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Abstract. A meet semilattice with a partial join operation satisfying certain axioms is a
JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper
we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we
describe the largest PJP-congruence containing a filter as a class. Then we give several
characterizations of congruence kernels and cokernels for distributive PJP-semilattices.

Keywords: semilattice, distributivity, pseudocomplementation, congruence, kernel ideal,
cokernel

MSC 2010 : 06A12, 06B10, 06B99, 06D15

1. Introduction

Partial lattices have been studied by many authors. We refer the reader to [6],

[7], [9], [10], [11] for partial lattices. Cornish and Noor [8], [12] have studied partial

lattices which they preferred to call near lattices. A near lattice N is a meet semi-

lattice such that for any a, b ∈ N, a ∨ b exists whenever there is a common upper

bound of a, b. We also refer the reader to the recent publications [3], [4], [5] for near

lattices. Throughout the paper by semilattice we mean the meet semilattice. First

we introduce the notion of the JP-semilattice.

A meet semilattice S = 〈S;∧,∨〉 with a partial binary operation ∨ is said to be a

join partial semilattice (or JP-semilattice) if for all x, y, z ∈ S,

(i) x ∨ x exists and x ∨ x = x;

(ii) if x ∨ y exists, then y ∨ x exists and x ∨ y = y ∨ x;

(iii) if x∨y, y∨z, (x∨y)∨z exist, then x∨(y∨z) exists and (x∨y)∨z = x∨(y∨z);

(iv) if x ∨ y exists, then x = x ∧ (x ∨ y);

(v) if y ∨ z exists, then (x ∧ y) ∨ (x ∧ z) exists for all x ∈ S.
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Observe that not every semilattice needs to be a JP-semilattice, for example,

the semilattice P given in Figure 1 is not a JP-semilattice. Here b ∨ c exists, but

(a ∧ b) ∨ (a ∧ c) does not. Moreover, it is easy to see that every near lattice is a

JP-semilattice but the converse is not necessarily true, for example, the semilattice

M given in Figure 1 is a JP-semilattice but not a near lattice.
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Fig. 1

A JP-semilattice S is said to be JP-distributive iff for all x, y, z ∈ S such that y∨z

exists one has x∧ (y ∨ z) = (x∧ y)∨ (x∧ z) (remember the right-hand side exists by

condition (v) above). It is evident that every distributive semilattice, considered as a

JP-semilattice, is distributive (see [13]). However, the converse is not true. Consider

the JP-semilatticeM∞ given by Figure 2. It is JP-distributive but not distributive

as a semilattice. The authors have studied JP-distributive JP-semilattices in [1].
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Fig. 2

Let S be a JP-semilattice with smallest element 0 and let a ∈ S. An element

d ∈ S is called the pseudocomplement of a ∈ S if a ∧ d = 0 and for all x ∈ S,

a ∧ x = 0 implies x 6 d. Clearly the pseudocomplement of an element is unique

whenever it exists. The pseudocomplement of an element a ∈ S is denoted by a∗.

A JP-semilattice is said to be a pseudocomplemented JP-semilattice (or simply a

PJP-semilattice) if every element has a pseudocomplement.
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Let S be a pseudocomplemented JP-semilattice. The set

Sk(S) = {a∗ : a ∈ S}

is called the skeleton of S. The elements of Sk(S) are called skeletal. It is evident

that sup{a∗, b∗} in Sk(S) always exists and we denote it by a∗ ⊻ b∗. That is, for

any a, b ∈ Sk(S) we have a ⊻ b = sup{a, b} in Sk(S). The following identities hold

for PJP-semilattices as they hold for pseudocomplemented semilattices (see [9]). We

often use the identities in this paper.

Lemma 1.1.

(a) a 6 a∗∗;

(b) a 6 b implies b∗ 6 a∗;

(c) a∗ = a∗∗∗;

(d) 0∗ = 1, the largest element of S;

(e) a ∧ b∗ = a ∧ (a ∧ b)∗;

(f) a ∈ Sk(S) ⇔ a = a∗∗;

(g) a, b ∈ Sk(S) ⇒ a ∧ b = (a ∧ b)∗∗;

(h) a, b ∈ Sk(S) ⇒ a ⊻ b = (a∗ ∧ b∗)∗.

