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UNIQUENESS OF ENTIRE FUNCTIONS CONCERNING

DIFFERENCE POLYNOMIALS
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Abstract. In this paper, we investigate the uniqueness problem of difference polynomials
sharing a small function. With the notions of weakly weighted sharing and relaxed weighted
sharing we prove the following: Let f(z) and g(z) be two transcendental entire functions of
finite order, and α(z) a small function with respect to both f(z) and g(z). Suppose that c is
a non-zero complex constant and n > 7 (or n > 10) is an integer. If fn(z)(f(z)−1)f(z+ c)
and gn(z)(g(z)− 1)g(z + c) share “(α(z), 2)” (or (α(z), 2)∗), then f(z) ≡ g(z). Our results
extend and generalize some well known previous results.
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1. Introduction, definitions and results

By a meromorphic function we shall always mean a meromorphic function in the

complex plane. Let k be a positive integer or infinity and a ∈ C ∪ {∞}. Set

E(a, f) = {z : f(z) − a = 0}, where a zero point with multiplicity k is counted k

times in the set. If these zeros points are only counted once, then we denote the set

by E(a, f). Let f and g be two nonconstant meromorphic functions. If E(a, f) =

E(a, g), then we say that f and g share the value a CM; if E(a, f) = E(a, g), then we

say that f and g share the value a IM. We denote by Ek)(a, f) the set of all a-points

of f with multiplicities not exceeding k, where an a-point is counted according to

its multiplicity. Also we denote by Ek)(a, f) the set of distinct a-points of f with

multiplicities not greater than k. It is assumed that the reader is familiar with the

notations of Nevanlinna theory such as T (r, f), m(r, f), N(r, f), N(r, f), S(r, f) and

so on, that can be found, for instance, in [5], [13]. We denote by Nk)(r, 1/(f − a))

the counting function for zeros of f − a with multiplicity less or equel to k, and by
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Nk)(r, 1/(f − a)) the corresponding one for which multiplicity is not counted. Let

N(k(r, 1/(f −a)) be the counting function for zeros of f −a with multiplicity at least

k and N (k(r, 1/(f − a)) the corresponding one for which multiplicity is not counted.

Set

Nk

(

r,
1

f − a

)

= N
(

r,
1

f − a

)

+N (2

(

r,
1

f − a

)

+ . . .+N (k

(

r,
1

f − a

)

.

Let NE(r, a; f, g)(NE(r, a; f, g)) be the counting function (reduced counting func-

tion) of all common zeros of f − a and g − a with the same multiplicities and

N0(r, a; f, g) (N0(r, a; f, g)) the counting function (reduced counting function) of all

common zeros of f − a and g − a ignoring multiplicities. If

N
(

r,
1

f − a

)

+N
(

r,
1

g − a

)

− 2NE(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share a “CM”. On the other hand, if

N
(

r,
1

f − a

)

+N
(

r,
1

g − a

)

− 2N0(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share a “IM”.

We now explain in the following definition the notion of weakly weighted sharing

which was introduced by Lin and Lin [8].

Definition 1 ([8]). Let f and g share a “IM” and k be a positive integer or ∞.

N
E

k)(r, a; f, g) denotes the reduced counting function of those a-points of f whose

multiplicities are equal to the corresponding a-points of g, and both of their multi-

plicities are not greater than k. N
O

(k(r, a; f, g) denotes the reduced counting function

of those a-points of f which are a-points of g, and both of their multiplicities are not

less than k.

Definition 2 ([8]). For a ∈ C ∪ {∞}, if k is a positive integer or ∞ and

Nk)

(

r,
1

f − a

)

−N
E

k)(r, a; f, g) = S(r, f),

Nk)

(

r,
1

g − a

)

−N
E

k)(r, a; f, g) = S(r, g),

N (k+1

(

r,
1

f − a

)

−N
O

(k+1(r, a; f, g) = S(r, f),

N (k+1

(

r,
1

g − a

)

−N
O

(k+1(r, a; f, g) = S(r, g),

or if k = 0 and

N
(

r,
1

f − a

)

−N0(r, a; f, g) = S(r, f), N
(

r,
1

g − a

)

−N0(r, a; f, g) = S(r, g),
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then we say f and g weakly share a with weight k. Here we write f , g share “(a, k)”

to mean that f , g weakly share a with weight k.

