122 (1997) MATHEMATICA BOHEMICA No. 4, 405-441

FOURIER PROBLEM WITH BOUNDED BAIRE DATA
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Abstract. The Fourier problem on planar domains with time moving boundary is consid-
ered using integral equations. Solvability of those integral equations in the space of bounded
Baire functions as well as the convergence of the corresponding Neumann series are proved.

Keywords: heat equation, boundary value problem

MSC 1991: 31A25, 31A20, 35K05

In [2] the Fourier problem for some regions in the plane R? with time moving
boundary was solved. The solution was expressed by means of a combination of
single and double layer heat potentials (and also of the Weierstrass integral). The
problem was considered on regions of the type

M ={[z,t] € R? ‘ t € (a,b),z> () }
or of the type
M ={[z,t] € R? |t € (a,b),p1(t) <z < alt) },

where ¢, 1, @2 are continuous functions of bounded variation on a compact inter-
val (a,b) [and ¢1(t) < @a(t) on (a,b)]. In [2] only continuous boundary values were
considered. A very simple assertion from functional analysis will enable us to solve
relevant integral equations not only in the space of continuous functions but also in
the space of bounded Baire functions. This makes it possible to solve the Fourier
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problem for non-continuous boundary conditions (in a sense) and also to prove con-
vergence of a simple numerical method for the above mentioned integral equations
(this will be done in a forthcoming paper). At the end of the present paper con-
vergence of the Neumann series of operators corresponding to the integral equations
mentioned above is proved.

1. PRELIMINARY

By *R! we denote the extended real line (that is *R' = R' U {+00,—00}). By
a function on a set M we mean a numerical function, that is a mapping from M
to *R!; a real function is a mapping from M to R'. By a continuous function we
will always mean a real continuous function.

For a real function f on an interval J C R, M C J, the variation of f on M will
be denoted by var[f; M]. It is well known that var[f;-] is an outer measure and its
restriction to var[f;-]-measurable sets is a measure. The integral of a function F':
M — *R! with respect to this measure will be denoted by

/M Fdvar f, /M F(r)d(var f(7)) etc.

(where M C J is a var[f; -]-measurable set and F is supposed to be var[f;-]-measur-
able, of course). If f is of locally finite variation on J (that is, if var[f; I] < 4 oo for
any compact interval I C J), then by

f o

we mean the Lebesgue-Stieltjes integral of F'.

Let us recall some basic notation, notions and assertions from [1].

Let a,b € R, a < b, be fixed and let ¢ be a continuous function on (a,b),
var[p; (a, b)] < + co. Denote

(1.1) K = { lp(t), 1] | t € (a,b) };

K is a compact set in R2, of course.
For [z,t] € R%, t > a, define a (real) function a, ; on the interval (a, min{¢,b}) by

(1.2) gt (T) = S
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[T € (a,min{¢,b})]. Recall that from the assumption that ¢ is of finite variation
on (a, b) it follows that ay ; has locally finite variation on (a, min{t,b}) and that

(1.3) var, [%, (a, c)] < 5 ,tl__c{var [; (a,b)] + T:W;lapb>|x - go(T)|}

for any ¢ € (a,mint,b) (the subscript 7 in var, indicates that the variation is con-
sidered with respect to the variable 7).

1.1. Parabolic variation. Let [z,t] € R?. For a,7 >0, a < + 00 let ng4(r, )
stand for the number of all points (finite or +00) of the set

§-x\?
t—7= O0<t—7<r,.
2a

It is known that for any [z,t] € R%, r > 0, the function n,(r,a) is a measurable

Km{[g,r] € R?

function of the variable o € (0, 4+00). Denoting

“+oo
(1.4) Vi (r;z,t) = / e_a2nz,t(r, o) da
0
we have
min{¢,b} 2
(1.5) Vi (r;z,t) = / e~ %zt (7) d(var az’t(T))
max{a,t—7}

whenever max{a,t — r} < min{¢,b}, otherwise Vi (r;z,t) = 0 (see [1], Lemma 1.1,
Definition 1.1). Further, we write Vi (4o00;,t) = Vi (z,t); the function Vi (-,-) is
called the parabolic variation of the set (curve) K.

For any fixed r > 0 the function Vi (r;-) is lower-semicontinuous on R? and finite
on R?\ K ([1], Lemma 1.2).

The basic property of the parabolic variation concerns its boundedness. The
following assertion holds ([1], Theorem 1.1).

Let ty € (a,b) and suppose that

sup{ Vi (p(t),t) ‘ t € (a,b),|t —to| < 5} < 400

for some 6 > 0. Then there exists a neighbourhood U of [¢(to),to] (in R?) such
that
sup Vi(z,t) < 4o0.
[z,t]eU
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If
sup Vi (¢(t),t) = ¢ < 400,
te(a,b)

then Vi is bounded on R?—we have that Vi (x,t) < c+ T for each [z,t] € R2.

1.2. Operator 7. We will always suppose that (a, b) is a compact interval in R!,
¢ is a continuous function with finite variation on (a,b); K is the set in R? given
by (1.1).

% ({a,b)) stands for the space of all continuous functions on (a,b) endowed with
the supremum norm, that is

Il =1flle = sup |£(t)]
t€(a,b)

for f € €({a,b)).

Further, let %((a,b)) denote the space of all bounded Baire functions on (a,b)
endowed also with the supremum norm which we will denote by || ... ||s or simply
by ||...]]. Note that €({a,b)), B({a,b)) are Banach spaces and that € ({a,b)) is a
closed subspace of #((a,b)).

For f € %#({a,b)) the potential Tf = Tk f is defined in the following way. For
[z,t] € R? we put Tf(x,t) = 0 whenever ¢ < a, while

(1.6) - 2
Tf(a,t) = Tif(o.t) = == | " ey exp (— ("””4&%2) ) a, (f;‘tL(TT))

if ¢ > a and the integral on the right hand side exists and is finite (Definition 2.1
in [1]).

Tt is seen easily that if Vi (z,t) < + oo then T f(z,t) is defined and
2
(1.7) Tf(z,0)| < |fllo =V (@,t).

As we have noted Vi (z,t) < +oc on R?\ K (assuming var[p; (a,b)] < +00) and thus
for any f € B((a,b)), Tf is defined at least on R?\ K. On R?\ K the function T'f(z, )
is equal to a combination of a double and a single layer heat potentials and solves
the heat equation there (see [1], Remark 2.1).