As in the case of distributive lattices, JP-distributivity in JP-semilattices does not

imply the existence of pseudocomplements. For example, consider the distributive

JP-semilatticeM∞ given in Figure 2. Clearly,M∞ is not pseudocomplemented. In

this paper we concentrate our attention on distributive PJP-semilattices.

Let S be a PJP-semilattice. A semilattice congruence θ on S is called a JP-

congruence on S, if x1 ≡ y1(θ) and x2 ≡ y2(θ) implies x1 ∨x2 ≡ y1∨ y2(θ) whenever

x1 ∨ x2 and y1 ∨ y2 exist. A JP-congruence θ on S is called a PJP-congruence on S,

if x ≡ y(θ) ⇒ x∗ ≡ y∗(θ). A non-empty subset I of a JP-semilattice S is called an

ideal of S if the following conditions hold:

(i) if i ∈ I, j ∈ S and j 6 i, then j ∈ I, and

(ii) if i, j ∈ I and i ∨ j exists, then i ∨ j ∈ I.

In Section 2 we give a useful characterization of PJP-congruences. We also give a

description of the smallest PJP-congruence containing a certain ideal as a class.

Let θ be a PJP-congruence on S. Then ker(θ) = {x ∈ S : x ≡ 0(θ)} is called the

kernel of θ. A subset J of S is said to be a congruence kernel if J = ker(θ) for some

PJP-congruence θ on S. Observe that in the PJP-semilattice M given in Figure 1,

the ideal I = {0, a, b} is not a kernel of any PJP-congruence on M . If 0 ≡ a(θ)

for any PJP-congruence θ on M , then 1 ≡ a∗ = b(θ), that is, 0 ≡ 1(θ). Thus I is

not a PJP-congruence kernel. An ideal I of a PJP-semilattice S is called a kernel
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ideal if I = ker(θ) for some PJP-congruence θ on S. The set of all kernel ideals

will be denoted by KI(S). Congruence kernels have been studied by Cornish [6] for

pseudocomplemented distributive lattices and by Blyth [2] for pseudocomplemented

semilattices. In this paper we characterize congruence kernels of distributive PJP-

semilattices. In Section 3 we give characterizations of kernel ideals of distributive

PJP-semilattices.

Let S be a PJP-semilattice. Let θ be a PJP-congruence on S. Then

Coker(θ) = {x ∈ S : x ≡ 1(θ)}

is called the cokernel of θ. A subset J of S is said to be a congruence cokernel if

J = Coker(θ) for some PJP-congruence θ on S. A filter F of S is called a ∗-filter if

f∗∗ ∈ F ⇒ f ∈ F.

In Section 4, we study cokernel filters. Here we characterize ∗-filters as a cokernel

filters.

2. PJP-congruences

For the basic properties of pseudocomplementation we refer the reader to [9]. First

we have the following useful characterization of PJP-congruences.

Theorem 2.1. Let S be a PJP-semilattice. Then a JP-congruence θ on S is a

PJP-congruence if and only if

x ≡ 0(θ) ⇒ x∗ ≡ 1(θ).

P r o o f. If θ is a PJP-congruence, then clearly the condition holds. Conversely,

let θ be a JP-congruence such that the condition holds. Let x ≡ y(θ). Then x∗∧y ≡

x∗ ∧ x = 0(θ) and so (x∗ ∧ y)∗ ≡ 1(θ). This implies

x∗ = x∗ ∧ 1

≡ x∗ ∧ (x∗ ∧ y)∗(θ)

= x∗ ∧ y∗ (by Lemma 1.1 (e)).

Similarly, we have y∗ ≡ x∗ ∧ y∗(θ). Hence x∗ ≡ y∗(θ) and therefore θ is a PJP-

congruence. �

The following theorem gives us a description of the smallest PJP-congruence con-

taining a certain ideal as a class.
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Theorem 2.2. Let S be a distributive PJP-semilattice and let I be an ideal of S

such that i, j ∈ I implies (i∗ ∧ j∗)∗ ∈ I. Define a binary relation Θ(I) on S by

x ≡ y(Θ(I)) if and only if x ∧ i∗ = y ∧ i∗ for some i ∈ I.