Now it is clear from Definition 2 that weakly weighted sharing is a scaling between

IM and CM.

Recently, A. Banerjee and S.Mukherjee [1] introduced another sharing notion

which is also a scaling between IM and CM but weaker than weakly weighted sharing.

Definition 3 ([1]). We denote by N(r, a; f | = p; g| = q) the reduced counting

function of common a-points of f and g with multiplicities p and q, respectively.

Definition 4 ([1]). Let f , g share a “IM”. Also let k be a positive integer or ∞

and a ∈ C ∪ {∞}. If

∑

p,q6k

N(r, a; f | = p; g| = q) = S(r),

then we say f and g share a with weight k in a relaxed manner. Here we write f and

g share (a, k)∗ to mean that f and g share a with weight k in a relaxed manner.

W.K.Hayman proposed the following well-known conjecture in [6].

Hayman’s conjecture. If an entire function f satisfies fnf ′ 6= 1 for all positive

integers n ∈ N , then f is a constant.

It has been verified by Hayman himself in [7] for the case n > 1 and Clunie in [3]

for the case n > 1, respectively.

It is well-known that if f and g share four distinct values CM, then f is a Möbius

transformation of g. In 1997, corresponding to the famous conjecture of Hayman,

Yang and Hua studied the unicity of differential monomials and obtained the follow-

ing theorem.

Theorem A ([12]). Let f(z) and g(z) be two nonconstant entire functions, n > 6

a positive integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e
cz, g(z) =

c2e
−cz, where c1, c2, c are three constants satisfying (c1c2)

n+1c2 = −1, or f(z) ≡

tg(z) for a constant t such that tn+1 = 1.

In 2001, Fang and Hong studied the unicity of differential polynomials of the form

fn(f − 1)f ′ and proved the following uniqueness theorem.

Theorem B ([4]). Let f and g be two transcendental entire functions, n > 11 an

integer. If fn(f − 1)f ′ and gn(g − 1)g′ share the value 1 CM, then f ≡ g.

In 2004, Lin and Yi extended the above theorem as to the fixed-point. They

proved the following result.
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Theorem C ([9]). Let f and g be two transcendental entire functions, n > 7 an

integer. If fn(f − 1)f ′ and gn(g − 1)g′ share z CM, then f ≡ g.

In 2010, Zhang [15] got an analogue result for translates.

Theorem D ([15]). Let f(z) and g(z) be two transcendental entire functions of

finite order, and α(z) be a small function with respect to both f(z) and g(z). Suppose

that c is a non-zero complex constant and n > 7 is an integer. If fn(z)(f(z)− 1)×

f(z + c) and gn(z)(g(z)− 1)g(z + c) share α(z) CM, then f(z) ≡ g(z).

Now one may ask the following question which is the motivation of the paper: Can

the nature of small function α(z) be relaxed in the above theorem? Considering this

question, we prove the following results.

Theorem 1. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z) be a small function with respect to both f(z) and g(z). Suppose that

c is a non-zero complex constant and n > 7 is an integer. If fn(z)(f(z)− 1)f(z + c)

and gn(z)(g(z)− 1)g(z + c) share “(α(z), 2)”, then f(z) ≡ g(z).

Theorem 2. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z) be a small function with respect to both f(z) and g(z). Suppose that

c is a non-zero complex constant and n > 10 is an integer. If fn(z)(f(z)− 1)f(z+ c)

and gn(z)(g(z)− 1)g(z + c) share (α(z), 2)∗, then f(z) ≡ g(z).

Without the notions of weakly weighted sharing and relaxed weighted sharing we

prove the following theorem which also improves Theorem D.

Theorem 3. Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z) a small function with respect to both f(z) and g(z). Suppose that

c is a non-zero complex constant and n > 16 is an integer. If E2)(α(z), f
n(z)×

(f(z)− 1)f(z + c)) = E2)(α(z), g
n(z)(g(z)− 1)g(z + c)), then f(z) ≡ g(z).

2. Some lemmas

In this section, we present some lemmas which will be needed in the sequel. We

will denote by H the following function:

H =
(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G− 1

)

.
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Lemma 1 ([1]). Let H be defined as above. If F and G share “(1, 2)” and H 6≡ 0,

then

T (r, F ) 6 N2

(

r,
1

F

)

+N2

(

r,
1

G

)

+N2(r, F ) +N2(r,G)

−

∞
∑

p=3

N (p

(

r,
G

G′

)

+ S(r, F ) + S(r,G),

and the same inequality holds for T (r,G).