Let [z,t] € R? be fixed and suppose that Vi (x,t) < + oco. For f € #({(a,b)) put

(1.8) TS5 (f) = T f = Tf(z,1).
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Then T, is a linear functional on Z((a, b)), which is continuous due to (1.7). Fur-
ther, let T , be the restriction of 7%, "t t0 €' ((a,b)). Let [T, t|| denote the norm of /%, b
T t|| the norm of T,, that is

z,t)

|IT5 N = sup{ T2 (f) | f € B((a,)), ]|
T, 1l = sup{ mf\fG%K%WWﬂM

Using (1.7) we have

2
T2 < —=Vie(a, )

(1.9) ITE N <

Further we get (suppose t > a)

2 ) min{t¢,b}
Vi) == [ e d(varas ()
T T J,

min{t,b} 2
—sup{ 2 [T gm0 d(azm) feslonlri<1f
= sup{ 77z, | £ € €0, 1flhe <1} = [T

Together with (1.9) we thus obtain
2
(1.10) HtH—HtH—ﬁ#%@ﬁ-

Now let us recall an assertion concerning the limits of the potential T'f at points
of the curve K. In this connection the point [¢(a),a] (€ K) plays a special role. One
can see that T'f has no limit at this point if f(a) # 0 (and f is continuous at a). We
shall thus restrict ourselves to the case f(a) = 0. Let us denote

930(< ={feB(ab)| fla)=0},

(1) %o((a,b)) = { f € €((a,b)) | f(a)=01}.

Then the following is valid (see [1], Theorem 2.1).
Let ty € (a,b), xo = p(to). Then there exist finite limits

(1.12) lim Tf(z,t), lim Tf(z,t)
[z,t] = [z0,t0] [z,t]—[z0,t0]
t€(a,b),z>p(t) t€(a,b),z<p(t)

for each f € 6o({a,b)) if and only if there is 6 > 0 such that
(1.13) sup{ Vk (¢(t),1) ‘ t € (to—d,to +0) N {a,b) } < +oo.
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If the condition (1.13) is fulfilled for some § > 0 then the limits (1.12) exist and

are finite for each f € %By({a,b)) which is continuous at to.

Let [z,t] € K, t > a. Recall that if Vi (z,t) < + oo then there exists a (finite or
infinite) limit TILI?_ a+(T) [the function «, ; is defined by (1.2)]. In this case we put

e () = lim e (7);

g ¢ is thus defined on (a,t). Further, let G be the function on *R! defined by

0, t = —o0,
(1.14) G(t) = /t

— 00

2
e ? dz, t> —o0.

Using the function G and the value oy ¢(t) one can express the values of the lim-
its (1.12). If [xo, to] € K, to > a, and the condition (1.13) is fulfilled (for some ¢ > 0)
then for any f € %({(a,b)) continuous at to we have (see [1], Remark 2.4)

: 2
(1.15) lim  Tf(x,t) =Tf(zo,t0) + f(to) [2 — =Gz 1o (to))],
[.’Z:,t]—)[zo,to] T
t€(a,b),a>(t)

. 2
(1.16) lim Tf(z,t) =Tf(zo,to) — f(to) =G (tug 1o (t0))-
[z,t]—=[z0;t0] T
te(a,b),z<p(t)

Note that in the case tg = a the values of those limits are zero if, in addition,

f(a)=0.

2. FREDHOLM RADIUS OF THE OPERATOR Tj

The operator Ty was studied in detail in [2] but it was considered only as an
operator on %p((a,b)). Here we will deal with an extension of Ty from %;((a,b))
onto B({a,b)).

As in the previous section let (a,b) be a compact interval in R!, ¢ a continuous
function with finite variation on (a,b), K is defined by (1.1). For [z,t] € R?, ¢t > a,
the function a,; is defined on (a, min{¢,b}) by (1.2). Throughout this section we
suppose that

(2.1) sup Vi (z,t) < +oc.
[z,t]eK

Then for any [z,t] € K, t > a, the limit

(2.2) az+(t) = lm oy (1)

T—t—

410



exists. Thus for each [x,t] € K, t > a, the function «, is defined on (a,t). Note
that one can see easily that the set of all ¢ € (a,b) such that a,) (t) = 0 is dense
in (a,b) [ap(),:(t) = 0 for almost all ¢ € (a, b)].

The symbols € ({a, b)), €o({a,b)), B((a,b)), Bo({a,b)) and Tf = Tk f will stand
for the same as in Section 1.

2.1. Operators T, T, Ty. These operators were defined and studied in [2] as
operators on %, ({a,b)); let us recall their definitions.

Assuming (2.1) the limits (1.12) exist and are finite for each [zg,%y] € K and any
f € % ({a,b)). One can thus define

(2.3) Tyf(t)=  lim  Tf(a',t),
[2'¢'1-{p(2),4]
' €(a by, > (t')

(2.4) T f(t) = lim Tf(z',t)
[/ '] ()]
' €(a by’ <e(t')

for f € Go((a,b)), t € (a,b). Tt is easy to see that Ty f,T_f € Go((a,b)) for any

f € %o((a,b)) and that T\, T_ are linear operators on %,((a,b)) mapping %o ((a, b))
into itself. It follows from (1.15), (1.16) that

(25) Ty 5(6) = T ((0),1) + 702~ —=Clagi. ()],

(26) T 1) = TF(p(0),1) = F(6) =G ap(oye(0)

for f € %5((a,b)), t € (a,b) [ff-f(a) = T—f(a) =0].
Further, put

(2.7) TI(t) =Tf(e(t),t)

for f € #({a,b)), t € {(a,b). In general, Tf is not continuous on (a,b) even
for f € 65((a,b)). Since ay)(t) = 0 for almost all ¢ € (a,b), one can see from
(2.5), (2.6) and the fact that T, 7. map % ((a, b)) into G ((a, b)) that T f € G5 ((a, b))
for any f € %o((a,b)) if and only if a4+ (t) = 0 for each t € (a,b). Let I denote the
identity operator on %y ({a,b)), T the identity operator on %((a,b)). Let T be the
restriction of 7 to 6o((a,b)). In the case (s .(t) = 0 for each ¢ € (a,b) we then
have T': 6o((a,b)) — %o((a,b)) and

T.=T+1, T.=T-1
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by (2.5), (2.6). But in general a,) () = 0 does not hold for all ¢ € (a,b). Then
instead of T one can consider an operator T, defined on % ((a, b)) by

(2.8) To=T, — I

or [which is the same by (2.5), (2.6)]

(2.9) To=T +1.

