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Abstract

We consider a model of a two–phase flow based on the phase field approach, where the fluid
bulk velocity obeys the standard Navier–Stokes system while the concentration difference of
the two fluids plays a role of order parameter governed by the Allen–Cahn equations. Possible
thermal fluctuations are incorporated through a random forcing term in the Allen–Cahn
equation. We show that suitable dissipative martingale solutions satisfy a stochastic version
of the relative energy inequality. This fact is used for showing the weak–strong uniqueness
principle both pathwise and in law.
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1 Introduction

We consider a model of a two–phase flow based on the phase field approach, where the fluid bulk
velocity obeys the standard Navier–Stokes system while the concentration difference of the two
fluids plays a role of order parameter governed by the Allen–Cahn equations. Possible thermal
fluctuations are incorporated through a random forcing term in the Allen–Cahn equation. Con-
sistently, we impose a random forcing also in the momentum equation. The reader may consult
the review papers by Anderson, McFadden, and Wheeler [1], Lowengrub and Truskinovski [13] for
the general physical background, and Debussche, Goudenège [4], Goudenège [10], Goudenège and
Manca [11], Gal and Tachim-Medjo [7], [8], Tachim-Medjo [14] or Scarpa [16] for the stochastic
aspects of the problem.

1.1 Field equations

The basic field variables (unknowns) describing the mixture at a given time t ∈ (0, T ) and a spatial
position x ∈ Q ⊂ R3 are the macroscopic fluid velocity u = u(t, x), and the order parameter
(concentration difference) c = c(t, x) satisfying the following system of equations:

du = (ν∆u− (u · ∇)u +∇p− εdiv (∇c⊗∇c))dt+ σ1(u, c)dW1,

dc = (ε∆c− u · ∇c− 1

ε
f(c))dt+ σ2(u, c)dW2,

∇ · u = 0.

(1.1)

It standard to interpret the pressure p in the momentum equation as the Lagrange multiplier
associated to the incompressibility constraint. Supplemented with the initial conditions

u(0, ·) = u0, c(0, ·) = c0, (1.2)

and the boundary conditions

u = 0,
∂c

∂n
= 0 on ∂Q× (0, T ), where n is the outer normal vector, (1.3)

the Navier–Stokes–Allen–Cahn (NSAC) system (1.1 – 1.3) is, at least formally, a well posed prob-
lem.

The function f is the derivative of a double-well potential F ∈ C2(R), with two local minima
±1. In addition, we suppose that F is positive and f globally Lipschitz. The constant ν > 0
corresponds to the kinematic viscosity while ε > 0 is a constant proportional to the width of the
interface.

Remark 1.1. As a matter of fact, the behavior of the potential F outside the natural physical
range of the order parameter −1 ≤ c ≤ 1 is irrelevant as we show that this property is time–
invariant, meaning, a suitable variant of the comparison principle holds for c.
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1.2 Random forcing

The random forcing will be incorporated in the mathematical formulation as a stochastic integral
of Itô’s type. Accordingly, all quantities in (1.1) must be interpreted as random variables with
respect to a stochastic basis [Ω,B,P ], where Ω is a probability space, B a field of measurable sets,
and P a probability measure. W1 and W2 are two cylindrical Wiener processes in a separable
Hilbert space U defined on the probability space [Ω,B,P ]. We denote by {Ft}t≥0 a complete
right–continuous filtration in Ω, non–anticipative with respect to Wi, i = 1, 2. We assume that
Wi, i = 1, 2 are formally given by the expansion

Wi(t) =
∑
k≥1

ekW
i
k(t),

where {W i
k}k≥1 is a family of mutually independent real-valued Brownian motions and {ek}k≥1 is

an orthonormal basis on U. We also define the auxiliary space U0 containing U, that is defined by:

U0 = {v =
∞∑
k=1

αkek :
∞∑
k=1

α2
k

k2
<∞},

endowed with the scalar product:

(u, v)U0 =
∞∑
k=1

αkβk
k2

, for u =
∑
k

αkek, u =
∑
k

βkek.

The stochastic forcing takes the following form:

σi(u, c)dWi =
∑
k≥1

σik(u, c)dW
i
k, i = 1, 2,

with suitable restrictions on the growth of the diffusion coefficients σik specified below.

1.3 Main goals

The NSAC system (1.1), (1.3) admits a natural energy functional

E(u, c) =

∫
Q

(
1

2
|u|2 +

1

ε
F (c) +

ε

2
|∇c|2

)
dx. (1.4)

Suppose, for a moment, that (u, c) is a smooth solution. Then we can apply Itô’s calculus and,
after a bit tedious but straightforward manipulation of the equations in (1.1), we deduce the total
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energy balance

dE(u, c) + (ν|∇u|2L2 + ε|∆c− 1

ε
f(c)|2L2)dt =

∞∑
k=1

(∫
Q

u · σ1
k(u, c) dx

)
dW 1

k

+
1

ε

∞∑
k=1

(∫
Q

(
1

ε
f(c)−∆c)σ2

k(u, c) dx

)
dW 2

k +
1

2

∞∑
k=1

∫
Q

|σ1
k(u, c)|2dx dt

+
ε

2

∞∑
k=1

∫
Q

|∇σ2
k(u, c)|2dx dt+

1

2ε

∞∑
k=1

∫
Q

f ′(c)|σ2
k(u, c)|2dx dt.

(1.5)

Similarly to [2], we focus on dissipative solutions of the stochastic system (1.1) satisfying a
suitable form of (1.5). In particular, we introduce the concept of dissipative martingale (DM)
solution, for which the associated energy inequality is incorporated as an inseparable part of its
definition. The (DM) solutions can be seen as analogues of the martingale solutions introduced
by Flandoli and Romito [6] defined as probability measures on the canonical trajectory spaces,
whereas the total energy is considered as an a.a. supermartingale.

