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EQUIVARIANT MAPS BETWEEN CERTAIN G-SPACES
WITH G = O(n — 1,1).
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Abstract. In this note, there are determined all biscalars of a system of s < n linearly
independent contravariant vectors in n-dimensional pseudo-Euclidean geometry of index
one. The problem is resolved by finding a general solution of the functional equation
F(Allt, Ag, e ,Al:) = (sign(det A))F(llt, Y. ,1:) for an arbitrary pseudo-orthogonal matrix

A of index one and the given vectors Ul U
S
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1. INTRODUCTION

For n > 2 consider the matrix E; = [e;;] € GL(n, R), where

0 for i # j
eij =4 +1 fori=j+#n

-1 fori=j5=n

Definition 1. A pseudo-orthogonal group of index 1 is a subgroup of the group
GL(n,R) satisfying

G=0(Mn-1,1)={A: AcGL(n,R)AAT -E, - A= E}.
Denoting £(A) = sign(det A) = det A we have ¢(4 - B) = ¢(A) - ¢(B).

The class of G-spaces (M, G, fo), where f, is an action of G on the space M,,
constitutes a category if we take as morphisms equivariant maps Fo5: My — Mg,
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i.e. the maps which satisfy the condition

1) AN N N\ Faslfalz, A) = f5(Fap(), A).

a,BrzeEM, AEG

In particular, among the objects of this category are: the G-space of contravariant

vectors
(2) (Rn7G7fl)v where /\ /\ fl(uvA):A'u»
u€ER™ AcG
the G-space of scalars
(3) (R,G, f2), where N\ A faz,4) ==,
z€R AeG
and the G-space of biscalars
(4) (R, G, f3), where \ A fa(z,4) =¢(4) .
TER AEG
For s =1,2,...,n,let a system of linearly independent vectors Uy, ..U be given.

Every equivariant map F' of this system into M = R satisfies the equality (1), which
applying the transformation rules (2) and (3) may be rewritten in the form

(5) /\F(A?f,Ag,...,A?:):F(qf,g,...,?:).
AeG

For a pair u,v of contravariant vectors the map p(u,v) = u? - By - v satisfies (5),
namely p(Au, Av) = (Au)T - By - (Av) = uT (ATE1 A)v = uT Eyv = p(u,v).
In [6] it was proved that the general solution of the equation (5) is of the form

(6) Fluu,.....u) = O(p(u,u)) for i<j=12. . s<n
S (2]
where O is an arbitrary function of Q(STH) variables.

In this paper we are going to determine all equivariant maps F' of this system of
vectors into M3 = R. The problem is equivalent to finding the general solution of the
functional equation (1), which applying the transformations rules (2) and (4) may
be rewritten in the form

(7) A/G\GF(A%L,Ag,...,AzsL) = E(A)F(%L,g,...,g).
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2. TYPE OF A SUBSPACE

Let be given a sequence Ul ooy Uy U of linearly independent vectors. Let
S n

L, = L(?f, Uy ,u) denote the linear subspace generated by the vectors Uy
S

»

and p | Ly the restriction of the form p to the subspace Ls.
Definition 2. The subspace L, is called:

1. Euclidean subspace if the form p | Ly is positive definite,
2. pseudo-Euclidean subspace if the form p | Ly is regular and indefinite,
3. singular subspace if the form p | L is singular.
If we denote
Dij zp(?,vj) for i,5=1,2,...,n,

and
P11 P12 ... DPis
P(S):P(Tf’g,,g)z p21 p22 pzs =det[p;;]] fors=1,2,....n,
Ps1 Ps2 .- Dss

then the above three cases are equivalent to P(s) > 0,P(s) < 0 and P(s) = 0,
respectively.

Let us consider an isotropic cone Ko = {u: u € R™ Ap(u,u) = 0 Au # 0}. It
is an invariant and transitive subset. Every isotropic vector v € Ky determines an

. . . . . . . 1 2 n—1
isotropic direction, which is, according to v™ # 0 and v = V" [, 2=, ..., L, 17 =

n—1
u™[qt, ¢?, ..., q" L 1)T with Y (¢%)? = 1, equivalent to a point g belonging to the
i=1

sphere S"2.
Let us recall that for A € G

(8) W' = det(AviL, . Au) = e(A) det(vib, cou) =¢e(4) - W
n n
Therefore, for s = n the mapping det satisfies the functional equation (7).
Let be given a system Ul U of n — 1 linearly independent vectors for which

ne

P(n —1) = 0. The singular subspace L(qf, R ul) determines exactly one isotropic

e
direction ¢ € S™"~2 whose representative is of the form v = v"-[¢}, ..., ¢" "1, 1]T € K.
From p(u,v) =0 for i =1,2,... n — 1 it follows that each vector u is of the form
1 K3

n—1 T ]

9) u=|u,. . u"t Zuqu} where  det [u]7 7! # 0.