Then Θ(I) is the smallest PJP-congruence containing I as a class.

P r o o f. Clearly, Θ(I) is both reflexive and symmetric. To prove that it is

transitive, let x ≡ y(Θ(I)) and y ≡ z(Θ(I)). Then x∧ i∗ = y∧ i∗ and y ∧ j∗ = z ∧ j∗

for some i, j ∈ I. Then by the assumption k = (i∗ ∧ j∗)∗ ∈ I. We have

x ∧ k∗ = x ∧ (i∗ ∧ j∗)∗∗ = x ∧ (i∗ ∧ j∗) (by Lemma 1.1 (b))

= (x ∧ i∗) ∧ j∗ = (y ∧ i∗) ∧ j∗ = (y ∧ j∗) ∧ i∗

= (z ∧ j∗) ∧ i∗ = z ∧ (i∗ ∧ j∗) = z ∧ (i∗ ∧ j∗)∗∗

= z ∧ k∗.

Hence x ≡ z(Θ(I)). Thus Θ(I) is transitive.

Let x ≡ y(Θ(I)) and s ≡ t(Θ(I)). Then there are i, j ∈ I with k = (i∗ ∧ j∗)∗ ∈ I

such that x ∧ i∗ = y ∧ i∗ and s ∧ j∗ = t ∧ j∗. Hence

(x ∧ s) ∧ k∗ = (x ∧ s) ∧ (i∗ ∧ j∗)∗∗

= (x ∧ s) ∧ (i∗ ∧ j∗) (by Lemma 1.1 (b))

= (x ∧ i∗) ∧ (s ∧ j∗) = (y ∧ i∗) ∧ (t ∧ j∗)

= (y ∧ t) ∧ (i∗ ∧ j∗)∗∗

= (y ∧ t) ∧ k∗.

Also, if x ∨ s and y ∨ t exist, then

(x ∨ s) ∧ k∗ = (x ∧ k∗) ∨ (s ∧ k∗) as S is a distributive JP-semilattice

= (x ∧ i∗ ∧ j∗) ∨ (s ∧ i∗ ∧ j∗) (by Lemma 1.1 (b))

= (y ∧ i∗ ∧ j∗) ∨ (t ∧ i∗ ∧ j∗)

= (y ∧ k∗) ∨ (t ∧ k∗)

= (y ∨ t) ∧ k∗ as S is a distributive JP-semilattice

= (y ∨ t) ∧ k∗.

Hence Θ(I) is a JP-congruence. To prove that Θ(I) is a PJP-congruence, let x ≡

0(Θ(I)). Then x∧ i∗ = 0∧ i∗ = 0. This implies i∗ 6 x∗. Hence x∗ ∧ i∗ = i∗ = 1∧ i∗.

This implies x∗ ≡ 1(Θ(I)). Hence by Theorem 2.1, Θ(I) is a PJP-congruence.
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Finally, let θ be a PJP-congruence containing I as a class and let x ≡ y(Θ(I)).

Then x ∧ i∗ = y ∧ i∗ for some i ∈ I. Since θ is a PJP-congruence containing I as a

class, we have i ≡ 0(θ). This implies i∗ ≡ 1(θ). Hence

x = x ∧ 1 ≡ x ∧ i∗(θ) = y ∧ i∗ ≡ y ∧ 1(θ) = y.

Therefore Θ(I) is the smallest congruence containing I as a class. �

3. Kernel ideals

Not every ideal of a JP-distributive PJP-semilattice is a kernel ideal. For a coun-

terexample, consider the distributive PJP-semilattice M given in Figure 1. Let

I = {0, a, b}. Then I is an ideal of M but not a kernel ideal, since 0 ≡ a(θ) for some

PJP-congruence θ on M implies 1 ≡ b(θ).

We have the following characterization of kernel ideals.

Theorem 3.1. An ideal I of a distributive PJP-semilattice S is a kernel ideal of

S if and only if

i, j ∈ I ⇒ (i∗ ∧ j∗)∗ ∈ I.