Our main goal is to show:

• a variant of the relative energy inequality representing a suitable “distance” between a (DM)
solution and another stochastic process defined on the same probability space;

• as a corrollary: the weak–strong uniqueness principle. Specifically, a weak solution coincides
with the strong solution emanating from the same initial data as long as the latter exists. In
the case when the weak and strong solutions are defined on different probability spaces and
their data coincide in law, the solutions coincide in law.

The paper is organized as follows. In Section 2, we collect the basic concepts and definitions,
in particular, we introduce the dissipative martingale solutions. In Section 3, we introduce the
relative energy inequality – the main tool used in the present paper. Finally, in Section 4, we
introduce the strong solutions to the problem and show the weak–strong uniqueness principle.

2 Preliminaries, dissipative martingale solutions

We start by introducing the function spaces related to the NSAC model (see [12], [18]). Let
C∞0,div(Q) be the space of all divergence free vectors in (C∞0 (Q)3). We denote by H the closure of
C∞0,div(Q) in (L2(Q))3 and we set V1 = (H1

0 (Q))3 ∩ H, V2 = (H2(Q))3 ∩ V1. Next, let W = {φ ∈
C∞(Q), ∂nφ = 0 on ∂Q}, and Ws the closure of W in Hs(Q) for s ∈ N+. Finally, we set

H = H ×W1, V = V1 ×W2.
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2.1 Diffusion coefficients

We impose the following conditions on σ = (σ1, σ2):

σ(u, c, t) = (σ1(u, c, t), σ2(u, c, t)) : H× [0, T ]→ L2(U,H), (2.1)

is B(H× [0, T ],B(L2(U, H)))-measurable, essentially bounded in time and continuous in (u, c):∑
k

‖σk(u∗, c∗)− σk(u, c)‖2
H

<∼ ‖(u∗, c∗)− (u, c)‖2
H,
∑
k

‖σk(u, c)‖2
H

<∼ 1, (2.2)

uniformly in t ∈ [0, T ] for all (u∗, c∗), (u, c) ∈ H. Moreover,

σ(u, c, t) = (σ1(u, c, t), σ2(u, c, t)) : V × [0, T ]→ L2(U,V), (2.3)

is B(V × [0, T ],B(L2(U, H)))-measurable essentially bounded in time and continuous in (u, c):∑
k

‖σk(u∗, c∗)− σk(u, c)‖2
V
<∼ ‖(u∗, c∗)− (u, c)‖2

V ,
∑
k

‖σk(u, c)‖2
V
<∼ 1, (2.4)

uniformly in t ∈ [0, T ] for all (u∗, c∗), (u, c) ∈ V . In addition, σ2 satisfies∑
k

|σ2
k(u, c, t)|L2(Q) <∞,

∑
k

|σ2
k(u, c, t)− σ2

k(u, c
∗, t)|L2(Q)

<∼ |c− c∗|L2(Q), (2.5)

uniformly in t ∈ [0, T ] for all c, c∗ ∈ L2(Q), u ∈ V1.

Here and hereafter, A
<∼ B means there is a positive constant C such that A ≤ CB, similarly

A
>∼ B stands for A ≥ CB, and A ≈ B means A

<∼ B and B
<∼ A.

Finally, we suppose that the noise σ2dW2 is multiplicative with respect to the constant states
−1 and 1, which translates into

σ2
k(u,−1, t) = σ2

k(u, 1, t) = 0 for all u, t ∈ [0, T ], for all k. (2.6)

As we shall see below, hypothesis (2.6) forces the order parameter c to remain in the physically
relevant range c ∈ [−1, 1].

2.2 Dissipative martingale solutions

Martingale solutions, in general, may live in a different probability space than Ω, whereas the
process W is considered as an integral part of the solution. Dissipative martingale solutions
satisfy, in addition, a suitable form of the energy balance (inequality).

Definition 2.1. Let µ0 be a Borel probability measure on the space H such that∫
H

∣∣∣ ∫
Q

1

2
|u|2 +

1

ε
F (c) +

ε

2
|∇c|2dx

∣∣∣βdµ0(u, c) <∞

for all β ≥ 1.
The quantity ((Ω,B, {Ft}t≥0,P),u, c,W = (W1,W2)) is called a dissipative martingale (DM)

solution to the Navier-Stokes-Allen-Cahn system (1.1), (1.3) with the initial law µ0 if:
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1. (Ω,B, {Ft}t≥0,P) is a stochastic basis with a complete right-continous filtration;

2. Wi is a cylindrical Wiener process, with {Ft}t≥0 non–anticipative with respect Wi, i = 1, 2;

3. u ∈ Cw([0, T ], H), c ∈ Cw([0, T ],W1) are Ft-adapted random processes;

4. (u(0, ·), c(0, ·)) are F0-measurable random variables on H such that µ0 = L[u(0, ·), c(0, ·)];

5. the momentum balance holds P−a.s.:

−
∫ τ

0

φt

∫
Q

u · ϕdxdt+
[ ∫

Q

φu · ϕdx
]t=τ
t=0

+

∫ τ

0

∫
Q

ν∇u · ∇ϕdxdt =

−
∫ τ

0

φ

∫
Q

[(u · ∇)u] · ϕdxdt+ ε

∫ τ

0

φ

∫
Q

(∇c⊗∇c) : ∇ϕdxdt

+

∫ τ

0

φ
∞∑
k=1

(∫
Q

σ1
k(u, c) · ϕdx

)
dW 1

k ,

(2.7)

for any 0 ≤ τ ≤ T , and all deterministic test functions φ ∈ C∞c ([0, T )), ϕ ∈ C∞c (Q) , ∇·ϕ = 0;

6. the equation for the order parameter holds P−a.s.:

dc− ε∆c dt =

(
−u · ∇c+

1

ε
f(c)

)
dt+ σ2(u, c) dW2,

∂c

∂n
|∂Ω = 0, c(0, ·) = c0; (2.8)

