j*)* € I. We have

AN =2z AN AT =2 AE"ANjF") (by Lemma 1.1 (b))
= (@A) AG = (Y ATYAG = (Y AJT) A
=CAFIANT =2AGEAG) =2 A0 A
=z Nk

Hence z = z(©(I)). Thus ©(I) is transitive.
Let z = y(O(I)) and s = ¢(©(I)). Then there are i,j € I with k= (i* Aj*)* €I
such that x Ai* =y A" and s A j* =t A j*. Hence

T ANS)N G NG)
xAS)A (" Aj*) (by Lemma 1.1 (b))
)

(xAS)NE" = (
(
=(@AT)YVABAFT)=WAT)A{EATT)
(
(

Also, if z V s and y V t exist, then

(xVs)ANE" =(xANE")V (s ANk™) as S is a distributive JP-semilattice
=(@AT*AF)V(sANi*Aj*) (by Lemma 1.1 (b))
= (y Ai* AJF)V(EAT A G
=(yANE")V(EAE")
= (yVt)Ak* as S is a distributive JP-semilattice
=(yVit)Ak".

Hence O(I) is a JP-congruence. To prove that ©(I) is a PJP-congruence, let © =
0(©(I)). Then 2 Ai* = 0A¢* = 0. This implies i* < *. Hence z* Ai* = i* = 1 Ad*.
This implies * = 1(O(I)). Hence by Theorem 2.1, O(I) is a PJP-congruence.
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Finally, let 6 be a PJP-congruence containing I as a class and let z = y(©(1)).
Then x Ai* = y Ai* for some i € I. Since 0 is a PJP-congruence containing I as a
class, we have i = 0(f). This implies i* = 1(#). Hence

r=xANl=xAi"(@)=yANi*=yA1() =y.

Therefore O(I) is the smallest congruence containing I as a class. O

3. KERNEL IDEALS

Not every ideal of a JP-distributive PJP-semilattice is a kernel ideal. For a coun-
terexample, consider the distributive PJP-semilattice M given in Figure 1. Let
I =1{0,a,b}. Then I is an ideal of M but not a kernel ideal, since 0 = a(#) for some
PJP-congruence 6 on M implies 1 = b(6).

We have the following characterization of kernel ideals.

Theorem 3.1. An ideal I of a distributive PJP-semilattice S is a kernel ideal of
S if and only if
hjel=("Nj")" el

Proof. Let I be akernel ideal of S. Then I = ker § for some PJP-congruence 6.
If i, € I, then i = 0(f) and j = 0(f). This implies immediately that i* = 1(#) and
j* = 1(0). Hence i* A j* = 1(#). This implies (¢* A j*)* = 0(0). Thus (i* Aj*)* € I.

Conversely, let I be an ideal of S and suppose the condition holds. Then by
Theorem 2.2, the binary relation ©(I) on S defined by

x=y(O()) ifandonlyif xzAi" =yAi* for someie T
is a PJP-congruence containing the ideal I as a class. So it is enough to show that
I is a kernel ideal of ©(I). For all i € I, by taking ¢ = j in the condition we have

i** € I. Hence

r=00()) < xAi" =0 for some i € I
& x < 3" for some i € T

sSrel.

Thus I is a kernel ideal. O
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Theorem 3.2. Let S be a distributive PJP-semilattice. An ideal I of S is a
kernel ideal if and only if
(i) i € I implies i** € I;
(ii) for every i,j € I there is k € I such that i* A j* = k*.

Proof. Let I be a kernel ideal. Then by taking i = j in Theorem 3.1 we
have ¢ € I = ¢** € I. Thus (i) holds. Let i,j5 € I. Put k = (i* A 5%)*, then by
Theorem 3.1, k € I. Also k* =i* A j*. Thus (ii) holds.

Conversely, let I be an ideal and 4,j € I. Then by (ii), there is k& € I such that
k* =1i* A j*. Thus by (i), &** = (i* A j*)* € I. Hence by Theorem 3.1, I is a kernel
ideal. O

Theorem 3.3. Let S be a distributive PJP-semilattice. A principal ideal I = (]
of S is a kernel ideal if and only if x € Sk(S).

Proof. Suppose I = (z] is a kernel ideal, then z** € I. This implies ** < z.
But z < z**. Hence x = 2** € Sk(S5).