P r o o f. Let I be a kernel ideal of S. Then I = ker θ for some PJP-congruence θ.

If i, j ∈ I, then i ≡ 0(θ) and j ≡ 0(θ). This implies immediately that i∗ ≡ 1(θ) and

j∗ ≡ 1(θ). Hence i∗ ∧ j∗ ≡ 1(θ). This implies (i∗ ∧ j∗)∗ ≡ 0(θ). Thus (i∗ ∧ j∗)∗ ∈ I.

Conversely, let I be an ideal of S and suppose the condition holds. Then by

Theorem 2.2, the binary relation Θ(I) on S defined by

x ≡ y(Θ(I)) if and only if x ∧ i∗ = y ∧ i∗ for some i ∈ I

is a PJP-congruence containing the ideal I as a class. So it is enough to show that

I is a kernel ideal of Θ(I). For all i ∈ I, by taking i = j in the condition we have

i∗∗ ∈ I. Hence

x ≡ 0(Θ(I)) ⇔ x ∧ i∗ = 0 for some i ∈ I

⇔ x 6 i∗∗ for some i ∈ I

⇔ x ∈ I.

Thus I is a kernel ideal. �
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Theorem 3.2. Let S be a distributive PJP-semilattice. An ideal I of S is a

kernel ideal if and only if

(i) i ∈ I implies i∗∗ ∈ I;

(ii) for every i, j ∈ I there is k ∈ I such that i∗ ∧ j∗ = k∗.

P r o o f. Let I be a kernel ideal. Then by taking i = j in Theorem 3.1 we

have i ∈ I ⇒ i∗∗ ∈ I. Thus (i) holds. Let i, j ∈ I. Put k = (i∗ ∧ j∗)∗, then by

Theorem 3.1, k ∈ I. Also k∗ = i∗ ∧ j∗. Thus (ii) holds.

Conversely, let I be an ideal and i, j ∈ I. Then by (ii), there is k ∈ I such that

k∗ = i∗ ∧ j∗. Thus by (i), k∗∗ = (i∗ ∧ j∗)∗ ∈ I. Hence by Theorem 3.1, I is a kernel

ideal. �

Theorem 3.3. Let S be a distributive PJP-semilattice. A principal ideal I = (x]

of S is a kernel ideal if and only if x ∈ Sk(S).

P r o o f. Suppose I = (x] is a kernel ideal, then x∗∗ ∈ I. This implies x∗∗ 6 x.

But x 6 x∗∗. Hence x = x∗∗ ∈ Sk(S).

Conversely, let I = (x] be a principal ideal and x ∈ Sk(S). Then by Lemma 1.1

(f), we have x = x∗∗. Let i, j ∈ I. Then i, j 6 x. This implies x∗ 6 i∗ ∧ j∗. Thus

(i∗∧j∗)∗ 6 x∗∗ = x. This implies (i∗∧j∗)∗ ∈ I. Hence by Theorem 3.1, I is a kernel

ideal. �

It is well known that the binary relation ψ(I) on a semilattice S defined by

x ≡ y(ψ(I)) if and only if x ∧ a ∈ I ⇔ y ∧ a ∈ I for any a ∈ S

is the largest semilattice congruence containing the ideal I as a class.

Now we have the following result for distributive JP-semilattices.

Theorem 3.4. Let S be a distributive JP-semilattice and let I be an ideal of S.

Then ψ(I) is the largest JP-congruence containing I as a class.

P r o o f. It is enough to show that ψ(I) has the substitution property for the

partial operation ∨. Let x ≡ y(ψ(I)), s ≡ t(ψ(I)) and let x∨s, y∨ t exist. Since S is

a distributive JP-semilattice, for any a ∈ S we have that(x∧a)∨(s∧a), (y∧a)∨(t∧a)

exist and (x ∨ s) ∧ a = (x ∧ a) ∨ (s ∧ a), (y ∨ t) ∧ a = (y ∧ a) ∨ (t ∧ a). Thus

(x ∨ s) ∧ a ∈ I ⇔ (x ∧ a) ∨ (s ∧ a) ∈ I

⇔ x ∧ a ∈ I and s ∧ a ∈ I

⇔ y ∧ a ∈ I and t ∧ a ∈ I

⇔ (y ∧ a) ∨ (t ∧ a) ∈ I ⇔ (y ∨ t) ∧ a ∈ I.