7. the energy inequality holds P-a.s.:[
φ(t)E(u, c)(t)

]t=τ
t=0
−
∫ τ

0

φtE(u, c)(t)dt+

∫ τ

0

φ(ν|∇u|2L2(Q) + |ε∆c− 1

ε
f(c)|2L2(Q))dt

≤ 1

2

∫ τ

0

φ
∞∑
k=1

∫
Q

|σ1
k(u, c)|2dxdt+

ε

2

∫ τ

0

φ
∞∑
k=1

∫
Q

|∇σ2
k(u, c)|2dxdt

+
1

2ε

∫ τ

0

φ
∞∑
k=1

∫
Q

f ′(c)|σ2
k(u, c)|2dxdt+

∫ τ

0

φ
∞∑
k=1

(∫
Q

uσ1
k(u, c)dx

)
dW 1

k

+

∫ τ

0

φ

∞∑
k=1

(∫
Q

(
1

ε
f(c)−∆c)σ2

k(u, c)dx

)
dW 2

k

(2.9)

for a.a. 0 ≤ τ ≤ T and for all deterministic test functions φ ≥ 0, φ ∈ C∞c ([0, T )).

Remark 2.2. As a matter of fact, the energy functional E(u, c) is convex, thus weakly lower
semi–continuous, in particular the energy inequality (2.9) holds for any τ ∈ [0, T ].

The existence of weak solutions to the deterministic version of the system was shown in [18].
Tachim-Medjo [17] proved the existence of weak martingale solutions. The existence of dissipative
martingale solutions requires incorporating the energy inequality in the approximate system. This
can be achieved by modifying [17] or by using the mixed approximation scheme introduced in [5].
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2.3 Maximum principle for the order parameter

We conclude this preliminary part by observing that the order parameter c remains confined to its
natural range

−1 ≤ c ≤ 1

as long as the same holds for the initial data and σ2 satisfies (2.6).
For the deterministic Allen-Cahn model, it is well-known that the maximum principle holds

when the potential is regular. For the deterministic Navier-Stokes-Allen-Cahn model the weak
maximum principle is also known, one can easily prove that both strong and weak solutions for
the convective Allen-Cahn equation satisfy the maximum principle (see [12]). The maximum
principle for certain types of stochastic partial differential equations with multiplicative noise was
proved by [3]. Under the hypothesis (2.5)-(2.6), the results from [3], Section 5.5 applied to (2.8)
give rise to:

E|(c+ 1)−(t)|2L2(Q) +
2

ε
E
∫ t

0

∫
Q

(c+ 1)−f(c)dxds
<∼ E|(c0 + 1)−|2L2(Q)

− 2E
∫ t

0

∫
Q

(c+ 1)−(u · ∇)cdxds− 2εE
∫ t

0

∫
Q

|∇(c+ 1)−|2dxds+ E
∫ t

0

∫
Q

|(c+ 1)−|2dxds.

(2.10)

The second term on the left hand side is non–negative since F is monotone on (−∞,−1)∪(1,∞).
Furthermore, if

−1 ≤ c0 ≤ 1,

then E|(c0 + 1)−|2L2(Q) = 0. Finally, the second integral on the right hand side vanishes,

E
∫ t

0

∫
Q

(c+ 1)−(u · ∇)cdxds = E
∫ t

0

∫
Q

(u · ∇)|(c+ 1)−|2dxds = 0,

after integration by parts and using the divergence-free condition on the velocity. We therefore
obtain

E|(c+ 1)−(t)|2L2(Q)
<∼ E

∫ t

0

∫
Q

|(c+ 1)−|2dxds;

whence, by means of Gronwall’s lemma, E|(c + 1)−(t)|2L2(Q) = 0, which implies c(x, t) ≥ −1 a.e. t

and x and a.s. Similarly we can also prove that c(x, t) ≤ 1 a.e. t and x and a.s.

3 Relative energy

Following Hošek and Mácha [12] we introduce the relative energy functional:

E(u, c|U, C) =

∫
Q

1

2
|u− U |2 +

ε

2
|∇c−∇C|2dx. (3.1)
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Next, motivated by [2], we consider “test functions” [U, C] – continuous stochastic processes
adapted to {Ft}t≥0 – that can be written in the form

dU = DdUdt+DsUdW1, dC = DdCdt+DsCdW2, (3.2)

Here, the deterministic components DdU, Ddc as well as the martingale components DsU, DsC
of the time derivative are functions of (ω, t, x).

3.1 Relative energy inequality

We claim the following result describing the time evolution of the relative energy associated to a
dissipative martingale solution of problem (1.1), (1.3).

Theorem 3.1. Let ((Ω,B, {Ft}t≥0,P),u, c,W = (W1,W2)) be a dissipative martingale solution
of problem (1.1), (1.3) in the sense of Definition (2.1). Suppose that U, C are stochastic processes
adapted to {Ft}t≥0,

U ∈ C([0, T ], V1), c ∈ C([0, T ],W2) P − a.s.

satisfying (3.2), where DdC, DdU, DsC, DsU are {Ft}−progressively measurable,

(DdC,DdU) ∈ L2(Ω, L2(0, T,W2))× L2(Ω, L2(0, T, V1)),

(DsU, DsC) ∈ L2(Ω, L2(0, T,L2(U,V))).
(3.3)

Then the relative energy inequality holds P−a.s.:

−
∫ T

0

∂tψE(u, c|U, C)dt+

∫ T

0

ψ|ε∆c− 1

ε
f(c)− ε∆C +

1

ε
f(C)|2L2(Q)dt

+ ν

∫ T

0

ψ|∇u−∇U|2L2(Q)dt ≤ ψ(0)E(u, c|U, C)(0) +

∫ T

0

ψR(u, c|U, C)dt+

∫ T

0

ψdMRE,

(3.4)

for all ψ ∈ C∞c ([0, T )), ψ ≥ 0. Here MRE is a real-valued square integrable martingale,

