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Introduction

In this survey we consider superlinear parabolic problems which possess both

blowing-up and global solutions and we study a priori estimates of global solutions.
Assume that a given parabolic problem is well-posed in a function space X and de-

note by G the set of all initial functions in X for which the solution is global. Let
u : [0,∞)→ X be a global solution. We are interested in estimates of the types

‖u(t)‖X � C
(
u(0)

)
,(1.1)

‖u(t)‖X � C
(‖u(0)‖X

)
,(1.2)

‖u(t)‖X � C(δ) for t � δ > 0.(1.3)

Estimate (1.1) means that the solution u is bounded. In estimate (1.2), the bound

depends only on the norm of the initial condition and this estimate easily implies
the closedness of the set G. In estimate (1.3), the constant C(δ) is supposed to be

universal for all global solutions so that this estimate is the strongest one. It implies,
in particular, a priori estimates for stationary solutions of the problem.
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A typical example is the problem

(1.4)




ut = ∆u+ |u|p−1u, x ∈ Ω, t ∈ (0,∞),
u = 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

where Ω is a smoothly bounded domain in �n , p > 1, u0 ∈ X andX is an appropriate

function space (C(Ω) or W 1
q (Ω) with q > 1 large enough, for instance). In this

problem, the zero solution is a stable stationary solution while the solutions blow up

in finite time in the L∞(Ω)-norm for “large” initial values. Consequently, G �= X

and 0 belongs to the interior of G.

Let us briefly mention some results concerning a priori estimates of global solutions

of problem (1.4); methods of their proofs and results for other problems will be
discussed in the main part of this paper. The first result is due to Ni, Sacks and

Tavantzis [14], who derived an a priori estimate of type (1.1) for global solutions of
(1.4) (and more general problems) provided Ω is convex, u0 � 0 and p < 1 + 2/n.

Slightly later, Cazenave and Lions [2] proved estimate (1.2) for general Ω, u0 and
(3n − 4)p < 3n + 8, and estimate (1.1) (without any explicit dependence of C on

u(0)) for

(1.5) (n − 2)p < n+ 2.

Note that condition (1.5) cannot be improved, in general: this follows from [6].
Under assumption (1.5), Giga [8] proved (1.2) for global nonnegative solutions and

the author [15] for all global solutions of (1.4). Estimate (1.3) for global nonnega-
tive solutions of (1.4) was obtained recently in [5] under the additional assumption

(n − 1)p < n+ 1 and in [16] under assumptions (1.5) and n � 3. Notice that esti-
mate (1.3) cannot be true for all global solutions since there exist arbitrarily large

stationary (sign-changing) solutions.

Let us also mention that there are several reasons for the study of a priori estimates
of global solutions mentioned above. If one can prove (1.2) and the problem admits a

Lyapunov functional then in the ω-limit set of any solution starting on the boundary
of G one can find interesting stationary solutions (see [17], [18], where this fact was

used for nontrivial modifications of problem (1.4)). Moreover, a similar estimate for a
modified problem enables one to establish the blow-up rate for blowing-up solutions;

see [9].

484



Methods based on scaling and contradiction

Many proofs of a priori estimates are based on contradiction and rescaling argu-

ments. Their main idea is the following: assume that there exist arbitrarily “large”
solutions, rescale these solutions in such a way that the rescaled solutions converge

to a nontrivial solution of a limiting problem and prove (or use the fact) that the
limiting problem does not possess nontrivial solutions.

Let us start with the classical result of Gidas and Spruck [7] concerning a priori
estimates for nonnegative stationary solutions of (1.4).

Theorem 2.1. Assume (1.5). Then there exists a constant C > 0 such that any

nonnegative stationary (classical) solution u of (1.4) satisfies sup
Ω

u < C.

���� �� ��� �	���. Assume that there exist nonnegative equilibria uk of

(1.4) such that

Mk := max
x∈Ω

uk(x) = uk(xk)→ ∞ as k → ∞.

Put

(2.1) vk(y) =
1

Mk
uk(xk + λky), where λk :=M

−(p−1)/2
k .