Conversely, let I = (z] be a principal ideal and € Sk(S). Then by Lemma 1.1
(f), we have x = 2**. Let ¢,57 € I. Then ¢,j < x. This implies 2* < ¢* A j*. Thus
(* Ag*)* < «** = x. This implies (¢* Aj*)* € I. Hence by Theorem 3.1, I is a kernel
ideal. O

It is well known that the binary relation ¥ (I) on a semilattice S defined by
x=y()) ifandonlyif tAa€el < yANa€lforanyacS

is the largest semilattice congruence containing the ideal I as a class.
Now we have the following result for distributive JP-semilattices.

Theorem 3.4. Let S be a distributive JP-semilattice and let I be an ideal of S.
Then (1) is the largest JP-congruence containing I as a class.

Proof. It is enough to show that ¢ (I) has the substitution property for the
partial operation V. Let x = y(¢/(I)), s = t(v(I)) and let Vs, y V¢ exist. Since S is
a distributive JP-semilattice, for any a € S we have that(xAa)V(sAa), (yAa)V(tAa)
exist and (zVs)Aa=(xAa)V(sAha), (yVi)ANa= (yAa)V (tAa). Thus

(xVs)ha€el< (xha)V(sha)el
SrAaelandsAhael
SyNa€elandtNhael
S WNa)V(tNna)el< (yVi)Aa€el.

Thus x Vs =y Vt(y(I)). Hence ¢(I) is the largest JP-congruence. O

231



The following result is a description of the largest PJP-congruence containing a
kernel ideal as a class.

Theorem 3.5. Let S be a distributive PJP-semilattice. If I is a kernel ideal of
S, then (1) is the largest PJP-congruence containing I as a class.

Proof. By Theorem 3.4, ¢(I) is a largest JP-congruence. Let x = 0(¢()).
Then x € I. Now for any a € 5,

2*Na€el= ("N (2" Na)*)* € I, by Theorem 3.1
= (" ANa")* € I, by Lemma 1.1 (e)

=a€l, since a < a™ < (z* Na*)*

=1ANa€l
Also
Ihna=ael=a2"Nael
Thus z* = 1(¢/(I)). Hence by Theorem 2.1, ¢(I) is a PJP-congruence. O

x-ideal. An ideal I of a JP-semilattice is called a *-ideal if it satisfies condition
(i) of Theorem 3.2, that is,
i € I implies ** € I.

Clearly, every kernel ideal of a distributive PJP-semilattice is a #-ideal. Consider the
distributive PJP-semilattice M given in Figure 1. Here the ideal I = {0,qa,b} is a
x-ideal but not a kernel ideal.

Theorem 3.6. Let S be a distributive PJP-semilattice. Every principal x-ideal
I of S can be written as (a**] for some a € I. Moreover, for any a € S the principal
ideal I = (a**] is a kernel ideal.

Proof. Let I be a principal #-ideal of S. Then I = (a] for some a € S. Since I
is a x-ideal, for a € I we have a** € I. Thus a** < a. But a < a**. Hence I = (a**|
for some a € S.

Moreover, for any a € S, since a** € Sk(S5), so by Theorem 3.3, I = (a**] is a
kernel ideal. 0

Theorem 3.7. A x-ideal I of a distributive PJP-semilattice is a kernel ideal if
and only if i** V. j** € I for all i,j € 1.
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Proof. For any i,j € I we have

(NG = (AT by Lemma 1.1 ()
="V 7*by Lemma 1.1 (h).

By Theorem 3.1, I is a kernel ideal if and only if 4, j € I implies ¢** V j** € [I. O

Glivenko congruence. Let S be a distributive PJP-semilattice. The binary
relation G on S defined by

is a semilattice congruence called the Glivenko congruence. It is evident that G is
compatible with *. We shall show that G is a PJP-congruence.
Let I be an ideal. Define

I={xecS:zni=0forallicl}

Theorem 3.8. Y is a kernel ideal.

Proof. Let z,y € I°. Then x Ai =y Ai =0 for all i € I. Hence i < z*,y*
and consequently, (z* A y*)* < ¢*. This implies (z* A y*)* Ai < i* Ai = 0. Hence
(x* Ay*)* € I°. Thus by Theorem 3.1, I° is a kernel ideal. O

Lemma 3.9. If ¢ = y(¢(I)), then [(z Ay*)* A (z* Ay)*]* € 1.

