EQUIVARIANT MAPS BETWEEN CERTAIN G-SPACES WITH G = O(n-1,1).

Aleksander Misiak, Eugeniusz Stasiak, Szczecin

(Received October 23, 1998, revised November 28, 2000)

Abstract. In this note, there are determined all biscalars of a system of $s\leqslant n$ linearly independent contravariant vectors in n-dimensional pseudo-Euclidean geometry of index one. The problem is resolved by finding a general solution of the functional equation $F(Au,Au,\ldots,Au)=(\mathrm{sign}(\det A))F(u,u,\ldots,u)$ for an arbitrary pseudo-orthogonal matrix A of index one and the given vectors u,u,\ldots,u .

Keywords: G-space, equivariant map, vector, scalar, biscalar

MSC 2000: 53A55

1. Introduction

For $n \ge 2$ consider the matrix $E_1 = [e_{ij}] \in GL(n, \mathbb{R})$, where

$$e_{ij} = \begin{cases} 0 & \text{for } i \neq j \\ +1 & \text{for } i = j \neq n \\ -1 & \text{for } i = j = n \end{cases}$$

Definition 1. A pseudo-orthogonal group of index 1 is a subgroup of the group $GL(n, \mathbb{R})$ satisfying

$$G = O(n-1,1) = \{A \colon A \in GL(n,\mathbb{R}) \land A^T \cdot E_1 \cdot A = E_1\}.$$

Denoting $\varepsilon(A) = \operatorname{sign}(\det A) = \det A$ we have $\varepsilon(A \cdot B) = \varepsilon(A) \cdot \varepsilon(B)$.

The class of G-spaces $(M_{\alpha}, G, f_{\alpha})$, where f_{α} is an action of G on the space M_{α} , constitutes a category if we take as morphisms equivariant maps $F_{\alpha\beta} \colon M_{\alpha} \longrightarrow M_{\beta}$,

i.e. the maps which satisfy the condition

(1)
$$\bigwedge_{\alpha} \bigwedge_{\beta} \bigwedge_{x \in M_{\alpha}} F_{\alpha\beta}(f_{\alpha}(x, A)) = f_{\beta}(F_{\alpha\beta}(x), A).$$

In particular, among the objects of this category are: the G-space of contravariant vectors

(2)
$$(\mathbb{R}^n, G, f_1), \text{ where } \bigwedge_{u \in \mathbb{R}^n} \bigwedge_{A \in G} f_1(u, A) = A \cdot u,$$

the G-space of scalars

(3)
$$(\mathbb{R}, G, f_2), \text{ where } \bigwedge_{x \in \mathbb{R}} \bigwedge_{A \in G} f_2(x, A) = x,$$

and the G-space of biscalars

(4)
$$(\mathbb{R}, G, f_3), \text{ where } \bigwedge_{x \in \mathbb{R}} \bigwedge_{A \in G} f_3(x, A) = \varepsilon(A) \cdot x.$$

For s = 1, 2, ..., n, let a system of linearly independent vectors u, u, ..., u be given. Every equivariant map F of this system into $M_2 = \mathbb{R}$ satisfies the equality (1), which applying the transformation rules (2) and (3) may be rewritten in the form

(5)
$$\bigwedge_{A \in G} F(A_1, A_2, \dots, A_n) = F(\underbrace{u, u, \dots, u}_{s}).$$

For a pair u, v of contravariant vectors the map $p(u, v) = u^T \cdot E_1 \cdot v$ satisfies (5), namely $p(Au, Av) = (Au)^T \cdot E_1 \cdot (Av) = u^T (A^T E_1 A)v = u^T E_1 v = p(u, v)$.

In [6] it was proved that the general solution of the equation (5) is of the form

(6)
$$F(u, u, \dots, u) = \Theta(p(u, u)) \text{ for } i \leq j = 1, 2, \dots, s \leq n$$

where Θ is an arbitrary function of $\frac{s(s+1)}{2}$ variables.

In this paper we are going to determine all equivariant maps F of this system of vectors into $M_3 = \mathbb{R}$. The problem is equivalent to finding the general solution of the functional equation (1), which applying the transformations rules (2) and (4) may be rewritten in the form

(7)
$$\bigwedge_{A \in G} F(A_1^u, A_2^u, \dots, A_s^u) = \varepsilon(A)F(\underbrace{u}_1, \underbrace{u}_2, \dots, \underbrace{u}_s^u).$$

2. Type of a subspace

Let be given a sequence $u, u, \ldots, u, \ldots, u$ of linearly independent vectors. Let $L_s = L(\underbrace{u, u, \ldots, u}_s)$ denote the linear subspace generated by the vectors $\underbrace{u, u, \ldots, u}_s$ and $p \mid L_s$ the restriction of the form p to the subspace L_s .

