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HAMILTONIAN COLORINGS OF GRAPHS WITH LONG CYCLES

LADISLAV NEBESKY, Praha
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Abstract. By a hamiltonian coloring of a connected graph G of order n > 1 we mean a
mapping ¢ of V(G) into the set of all positive integers such that |c(z) — c(y)] =2 n—1—
Dg(z,y) (where Dg(z,y) denotes the length of a longest  — y path in G) for all distinct
x,y € G. In this paper we study hamiltonian colorings of non-hamiltonian connected graphs
with long cycles, mainly of connected graphs of order n > 5 with circumference n — 2.
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The letters f—n (possibly with indices) will be reserved for denoting non-negative
integers. The set of all positive integers will be denoted by N. By a graph we mean
a finite undirected graph with no loop or multiple edge, i.e. a graph in the sense of
[1], for example.

0. Let G be a connected graph of order n > 1. If u,v € V(G), then we denote by
D¢ (u,v) the length of a longest u — v path in G. If 2,y € G, then we denote

Dg(w,y) =n—1- Dg(,y).
We say that a mapping ¢ of V(G) into N is a hamiltonian coloring of G if
le(z) = e(y)| > Dg(x,y)
for all distinct z,y € V(G). If ¢ is a hamiltonian coloring of GG, then we denote

he(e) = max{c(w); w € V(G)}.
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The hamiltonian chromatic number he(G) of G is defined by
he(G) = min{he(c); ¢ is a hamiltonian coloring of G}.

Fig. 1 shows four connected graphs of order six, each of them with a hamiltonian

coloring.
5 3 10 7 5 9
8 1 7 1 3 9
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3 9 1 1 3 9

The notions of a hamiltonian coloring and the hamiltonian chromatic number of a

Fig. 1

connected graph were introduced by G.Chartrand, L. Nebesky and P.Zhang in [2].
These concepts have a transparent motivation: a connected graph G is hamiltonian-
connected if and only if he(G) = 1.

The following useful result on the hamiltonian chromatic number was proved in
[2]; its proof is easy.

Proposition 1. Let G; and G2 be connected graphs. If GGy is spanned by G,
then he(G1) < he(Ga).

It was proved in [2] that
he(G) < (n—2)? +1

for every connected graph G of order n > 2 and that he(S) = (n —2)% + 1 for every
star S of order n > 2. These results were extended in [3]: there exists no connected
graph of order n > 5 with he(G) = (n — 2)?, and if T is a tree of order n > 5
obtained from a star of order n — 1 by inserting a new vertex into an edge, then
he(T) = (n —2)? — 1.

The following definition will be used in the next sections. Let G be a connected
graph containing a cycle; by the circumference of G we mean the length of a longest
cycle in G; similarly as in [2] and [3], the circumference of G will be denoted by
cir(G). If G is a tree, then we put cir(G) = 0.

1. It was proved in [2] that if G is a cycle of order n > 3, then he(G) = n — 2.
Proposition 1 implies that if G is a hamiltonian graph of order n > 3, then he(G) <

n — 2.
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As was proved in [2], if G is a connected graph of order n > 4 such that cir(G) =
n—1 and G contains a vertex of degree 1, then hc(G) = n—1. Thus, by Proposition 1,
if G is a connected graph of order n > 4 such that cir(G) = n—1, then he(G) < n—1.

Consider arbitrary j and n such that j > 0 and n—j > 3. We denote by hcmax(n, 7)
the maximum integer ¢ > 1 with the property that there exists a connected graph G
of order n such that cir(G) = n — j and he(G) = 1.

As follows from the results of [2] mentioned above,

hepax(n,0) =n —2 for every n > 3

and
hemax(n,1) =n —1 for every n > 4.

Using Proposition 1, it is not difficult to show that hcpax(5,2) = 6. Combining
Proposition 1 with Fig. 1 we easily get hcmax(6,2) < 10. In this section, we will find
an upper bound of hepyax(n, 2) for n > 7.