Proof. Letxz =y(¢(I)). Then zAz* =0 =yAz*((I)). Therefore yAnz* € I.
Similarly, A y* € I. Hence [(z A y*)* A (z* Ay)*]* € T as I is a kernel ideal. O

Theorem 3.10. Let I be a kernel ideal of a distributive PJP-semilattice S. Then
Y(I) AY(I°) = G.

Proof. Let x = y((I) A(I°)). Then by Lemma 3.9, we have [(z A y*)* A
(x* Ay)*]* € T and [( Ay*)* A (2" Ay)*]* € 1Y whence [(z Ay*)* A (2% Ay)*]* = 0.
This implies

AV S (@AY < [ Ay A G AT =0

*

Thus z A y* = 0. Hence y* < x*.

*

Similarly, * < y*. This implies * = y* and

consequently, ** = y**. Hence z = y(G).
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Conversely, let © = y(G). Since a = a*(G) for any a € 5, we have x Aa =
rANa™(Q), yNa=yANa™(G) and x Aa = yAa**(G). Hence (zAa)™ = (x Aa™)*,
(yAa)™ = (y Aa*)* and (z A a)*™ = (y A a™)**. Now for any a € S,

xANa€l & (xNa)™ el aslis akernel ideal of S
S (yna™)™el
S yha)* el
SyNael.

Also, for all i € I,

rAha€l’s (zAa)ANi=0

Hence z = y(v(I) A ¢(I°%)). Therefore G = (1) A (1°). O

Corollary 3.11. G is a PJP-congruence.

Proof. This is immediate from the fact that (1) A(1°) is a PJP-congruence.
O

4. CONGRUENCE COKERNELS

Let S be a JP-semilattice. A non-empty subset I’ of S is called a filter of S if

(i) a € F and b € S with a < b implies b € F, and
(ii) a,b € F implies aAb € F.

Now we have the following lemma.

Lemma 4.1. Let S be a JP-semilattice. Then every cokernel of S is a filter.
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Proof. Let FF = Coker(d) for some PJP-congruence 0. If z,y € F, then
xz =1(0) and y = 1(f). Hence z Ay = 1(f). Thus z Ay € F. Now let € F' and
x<y. Thenz =2 Ay=1Ay(0) =y. Thus y = 1(0). Hence y € F. Therefore F is
a filter. O

Let S be a JP-semilattice and let F' be a filter of S. Define a binary relation ©(F)
on S by

x=y(O(F)) ifandonlyif aAf=yA [ forsome feF.

Theorem 4.2. Let F be a filter of a distributive JP-semilattice S. Then the
relation ©(F) on S is a JP-congruence containing F' as a class. Moreover, if S has a
largest element 1, then O(F) is the smallest JP-congruence containing F' as a class.

Proof. Clearly O(F) is an equivalence relation. Let = y(©(F)) and s =
t(O(F)). Then z A f1 =y A f1 and sA fo =t A fo for some f1, fo € F. This implies

@AS)AN(finfa)=(@Afi) AN(sAfo)= YA f)ANENAf2) = (YA A(fLA fa)

Since f1 A fa € F, we have © A s = y A t(O(F)).
Also, if z V s and y V t exist, then

(@Vs)A(finfa)=(xAfiAf2)V(SAfiLAfa)
=WANANf)VENfLAf2) =YV A(fLA f2)

Thus O(F') is a JP-congruence. Clearly, ©(F) contains F as a class.

Moreover, assume that S has a largest element 1. Let 6 be any congruence on S
containing F' as a class. Assume z = y(©O(F)). Then 2 A f =y A f for some f € F.
This implies © = 2 A1 =z A f(0). Similarly, y = y A f(0). Hence z = y(0). Thus
O(F) is the smallest JP-congruence containing F as a class. O

The following result is the description of the smallest PJP-congruence containing
a filter as a class.

Theorem 4.3. Let S be a PJP-semilattice and let F' be a filter of S. Then O(F)
is the smallest PJP-congruence containing F' as a class.

Proof. By Theorem 4.2, O(F) is a JP-congruence containing F' as a class.
Let + = 0(©(F)). Then z A f = 0 for some f € F. This implies f < z*. Thus
x* € F. Hence z* = 1(O(F). Hence by Theorem 2.1, we have that ©(F) is a PJP-
congruence. (Il
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Corollary 4.4. Every filter of a PJP-semilattice is a cokernel.