Thus x ∨ s ≡ y ∨ t(ψ(I)). Hence ψ(I) is the largest JP-congruence. �
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The following result is a description of the largest PJP-congruence containing a

kernel ideal as a class.

Theorem 3.5. Let S be a distributive PJP-semilattice. If I is a kernel ideal of

S, then ψ(I) is the largest PJP-congruence containing I as a class.

P r o o f. By Theorem 3.4, ψ(I) is a largest JP-congruence. Let x ≡ 0(ψ(I)).

Then x ∈ I. Now for any a ∈ S,

x∗ ∧ a ∈ I ⇒ (x∗ ∧ (x∗ ∧ a)∗)∗ ∈ I, by Theorem 3.1

⇒ (x∗ ∧ a∗)∗ ∈ I, by Lemma 1.1 (e)

⇒ a ∈ I, since a 6 a∗∗ 6 (x∗ ∧ a∗)∗

⇒ 1 ∧ a ∈ I.

Also

1 ∧ a = a ∈ I ⇒ x∗ ∧ a ∈ I.

Thus x∗ ≡ 1(ψ(I)). Hence by Theorem 2.1, ψ(I) is a PJP-congruence. �

∗-ideal. An ideal I of a JP-semilattice is called a ∗-ideal if it satisfies condition

(i) of Theorem 3.2, that is,

i ∈ I implies i∗∗ ∈ I.

Clearly, every kernel ideal of a distributive PJP-semilattice is a ∗-ideal. Consider the

distributive PJP-semilattice M given in Figure 1. Here the ideal I = {0, a, b} is a

∗-ideal but not a kernel ideal.

Theorem 3.6. Let S be a distributive PJP-semilattice. Every principal ∗-ideal

I of S can be written as (a∗∗] for some a ∈ I. Moreover, for any a ∈ S the principal

ideal I = (a∗∗] is a kernel ideal.

P r o o f. Let I be a principal ∗-ideal of S. Then I = (a] for some a ∈ S. Since I

is a ∗-ideal, for a ∈ I we have a∗∗ ∈ I. Thus a∗∗ 6 a. But a 6 a∗∗. Hence I = (a∗∗]

for some a ∈ S.

Moreover, for any a ∈ S, since a∗∗ ∈ Sk(S), so by Theorem 3.3, I = (a∗∗] is a

kernel ideal. �

Theorem 3.7. A ∗-ideal I of a distributive PJP-semilattice is a kernel ideal if

and only if i∗∗ ⊻ j∗∗ ∈ I for all i, j ∈ I.
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P r o o f. For any i, j ∈ I we have

(i∗ ∧ j∗)∗ = (i∗∗∗ ∧ j∗∗∗)∗ by Lemma 1.1 (c)

= i∗∗ ⊻ j∗∗by Lemma 1.1 (h).

By Theorem 3.1, I is a kernel ideal if and only if i, j ∈ I implies i∗∗ ⊻ j∗∗ ∈ I. �

Glivenko congruence. Let S be a distributive PJP-semilattice. The binary

relation G on S defined by

x ≡ y(G) ⇔ x∗∗ = y∗∗

is a semilattice congruence called the Glivenko congruence. It is evident that G is

compatible with ∗. We shall show that G is a PJP-congruence.

Let I be an ideal. Define

I0 = {x ∈ S : x ∧ i = 0 for all i ∈ I}.

Theorem 3.8. I0 is a kernel ideal.

P r o o f. Let x, y ∈ I0. Then x ∧ i = y ∧ i = 0 for all i ∈ I. Hence i 6 x∗, y∗

and consequently, (x∗ ∧ y∗)∗ 6 i∗. This implies (x∗ ∧ y∗)∗ ∧ i 6 i∗ ∧ i = 0. Hence

(x∗ ∧ y∗)∗ ∈ I0. Thus by Theorem 3.1, I0 is a kernel ideal. �

Lemma 3.9. If x ≡ y(ψ(I)), then [(x ∧ y∗)∗ ∧ (x∗ ∧ y)∗]∗ ∈ I.