Definition 2. The subspace L_s is called:

- 1. Euclidean subspace if the form $p \mid L_s$ is positive definite,
- 2. pseudo-Euclidean subspace if the form $p \mid L_s$ is regular and indefinite,
- 3. singular subspace if the form $p \mid L_s$ is singular.

If we denote

$$p_{ij} = p(u, u)$$
 for $i, j = 1, 2, \dots, n$,

and

$$P(s) = P(\underbrace{u}_{1}, \underbrace{u}_{2}, \dots, \underbrace{u}_{s}) = \begin{vmatrix} p_{11} & p_{12} & \dots & p_{1s} \\ p_{21} & p_{22} & \dots & p_{2s} \\ \dots & \dots & \dots & \dots \\ p_{s1} & p_{s2} & \dots & p_{ss} \end{vmatrix} = \det [p_{ij}]_{1}^{s} \quad \text{for } s = 1, 2, \dots, n,$$

then the above three cases are equivalent to P(s) > 0, P(s) < 0 and P(s) = 0, respectively.

Let us consider an isotropic cone $K_0 = \{u \colon u \in \mathbb{R}^n \land p(u,u) = 0 \land u \neq 0\}$. It is an invariant and transitive subset. Every isotropic vector $v \in K_0$ determines an isotropic direction, which is, according to $v^n \neq 0$ and $v = v^n [\frac{v^1}{v^n}, \frac{v^2}{v^n}, \dots, \frac{v^{n-1}}{v^n}, 1]^T = u^n [q^1, q^2, \dots, q^{n-1}, 1]^T$ with $\sum_{i=1}^{n-1} (q^i)^2 = 1$, equivalent to a point q belonging to the sphere S^{n-2} .

Let us recall that for $A \in G$

(8)
$$W' = \det(A_1^u, \dots, A_n^u) = \varepsilon(A) \det(u, \dots, u) = \varepsilon(A) \cdot W.$$

Therefore, for s = n the mapping det satisfies the functional equation (7).

Let be given a system $u, \underbrace{u}_1, \ldots, \underbrace{u}_{n-1}$ of n-1 linearly independent vectors for which P(n-1)=0. The singular subspace $L(\underbrace{u}_1,\ldots,\underbrace{u}_{n-1})$ determines exactly one isotropic direction $q\in S^{n-2}$ whose representative is of the form $v=v^n\cdot [q^1,\ldots,q^{n-1},1]^T\in K_0$. From $p(\underbrace{u}_i,v)=0$ for $i=1,2,\ldots,n-1$ it follows that each vector \underbrace{u}_i is of the form

(9)
$$u_i = \left[u_i^1, \dots, u_i^{n-1}, \sum_{k=1}^{n-1} u_i^k q^k \right]^T \text{ where } \det \left[u_i^j \right]_1^{n-1} \neq 0.$$

Let us consider the two 1-forms $\det(u, \ldots, u, v, u, v, u, \ldots, u, u, u)$ and p(v, x). Both these forms vanish on the subspace $L(u_1, \dots, u_n)$, and consequently there exists uniquely determined number $B_s(\underbrace{u,\ldots,u}_s,\ldots,\underbrace{u}_{n-1})$ such that

(10)
$$\det(u, \dots, u_{s-1}, v, u_{s+1}, \dots, u_{n-1}, x) = -B_s(u, \dots, u_{s-1}, \dots, u_{n-1}) \cdot p(v, x).$$

Taking in mind the properties of the mappings p and det from (10) it follows immediately that for arbitrary $A \in G$ it holds that

(11)
$$B'_s = B_s(A_u, A_u, \dots, A_{n-1}) = \varepsilon(A) \cdot B_s(u, u, \dots, u) = \varepsilon(A) \cdot B_s.$$

From (9) and (10) we get in terms of coordinates the formula

We have $B_s^2(\underbrace{u, \dots, u}_{s}, \underbrace{u, \dots, u}_{n-1}) = P(\underbrace{u, \dots, u}_{s-1}, \underbrace{u, \dots, u}_{s-1})$, so at least one of the quantities B_s is different from zero (see [6], Theorem 15).

3. General solution of the functional equation (7)

Theorem 3. The general solution of the functional equation (7) in the case s = nis of the form

$$F(\underbrace{u}_{1},\underbrace{u}_{2},\ldots,\underbrace{u}_{n}) = \Theta(p(\underbrace{u}_{i},\underbrace{u}_{j})) \cdot \det(\underbrace{u}_{1},\underbrace{u}_{2},\ldots,\underbrace{u}_{n})$$

where $i \leq j = 1, 2, ..., n$ and Θ is an arbitrary function of $\frac{n(n+1)}{2}$ variables.