Then vk solves the problem{
0 = ∆v + vp, x ∈ Ωk,

v = 0, x ∈ ∂Ωk,

where Ωk := {y : xk + λky ∈ Ω} and vk attains its maximal value 1 at y = 0. Using
the standard elliptic regularity theory it is not difficult to show that vk converge to

a positive solution v∞ of the same problem in �n or in Hc for some c > 0, where Hc

is the halfspace
Hc = {y ∈ �

n : yn > −c}.
However, the limiting problem does not possess positive solutions provided (1.5) is
true (see [7]). �

The next result is due to Giga [8].

Theorem 2.2. Assume (1.5). Let u be a global nonnegative solution of (1.4)
with u0 ∈ C(Ω). Then there exists a constant C depending only on sup

Ω
u0 such that

u(x, t) � C for any x ∈ Ω and t � 0.
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���� �� ��� �	���. Assume that there exist global nonnegative solutions

uk of (1.4) with equibounded initial values uk(0) and tk > 0 such that

Mk := sup{uk(x, t) : x ∈ Ω, t ∈ (0, tk]} = uk(xk, tk)→ ∞ as k → ∞.

Put

vk(y, s) =
1

Mk
uk(xk + λky, tk + λ2ks),

where λk is as in (2.1). Then vk solves the problem (1.4) in a rescaled region,

and using parabolic regularity theory one obtains that the limit v∞ solves the same
problem in �n × (−∞, 0] or Hc × (−∞, 0]. Moreover, 0 � v∞ � 1 = v∞(0, 0).
Let

(2.2) E(u) =
1
2

∫
Ω
|∇u|2 dx − 1

p+ 1

∫
Ω
|u|p+1 dx

be the energy functional corresponding to (1.4). It is well known that the energy E

is nonincreasing along any solution u of (1.4) and

(2.3)
∫ t1

t0

∫
Ω

u2t dxdt = E
(
u(t0)

)−E
(
u(t1)

)
,

where u(t) := u(·, t). Testing the equation in (1.4) by u yields

(2.4)
1
2
d
dt

∫
Ω
|u|2 dx = −2E(

u(t)
)
+

p − 1
p+ 1

∫
Ω
|u|p+1 dx.

This identity implies both E
(
u(t)

)
� 0 and the boundedness of the L2(Ω)-norm of

u(t) for any global solution of (1.4) (otherwise the L2(Ω)-norm of u(t) blows up in

finite time).
There exist constants δ > 0 and Cδ > 0 such that E

(
uk(δ)

)
< Cδ and tk > 2δ

for k large. Consequently, (2.3) implies a uniform bound for
∫ tk

δ

∫
Ω |ukt|2 dxdt. For

the rescaled functions vk, this bound and (1.5) imply that the time derivative of the

limiting function v∞ is zero, hence we get the same contradiction as in the preceding
theorem. �

The elliptic scaling from Theorem 2.1 was used also by the author in [16] in order

to derive estimate (1.3).

Theorem 2.3. Assume (1.5) and n � 3. Let δ > 0. Then there exists a constant

C(δ) such that u(x, t) � C(δ) for any x ∈ Ω, t � δ and any global nonnegative

(classical) solution u of (1.4).
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���� �� ��� �	���. Due to Theorem 2.2, it is sufficient to show that

u(x, t) � C(δ) for any x ∈ Ω and some t ∈ [0, δ]. Assume the contrary and let
sup
Ω

uk(·, t) � k for some global solutions uk and any t ∈ [0, δ]. Using the energy
identity (2.3) (and several other ingredients including Hardy’s inequality) one can

find tk ∈ [0, δ] such that the L2(Ω)-norm of the time derivative ukt(·, tk) can be
bounded above by CM

p/2+1+ε
k (where Mk = sup

Ω
uk(·, tk) and ε > 0 is small). This

estimate guarantees that the time-derivative ukt vanishes after rescaling and passing
to the limit so that we obtain the same contradiction as in Theorem 2.1. The restric-

tion n � 3 is substantial in the limiting procedure (in order to get Hölder estimates
for the rescaled solutions). �

One of the main ingredients of the proofs of Theorems 2.2 and 2.3 is the Lyapunov

functional E and the energy identity (2.3). Let us consider a problem where the
existence of a Lyapunov functional is not known, for example