P r o o f. Let x ≡ y(ψ(I)). Then x∧x∗ = 0 ≡ y∧x∗(ψ(I)). Therefore y∧x∗ ∈ I.

Similarly, x ∧ y∗ ∈ I. Hence [(x ∧ y∗)∗ ∧ (x∗ ∧ y)∗]∗ ∈ I as I is a kernel ideal. �

Theorem 3.10. Let I be a kernel ideal of a distributive PJP-semilattice S. Then

ψ(I) ∧ ψ(I0) = G.

P r o o f. Let x ≡ y(ψ(I) ∧ ψ(I0)). Then by Lemma 3.9, we have [(x ∧ y∗)∗ ∧

(x∗ ∧ y)∗]∗ ∈ I and [(x ∧ y∗)∗ ∧ (x∗ ∧ y)∗]∗ ∈ I0 whence [(x ∧ y∗)∗ ∧ (x∗ ∧ y)∗]∗ = 0.

This implies

x ∧ y∗ 6 (x ∧ y∗)∗∗ 6 [(x ∧ y∗)∗ ∧ (x∗ ∧ y)∗]∗ = 0.

Thus x ∧ y∗ = 0. Hence y∗ 6 x∗. Similarly, x∗ 6 y∗. This implies x∗ = y∗ and

consequently, x∗∗ = y∗∗. Hence x ≡ y(G).
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Conversely, let x ≡ y(G). Since a ≡ a∗∗(G) for any a ∈ S, we have x ∧ a ≡

x∧a∗∗(G), y∧a ≡ y∧a∗∗(G) and x∧a ≡ y∧a∗∗(G). Hence (x∧a)∗∗ = (x∧a∗∗)∗∗,

(y ∧ a)∗∗ = (y ∧ a∗∗)∗∗ and (x ∧ a)∗∗ = (y ∧ a∗∗)∗∗. Now for any a ∈ S,

x ∧ a ∈ I ⇔ (x ∧ a)∗∗ ∈ I as I is a kernel ideal of S

⇔ (y ∧ a∗∗)∗∗ ∈ I

⇔ (y ∧ a)∗∗ ∈ I

⇔ y ∧ a ∈ I.

Also, for all i ∈ I,

x ∧ a ∈ I0 ⇔ (x ∧ a) ∧ i = 0

⇔ x ∧ (a ∧ i) = 0

⇔ x 6 (a ∧ i)∗

⇔ x∗∗ 6 (a ∧ i)∗

⇔ y∗∗ 6 (a ∧ i)∗

⇔ y 6 (a ∧ i)∗

⇔ y ∧ (a ∧ i) = 0

⇔ y ∧ a ∈ I0.

Hence x ≡ y(ψ(I) ∧ ψ(I0)). Therefore G = ψ(I) ∧ ψ(I0). �

Corollary 3.11. G is a PJP-congruence.

P r o o f. This is immediate from the fact that ψ(I)∧ψ(I0) is a PJP-congruence.

�

4. Congruence cokernels

Let S be a JP-semilattice. A non-empty subset F of S is called a filter of S if

(i) a ∈ F and b ∈ S with a 6 b implies b ∈ F , and

(ii) a, b ∈ F implies a ∧ b ∈ F .

Now we have the following lemma.

Lemma 4.1. Let S be a JP-semilattice. Then every cokernel of S is a filter.
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P r o o f. Let F = Coker(θ) for some PJP-congruence θ. If x, y ∈ F , then

x ≡ 1(θ) and y ≡ 1(θ). Hence x ∧ y ≡ 1(θ). Thus x ∧ y ∈ F . Now let x ∈ F and

x 6 y. Then x = x ∧ y ≡ 1 ∧ y(θ) = y. Thus y ≡ 1(θ). Hence y ∈ F . Therefore F is

a filter. �

Let S be a JP-semilattice and let F be a filter of S. Define a binary relation Θ(F )

on S by

x ≡ y(Θ(F )) if and only if x ∧ f = y ∧ f for some f ∈ F.