Proof. If $F(u, u, \dots, u)$ is the general solution of the functional equation (7), then also $F(u,\ldots,u) \cdot [\det(u,\ldots,u)]^{-1}$ is the general solution of the equation (5). By virtue of (6) the statement of the theorem is true.

Theorem 4. The general solution of the functional equation (7) in the case s = n - 1 and P(n - 1) = 0 is of the form

$$F(u, \dots, u_{n-1}) = \Theta(p(u, u)) \cdot B(u, \dots, u_{n-1})$$

where $i \leq j = 1, 2, ..., n-1$, Θ is an arbitrary function of $\frac{n(n-1)}{2}$ variables and B is any nonzero equivariant among $B_1, B_2, ..., B_{n-1}$.

Proof. The proof runs analogously as the proof of Theorem 3. \Box

Theorem 5. The general solution of the functional equation (7) is trivial,

$$F(\underbrace{u}_{1},\underbrace{u}_{1},\ldots,\underbrace{u}_{s})\equiv 0,$$

if s < n - 1 or s = n - 1 and $P(n - 1) \neq 0$.

Proof. If $P(n-1) \neq 0$, there exists a vector v such that $p(v,v) \neq 0$, and v is orthogonal (with respect to p) to the subspace W generated by $\underbrace{u,u,\dots,u}_{n-1}$. The whole space coincides with the direct sum $[v] \oplus W$. If s < n-1 then there exists a vector v such that $p(v,v) \neq 0$ and v is orthogonal to the vectors $\underbrace{u,u,\dots,u}_{s}$. Let W denote this time the orthogonal complement of the vector v. Obviously, $\underbrace{u,u,\dots,u}_{s} \in W$, and the whole space coincides with the direct sum $[v] \oplus W$. Now, we take $A \in O(n-1,1)$ defined by $A \cdot v = -v$ and $A \mid_W = \mathrm{id}$. We have $\varepsilon(A) = -1$. Then we get either

$$F(\underbrace{u}_1,\underbrace{u}_2,\ldots,\underbrace{u}_{n-1}) = F(\underbrace{Au}_1,\underbrace{Au}_2,\ldots,\underbrace{Au}_{n-1}) = -F(\underbrace{u}_1,\underbrace{u}_2,\ldots,\underbrace{u}_{n-1})$$

or

$$F(u, u, \dots, u) = F(Au, Au, \dots, Au) = -F(u, u, \dots, u)$$

In both cases we obtain $F \equiv 0$.

The statements proven in this section we can formulate in the following

Theorem 6. The general solution of the functional equation (7) is of the form

$$F(\underbrace{u}_{1},...,\underbrace{u}_{s}) = \begin{cases} 0 & \text{if } s < n-1 \text{ or } s = n-1 \text{ and } P(n-1) \neq 0 \\ \sum\limits_{k=1}^{n-1} \Theta_{k}(p(\underbrace{u}_{i},\underbrace{u}_{j})) \cdot B_{k}(\underbrace{u}_{1},...,\underbrace{u}_{n-1}) & \text{if } s = n-1 \text{ and } P(n-1) = 0 \\ \Theta(p(\underbrace{u}_{i},\underbrace{u}_{j})) \cdot \det(\underbrace{u}_{1},...,\underbrace{u}_{n}) & \text{if } s = n \end{cases}$$

where $i \leq j = 1, 2, ..., s$ and $\Theta, \Theta_1, ..., \Theta_{n-1}$ are arbitrary functions of $\frac{s(s+1)}{2}$ variables.

References

- [1] $\it J.\,Acz\'el,\,S.\,Golgb$: Funktionalgleichungen der Theorie der geometrischen Objekte. P.W.N Warszawa, 1960.
- [2] L. Bieszk, E. Stasiak: Sur deux formes équivalentes de la notion de (r,s)-orientation de la géométrie de Klein. Publ. Math. Debrecen 35 (1988), 43–50.
- [3] J. A. Dieudonné, J. B. Carrell: Invariant Theory. Academic Press, New York, 1971.
- [4] M. Kucharzewski: Über die Grundlagen der Kleinschen Geometrie. Period. Math. Hung. 8 (1977), 83–89.
- [5] E. Stasiak: O pewnym działaniu grupy pseudoortogonalnej o indeksie jeden O(n,1,R) na sferze S^{n-2} . Prace Naukowe P. S., 485, Szczecin, 1993.
- [6] E. Stasiak: Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ. Math. Debrecen 57 (2000), 55–69.

Author's address: Aleksander Misiak, Eugeniusz Stasiak, Instytut Matematyki, Politechnika Szczecińska, Al. Piastów 17, 70-310 Szczecin, Poland.