Proof. It is clear from the fact that for any filter F' of S we have

x € F & ax=1(0(F)).

x-filters. First we prove the following useful result.
Lemma 4.5. Let S be a distributive PJP-semilattice. If a \V b exists, then

(aVb)* =a" A"

Proof. We have (aVb) A (a* Ab*) = (aANa* AD*)V (bAa* AV ) =0V 0=0.
Let (avb) Az =0. Then (a Az)V (bAz) =0. Hence a Az =0 and b Ax = 0. This
implies = < a*,b*. Hence x < a* A b*. Therefore (a V b)* = a* A b*. O

For every filter F' of S define
F,={zeS: z"eF}.

Lemma 4.6. Let S be a distributive PJP-semilattice and F' a filter of S. Then
F., is a kernel ideal of S.

Proof. Let z,y € F,. Then z*,y* € F. If x V y exists, then by Lemma 4.5 we
have (xVy)* = 2* Ay* € F as F is a filter. Hence xVy € F. Let x € F, and y < z.
Then y* > z* € F. This implies y* € F. Thus y € F,. Hence F} is an ideal.

To prove that F, is a kernel ideal, let z,y € F,. Then z*,y* € F so that
(z* ANy*)*™ = 2* Ay* € F and consequently (z* A y*)* € F,.. Hence by Theo-
rem 3.1, F} is a kernel ideal. U

For every I € KI(S) define
I.={xe€S: 2" eI}
Lemma 4.7. Let S be a distributive PJP-semilattice and I a kernel ideal of S.
Then I, is a *-filter of S.

Proof. Let z,y € I.. Then z*,y* € I. So by Theorem 3.1, we have (z Ay)* =
(xAy)™ = (& Ny*™)* € I. Hence z Ay € I.. Now let € I, and y > =. Then
y* < x* € I so that y* € I and consequently, y € I.. Hence I, is a filter. Let
x** € I.. Then z* = *** € I and hence x € I,.. Therefore I, is a x-filter. O

The following theorem is a characterization of x-filters.
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Theorem 4.8. A filter F' of a JP-distributive PJP-semilattice is a *-filter if and
only if (Fy). = F.

Proof. Let (Fy). = F and let 2** € F. Since F' is a filter, F is a kernel ideal.
Hence z* € F, and so x € (Fy). = F. Thus F is a -filter.
Conversely, let F be a x-filter. Then

x € (Fu)« = a* € F,
S el

< x€F (= as Fisa xfilter and < as F is a filter).

O

D-filter. A filter F' of a PJP-semilattice S is called a D-filter if it contains the
dense filter D = {x € S: z* = 0}.

Theorem 4.9. Every x-filter is a D-filter but the converse is not true.

Proof. Let F be a xfilter and let d € D. Then d** = 1 € F which implies that
d € F. Hence F contains D. Thus F' is a D-filter.

To prove the converse is not true, consider the distributive PJP-semilattice N
given in Figure 3. The filter [c) is a D-filter but not a *-filter.

1
dy
da
c
a
b
0 N
Fig. 3

O

Let S be a PJP-semilattice. A PJP-congruence 6 on S is called a boolean congru-
ence if the factor PJP-semilattice S/6 is a Boolean lattice.

Theorem 4.10. A PJP-congruence 6 is a boolean congruence if and only if
x=a"*(0) for allxz € X.

Proof. This is immediate from the fact that ([x](0))* = [«*](0). O
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Theorem 4.11. Let S be a distributive PJP-semilattice. Then the following
conditions are equivalent:

(i) every D-filter is a *-filter;

(if) ©(D) is a boolean congruence.

Proof. (i) = (ii). For each x € S we have that F = [2™*) V D is a D-filter
and hence I is a x-filter. Since z** € I, we have x € F. Thus z = z** A d for
some d € D. This implies ¢ A d = z** A d. Hence z = 2**©(D). Therefore, by
Theorem 4.10, ©(D) is a boolean congruence.

(ii) = (i). Let F be a D-filter. By (ii), ©(D) is a boolean congruence. Hence by
Theorem 4.10 = z**(0(D)). Thus z Ad = 2** A d for some d € D. If 2™ € F,
then x** Ad € F as D C F. Hence x Ad € F and consequently, x € F. Thus F'is a
s-filter. ]

Acknowledgement. We would like to thank Jane Pitkethly at La Trove
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this paper.
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