(2.5)




ut = ∆u + |v|p−1v, x ∈ Ω, t ∈ (0,∞),
vt = ∆v + |u|q−1u, x ∈ Ω, t ∈ (0,∞),
u = v = 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

where Ω is as above, p, q > 1. Assuming that (1.1) or (1.2) fail one can still repeat
the rescaling procedure from Theorem 2.2 and use an idea of Hu [11] in order to

obtain a bounded positive solution of (2.5) in �n × � or Hc × � (see [20] for details
and other problems). Anyhow, Fujita’s type nonexistence results (see [4] and [13])

guarantee that this problem has no positive solutions even in �n ×�
+ and Hc ×�

+

provided

(2.6)
max(p, q) + 1

pq − 1 � n

2
and

max(p, q) + 1
pq − 1 � n+ 1

2
,

respectively. Unfortunately, this procedure (and condition (2.6)) do not seem to be
optimal: in the case of (1.4), this approach would require

(2.7) p � 1 + 2
n+ 1

instead of the optimal condition (1.5). One could still hope for an optimal (or
better) result by proving a better Liouville’s type nonexistence result concerning

global positive bounded solutions in �n × � or in Hc × �. However, this seems to
be an open problem.
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Let us also mention that an analogue to Theorem 2.1 (and its proof) can be

obtained also for problems without Lyapunov functional. For example, a priori
estimates for nonnegative stationary solutions of (a generalization of) problem (2.5)
were derived using the approach of Theorem 2.1 in [21] under the (optimal) condition

1
p+ 1

+
1

q + 1
>

n − 2
n

if n = 3.

Methods using energy and interpolation

Unlike methods in the preceding and in the next sections, the method described in

this section does not require the positivity of solutions. It was first used by Cazenave
and Lions [2] in order to derive estimate (1.2) for global solutions of (1.4) under the

assumption (3n− 4)p < 3n+8 and then improved by the author in [15] (so that the
condition (3n − 4)p < 3n+ 8 could be replaced by the optimal condition (1.5)).

Theorem 3.1. Assume (1.5) and let X = H10 (Ω) (or X = C(Ω)). Then estimate
(1.2) is true for any global (classical) solution of (1.4).

���� �� ��� �	���. The proof is based on the energy identity (2.3). This

identity together with the boundedness of E
(
u(0)

)
and E

(
u(t)

)
� 0 implies

(3.1)
∫ ∞

0
|u(t)|22 dt < C,

where |v|q denotes the Lq(Ω)-norm of v. Moreover, identity (2.4) implies the bound-
edness of |u(t)|2. Squaring and integrating this identity, using

(3.2)
1
2
d
dt

|u(t)|22 � |u(t)ut(t)|1 � |u(t)|2|ut(t)|2,

the boundedness of |u(t)|2 and (3.1) yields

(3.3) sup
t

∫ t+1

t

|u(s)|(p+1)qp+1 ds < C,

where q = 2. Now (3.1), (3.3) and an interpolation argument show the boundedness
of |u(t)|λ provided

λ < λ(q) := p+ 1− p − 1
q + 1

.
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Since it is known that the bound for u(t) in Lλ(Ω) implies a bound inH10 (Ω) provided

(3.4) p < 1 +
2λ
n

,

the above estimate implies our assertion provided p < 1 + 2λ(2)n , that is (3n − 4)p <

3n+ 8. In the general case, one can use Hölder’s inequality

|u(t)ut(t)| � |u(t)|λ|ut(t)|λ′ , λ′ =
λ

λ − 1 ,

instead of (3.2), an interpolation estimate for |ut(t)|λ′ and Sobolev maximal regular-
ity estimates to show that the boundedness of |u(t)|λ with λ < λ(q) implies estimate

(3.3) for some q̃ > q (see [15] for details). An obvious bootstrap procedure completes
the proof. �

Although the result of Theorem 3.1 is optimal, its generalization to the Dirichlet

problem for the equation ut = ∆u − 1
2x · ∇u − βu+ |u|p−1u in a varying domain as

in [9] (which is needed for the corresponding proof of the blow-up rate for nonglobal

solutions of (1.4)) seems to be open if (3n − 4)p � 3n+ 8.

Kaplan’s method and Hardy’s inequality

Let ϕ1 > 0 be the first eigenfunction of the operator (−∆) with homogeneous
Dirichlet boundary conditions on Ω and let λ1 > 0 be the corresponding eigenvalue.