Since Ty, T_ are defined on % ((a,b)) only, Ty can be defined by (2.8) [or by (2.9)]
also only on %p({a,b)). From (2.5), (2.6) we get

(2.10) Tof(t) = T(0) + FO)|1 -~ =G (g (9)]

for f € 6y({a,b)), t € (a,b) [and Ty f(a) = 0].
But the right hand side of (2.10) has sense for any %({a,b)) if we write here T
instead of 7. For f € %({a,b)) define Tof by putting 7o f(a) = 0 and

(2.11) Tof(0) = TH0) + FO)[1 -~ =G (ag.(0)]

for t € (a,b). Then Ty is a linear extension of T from %y ({a,b)) onto &({(a,b)).
Operators Ty, To are linear, and they are also bounded as we shall see later. We
know that Tp: %o ({a,b)) — %o({a,b)) but it is not clear at the first sight whether
analogously To: %((a,b)) — & ({(a,b)).
Recall that any linear continuous operator P: %5({a,b)) = %5({a,b)) can be writ-
ten in the form

(2.12) (PF)(t) = / f(Ra(F ()

[f € %o((a,b)), t € (a,b)], where for each t € (a,b), Al is a function with finite
variation on (a,b). Then

(2.13) |P|| = sup var[A[;(a,b)].
t€(a,b)

Now we want to express the operator T and also Tp in the form (1.12). For ¢ € (a,b)

put
2
B —,EG(a(p(t),t(T)) for T € (a,t),
(2.14) M =1,

—,EG(a(p(t),t(t)) for T € (t,b)
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and further let \,(7) = 1 for each 7 € (a,b). Let us show that then for any
f € B({a,b)), t € (a,b), we have

(2.15 THO=TH0.0 = [ fra(()

(the integral on the right hand side is considered as the Lebesgue-Stieltjes integral).
For t = a the equality (2.15) is clear. Using Lemma 0.2 from [1] (substitution
theorem) we get for t € (a,b), ¢ € (a,b) that

min{c,t} 2
i% / e %+ d(ay),4(7))
= %[G(%(t),t(min{cv 1)) = Glapw(0)] = /a d(Xe(7))-
Since
Tf(p(t),t) = i’r_c/ f(T)e_ai(t).t(T) d(aw(t),t(T)),

the equality (2.15) follows.
Now let us define functions X,. Put XS(T) =1 for 7 = (a,b) and for t € (a,b) let

2
(2.16) XS(T) _ { _/EG(aw(t),t(T)) for T € {(a,t),
1 for 7 € (t,b).

. 50 . .
Note that in general A, is not continuous at 7 =¢ and

_ L 2
N (t) — lim N(r)=1— —,EG(aw(t),t(t)).

T—t—

If p; is the Lebesgue-Stieltjes measure [on the interval (a,b)] corresponding to the
function \; and pQ is the Lebesgue-Stieltjes measure corresponding to )\,, then
[for t € (a,b)]

2
=+ 1= Sl

where §, is the Dirac measure supported by {¢}. It follows from this fact, equal-
ity (2.15) and the definition of 7o that

(2.17) %ﬂw=/fvm@%»

for any f € B({(a,b)), t € (a,b).
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It is seen from the expression (2.17) of Ty that if f, € Z((a,b)), fn — f pointwise
on (a,b) and ||f.] < k for some k € R! then Tof, — Tof pointwise on (a,b).
Since Tof € %o((a,b)) for any f € %p({(a,b)) it follows that Tof € %Bo({a,b)) for
any f € %Bo((a,b)). Given f € B((a,b)) let fo € Bo((a,b)) be such that fo(t) = f(t)
for t € (a,b). Then Tof = Tofo and we see that

To: #((a,b)) = #((a,b))

[even To: #B({a,b)) — %o({a,b))].
It is seen easily that

var[As; (a,b)] = %VK (¢(t),1)

and
— 2 2
var [)\S; (a,b)] = _’EVK (o(t),t) + ‘1 - _/EG(aw(t),t(t))‘ .

This last equality enables us to express the norms of the operators Ty, 7o [norms
with respect to 6o((a, b)) and % ((a,b)), respectively]:

@18 VTl =Tl = sup [ZoVie(olt)0) + [1- G (anna)]|.

te(a,b)

Since the function G is bounded, it follows from the assumption (2.1) that the oper-
ators Ty, To are bounded.

2.2. Operators H. In this section let ¥ be a given function continuous on (a, b).
For r > 0 define an operator "H% = "H¥ on %((a,b)) by

0 ift<a+r,

2.19 "HYf(t) =<K 9o qtT
o 10 { Z [ e o dfagm) it atr
for f € B((a,b)), t € (a,b). Denote further

HY = HY ="HY.

Lemma 2.1. Let ¢ € ¥((a,b)), r > 0. Then
(2.20) "HY: B((a,b)) — Go((a,b))
and T’Hg is a compact operator on %({a,b)).
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Proof. Ifr > b— a then all is clear because then Tﬂg is the zero operator.
Suppose that 0 < r < b — a and denote

2={f|feB{ab)|fl<1}

We have to prove that TH%(@) is a relatively compact subset of 6, ((a,b)). In order
to do that it suffices to show that "HY(2) is a set of equicontinuous and uniformly
bounded functions on (a,b) vanishing at a.

In [2], Lemma 1.2, it was proved that "HY—the restriction of "HY onto %5 ((a, b))—
is compact on the space %;({a,b)). In particular, it was proved that if & is the unit
ball in 65 ((a,b)) then "HY () is a set of equicontinuous and uniformly bounded
functions from %5((a,b)). In exactly the same way we can prove this for "H¥(2)
writing everywhere 2 instead of & and T’Hg instead of "H, }’f’ . O

Lemma 2.2. Given ¢ € % ({a,b)) suppose that ¥ (t) # ¢(t) for each t € (a,b).
Then

(2.21) Hg: B((a,b)) — 6o((a,b))

and HY, is a compact operator on #((a,b)).

Proof. We know that for each » > 0 the operator Tﬂg is compact and that
(2.20) is valid. As the limit (in the norm) of compact operators is compact it suffices
to show that

li Y THY|| = 0.
i, 17 =R

But this can be done in exactly the same way as |[HY —"HY || — 0 (for r — 0+) was
proved in the proof of Corollary 1.1 in [2]. d

2.3. The Fredholm radius. Let us note that Lemmas 2.1, 2.2 are valid without
the assumption (2.1)—this assumption was not used in the proofs. Throughout this
section we will suppose again that the condition (2.1) is fulfilled. Let us recall that
then the value a4 .(t) is defined for any ¢ € (a,b). Let us define a function ak
on (a,b) by

(2.22) ag(t)=1]1- %G(acp(t),t(t)) .

Lemma 2.3. For each r > 0 the function

(2.23) t %VK (r;0(t), ) + ax(t)
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defined for t € (a,b) is lower-semicontinuous on (a,b). For f € %({a,b)) put
(2.24) T.f="HES

and let T, be the restriction of T, onto %;({a,b)), 2 the unit ball in %((a,b)), D the
unit ball in 65({a,b)). Then for any t € (a,b) (and r > 0)

2 e (rio(t), 1) + axc(t) = sup [To f(5) — Tof (1)
(2.25) k fez” B
= sup [Tof(t) - T, f(t)]-

f€%0o

Proof. TLet r > 0. For f € %o((a,b)) we have T.f € %o((a,b)) by
Lemma 2.1 [even T, f € %y({a,b)) for any f € %((a,b))]. Further, Tof € %, ({a, b))
for f € 60({a,b)) and thus

(Tof —T..f) € to((a,b)).