Lemma 2 ([1]). Let H be defined as above. If F and G share (1, 2)∗ and H 6≡ 0,

then

T (r, F ) 6 N2

(

r,
1

F

)

+N2

(

r,
1

G

)

+N2(r, F ) +N2(r,G) +N
(

r,
1

F

)

+N(r, F )−m
(

r,
1

G− 1

)

+ S(r, F ) + S(r,G),

and the same inequality holds for T (r,G).

Lemma 3 ([14]). Let H be defined as above. If H ≡ 0 and

lim sup
r→∞

N(r, 1
F
) +N(r, F ) +N(r, 1

G
) +N(r,G)

T (r)
< 1, r ∈ I,

where T (r) = max{T (r, F ), T (r,G)} and I is a set with infinite linear measure, then

F ≡ G or FG ≡ 1.

Lemma 4 ([2]). Let f(z) be a meromorphic function in the complex plane of

finite order σ(f), and let η be a fixed non-zero complex number. Then for each

ε > 0, one has

T (r, f(z + η)) = T (r, f(z)) +O(rσ(f)−1+ε) +O(log r)

Lemma 5 ([11]). Let f(z) be an entire function of finite order σ(f), c a fixed

non-zero complex number, and

P (z) = anf
n(z) + an−1f

n−1(z) + . . .+ a1f(z) + a0

where aj (j = 0, 1, . . . , n) are constants. If F (z) = P (z)f(z + c), then

T (r, F ) = (n+ 1)T (r, f) +O(rσ(f)−1+ε) +O(log r).
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Lemma 6 ([10]). Let F and G be two nonconstant entire functions, and p > 2

an integer. If Ep)(1, F ) = Ep)(1, G) and H 6≡ 0, then

T (r, F ) 6 N2

(

r,
1

F

)

+N2

(

r,
1

G

)

+ 2N
(

r,
1

F

)

+N
(

r,
1

G

)

+ S(r, F ) + S(r,G).

3. Proof of Theorem 1

Let

F (z) =
fn(z)(f(z)− 1)f(z + c)

α(z)
, G(z) =

gn(z)(g(z)− 1)g(z + c)

α(z)
.

Then F (z) and G(z) share “(1, 2)” except the zeros or poles of α(z). By Lemma 5,

we have

T (r, F (z)) = (n+ 2)T (r, f(z)) +O(rσ(f)−1+ε) + S(r, f),(3.1)

T (r,G(z)) = (n+ 2)T (r, g(z)) +O(rσ(g)−1+ε) + S(r, g).(3.2)

Suppose H 6≡ 0, then by Lemma 1 and Lemma 4 we have

(3.3) T (r, F ) + T (r,G) 6 2N2

(

r,
1

F

)

+ 2N2

(

r,
1

G

)

+ S(r, f) + S(r, g)

6 4N
(

r,
1

f

)

+ 4N
(

r,
1

g

)

+ 2N
(

r,
1

f(z)− 1

)

+ 2N
(

r,
1

g(z)− 1

)

+ 2N
(

r,
1

f(z + c)

)

+ 2N
(

r,
1

g(z + c)

)

+ S(r, f) + S(r, g)

6 8T (r, f) + 8T (r, g) + S(r, f) + S(r, g).

Substituting (3.1) and (3.2) into (3.3), we obtain

(n− 6)[T (r, f) + T (r, g)] 6 O(rσ(f)−1+ε) +O(rσ(g)−1+ε) + S(r, f) + S(r, g)

which contradicts with n > 7. Thus we have H ≡ 0. Note that

N
(

r,
1

F

)

+N
(

r,
1

G

)

6 3T (r, f) + 3T (r, g) + S(r, f) + S(r, g) 6 T (r)

where T (r) = max{T (r, F ), T (r,G)}. By Lemma 3, we deduce that either F ≡ G or

FG ≡ 1. Next we will consider the following two cases, respectively.
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Case 1. F ≡ G, thus fn(z)(f(z) − 1)f(z + c) ≡ gn(z)(g(z) − 1)g(z + c). Let

ϕ(z) = f(z)/g(z). If ϕn+1(z)ϕ(z + c) 6≡ 1, we have

(3.4) g(z) =
ϕn(z)ϕ(z + c)− 1

ϕn+1(z)ϕ(z + c)− 1
.