Theorem 4.2. Let F be a filter of a distributive JP-semilattice S. Then the

relation Θ(F ) on S is a JP-congruence containing F as a class. Moreover, if S has a

largest element 1, then Θ(F ) is the smallest JP-congruence containing F as a class.

P r o o f. Clearly Θ(F ) is an equivalence relation. Let x ≡ y(Θ(F )) and s ≡

t(Θ(F )). Then x ∧ f1 = y ∧ f1 and s ∧ f2 = t ∧ f2 for some f1, f2 ∈ F . This implies

(x ∧ s) ∧ (f1 ∧ f2) = (x ∧ f1) ∧ (s ∧ f2) = (y ∧ f1) ∧ (t ∧ f2) = (y ∧ t) ∧ (f1 ∧ f2).

Since f1 ∧ f2 ∈ F , we have x ∧ s ≡ y ∧ t(Θ(F )).

Also, if x ∨ s and y ∨ t exist, then

(x ∨ s) ∧ (f1 ∧ f2) = (x ∧ f1 ∧ f2) ∨ (s ∧ f1 ∧ f2)

= (y ∧ f1 ∧ f2) ∨ (t ∧ f1 ∧ f2) = (y ∨ t) ∧ (f1 ∧ f2).

Thus Θ(F ) is a JP-congruence. Clearly, Θ(F ) contains F as a class.

Moreover, assume that S has a largest element 1. Let θ be any congruence on S

containing F as a class. Assume x ≡ y(Θ(F )). Then x ∧ f = y ∧ f for some f ∈ F .

This implies x = x ∧ 1 ≡ x ∧ f(θ). Similarly, y ≡ y ∧ f(θ). Hence x ≡ y(θ). Thus

Θ(F ) is the smallest JP-congruence containing F as a class. �

The following result is the description of the smallest PJP-congruence containing

a filter as a class.

Theorem 4.3. Let S be a PJP-semilattice and let F be a filter of S. Then Θ(F )

is the smallest PJP-congruence containing F as a class.

P r o o f. By Theorem 4.2, Θ(F ) is a JP-congruence containing F as a class.

Let x ≡ 0(Θ(F )). Then x ∧ f = 0 for some f ∈ F . This implies f 6 x∗. Thus

x∗ ∈ F . Hence x∗ ≡ 1(Θ(F ). Hence by Theorem 2.1, we have that Θ(F ) is a PJP-

congruence. �
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Corollary 4.4. Every filter of a PJP-semilattice is a cokernel.

P r o o f. It is clear from the fact that for any filter F of S we have

x ∈ F ⇔ x ≡ 1(Θ(F )).

�

∗-filters. First we prove the following useful result.

Lemma 4.5. Let S be a distributive PJP-semilattice. If a ∨ b exists, then

(a ∨ b)∗ = a∗ ∧ b∗.

P r o o f. We have (a ∨ b) ∧ (a∗ ∧ b∗) = (a ∧ a∗ ∧ b∗) ∨ (b ∧ a∗ ∧ b∗) = 0 ∨ 0 = 0.

Let (a ∨ b) ∧ x = 0. Then (a ∧ x) ∨ (b ∧ x) = 0. Hence a∧ x = 0 and b ∧ x = 0. This

implies x 6 a∗, b∗. Hence x 6 a∗ ∧ b∗. Therefore (a ∨ b)∗ = a∗ ∧ b∗. �

For every filter F of S define

F∗ = {x ∈ S : x∗ ∈ F}.

Lemma 4.6. Let S be a distributive PJP-semilattice and F a filter of S. Then

F∗ is a kernel ideal of S.

P r o o f. Let x, y ∈ F∗. Then x
∗, y∗ ∈ F . If x ∨ y exists, then by Lemma 4.5 we

have (x∨y)∗ = x∗ ∧y∗ ∈ F as F is a filter. Hence x∨y ∈ F∗. Let x ∈ F∗ and y 6 x.

Then y∗ > x∗ ∈ F . This implies y∗ ∈ F . Thus y ∈ F∗. Hence F∗ is an ideal.