1 1 K3 h—1 1 K3
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Let us consider the two 1-forms det(zlt, e By Uy, U z) and p(v, z). Both
S— S n—

these forms vanish on the subspace L(?f, ceey ul), and consequently there exists
e
uniquely determined number Bs(zlt, AU TAN ul) such that
S n—
10 det(u,... =-B . .
(10) ety ULV Uy, U, T) s(uus u ) p(v, @)

Taking in mind the properties of the mappings p and det from (10) it follows imme-
diately that for arbitrary A € G it holds that

(11) B, = BS(ATf,Ag,...,A gl) =¢e(A) ~BS(111,12L,..., u ) =¢e(A) - Bs.

n—1

From (9) and (10) we get in terms of coordinates the formula

T Vit
1 1
U 1 m n—1
s—1 s—1
(12) BS(%L,.. ,ngl): gt gt for s=1,2,...,n—1.
U 1 m n—1
s+1 s+1
wl ... oyl
n—1 n—1
We have B2(u,...,u,..., u ) = P(u,..., u, u,..., u ), so at least one of the
A | s n—1 1 s—1 s+1 n—1

quantities By is different from zero (see [6], Theorem 15 ).

3. GENERAL SOLUTION OF THE FUNCTIONAL EQUATION (7)

Theorem 3. The general solution of the functional equation (7) in the case s = n
is of the form
F(qf,g, coou) =0(p(u,u)) - det(if,g, cou)

n i g n

wherei < j=1,2,...,n and © is an arbitrary function of % variables.

Proof. If F(zlt, Y. ,u) is the general solution of the functional equation (7),
then also F(zlt, N [det(vib, ...,u)]71 is the general solution of the equation (5).

By virtue of (6) the statement of the theorem is true. O

Theorem 4. The general solution of the functional equation (7) in the case
s=mn—1and P(n—1) =0 is of the form
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wherei < j=1,2,...,n—1, © is an arbitrary function of "(nT_l) variables and B is
any nonzero equivariant among By, Bo, ..., B,_1.

Proof. The proof runs analogously as the proof of Theorem 3. (]
Theorem 5. The general solution of the functional equation (7) is trivial,
F(qf’qf""’g)zoﬂ

ifs<n—1lors=n—1and P(n—1)#0.

Proof. If P(n—1) # 0, there exists a vector v such that p(v,v) # 0, and v
is orthogonal (with respect to p) to the subspace W generated by Ulyeooy U The
whole space coincides with the direct sum [v] @ W. If s < n — 1 then there exists a
vector v such that p(v,v) # 0 and v is orthogonal to the vectors Ul U Let W
denote this time the orthogonal complement of the vector v. Obviously, UY...,u €
W, and the whole space coincides with the direct sum [v] ® W. Now, we take A €
O(n —1,1) defined by A-v = —v and A |y = id. We have £(4) = —1. Then we get
either

Fu,uy..., u)=F(Au,Au,...,A u )=—F(u,u,..., u )
12 n—1 1772 n—1 172 n—1
or
F(Tf,?ll,ﬂsl) = F(A?f,Ag,...,Ag) = —F(Tf,g,...,g).

In both cases we obtain F' = 0. O
The statements proven in this section we can formulate in the following
Theorem 6. The general solution of the functional equation (7) is of the form

0 if s<n—1lors=n—1 and P(n—1)#0
n—1
F(u,...,u) = > Or(p(u,u)) - Bk(zf,..., ul) if s=n—-1 and P(n—1)=0
1 s k=1 [ n—
O(p(u,u)) -det(?, oou) if s=n
i g n

where i < j = 1,2,...,s and ©,04,...,0,,_1 are arbitrary functions of S(SQ—H)

variables.
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