Since the least upper bound of a family of continuous functions is a lower-semicon-
tinuous function it suffices to show that (2.25) is valid.
Given t € (a,b),t > a+r, f € B({a,b)) then

ﬁff/fxi’/ft/ft)

by (2.17), (2.19). Using the definition of XS we see now that

sup [Tof(t) — Tof(t)] = sup [Tof(t) — T-f(t)]

feo fe2o
= var [R5 (6 = 7, b)] = “=Vie(rs (0, 0) + axc(0)
Ift € (a,a+r) (and ¢t < b) then T, f(t) = 0 and thus Tof(¢t) — T, f(t) = To f(t) and
sup [Tof(t) — T, f(t)] = sup [Tof(t) — T, f(t)]

fe2 fE€EDo

= var[X; (a,b)] = %VK (0(8), ) + ax (t).

But in this case Vi (¢(t),t) = Vi (r;0(t),t) and the assertion is proved. O
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Assuming that the condition (2.1) is fulfilled define for r > 0

2
(2.26) K = sup —,_VK(r;<p(t),t)
t€(a,b) T
and
(2.27) FK = lim ZK
r—0+

(this limit clearly exists as % K is non-decreasing with respect to r).
Let B be a Banach space, P: B — B a continuous linear operator. Then by wP
we denote the essential norm of P, that is

wP = inf ||P— A,
Aem
where 90T is the set of all compact (linear) operators on B.

Lemma 2.4. For each r > 0,

2
(2.28) FK = sup |—=Vk(r;o(t),t) + ax(t)
te(a,b) T

Further, we have

(2.29)
(2.30)

NN

=

£ €
S

NN

Proof. Equality (2.28) and inequality (2.30) were proved in [2], Lemma 1.4.
But inequality (2.29) can be proved in exactly the same way as (2.30) was proved if
we use Lemma 2.1. O

Let us note that by Theorem 1.1 in [2] even wTy = F K. We do not know if the
same is valid for 7.
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3. TWO LEMMAS

A natural way of solving an integral equation is to consider it as an equation in an
appropriate function space. In [2] some integral equations derived from the Fourier
problem were investigated in %g({(a,b))—this corresponds to the Fourier problem
with continuous boundary values. In this part we introduce only two auxiliary as-
sertions coming from [7]. These assertions enable us to extend relevant results to the
space % ((a,b)) and thus to solve the Fourier problem (in a sense) for non-continuous
(bounded) boundary values.

First let us recall one known and simple but useful assertion concerning the ex-
pression of the inverse of an operator by the Neumann series. By I we denote the
identity operator.

Let L be a Banach space, A: L — L a linear operator and let |A|| < 1. Then

(I — A) has the inverse operator on L

(3.1) (I—-A)~"'= i A"
n=0

and

1

(3.2) [(1—=A)7" < AT

If B is an operator on a normed space L then ||B|| denotes the corresponding
operator norm of B. For z,,z € L we mean by z,, — = that lim x, = x in the

n—oo
norm.

Lemma 3.1. Given a normed linear space L let
B,:L— L, B:L—L (n=1,23,...)

be linear operators. Suppose that B;!, B~! exist, B! are bounded and there is
M € R! such that ||B,'|| < M. Suppose that

(3.3) B,z — Bz
for each x € L. If ¢,,,x € L, x,, — x, then
(3.4) B 'z, —» B 'z

In particular, let L be a Banach space, A,, A: L — L bounded linear operators and
suppose that there is A € R', A < 1, such that

(3-5) [Anll <A A< A
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Suppose that

(3.6) A,z — Az

for each x € L. Then

(3.7 (I—-A,) 'z, > (I A) 'z

whenever z,,x € L, z,, = .

Proof. It is seen easily that
B;'-B'=B;Y(B-B,)B™".

Let z € L, € > 0. By the assumption (3.3) there is ng such that

9

|(B = B.)(B 'z)|| < i

for n > ng. Hence for n > ng we get
|B, e — B~ x| = | By (B — By)(B™'z)| < |IB,MI||(B— Bn)(B'z)|| <e

and thus
B 'z - B 'z

n

for any z € L. If now z,, — = then

1B, 'z — B~ 2| < ||B, 2 — B, 2| +||B, 'z — B~ 'x]

<
< M|z, — || + HB;lx — B*1x|| -0

and the first part of the lemma, is proved.
The second part follows immediately from the first using the fact that (I — A,)~!,
(I — A)~! exist (under the given assumptions) and that

1
-1
(7= 4) 7 < 7=
The assertion is proved. O

Lemma 3.2. Let X be a Banach space, Xo C X its complete subspace. Let
@, B be bounded linear operators,

Q:X—>X, B:X—Xo,
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let || Q|| < 1, and suppose that Q: Xo — Xo. Then
(3.8) (I —Q — B)'(0) C Xo.

Suppose in addition that B is compact. If for each f € X, the equation (with
unknown g)

(3.9) I-Q@-B)g=1f

has a unique solution in X, then for each f € X, (3.9) is uniquely solvable in X.

Proof. Letz € X be such that
(3.10) (I-Q-B)x=0.

Since ||Q|| < 1 by assumption and Q: Xy — X, we have also
(3.11) (I-Q)™': Xo — Xo.
Equality (3.10) can be written in the form (I — @)z = Bz, that is in the form
r= (I Q) 'Buz.
Since by assumption Bz € Xy, it follows from (3.11) that € X, and thus (3.8) is
proved.

The second part of the lemma follows from (3.8) and the Riesz-Schauder theory.
Since ||Q|| < 1 and B is compact, by the Riesz-Schauder theory it suffices to verify
that the null space of (I — @ — B) is trivial. But if (3.9) is uniquely solvable over Xg
then we get from (3.8) that

{reX|(I-Q-Bz=0}={ze Xy |(I-Q-B)z=0} ={0}

and the assertion is proved. O
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4. BOUNDARY VALUE PROBLEMS

In the paper [2] the Fourier problem for continuous boundary values was solved.
Using lemma 3.2 we can now extend those results into the case of bounded Baire
boundary values. Analogously to [2] we shall distinguish cases of unbounded and
bounded regions.