MRE =

∫ t

0

(∫
Q

(u−U) · (σ1(u, c)−DsU) dx

)
dW1

+ ε

∫ t

0

(∫
Q

(∇(c− C)) · (∇(σ2(u, c)−DsC)) dx

)
dW2,

(3.5)
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and the reminder term is given by:

R(u, c|U, C) =
1

2

∑
k≥1

∫
Q

|σ1
k(u, c)|2dx+

ε

2

∑
k≥1

∫
Q

|∇σ2
k(u, c)|2dx+

1

2

∑
k≥1

|DsU · ek|2L2(Q)

+
ε

2

∑
k≥1

|∇DsC · ek|2L2(Q) − ε
∑
k≥1

∫
Q

∇σ2
k(u, c) · ∇(DsC · ek)dx+ ν

∫
Q

∇U : ∇(u−U)dx

|ε∆C − 1

ε
f(C)|2L2(Q) −

∫
Q

1

ε
f(c)(ε∆c− u · ∇c− 1

ε
f(c))dx+ ε

∫
Q

∇(C − c) · ∇DdCdx

+

∫
Q

ε∆C(ε∆c− u · ∇c− 1

ε
f(c))dx− ε

∫
Q

∇c⊗∇c : ∇Udx+

∫
Q

(U− u) ·DdUdx

−
∫
Q

[(u · ∇)U] · udx−
∑
k≥1

∫
Q

σ1
k(u, c)D

sU · ekdx.

(3.6)

3.2 Proof of Theorem 3.1

The proof of Theorem 3.1 is rather technical based on the idea of [2] that the time increments of
the relative energy can be evaluated by means of the weak formulation (2.7–2.9).

3.2.1 Relative energy decomposition

We first notice that

E(u, c|U, C) =

∫
Q

1

2
|u|2 +

ε

2
|∇c|2dx+

∫
Q

1

2
|U|2 +

ε

2
|∇C|2dx−

∫
Q

u ·Udx− ε
∫
Q

∇c · ∇Cdx

= E(u, c) +

∫
Q

1

2
|U|2 +

ε

2
|∇C|2dx︸ ︷︷ ︸

I1

+ ε

∫
Q

c ·∆Cdx− 1

ε

∫
Q

F (c)dx︸ ︷︷ ︸
I2

−
∫
Q

u ·Udx︸ ︷︷ ︸
I3

.

(3.7)
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3.2.2 Energy increments

The first term on the right–hand side of (3.7) can be expressed by means of the energy inequality
(2.9):

− ψ(0)E(u, c)(0)−
∫ T

0

ψtE(u, c)(t)dt+

∫ T

0

ψ(ν|∇u|2L2(Q) + |ε∆c− 1

ε
f(c)|2L2(Q))dt

≤ 1

2

∫ t

0

ψ

∞∑
k=1

∫
Q

|σ1
k(u, c)|2dxdt+

ε

2

∫ T

0

ψ

∞∑
k=1

∫
Q

|∇σ2
k(u, c)|2dxdt

+
1

2ε

∫ T

0

ψ
∞∑
k=1

∫
Q

f ′(c)|σ2
k(u, c)|2dxdt+

∫ T

0

ψ

∞∑
k=1

(∫
Q

uσ1
k(u, c)dx

)
dW 1

k

+

∫ T

0

ψ
∞∑
k=1

(∫
Q

(
1

ε
f(c)−∆c)σ2

k(u, c)dx

)
dW 2

k

for all ψ ∈ C∞c ([0, T )), ψ ≥ 0.

3.2.3 Time increment of test functions

As the test functions C and u are smooth, the time increment dI1 can be computed directly using
(3.2) and Itô’s chain rule.

3.3 Time increment of c−dependent integrals

As for I2, we have observed that c solves the Allen–Cahn equation in the strong sense (2.8). Thus
Itô’s calculus adapted to the infinite–dimensional setting can be used to obtain:

−d
( ∫

Q

c∆Cdx
)

= −ε
∫
Q

∆C∆cdxdt+

∫
Q

∆C(u · ∇c+
1

ε
F (c))dxdt

+ ε

∫
Q

∇c · ∇DdCdxdt+
(∑
k≥1

∫
Q

σ1
k(u, c)D

sU · ekdx
)
dt+

∫
Q

u ·DdUdxdt+ dM1,

where M1 is given by:

M1 =

∫ t

0

(∫
Q

∇c · ∇(DsC · ek) +∇C · ∇σ2
k(u, c)dx

)
dW 2

k .

Similarly, we have

d
(1

ε

∫
Q

F (c)dx
)

=

∫
Q

1

ε
f(c)(ε∆c− u · ∇c− 1

ε
f(c))dxdt+

1

2ε

∑
k≥1

∫
Q

f ′(c)|σ2
k(u, c)|2dxdt

+

∫
Q

U ·DdUdxdt+
1

2

∑
k≥1

∫
Q

|DsU · ek|2dxdt+ dM2,

(3.8)
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with M2 given by:

M2 =

∫ t

0

(
1

ε

∑
k≥1

∫
Q

f(c)σ2
k(u, c) + U · (DsU · ek)dx

)
dW 2

k

3.3.1 Time increment of u−dependent integrals

As the momentum balance (2.7) holds only in the weak (PDE) sense, we are not allowed to apply
Itô’s calculus directly to I3. Instead we first regularize (2.7) by means of spatial convolutions,
apply Itô’s chain rule to the regularized system, and pass to the limit with the regularization, see
[2, Section 3.2]. Thus, exactly as in [2, Lemma 3.1], we deduce

d
( ∫

Q

u ·Udx
)

=

∫
Q

(
(u · ∇)U · u− ν∇u : ∇U + ε∇c⊗∇c : ∇U

)
dxdt

+
(∑
k≥1

∫
Q

∇σ2
k(u, c) · ∇(DsC · ek)dx

)
dt+

∫
Q

∇c · ∇DdCdxdt+ dM3,

where M3 is given by:

M3 =

∫ t

0

(∫
Q

u · (DsU · ek) + U · σ1
k(u, c)dx

)
dW 1

k .