To prove that F∗ is a kernel ideal, let x, y ∈ F∗. Then x
∗, y∗ ∈ F so that

(x∗ ∧ y∗)∗∗ = x∗ ∧ y∗ ∈ F and consequently (x∗ ∧ y∗)∗ ∈ F∗. Hence by Theo-

rem 3.1, F∗ is a kernel ideal. �

For every I ∈ KI(S) define

I∗ = {x ∈ S : x∗ ∈ I}.

Lemma 4.7. Let S be a distributive PJP-semilattice and I a kernel ideal of S.

Then I∗ is a ∗-filter of S.

P r o o f. Let x, y ∈ I∗. Then x
∗, y∗ ∈ I. So by Theorem 3.1, we have (x ∧ y)∗ =

(x ∧ y)∗∗∗ = (x∗∗ ∧ y∗∗)∗ ∈ I. Hence x ∧ y ∈ I∗. Now let x ∈ I∗ and y > x. Then

y∗ 6 x∗ ∈ I so that y∗ ∈ I and consequently, y ∈ I∗. Hence I∗ is a filter. Let

x∗∗ ∈ I∗. Then x
∗ = x∗∗∗ ∈ I and hence x ∈ I∗. Therefore I∗ is a ∗-filter. �

The following theorem is a characterization of ∗-filters.
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Theorem 4.8. A filter F of a JP-distributive PJP-semilattice is a ∗-filter if and

only if (F∗)∗ = F .

P r o o f. Let (F∗)∗ = F and let x∗∗ ∈ F . Since F is a filter, F∗ is a kernel ideal.

Hence x∗ ∈ F∗ and so x ∈ (F∗)∗ = F . Thus F is a ∗-filter.

Conversely, let F be a ∗-filter. Then

x ∈ (F∗)∗ ⇔ x∗ ∈ F∗

⇔ x∗∗ ∈ F

⇔ x ∈ F (⇒ as F is a ∗-filter and⇐ as F is a filter).

�

D-filter. A filter F of a PJP-semilattice S is called a D-filter if it contains the

dense filter D = {x ∈ S : x∗ = 0}.

Theorem 4.9. Every ∗-filter is a D-filter but the converse is not true.

P r o o f. Let F be a ∗-filter and let d ∈ D. Then d∗∗ = 1 ∈ F which implies that

d ∈ F . Hence F contains D. Thus F is a D-filter.

To prove the converse is not true, consider the distributive PJP-semilattice N

given in Figure 3. The filter [c) is a D-filter but not a ∗-filter.

a

b

c

0

1

d1

d2

N

Fig. 3

�

Let S be a PJP-semilattice. A PJP-congruence θ on S is called a boolean congru-

ence if the factor PJP-semilattice S/θ is a Boolean lattice.

Theorem 4.10. A PJP-congruence θ is a boolean congruence if and only if

x ≡ x∗∗(θ) for all x ∈ X .

P r o o f. This is immediate from the fact that ([x](θ))∗ = [x∗](θ). �
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Theorem 4.11. Let S be a distributive PJP-semilattice. Then the following

conditions are equivalent:

(i) every D-filter is a ∗-filter;

(ii) Θ(D) is a boolean congruence.

P r o o f. (i) ⇒ (ii). For each x ∈ S we have that F = [x∗∗) ∨ D is a D-filter

and hence F is a ∗-filter. Since x∗∗ ∈ F , we have x ∈ F . Thus x = x∗∗ ∧ d for

some d ∈ D. This implies x ∧ d = x∗∗ ∧ d. Hence x ≡ x∗∗Θ(D). Therefore, by

Theorem 4.10, Θ(D) is a boolean congruence.

(ii) ⇒ (i). Let F be a D-filter. By (ii), Θ(D) is a boolean congruence. Hence by

Theorem 4.10 x ≡ x∗∗(Θ(D)). Thus x ∧ d = x∗∗ ∧ d for some d ∈ D. If x∗∗ ∈ F ,

then x∗∗ ∧ d ∈ F as D ⊆ F . Hence x ∧ d ∈ F and consequently, x ∈ F . Thus F is a

∗-filter. �
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