Let u be a nonnegative solution of (1.4). If we multiply the equation in (1.4) by ϕ1
and integrate over Ω, we obtain

(∫
Ω

u(t)ϕ1 dx
)

t
= −λ1

∫
Ω

u(t)ϕ1 dx+
∫
Ω

up(t)ϕ1 dx

� −λ1

∫
Ω

u(t)ϕ1 dx+ c
(∫
Ω

u(t)ϕ1 dx
)p

,

which implies blow-up of the solution u in finite time provided
∫
Ω u(t)ϕ1 dx is large

enough for some t � 0. Consequently, if u is any global nonnegative solution of (1.4),
then

(4.1)
∫
Ω

u(t)ϕ1 dx < C,

where C is a universal constant.

Let δ(x) := dist (x, ∂Ω). Then Hardy’s type inequality∣∣∣v
δ

∣∣∣
2

� C|∇v|2, v ∈ H10 (Ω),
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standard imbedding theorems and

c1δ(x) � ϕ1(x) � c2δ(x)

imply

(4.2)
∣∣∣ v

ϕr
1

∣∣∣
q

� C‖v‖ if q(n − 2 + 2r) � 2n, r ∈ [0, 1],

where ‖ · ‖ denotes the norm in H10 (Ω) and a strict inequality is required if n < 3

(see [1], [16]).

Estimates (4.1), (4.2) and their modifications can be successfully used for a priori

estimates of nonnegative stationary and global solutions of (1.4) and its modifica-
tions. Moreover, the proofs do not require any variational structure. Unfortunately,
the corresponding results obtained in this way do not yield optimal results.

Let us start with the classical result of Brezis and Turner [1].

Theorem 4.1. Let (n − 1)p < n + 1 and n � 3. Then there exists a constant
C > 0 such that any nonnegative stationary (classical) solution u of (1.4) satisfies
sup
Ω

u < C.

���� �� ��� �	���. Testing the equation in (1.4) with ϕ1 and using (4.1)
yields ∫

Ω
upϕ1 dx = λ1

∫
Ω

uϕ1 dx < C.

This estimate and (4.2) (with q := p+1/(1−α), r := α/(p(1−α)+1), α := 2/(n+1))

imply

∫
Ω

up+1 dx =
∫
Ω
(upϕ1)α

( uq

ϕqr
1

)1−α

dx �
(∫
Ω
(upϕ1) dx

)α(∫
Ω

( u

ϕr
1

)q

dx
)1−α

� C‖u‖q(1−α),

where the exponent q(1− α) is less than 2. On the other hand, testing the equation
in (1.4) with u yields

∫
Ω

up+1 dx =
∫
Ω
|∇u|2 dx � C‖u‖2.

Comparing the last two estimates we obtain the assertion. �
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The method of Brezis and Turner was used and generalized for many problems,

see [3], for example.
In the parabolic case, Ni, Sacks and Tavantzis [14] used estimate (4.1) and the

convexity of the domain in order to get an estimate for |u(t)|1 which implies an
H1(Ω)-bound provided p < 1 + 2

n (cf. (3.4)).
Estimate (4.1) plays a key role also in the paper by Fila, Souplet and Weissler

[5]. These authors developed the linear and nonlinear theory for parabolic problems
with initial values in the weighted spaces Lq(Ω, δ(x) dx). Using this theory and The-

orem 2.2, they were able to show universal bounds for global nonnegative solutions
from Theorem 2.3 under the assumption (n − 1)p < n+ 1 for any n.

An approach based on (4.1)–(4.2) was used by Gu and Wang [10] or the author
[19] for a priori estimates of nonnegative stationary or global solutions of the problem




ut = ∆u+ uv − bu, x ∈ Ω, t ∈ (0,∞),
vt = ∆v + au, x ∈ Ω, t ∈ (0,∞),
u = v = 0, x ∈ ∂Ω, t ∈ (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

respectively. Here Ω is a smoothly bounded domain in �n , n � 3 in the elliptic case
and n � 2 in the parabolic case.
Finally, let us mention that estimates (4.1) and (4.2) can be used in order to get

universal bounds for global nonnegative solutions of (2.5) (see [20]) and that these

estimates were used also in the detailed proof of Theorem 2.3 (see [16]).
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