Gathering the above relations we obtain (3.4), which completes the proof of Theorem 3.1.

4 Weak-strong uniqueness

Our ultimate goal is to show the weak–strong uniqueness principle for the problem (1.1–1.3). The
obvious idea is to use the strong solution (U, C) as a test function in the relative energy inequality
(3.4). To this end, the strong solutions must belong to the regularity class specified in Theorem
3.1.

4.1 Strong solutions

Definition 4.1. Let (Ω,B, {Ft}t≥0,P) be a stochastic basis with a complete right-continous fil-
tration and let W1,W2 be {Ft}–cylindrical Wiener processes. Let (U0, C0) be an F0-measurable
random variable in the space V . A pair (U, C) and an {Ft}–stopping time τ is called a local strong
pathwise solution for system (1.1) if (U, C)(t ∧ τ) is an Ft-adapted process in V such that:

(U, C) ∈ L2(Ω, L∞(0, T,V)),

(U, C)1t≤τ ∈ L2(Ω, L2(0, T, V2)× L2(0, T,W3);
(4.1)
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it holds P-a.s.:

U(t ∧ τ) +

∫ t∧τ

0

(−ν∆U + (U · ∇)U + εdiv(∇C ⊗∇C)dt′ = U0 +

∫ t∧τ

0

σ1(U, C)dW1,

C(t ∧ τ) +

∫ t∧τ

0

(−ε∆C + U · ∇C +
1

ε
f(C))dt′ = C0 +

∫ t∧τ

0

σ2(U, C)dW2

(4.2)

for any t ≥ 0.

In what follows we give some brief details concerning the existence of a local strong pathwise
solution. Let

GN(r) = min

{
1;
N

r

}
, r > 0.

Tachim–Medjo [17] considered the following regularized system

dU +∇p = ν∆U−
[
GN (‖U‖H1) (U · ∇)U− εGN (‖(U, C)‖V) div (∇C ⊗∇C)

]
dt

+ σ1(U, C)dW1,

dC = ε∆C −
[
GN (‖(U, C)‖V) U · ∇C − 1

ε
f(C)

]
dt+ σ2(U, C)dW2,

∇ ·U = 0,

(4.3)

U = 0,
∂C

∂n
= 0 on ∂Q, (4.4)

U(0, ·) = U0, C(0, ·) = C0. (4.5)

As shown in [17, Theorem 1], the regularized system (4.3–4.5) admits a global-in-time strong
solution (UN , CN), unique in the regularity class (4.1), whenever

(U0, C0) ∈ L2(Ω,V).

Obviously, any such solution (UN , CN), with the stopping time

τN = inf

{
t ∈ [0, T ]

∣∣∣ ‖(U(t, ·), C(t, ·))‖V ≥
N

2

}
, inf{∅} ≡ T,

represents a strong solution of (4.2). Moreover,

τN > 0 whenever ‖(U0, C0)‖V <
N

2
P − a.s.
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4.2 Weak-strong pathwise uniqueness

We are ready to establish the pathwise weak–strong uniqueness principle. In order to use the
relative energy inequality and prove that the two solutions coincide, we need to show that, in
a certain sense, the relative energy represents a distance between them. Similar result in the
deterministic context was obtained in [12]. We claim the following lemma:

Lemma 4.2. Let c0 ∈ W1 satisfy

−1 ≤ c0 ≤ 1 P − a.s.

Let (u, c), (U, C) satisfy (2.8) (with the same W2),

c, C ∈ L2(Ω, L∞(0, T,W1) ∩ L2(0, T,W2)),

C(0, ·) = c(0, ·) = c0 P − a.s.

Then

E( sup
r∈[0,t]

|c(r)− C(r)|2L2(Q))
<∼ E

( ∫ t

0

E(u, c|U, C)dr
)
. (4.6)

Proof. By definition, the functions c, C satisfy (2.8). Therefore we can use directly Itô’s calculus
to obtain

|(c− C)(r)|2L2(Q) + ε

∫ r

0

|∇(c− C)(s)|2ds ≤ |
∫ r

0

(u · ∇c−U · ∇C, c− C)L2(Q)ds|

1

ε

∫ r

0

|(f(c)− f(C), c− C)L2(Q)|ds+ |
∫ r

0

∑
k≥1

(c− C, σ2
k(u, c)− σ2

k(U, C))L2(Q)dW
2
k |

+
1

2

∫ r

0

∑
k≥1

|σ2
k(u, c)− σ2

k(U, C)|2L2(Q)ds.

(4.7)

Applying the Burkholder-Davis-Gundy inequality and using the properties of σ2, we have:

E( sup
r∈[0,t]

|
∫ r

0

∑
k≥1

(c− C, σ2
k(u, c)− σ2

k(U, C))L2(Q)dW
2
k |)

<∼ E
( ∫ t

0

∑
k≥1

(c− C, σ2
k(u, c)− σ2

k(U, C))2
L2(Q)ds

)1/2

≤ 1

2
E( sup

r∈[0,t]

|c− C|2L2(Q)) + kE
( ∫ t

0

|c− C|2L2(Q)dr
)
,

(4.8)

where k is a positive constant.
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Integrating by parts and using solenoidality of the velocity, we have (see [12] for more details):∫
Q

(u · ∇c−U · ∇C)(c− C)dx = −
∫
Q

C∇(c− C) · (u−U)dx, (4.9)

which implies:

E
(

sup
r∈[0,t]

|
∫ r

0

∫
Q

(u · ∇c−U · ∇C)(c− C)dx|
)

≤ E
( ∫ t

0

|C|L∞(Q)|∇(c− C)|L2(Q)|u−U|L2(Q)dr
)
≤ E

∫ r

0

E(u, c|U, C)ds,

(4.10)

where we have used the fact that the concentration difference remains in [−1, 1].
Since f is globally Lipschitz, we have:

E
(1

ε

∫ r

0

|(f(c)− f(C), c− C)L2(Q)|ds
) <∼ E

( ∫ r

0

|c− C|2L2(Q)ds
)
.