Let n > 7, let 0 < i < [3(n—2)], and let V be a set of n elements, say ele-

ments ug, Ui, . . ., Up—4, Un—3, vV, w. We denote by F(n,4) the graph defined as follows:
V(F(n,i)) =V and

E(F(n,i)) = {uour, uiug, . . ., Up—gUpn_3, Un—3to } U {uov, u;w}.
Lemma 1. Let n > 7. Then there exists a hamiltonian coloring ¢; of F(n,i) with
1 .
he(e;) = 3n — Lg(n —2)|—6—1i

for each i, 0 <i < [3(n—2)].
Proof. Putj=[3(n—2)]. Let 0 < i< j. Consider a mapping ¢; of V(F(n,i))
into N defined as follows:
cilup)=n—1, ¢i(ur)=n—-3, ..., ¢ci(uj—1)=n—-2(G—-1) -1,
ci(uj) =n—2j =1, ci(ujs1) =3n—2j =7, ci(ujy2) =3n—2j -9, ...,
Ci(un—a) =n+3, ci(un—3)=n-+1, ¢;(v) =1 and ¢;(w)=3n—j5—6—1.
(A diagram of F(21,0) with ¢y can be found in Fig. 2.)

Consider arbitrary distinct vertices r and s of F(n, i) such that ¢;(r) > ¢;(s). Put
Di(r,s) = D%(n,i)(r,s). Obviously, ¢;(r) > c;(s). If (r,s) = (w,u;j11) or (un—s,up)
or (usi1,us), where 0 < f < n —4, then ¢;(r) — ¢;(s) = Dj(r,s). If (r,s) = (uj,v),
then Dj(r,s) +2 > ¢;(r) — ¢;(s) = Dj(r,s). Otherwise, ¢;(r) — ¢;(s) > Dj(r,s). Thus

¢; is a hamiltonian coloring of F(n, 7). We see that hc(c;) = ¢;(w). O

Let n > 7. We define F'(n) = F(n,0) — uow + vw.
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Corollary 1. Let n > 7. Then there exists a hamiltonian coloring cj, of F'(n)
with he(c) = 3n— [3(n —2)] — 7.

Proof. Put ¢ = ¢1, where ¢; is defined in the proof of Lemma 1. It is clear
that ¢}, is a hamiltonian coloring of F’(n). Applying Lemma 1, we get the desired
result. O

Lemma 2. Let n > 7. Then there exists a hamiltonian coloring ¢ of F(n,1)
with

for each i, |$(n —2)] +1 < i< [$(n—2)].
Proof. Putj=|[i(n—2)] and k= [$(n —2)]. Let j+1 < i < k. Consider a
mapping ¢; of V/(F(n,i)) into N defined as follows:
cH(ug) =3k +1, ¢f (w1) =3k —1, ..., ¢ (wk—1) =k +3, ¢ (up) =k +1,
cF(uks1) =2(n—=3) +k+1, ¢f (upy2) =2n—3)+k—1, ...,
e (un—a) =3k +5, ¢ (up—3) =3k+3, ¢f(v) =1 and ¢ (w) =2n —4+ 2k —i.

A diagram of F(21,7) with ¢& can be found in Fig. 3.
7

Put D} = DY, ;). We see that e (uk) —cf (v) = Di(ug,v) and ¢ (w) —c¢; (upt1) =

D!(w,ug+1). It is easy to show that ¢; is a hamiltonian coloring of F'(n,4). We have
he(cf) = ¢f (w). O
Theorem 1. Let n > 7. Then

hemax(n,2) < 3n — [ 5(n —2)] — 6.

Proof. Consider an arbitrary connected graph G of order n with cir(G) =n—2.
Obviously, G is spanned by a connected graph F' such that cir(F) = n — 2 and F
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has exactly one cycle. By Proposition 1, he(G) < he(F). Thus we need to show that
he(F) <3n—[4(n—2)] — 6.

If F is isomorphic to F’(n), then the result follows from Corollary 1. Let F' be
not isomorphic to F’(n). Then there exists 4,0 < i < [3(n — 2)], such that F is

isomorphic to F(n,4). If 0 < i < [4(n — 2)], then the result follows from Lemma 1.

Let [5(n—2)] <i<[4(n—2)]. By Lemma 2, he(F) < 2n—4+42[4(n—2)] —i <
2n—4+2[3(n—2)] — [3(n—2)] =1 <3n— [3(n —2)] — 7, which completes the

proof. (Il
Corollary 2. Let n > 7. Then

hemax(n,2) < 3(8n — 14).

1
3

2. Consider arbitrary j and n such that j > 0 and n — 7 > 3. We denote by
hemin (1, 7) the minimum integer ¢ > 1 with the property that there exists a connected
graph G of order n such that cir(G) = n—j and he(G) = 4. Since every hamiltonian-
connected graph of order > 3 is hamiltonian, we get hepin(n, 0) = 1 for every n > 3.
In this section we will find an upper bound of heyin(n, 7) for j > 1and n > j(j+3)+1.