4.1. The case of unbounded region. In this section we will use the following
notation. Let (a,b) be a compact interval in R!, ¢: (a,b) — R! a continuous function
of finite variation on (a,b) and denote

(4.1) K={lp(t),t]|te (a,b)}.
Further put
M= {[z,t]|te (ab),z>p(t)},
(4.3) B=KU{[z,d |z > ¢(a)}.
In Section 2 functions T} f, T_ f were defined for f € 6 ((a,b)) by

(4.4) Ty f(t)=  lim  Tf(@,¢t),
[=",t' 1= [e(t),1]
t'e(a,b),z’' >p(t")

(4.5) T f(t) = lim  Tf(z',t)
[2",t' 1= [e(t),1]
t'e(a,b),z’ <p(t')

(t € (a,b)) assuming

(4.6) sup Vi(z,t) < +oo;
[z,t]eK

in this section we will always suppose that (4.6) is fulfilled.
By (4.4), (4.5) T} f, T_ f can be defined only for f € %({(a,b)). As we have seen,

(@) T\ 7(6) = TF(p(0),1) + 5(0) |2~ ~=Glage.0)]
(49) T 1(t) = TH(p(8),8) — = F ()G (@p(0)

[recall that for [z,t] € K, t > a, the value of oy +(t) is defined by (2.2)].
Further, we have defined an operator 7 on %({(a,b)) by

(4.9) Tr(t)=Tf(e(t),)
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[f € B((a,b)), t € (a,b)]. The operator T is then the restriction of 7 on %((a,b)).
Let us recall also the definition of the operator Ty on %((a,b)). If f € B((a,b))
then we put 7o f(a) = 0 and

— — 2
(4.10) Tof(t) = TF(®) + f(8) |1 = =G (p)+(1))
for t € (a,b). The operator Ty is then the restriction of 7y onto %y ({a, b)) and

To: %o((a,b) = %o((a,b)),  To: B((a,b)) — B({a,b))

(see Section 2.1), Ty, Ty are bounded linear operators. Further we have [if I is the
identity operator on %y ({(a,b))]

To=T, —I=T +1,
that is
f_;,_:TO‘i‘I, T’_:TO—I.
Now we define operators T, T on %((a,b)) by

(4.11) T =To+I, T =To—-T

[where T is the identity operator on %({(a,b))]. By (4.10) and (4.7), (4.8), (4.9)
[using the fact that 7o f(a) = 0] we obtain the following expression of values 7, f, T f
for f € B({a,b)). If f € B((a,b)) then

and
(4.12) T (1) = T (o), 1) + 1) |2 =G ap00(0) |
(413) T () = TH((0),1) — ~= ()G (g (1)

for t € (a,b). If we put formally

¥p(a)a(@) =0
then (4.12), (4.13) are valid for any f € %((a,b)), t € (a, b).
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Let us recall that ak (¢) has been defined for ¢ € (a,b) by

2

(4.14) ak(t) = ‘1 - —EG(%m,t(t))‘ :
Theorem 4.1. Suppose that
. 2
(4.15) lim sup [—,_VK (r; (1), ) + ozK(t)] <1
r—=0+ t€(a,b) T

Then for each g € %((a,b)) the equation
(4.16) Tif=g
(and also the equation T_f = g) has a unique solution f € %((a,b)).
Proof. For r > 0 we have defined in Section 2.2 operators 7, = "HE by
0 ift<a+r,
4.17) T f(t) ="HEf(t) = t=r >
( ) ( ) @ ( ) l/_/ f(T)efaw(i).t(T) d(atp(t),t(T)) ift>a+r
T a
for f € #&((a,b)), t € {a,b). For 7 > 0 the operator T, is compact on %((a,b)) and
To: ({0, b)) > Gol(a, 1)

(see Lemma, 2.1). By the assumption (4.15) we can choose r > 0 such that

2
(4.18) sup [—,_VK (r; 0(t), 1) +aK(t)] <1
te(a,b) T

Let 2 be the unit ball in Z((a,b)). Using (2.25) we get

176 =Tl = sup [Tof = Tof | = sup{ sup [Tof(t) - Tef(1)]}
feo

F€2 “te(a,b)

= sup {oup[Tof(0) =TS (0]} = sup | Z=Viclrsplo).0) +ax(0)]

t€(a,b) ~fED t€(a,b)

Let us denote for a while
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Since T, = Tg + T the equation (4.16) can be written in the form
(4.19) (T-Q-B)f=g

We know that Q: X — X, Q: Xo — Xo and if » > 0 is such that (4.18) is valid then
lQll < 1. The operator B is compact and B: X — Xy. It was shown in [2] that
under the assumption (4.15), for each g € Xo = %0((a, b)) the equation (4.19) [i.e.
the equation (4.16)] has a unique solution in Xy. Now it follows immediately from
Lemma 3.2 that for each g € X the equation (4.19) has a unique solution in X, i.e.
(4.16) has a unique solution in %((a,b)). O

Lemma 4.1. Suppose that (4.6) is fulfilled. Given f € $({a,b})), to € (a,b),
suppose that f is continuous at ty. Then Tof is continuous at t.

Proof. Let us first take notice that if f is continuous on a relatively open
interval J C (a,b), then Tg f is continuous on J. Indeed, by Section 1 for each ¢ € J

Tt = lm  THEY),
[z',¢"]=[(t) 1]
[z' t']leM

which implies that 7~Jr f is continuous on J. Since
Tof =Tof + 1,

also 7o f is continuous on J.
If f(tp) # 0 then
Tof =To(f — flto)) + f(to)Tol

(where 1 denotes the function which equals 1 on (a,b)). By the above consideration
To1 is continuous on (a, b) and it is seen that it suffices to prove the assertion for the
case f(to) = 0. Let us thus suppose that f(¢y) = 0.

Denote

¢ < 400 by the assumption.
Recall that for t € (a,b) the function XS was defined by

2
-0 —/EG(Oé(p(t)’t(T)) for T € {a,t),

1 for T € (t,b)
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[see (2.16)], and XZ(T) =1 for 7 € (a,b). For t € (a,b) we then have

var[xg; (a,b)] = %VK (o(t),t) + ‘1 - %G(aw(t)yt(t)) .

Since )

1 — _/EG(a(P(t)vt(t))‘ < 1,
we see that
(4.20) var[xg; (a,b)] <c

for each t € (a,b).
Let € > 0. Since f is continuous at ¢y [and f(tg) = 0] there is » > 0 such that
to —r > a and

(4.21) F(Dl < %

for each 7 € (tg — r,to +7) N (a,b). Then [see (4.20)]

(4.22)

Wl M

/t_ f('r)d(xg('r))‘ < ivar[XS;(a,b)] <

0

for each t € (to — 7, to + 1) N (a,b). Put

) = { f(t) forte (a,tg—r),

0 for t € (to —r,b).

By the above consideration Ty f; is continuous on (ty — 7,b). Thus there is § > 0,
0 < r, such that

Tofr(t) — Tofi(to)| <

for t € (to — 6,to + 9) N (a, b), that is

WM™

(4.23)

/:O_Tf(T)d(Xf(T)) - /atO_Tf(T)d(X?O (T))‘ < %

Consider ¢ € (to — d,to + 0) N (a, b). Since (for such ¢)

T = [ rodEo) + [ aiie),

0
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it follows from (4.23) and (4.22) that

/a TP

i

Tof(t) = Tof (to)] <

rkyé)
~—
2
SN—
|
n\&
(=]
|
3
=
2
(oW
—_
=
—~
\‘
SN—
_—

+

to—r
<€+6+6
3 3 3

Thus we see that T f is continuous at to. O

Lemma 4.2. Suppose the condition (4.15) is fulfilled. Let f € %({a,b)) be the
solution of the equation

Tif=g

for a given g € %#({(a,b)). If g is continuous at to € (a,b) then also f is continuous
at to.