Finally, we obtain

E( sup
r∈[0,t]

|c− C|2L2(Q))
<∼ E

∫ t

0

E(u, c|U, C)ds+ E
( ∫ t

0

sup
r∈[0,s]

|c− C|2L2(Q)ds
)
; (4.11)

therefore the (deterministic) Gronwall lemma yields the desired conclusion:

E( sup
r∈[0,t]

|c− C|2L2(Q))
<∼ E

∫ t

0

E(u, c|U, C)ds. (4.12)

We are now able to prove the pathwise weak-strong uniqueness:

Theorem 4.3. Let ((Ω,B, {Ft}t≥0,P),u, c,W = (W1,W2)) be a dissipative martingale solution
to the Navier-Stokes-Allen-Cahn system (1.1 - 1.3), and let (U, C), with a stopping time τ , be a
strong solution of the same problem in the sense of Definition 4.1, defined on the same stochastic
basis with the same Wiener processes, and with the same initial data:

u(0, ·) = U(0, ·), c(0, ·) = C(0, ·) P − a.s.

and such that −1 ≤ C(0, ·) ≤ 1 P − a.s.
Then

u(· ∧ τ) = U(· ∧ τ), c(· ∧ τ) = C(· ∧ τ) P − a.s.
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Proof. Let us introduce the following stopping times:

τL = τ 1
L ∧ τ 2

L ∧ τ,

τ 1
L = inf

{
t ∈ [0, T ]

∣∣∣ ‖(U, C)(t ∧ τ)‖V > L
}
,

τ 2
L = inf

{
t ∈ [0, T ]

∣∣∣ ‖1t≤τ (U, C)‖L2(0,t;H2(Q)×H3(Q)) > L
}

Since (U, C) is a strong solution, we have P(limL→∞ τL = τ) = 1.
As (U, C) solves (4.2), the remainder term in the relative energy inequality (3.4) takes the

form:

R(u, c|U, C) =
1

2

∑
k≥1

∫
Q

|σ1
k(u, c)− σ1

k(U, C)|2dx

+
ε

2

∑
k≥1

∫
Q

|∇(σ2
k(u, c)− σ2

k(U, C))|2dx+
3∑
i=1

Ri,

(4.13)

where

R1 =

∫
Q

(U · ∇)U · u− (u · ∇)U · udx,

R2 =− 2(ε∆c− 1

ε
f(c), ε∆C − 1

ε
f(C))L2(Q) + |ε∆C − 1

ε
f(C)|2L2(Q)

− (ε∆C, ε∆C − 1

ε
f(C))L2(Q) − (

1

ε
f(c), ε∆c− 1

ε
f(c))L2(Q)

+ (ε∆C, ε∆c− 1

ε
f(c))L2(Q) + (ε∆c, ε∆C − 1

ε
f(C))L2(Q),

(4.14)

and

R3 =ε

∫
Q

∇(U− u) : (∇C ⊗∇C)dx+ ε

∫
Q

∇c · ∇(U · ∇C)dx

− ε
∫
Q

(∇c⊗∇c) : ∇Udx+ ε

∫
Q

(U · ∇C − u · ∇c)∆Cdx.

(4.15)

Integrating by parts and using ∇ · u = ∇ ·U = 0 , we get:

R1 =

∫
Q

(U− u)⊗U : ∇(U− u)dx. (4.16)

As for R2, after some immediate manipulations, we obtain:

R2 =

∫
Q

1

ε
(f(C)− f(c), ε∆c− 1

ε
f(c)− ε∆C +

1

ε
f(C))dx. (4.17)
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The last term is treated in exactly as in the determinist case (see [12] for more details):

R3 = ε

∫
Q

∆(c− C)U · ∇(c− C)dx− ε
∫
Q

∆C(u−U) · ∇(C − c)dx. (4.18)

After several successive integrations by parts, the last integral in (4.18) reads

ε

∫
Q

∆C(u−U) · ∇(C − c)dx

= −ε
∫
Q

∇C ⊗∇(C − c) : ∇(u−U)dx− ε
∫
Q

∇C ⊗ (u−U) : ∇⊗∇(C − c)dx

= −ε
∫
Q

∇C ⊗∇(C − c) : ∇(u−U)dx+ ε

∫
Q

∇(C − c)⊗ (u−U) : ∇⊗∇Cdx

= −ε
∫
Q

∇C ⊗∇(C − c) : ∇(u−U)dx− ε
∫
Q

∇(C − c)⊗∇C : ∇(u−U)dx

− ε
∫
Q

∆(C − c)(u−U) · ∇Cdx.

(4.19)

Thus we finally obtain

R3 =ε

∫
Q

∆(c− C)U · ∇(c− C)dx+ ε

∫
Q

∇C ⊗∇(c− C) : ∇(u−U)dx

+ ε

∫
Q

∇(C − c)⊗∇C : ∇(u−U)dx+ ε

∫
Q

∆(C − c)(u−U) · ∇Cdx

=
4∑
i=1

R3,i.

(4.20)

Our goal is to control each integral by means of R(u, c|U, C). Using the Lipschitz continuity
of σ1 and σ2, we get:

1

2

∑
k≥1

∫
Q

|σ1
k(u, c)− σ1

k(U, C)|2dx+
ε

2

∑
k≥1

∫
Q

|∇(σ2
k(u, c)− σ2

k(U, C))|2dx

<∼
∫
Q

|U− u|2dx+

∫
Q

|c− C|2dx+

∫
Q

|∇(c− C)|2dx.