Then ϕ(z) is a transcendental meromorphic function of finite order since g(z) is

transcendental. By Lemma 4, we have

(3.5) T (r, ϕ(z + c)) = T (r, ϕ(z)) + S(r, ϕ).

If ϕn+1(z)ϕ(z + c) = k(6= 1), where k is a constant, then Lemma 4 and (3.5) imply

that

(n+ 1)T (r, ϕ(z)) = T (r, ϕ(z + c)) +O(1) = T (r, ϕ(z)) +O(rσ(ϕ(z))−1+ε) +O(log r)

which contradicts with n > 7. Thus ϕn+1(z)ϕ(z+ c) is not a constant. Suppose that

there exists a point z0 such that ϕ(z0)
n+1ϕ(z0 + c) = 1. Then ϕ(z0)

nϕ(z0 + c) = 1

since g(z) is an entire function. Hence ϕ(z0) = 1 and

N
(

r,
1

ϕn+1(z)ϕ(z + c)− 1

)

6 N
(

r,
1

ϕ(z)− 1

)

6 T (r, ϕ(z)) +O(1).

We apply the second Nevanlinna fundamental theorem to ϕ(z)n+1ϕ(z + c):

T (r, ϕn+1(z)ϕ(z + c)) 6 N(r, ϕn+1(z)ϕ(z + c)) +N
(

r,
1

ϕn+1(z)ϕ(z + c)

)

+N
(

r,
1

ϕn+1(z)ϕ(z + c)− 1

)

+ S(r, ϕ) 6 5T (r, ϕ(z)) + S(r, ϕ).

By Lemma 5 we deduce

(3.6) (n− 3)T (r, ϕ(z)) 6 O(rσ(ϕ)−1+ε) + S(r, ϕ),

which contradicts with n > 7. So ϕn+1(z)ϕ(z + c) ≡ 1. Thus ϕ(z) ≡ 1, that is

f(z) ≡ g(z).

Case 2. F (z)G(z) ≡ 1, that is

(3.7) fn(z)(f(z)− 1)f(z + c)gn(z)(g(z)− 1)g(z + c) ≡ α2(z).

Since f and g are transcendental entire functions, we can deduce from (3.7) that

N(r, 1/f) = S(r, f), N(r, f) = S(r, f) and N(r, 1/(f − 1)) = S(r, f). Then δ(0, f) +

δ(∞, f) + δ(1, f) = 3, which contradicts the deficiency relation. This completes the

proof of Theorem 1. �
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4. Proof of Theorem 2

Let

F (z) =
fn(z)(f(z)− 1)f(z + c)

α(z)
, G(z) =

gn(z)(g(z)− 1)g(z + c)

α(z)
.

Then F (z) and G(z) share (1, 2)∗ except the zeros or poles of α(z). Obviously

(4.1) 2N2

(

r,
1

F

)

+ 2N2

(

r,
1

G

)

+N
(

r,
1

F

)

+N
(

r,
1

G

)

+ S(r, F ) + S(r,G)

6 11T (r, f) + 11T (r, g) + S(r, f) + S(r, g).

According to (4.1) and Lemma 2, we can prove Theorem 2 in a similar way as in

Section 3. �

5. Proof of Theorem 3

Let

F (z) =
fn(z)(f(z)− 1)f(z + c)

α(z)
, G(z) =

gn(z)(g(z)− 1)g(z + c)

α(z)
.

Then E2)(1, f
n(z)(f(z) − 1)f(z + c)) = E2)(1, g

n(z)(g(z) − 1)g(z + c)) except the

zeros or poles of α(z). Obviously

(5.1) 2N2

(

r,
1

F

)

+ 2N2

(

r,
1

G

)

+ 3N
(

r,
1

F

)

+ 3N
(

r,
1

G

)

+ S(r, F ) + S(r,G)

6 17T (r, f) + 17T (r, g) + S(r, f) + S(r, g).

Using (5.1) and Lemma 6, we can prove Theorem 3 in a similar way as in Section 3.

�

A c k n ow l e d g em e n t. The author is grateful to the referee for a number of
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