Proof. Choose r > 0 such that

2
sup | —=Vi (r;0(t),t) +ag(t)| < 1.
te(a,b) T

Using the notation from the proof of Theorem 4.1 the equation 7~Ir f = g can be
written in the form

(4.24) (Z-Q-B)f=y,
where B= —T7,, Q = —(To — T,). We know that

Q: B((a,b)) = #((a,b)),  Q: C({a,b) = G({a,b), QI <1,
B: B((a,b)) = %o((a,b))

and the operator B is compact. The equality (4.24) can be written in the form

I-Q)f =9+ Bf,

B f=(T-Q) ‘g+ B

Since ||@Q]| < 1, we have

o=y
n=0
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and thus

oo
(4.25) f=% Qg +Bfl
n=0

Since B: %#({a,b)) — %5({(a,b)), the function Bf is continuous on (a,b). The func-
tion g is continuous at ty; by assumption and thus g + Bf is continuous at t5. The
series in (4.25) converges in the norm in %((a,b)), that is, as a function series, it
converges uniformly on (a,b). To prove that f is continuous at ¢ it suffices to show
that for each n € N the function Q™[g + Bf] is continuous at ¢, and to see this it
suffices to show that if h € & ((a,b)) is continuous at to then Qh is continuous at tg
as well. But this follows from Lemma 4.1 since

Qh=—(To—T)h=—(T, =T —T,)h =T h+ h+T,h,
T.h € 6y({a,b)) and Toh is continuous at to by Lemma 4.1. O
Corollary 4.1. Let f € %B({a,b)) be the solution of the equation
Tf=9

for a given g € %({a,b)). Then the potential T f solves on M [M is defined by (4.2)]
the first boundary value problem with zero initial condition and with the boundary
condition g on K in the sense that

(4.26) lim Tf(z,t) = g(to)
[z,t]—=[p(t0),to]
[z,tle M

for each point ty € (a,b) at which g is continuous.

Proof. It is clear that

lim Tf(z,t)=0
[,t] = [z0,d]
[z,t]leM
for each zo > p(a).
Let to € (a,b) and suppose that g is continuous at to. Then by Lemma 4.2 also
f is continuous at o and by Section 1 [see (1.15)] the limit

. 2
(4.27) lim Tf(z,t) =Tf(e(to) to) + f(to) |2 — —=G(tp(t) 16 (to))
[N?Wﬁﬁ] T
z,t|€

exists. But by (4.12) the value of the right hand side in (4.27) is equal to Ty f(to)
and since 71 f(to) = g(to) we see that (4.26) is valid. O

427



Remark 4.1. In the case of the first boundary value problem with non-zero
initial condition one can use the Weierstrass integral similarly to [2]. Let F be a
bounded Baire function on B. A solution of the boundary value problem on M with
the boundary condition F' on B can be found in the form

+o pir g T —1)>
(4.28) u(z,t) = Tf(z,t) + ﬁ Fg P Gﬁ) @

where f € #((a,b)) is the solution of the equation

Tf =g,

1 [*Fma) o (_ ((t) 7)2) dr

27T, t—a 4(t — a)

for t € (a,b). It follows from the well known properties of the Weierstrass integral
that

(4.29) lim  wu(z,t) = F(xg,a)
[z,t]—=[z0,a]
[z,tle M

for almost all zy € (¢(a),+00) (in the sense of linear measure). Corollary 4.1 yields

(4.30) lim  w(z,t) = F(xo,to)
[z,t]—)[zo,to]
[z,t]leM

for those [zg,%0] € K, to > a, at which F is continuous.

We do not know if (4.30) is valid in general for almost all [zo, to] € K (for example
in the sense of linear measure on K). In [6] I. Netuka has proved an analogous
assertion in the case of the Dirichlet problem in R™ (for the Laplace equation); the
solution was expressed by means of the double layer potential. Instead of limits
with respect to the given region the so-called non-tangential (angular) limits were
considered (in the proof the non-tangential limits were investigated in detail for the
case of discontinuous densities of the double layer potential). Analogous results for
the heat potential T'f are not known yet and the question concerning the existence
of limits of the form (4.30) or some analogues of angular limits almost everywhere
on K is still open.
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4.2. The case of bounded region. Now let (a,b) be a compact interval in R!
and let ¢1, @2 be two continuous functions with finite variation on (a, b) such that

©1(t) < pa(t) for each t € (a,b).
Let us denote
Ki={[pi(t),t] |t € (a,b)}  fori=1,2,
M = { [z, ] | t € (a,b), p1(t) <z < @a(t) },
B =K UK,U{[z,q] ‘gol(a) <z < p2(a) }.
For i = 1,2, t € (a,b), * € R! define

(4.31) it 1 (7) = %

for 7 € (a,t). Parabolic variations corresponding to the functions ¢1, @ (that is to
the curves K1, K5) will be denoted by Vi, , Vk,, respectively. We will suppose that

(4.32) sup Vi, (pi(t),t) <+oo  (i=1,2)
t€(a,b)

and for ¢ € (a,b) define

al) e,

ia%(t),t(t) = Tl_igl_ fr— =1,2),

and further )

o () =1 - HGlan0a®)| (=12

For f € %((a,b)) let Tk, f be the heat potential corresponding to the density f
considered on K; (i = 1,2), that is

2

min{t,b} 2
Tift) =z [ J)e e dfian,(r)

(i=1,2) for [z,t] € R, ¢t > a.
Further, for f € %({a,b)) let us define functions 7 f, T f such that we put 71 f (a) =
T2f(a) = f(a) and

R(0) =T £ (100, 0) + 100 |2~ =G ves0)]
Tof (1) = ~Taeaf (2(0),8) + F(0) "2 G a0 00,4(0)
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for t € (a,b). We know that if ¢ € (a,b) and f is continuous at ¢ then

(4.33) Fre)=  lm T S8,
[zlit’]*[‘/’l(t)it]
[z’,t’]EM

(4.34) Bft)=—  lim  Tx,f(z',t).
[Il’tl]_ﬁ‘PZ(t)at]
[«',t']eM

Let us denote

B = {[f1, fo] | f1, fr € B((a,])) },
€ = {f1, fol | f1, fo € Go((a, b)) }.

In the space B let us consider the norm

|1, fall| = ||[£1s Fol|| g = I f1ll 8 + 1.2l
([f1, f2] € B) and analogously in €
[Lfr, 22| = ||[frs ol e, = I fillgo + 1 folle-

One can easily verify that any linear operator P: €3 — €y can be written in the
form ([f1, f2] € €o)

P(f1,f2) = [Pifi + Pafo, Psf1 + Pafo],
where P; (i = 1,2,3,4) are linear operators acting on %y({a,b)), P;: %5({a,b)) —
%o({a,b)). The operator P is bounded on € if and only if all the operators P;
are bounded on %5({a,b)); P is compact if and only if all the operators P; are.