(4.21)

For the convective part of the remainder, we get

|R1| ≤
ν

4

∫
Q

|∇(U− u)|2dx+ k1|U|2L∞(Q)

∫
Q

|U− u|2dx. (4.22)

As for R2, we use the fact that f is globally Lipschitz to deduce

|R2| ≤
1

6

∫
Q

|ε∆c− 1

ε
f(c)− ε∆C +

1

ε
f(C)|2dx+ k2

∫
Q

|c− C|2dx. (4.23)
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Finally, each term in R3 is bounded as follows:

|R3,1| ≤
1

12

∫
Q

|ε∆(c− C)|2dx+ k3|U|2L∞(Q)

∫
Q

|∇(c− C)|2dx

≤ 1

6

∫
Q

|ε∆c− 1

ε
f(c)− ε∆C +

1

ε
f(C)|2dx+ k4

∫
Q

|c− C|2dx

+ k3|U|2L∞(Q)

∫
Q

|∇(c− C)|2dx,

(4.24)

|R3,2 +R3,3| ≤
ν

4

∫
Q

|∇(U− u)|2dx+ k5|∇C|2L∞(Q)

∫
Q

|∇(c− C)|2dx, (4.25)

and,

|R3,4| ≤
1

12

∫
Q

|ε∆(c− C)|2dx+ k6|∇C|2L∞(Q)

∫
Q

|u−U|2dx

≤ 1

6

∫
Q

|ε∆c− 1

ε
f(c)− ε∆C +

1

ε
f(C)|2dx+ k4

∫
Q

|c− C|2dx

+ k6|∇C|2L∞(Q)

∫
Q

|u−U|2dx.

(4.26)

Now, consider two arbitrary stopping times such that 0 ≤ τa ≤ τb ≤ τL. Let t be such that
τa ≤ t ≤ τb. From the relative energy inequality (3.4) we deduce that:

E(u, c|U, C)(t) +

∫ t

τa

∫
Q

|∇(u−U)|2dxdt′ +

∫ t

τa

∫
Q

|ε∆c− 1

ε
f(c)− ε∆C +

1

ε
f(C)|2dxdt′

<∼ E(u, c|U, C)(τa) +

∫ t

τa

∫
Q

|c− C|2dxdt′

+

∫ t

τa

(1 + |U |2L∞(Q) + |∇C|2L∞(Q))E(u, c|U, C)(t′)dt′

+ |MRE(t)−MRE(τa)|.

(4.27)

Passing expectations in (4.27) we get

E( sup
t∈[τa,τb]

E(u, c|U, C)(t)) + E(

∫ τb

τa

∫
Q

|∇(u−U)|2dxdt′)

+ E(

∫ τb

τa

∫
Q

|ε∆c− 1

ε
f(c)− ε∆C +

1

ε
f(C)|2dxdt′)

<∼ E(E(u, c|U, C)(τa)) + E(

∫ τb

τa

∫
Q

|c− C|2dxdt′)

+ E(

∫ t

τa

(1 + |U |2L∞(Q) + |∇C|2L∞(Q))E(u, c|U, C)(t′)dt′)

+ E( sup
t∈[τa,τb]

|MRE(t)−MRE(τa)|).

(4.28)
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The last term in (4.28) is estimated using the Burkholder-Davis-Gundy inequality:

E( sup
t∈[τa,τb]

|
∫ t

τa

∫
Q

(u−U) · (σ1(u, c)− σ2(U, C))dxdW 1|)

<∼ E(

∫ τb

τa

|u−U|2L2(Q)(|u−U|2L2(Q) + |c− C|2H1(Q))dt)
1/2

≤ 1

4
E( sup

t∈[τa,τb]

E(u, c|U, C)(t)) + E(

∫ τb

τa

|c− C|2L2(Q)dt) + k7E(

∫ τb

τa

E(u, c|U, C)(t)dt),

(4.29)

and similarly:

E( sup
t∈[τa,τb]

|ε
∫ t

τa

∫
Q

∇(c− C) · ∇(σ2(u, c)− σ2(U, C))dxdW 2|)

≤ 1

4
E( sup

t∈[τa,τb]

E(u, c|U, C)(t)) + E(

∫ τb

τa

|c− C|2L2(Q)dt) + k8E(

∫ τb

τa

E(u, c|U, C)(t)dt).

(4.30)

Inserting these estimates into (4.28), we obtain the following inequality:

E( sup
t∈[τa,τb]

E(u, c|U, C)(t)) + E(

∫ τb

τa

∫
Q

|∇(u−U)|2dxdt′)

+ E(

∫ τb

τa

∫
Q

|ε∆c− 1

ε
f(c)− ε∆C +

1

ε
f(C)|2dxdt′)

<∼ E(E(u, c|U, C)(τa)) + E(

∫ τb

τa

|c− C|2L2(Q)dt)

+ E(

∫ τb

τa

(1 + |U |2L∞(Q) + |∇C|2L∞(Q))E(u, c|U, C)(t′)dt′).

(4.31)

Taking into account the Sobolev embedding H2(Q) into L∞(Q), we can easily check that since
(U,C) ∈ L2(Ω, L2(0, τ ;H2(Q)×H3(Q))), we have∫ τL

0

(1 + |U |2L∞(Q) + |∇C|2L∞(Q))dt < κ(L), a.s.,

where κ(L) is a positive constant depending on L.
We are now able to apply the stochastic Gronwall lemma (Lemma 5.1 stated in the Appendix,

we obtain:

E( sup
t∈[0,τ ]

E(u, c|U, C)(t))
<∼ E(E(u, c|U, C)(0) +

∫ τ

0

|c− C|2L2(Q)). (4.32)

Using the fact that the two solutions (u, c) and (U, C) coincide at origin, as well as (4.6), we
end up with:

E( sup
t∈[0,τ ]

E(u, c|U, C)(t))
<∼ E(

∫ τ

0

E(u, c|U, C)(t)dt), (4.33)

18



and by use of deterministic Gronwall lemma, we finally obtain that the two solutions (u, c) and
(U, C) coincide on (0, τL).