Analogously for operators on 8.
On B we define an operator R,

R(f1, f2)(t) = [TLfi(t) = Tio fo(01(8), 1), Ta fo(t) + Ty fr (02 (2), )]
([f1, f2] € B, t € (a,b)). Further put
Ro=R~-1I,
where 7 is the identity operator on B.

Theorem 4.2. Suppose that

, 2
(4.35) max {rgrgﬂ;uarfb) [—EVKZ- (r¢i(t),t) + ax, (t)] } <1
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Then for each [g1, g2] € B the equation

(4.36) R(f1, f2) = 91, 92]

has in B a unique solution [f1, fa].

Proof. The proof is analogous to that of Theorem 4.1. For r > 0, ¢ = 1,2 put
ift<a+r,

0

T}L‘pl: t) = t—r 2

o {ir/ F(@)em @ Ao, ,6(r) it >atr
TJa

for f € B((a,b)), t € (a,b). For r > 0, [f1, f2] € B, t € (a,b) then put
H(f1, £2)(0) = [HE ) = Ta (010, 1), = HES2(8) + Ties i (2(8),1) .
Using the notation from Section 2.2 we can write H" in the form
H(fus fo) = [HE o~ HE fo —THELfo + HELAT-

The operators "H#!, "H$?2 [considered as operators on the space %((a,b))] are com-

pact by Lemma 2.1 while the operators HZ!, HZ? are compact by Lemma 2.2 [as
v1(t) # @2(t) for each t € (a,b)]; each of those four operators maps %((a,b))
into %5 ((a, b)). It means that

/HT:%%CO

and H" is a compact operator on B.
Denote further

K'=Ro—H'
Choose r > 0 such that
2
(4.37) max{ sup [—,_VKi (r; 0i(t),t) + ak, (t)] =c< 1.
i=1,2 te(a,b) T
Then
1K™ < 1.

For [f1, f2] € B we have

K" (f1, f2) = [ﬁfl —fi— TH£1f1,7~5f2 - fa +T7‘l$§f2]-
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For fl € *%(<a'7b>)a te (a7b>

~ 2 o -
(Tfy = f1 ="HEL A1) (1) = _’E/ { } m)e e d(10p,(0,4(7))
max{a,t—r

+h(t) |1- %G(law(t)’t(t))
and for t = a
(Tifr — f1 — "HELf) (a) =

Hence we see that for f; € #({(a,b))

439 - f - HE A< AL s |2V (o 0.) + ar ).

tE(a,b)

In the same way we get for fo € Z((a,b))
~ 2
439)  Ff—h+ HEAN <1 0 | Vi (0.0 + anatt)]
t€(a,b

Consider now [f1, f2] € B. If (4.37) is fulfilled then (4.38), (4.39) imply

17 (fr, )| = 1T fr = o = "HELfull + | Tafo — fo + "HE fo

<IA1]l sup \ . Ve, (1 (1) )+aK1<t>\
t€(a,b)

A s | 2Vie (00.0) + ara )

te(a )

< (Al + If2ll) = || [fr, £21]-

Now we see that
K"l <e<1

(it is not difficult to show that even |K"| = ¢).
The equation (4.36) can be written in the form

(4.40) (Z+K"+H")[f1, f2] = 91, 92]-

It was proved in [2] that for each [g1, g2] € €5 the equation (4.36) and hence (4.40)
are in €y uniquely solvable. The assertion follows now from Lemma 3.2. O
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Lemma 4.3. Suppose that the condition (4.35) is fulfilled. Given [g1,g2] € B let
[f1, f2] € B be the solution of the equation

R(f1, f2) = [91, 92]-

Let tg € (a,b). If g1 or go is continuous at tg then fi or fa, respectively, is continuous
at to.

Proof. Choose r > 0 such that

max{ sup [VKi (r;@i(t),t) + ax, (t)]} < 1.

i=1,2 te(a,b)

Like in the proof of Theorem 4.2 we will write the equation R(f1, f2) = [g1, ¢2] in
the form
(Z+K"+H")[f1, f2] = [91, 2],

where
K': 98 — B, K': €y — €, 1K™ < 1, H™: B — &
and H" is a compact operator. We then have

(I+’CT)[f17f2] = [91792] - HT[flaf?]a

that is
[fi, fo] = (T + K7) " {[g1,92] — H"[f1, fol }-

Since |K7|| < 1 we have

Z+K)™ =D (-nmK)"
and hence
(4.41) [f1, f2] = Z(_l)n(lcr)n{[gl,gﬂ —H"f1, fo]}

Since H": B — €y both components of H"[f1, f2] are continuous on {a,b). If g; is
continuous at tg then the i-th component of

{lo1,92) = H"[f1, f2]}
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is continuous at tg. Analogously to the proof of Lemma 4.2 it now suffices to show
that if [hq, ha] € B and h; (or hg) is continuous at tg [to € (a, b)] then the first (the
second, respectively) component of K" [hq, ha] is continuous at . Then the assertion
follows from the fact that the series (4.41) converges uniformly (in each component).

Let [h1, ho] € B and suppose, for example, that h; is continuous at to. The first
component of K"[hy, hs] is of the form (see the proof of Theorem 4.2)

Tiha — by — "HE hy.

Here "H$! b is continuous even on (a, b) and the continuity of Tihy at to follows from
Lemma 4.1. O

Remark 4.2. Given [g1,g2] € B let [f1, f2] € B be the solution of the equation

R(f1, f2) = 91, 92]-

For [z,t] € M put
u(z,t) = Tk, f1(z,t) — Tk, f2(z, t).

For = € (¢1(a), 2(a)) surely

lim  u(2',t)=0.
[z',¢']=[e,a]
[=',t'leM
It is seen from the definition of R, Lemma 4.3 and Section 1, that if g; is continuous
at to € (a,b) then
lim u(z,t) = g1(to),

[z,t]=[p1(t0),to]
[z,t]eM

and analogously
lim u(z,t) = ga(to)

[z,t] = [p2(to0),to]
[z, t]eM

if go is continuous at to. In this sense u can be considered a solution of the first
boundary value problem of the heat equation on M with zero initial condition and
the boundary condition g; on K; and g2 on K». In the case of non-zero initial
condition one can use the Weierstrass integral analogously to Section 4.1.

4.3. Convergence of the Neumann series. In Sections 4.1, 4.2 solvability of
the equation (under appropriate assumptions)

ZT+To)f=g
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and of the equation

(Z + Ro)[f1; f2] = [91,92]

was proved. If X is a Banach space, B: X — X is a bounded linear operator,
| B|| < 1, then (I — B)~! exists and

(I -B)™'= i B™,
n=0

In particular, the series on the right hand side converges. If | B|]| > 1 and (I—B)~! ex-
ists, a question arises whether the series

> B
n=0
or at least for x € X the series
oo
> e
n=0
converges. In the case of our equations we would like to know whether the series
D (-)"Tg
n=0

converges for g € %({(a,b)) or whether the series

oo

Z(*l)nRg[glaQQ]

n=0
converges for [g;, g2] € B.
In the following we will use the notation from Section 4.2. Let us prove the

following assertion.

Theorem 4.3. Suppose that

2
(4.42) max ¢ lim sup [—,_VKZ. (r;i(t),t) + ak, (t)] <1
=12 | r—0+te(ap) L T

Then for each [g1,g2] € B the series

oo

(4.43) > (-1)"Rglg1, 9]

n=0
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converges (in the norm in B). If [g1, g2] € B,

oo

[f17f2] = Z(fl)nRg[glagﬂa

n=0

then
Rlf1, f2] = [91, 92]-

Proof. Given [g1,92] € B let us prove that
(4.44) Ry 191, 92) — [0,0] for n — oo
in the sense of the norm in 9B, that is, the components of R g1, g2] converge to zero
uniformly on (a, b).

In the proof of Lemma 2.2 we have noted that if ¥ € €((a,b)), ¥(t) # ¢(¢)

on (a,b), then
; Y _ rqgy
Thr(r)l ||’H<P HWH 0.

Using the notation from Section 4.2 we thus have
Jlim [z =g =0, [HE - HE] =0,

Since (4.42) is valid there is r > 0 such that

(4.45) max {t sup [%VK,- (ripi(t).t) + ax, (t)] } = A1,
(4.46) mac{[H2] — "ML M2 — "HE |} = Do
and

(4.47) Mt =A<

Define an operator S: B — B by
Sl fol = [HELF = THE fo, —THE fo + THE: fi]

for [f1, f2] € B and put
U="Ry—S.

436



For [f1, f2] € B we then have

Ulfr, fo] = [Tifr — fr — THEL fr — HEL fo + THEL fo,
Tofe — fo+ THE fo + HE fL — THEfu1).

We have shown in the proof of Theorem 4.2 [see (4.38)] that

~ 2
||7If1 - fl - TH&le < ”fl” S(upb) /EVKI (‘pl(t)vt) + K, (t) 5
t€(a,

hence
ITifr = fr = "HE fr = HEL fo + THEL fall < Ml fall + A2l fal-

Using (4.39) we analogously get
| Tofe — fo -+ "HE2 fo + HE f1 — "HE fu]l < Mllfell + A2l fu -

Altogether we thus have

|U1f1, £2]] < MllAll + Xell 2]l + Ml f2ll + Al foll = A [F1, 2]
and hence
(4.48) U] <A< 1.
Let us denote
(4.49) p = max{1, S|}

It is seen from the definition of S, U that for [f1, f2] € B, t € (a,a + r) (suppose
that r < b — a) we have S[f1, f2](t) = [0,0] and thus

Rolg1, g21(t) = U[g1, g2](2).

Now it is seen easily that for ¢ € (a,a + ),

Ry (91, 92](t) =U™[g1, g2](t)

for any n € N and it follows from (4.48) that the components of R{[g1, g2] converge
on (a,a + r) uniformly to zero.

Let ¢y be the supremum of such ¢ € (a,b) for which the components of R [g1, g2]
converge on (a,t) uniformly to zero—clearly to > a + 7.
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Choose t; < tg such that tg — ¢; < r and let us show that the components
of R¢[g1, g2] converge on (a,t; +r) N {a,b) uniformly to zero; it will follow then that
to = b and (4.44) is valid.

Let ¢ > 0. Since the components of Ry[g1,g2] converge on (a,t;) uniformly to
zero there is ng such that if

(' f5'] = Rglg1, g2

then

n n 1-A
(4.50) HGIEIAGIRS e
for n > ng, t € (a,t1). Denote
(4.51) k= ||[f7°, f3°]]|-
Put

[, ha] = RG°T g1, ga] = Rolf1°, £5°].
Since [hy, ko] = [f°T, f30T1], it follows from (4.50) that
1—A
(4.52) |ha(8)] + |h2(t)] < c
for t € (a,t1).
If we denote
[hi,ha] =UIfT°, f3°1, (A3, B3] = SIf, f5°]

then
[hlahQ] = [hivhé] + [h%’ hg]

It follows from (4.48), (4.51) that
(4.53) | 171, R3] < Ak

One can obtain from the definitions of S and T’Hi that for [f1, fo] € B and ¢ € (a,b),
t>a+r

(4-54) 5[f1,f2](t) = 5[?1,72],
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where

_ [fi, fo](r) fa<T<t—r,
[f1: fol(T) = .
[0,0] ift—r<r<b.
Hence and from (4.50), (4.49) we get for t € (t1,¢1 +7)
9 9 1—A
|h3 ()| + |R3 ()] < p e=(1-Ne.
Together with (4.53) we now get that
(4.55) |h1 ()] + |h2 ()] < Ak + (1= Ae.

Let us take notice of the fact that here (4.53) is not necessary but suffices to ensure
that
|hi (1) + |h3(t)| < Ak

for t € (t1,t1 + 1) N{a,b). For this (4.51) is not necessary, it suffices to suppose that
(4.56) 7o) + |70 ()] <

for t € (a,t1 +7)N(a,b).
Let us recapitulate that we have shown that if
1—A
I

fro@)| + | fro0)] < e
for (a,t1) and if (4.56) is valid for ¢t € (a,t1 +7) N (a,b) then
[ @]+ £ O] < M+ (1= N)e

for t € (t1,t1 + ) N (a,b). Since (4.50) is valid for any n > ny we get by induction
that for m € N,

|/t @) + [ @) K A"+ (L= Ne(AW* T+ AP+ L+ ) K ARt e
for t € (t1,t1 + ) N {a,b). If we choose m such that A™x < € then
| ()] + [ f20F ™ (1)] < 2.

Now we see that (4.44) is valid.
D. Medkova proved in [5] that if T is a bounded linear operator on a Banach

space X, the Fredholm radius of T' is greater than 1, then for z € X the series > T"x

n=0
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converges if and only if 7"z — 0. The Fredholm radius of the operator Ry is greater
than 1 by the assumption (4.42). We have just proved that (4.44) is valid (for each
[91,92] € B) and thus the series (4.43) converges.

The second part of the assertion is clear. Indeed, if

[f1, fo] = Z(—l)”RS[gl,QQ]
n=0
then
Rlf1, f2] = (T + Ro)lf1, fo] = Z(_l)nRS[ghgz] + RO{Z(—l)"RS[gl,gz]}
n=0 n=0
= [g1,92] — Rolgr, g2 + Rlg1,92] — -
+ Rolg1, g2] — R3lg1, 92 + Rilgr, g2] — - -
= (91, 92].
The assertion is proved. O

Note that in a similar way one can prove an analogous assertion for operators 7y, T
in the case of an unbounded region. We will not repeat here the proof (which is more
lucid in this case) but only formulate the assertion.

Theorem 4.4. Suppose that

2
lim sup [—,_VK(r;go(t),t) +ar(t)| <1.
r—=0+4 t€(a,b) T

Then for each g € %({a,b)) the series

converges. If

then T, f = g.
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