4.3 Weak-strong uniqueness in law

Previously we proved that the strong solution and the dissipative weak martingale solution defined
on the same probability space and emanating from the same initial data coincide. Typically,
however, the martingale solution is defined on a different probability basis with different Wiener
processes (W1,W2), whereas the only relevant piece of information is that the law of their initial
data coincide. To handle such a situation, we restrict ourselves to the case when the strong solution
is stopped when leaving a Borel set. More specifically, for a Borel set B ⊂ V and an Ft−adapted
process (U, C) ∈ C([0, T ];V), we denote

τB = τB[U, C] = inf
{
t ∈ [0, T ]

∣∣∣ (U, C) ∈ Bc
}
, inf{∅} = T.

We claim the following result:

Theorem 4.4. Let (c,u) be a dissipative martingale solution of the Navier–Stokes–Allen–Cahn
system (1.1–1.3) defined on a probability basis (Ωm,Bm,Pm, {Fmt }t≥0), with the associated Wiener
processes Wm = (W1,m,W2,m). Let (U, C) be a strong solution of the same problem on a proba-
bility basis (Ωs,Bs,Ps, {Fst}t≥0) with the Wiener processes Ws = (W1,s,W2,s), associated to the
initial condition (U0, C0), and a stopping time τ s,

τ s = τB[(U, C)] for some Borel set B ⊂ Vcontaining the initial condition (U0, C0).

Finally, let

LV [u(0, ·), c(0, ·)] = LV [U(0, ·), C(0, ·)] = µ0, µ0 {−1 ≤ c0 ≤ 1} = 1.

Then there exists an {Fmt }-stopping time τm > 0 such that

(u, c)(· ∧ τm) ∈ C([0, T ];V) Pm − a.s.,

and
LC([0,T ];V) [u(· ∧ τm), c(· ∧ τm)] = LC([0,T ];V) [U(· ∧ τ s), C(· ∧ τ s)] .

Proof. In accordance with [17, Theorem 1], the regularized problem (4.3–4.5), solved with the
initial data (U(0, ·), C(0, ·)) admits a unique solution (UN , CN) defined on (Ωs,Bs,Ps, {Fst}t≥0)
that represents a strong solution with a stopping time

τN = inf

{
t ∈ [0, T ]

∣∣∣ ‖(U(t, ·), C(t, ·))‖V ≥
N

2

}
, inf{∅} ≡ T.
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Moreover, using the arguments of the proof of Theorem 4.3, we can show that

(UN , CN)(t ∧ (τN ∧ τ s)) = (U, C)(t ∧ (τN ∧ τ s)), t ∈ [0, T ], Ps − a.s.,

in particular,
τN ∧ τ s = τN ∧ τB[UN , CN ].

Now, we can solve the regularized problem on the space (Ωm,Bm,Pm, {Fmt }t≥0) obtaining the
strong solution (uN , cN). By virtue of the infinite dimensional version of the Yamada–Watanabe
theorem, see Roeckner, Scmuland, Zhang [15], we have

LC([0,T ];V)[(u
N , cN)] = LC([0,T ];V)[(U

N , CN)].

Moreover, for
τB = τB[uN , cN ]

we get the equality of laws

LC([0,T ];V)[(u
N , cN)(· ∧ (τN ∧ τB))] = LC([0,T ];V)[(U

N , CN)(· ∧ (τN ∧ τB[(uN , CN)]))]

= LC([0,T ];V)[(U
N , CN)(· ∧ (τN ∧ τ s))] = LC([0,T ];V)[(U, C)(· ∧ (τN ∧ τ s))].

(4.34)

On the other hand (uN , cN) is a strong solution with the stopping time τN . Consequently, in
accordance with the pathwise weak–strong uniqueness principle established in Theorem 4.3, we
have

(uN , cN)(t ∧ τN) = (u, c)(t ∧ τN).

As (U, C) is a strong solution, we have

Ps
{

lim
N→∞

(τN ∧ τ s) = τ s
}

= 1;

whence, letting N →∞ in LC([0,T ];V)[(u, c)(· ∧ (τN ∧ τB))] = LC([0,T ];V)[(U, C)(· ∧ (τN ∧ τ s))], we
get the desired conclusion with

τm = lim
N→∞

(
τN ∧ τB[uN , cN ]

)
.

5 Appendix

We used the following stochastic Gronwall lemma (see e.g. [9] for the proof of this result):
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Lemma 5.1. Let us fix T > 0 and assume that X, Y, Z,R : Ω × [0, T ) → R are non-negative
stochastic processes. Let τ ≤ T be a stopping time such that:

E
( ∫ τ

0

(RX + Z)ds
)
<∞, and

∫ τ

0

R < κ, a.s., (5.1)

for some fixed positive constant κ.
Suppose that for all stopping times 0 ≤ τa ≤ τb ≤ τ

E
(

sup
t∈[τa,τb]

X +

∫ τb

τa

Y ds
)
≤ κ0E

(
X(τa) +

∫ τb

τa

(RX + Z)ds
)
, (5.2)

where κ0 is a positive constant independent of τa and τb. Then:

E
(

sup
t∈[0,τ ]

X +

∫ τ

0

Y ds
)
≤ κ1E

(
X(0) +

∫ τ

0

Zds
)
, (5.3)

where κ1 is a constant depending only on κ0, T and κ.
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[11] L. Goudenège and L. Manca. Asymptotic properties of stochastic Cahn-Hilliard equation
with singular nonlinearity and degenerate noise. Stochastic Process. Appl., 125(10):3785–
3800, 2015.
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