We start with two auxiliary definitions. If U is a set, then we denote

Ecom(U)={A CU;|A| =2}
If W7 and W5 are disjoint sets, then we denote

Ecombi(W17W2) = {A c Ecom(Wl U WQ); |A n W1| =1= |Aﬂ W2|}
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Lemma 3. Consider arbitrary j, k and n such that j > 1,k > j+ 1, and
k+jk+1)<n<k+(k—1)°+2j

Then there exists a k-connected graph G of order n such that cir(G) = n — j and
he(G) < 25(k—1)+ 1.

Proof. Clearly, there exist fi,..., fx—1 such that
J<fg<k—1foralg, 0<g<k-—1

and
f1+---+fk—1 :n—2j—k.

Consider pairwise disjoint finite sets U, W7, ..., Wy and Wy such that |U| = k,
|[Wy| = fy foreachg,0<g<k—1
and |[Wy| = |[Wi11]| = j. We denote by G the graph with
VG)=UUWiU...WiUWgi

and
E(G)=Ecom(V1)U...UFEcom(Vit1) U Ecombi(U, V1 U ... U Vigq).

It is easy to see that G is a k-connected graph of order n and cir(G) = n — j.
Put D'(z,y) = Dg(z,y) for z,y € U. It is clear that

D' (u,u*) =25

for all distinct u,u* € U,
D/(ua ’LU) =]

forallu e U and w e Wy U...U Wiy,
D' (w,w*) =0

for all w and w* such that there exist distinct g, g* € {1,...,k+1} such that w € W,
and w* € Wy-, and
D'(w,w") =j

for all distinct w and w* such that there exists h € {1,...,k+ 1} such that w,w* €
Wh,.
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Put fr = fx+1 = j. Consider a mapping ¢ of V(@) into N with the properties that

cU)={1,2j+1,4j+1,...,2j(k— 1) + 1}

and
for each g,1 < g < k+ 1. It is easy to see that c is a hamiltonian coloring of G.
Hence he(G) < he(e) = 25(k—1) + 1. O

Theorem 2. Let n and j be integers such that j > 1 and n > j(j +3) + 1, and
let k be the smallest integer such that

E>j+1 and (k—1)2+k>n—2j

Then
hemin(n, 7) < 25(k—1) + 1.

Proof. The theorem immediatelly follows from Lemma 3. g
Corollary 3. Let n > 5 and let k be the smallest integer such that
k>2 and n< (k-1 +k+2.

Then
hemin(n, 1) < 2k — 1.

Corollary 4. Let n > 11 and let k be the smallest integer such that
k>3 and n < (k—1)2+k+4.

Then
hemin(n, 2) < 4k — 3.

3. As follows from results obtained in [2], if (a) n > 3, then for every k €
{1,2,...,n—1} there exists a connected graph G of order n > 4 such that he(G) = k,
and if (b) G is a graph of order n such that hc(G) > n, then cir(G) # n,n — 1.

For n = 4 or 5, it is easy to find a connected graph of order n with he(G) =
n: he(Py) = 4 and he(2K2 4+ K1) = 5. On the other hand, there exists no connected
graph of order 6 with he(G) = 6. We can state the folowing question: Given n > 7,
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does there exist a connected graph G of order n with hc(G) = n? Answering this
question for n > 8 is the subject of the present section.

Let 1 < j <. Consider mutually distinct elements r, s, u, v, w and finite sets X
and Y such that |X| =4, |Y| = j and the sets X, Y and {r,s,u,v,w} are pairwise
disjoint. We define a graph G(i, j) as follows:

V(G(i,5) =X UY U{r,s,u,v,w} and E(G(i,7))
= {U’U} U Ecom(X) U Ecom(Y) U Ecombi({u; w}a XU {T})
U Ecombi({vv ’LU}, Y ) {5})

Obviously, cir(G(4,j)) =i+ 7+ 3= |V(G(,j)| — 2.

Proposition 2. Let 1 < j < i. Put D'(t1,t2) = DIG(ij)(tth) for all t1,t5 €
V(G(i,7)). Then

(1) D'(x,y) =0 forallx € X andally€y,

(2) D'(z,s) =0,D'(z,r) = D'(z,v) =1 and D'(z,u) = D'(z,w) =2
for all x € X,

(3) D'(y,r) =0,D'(y,s) = D'(y,u) =1 and D'(y,v) = D'(y,w) =2
for ally €Y,

(4) D'(x1,x2) =2 for all distinct x1, 12 € X,

(5) D'(y1,y2) = 2 for all distinct y1,y> € Y,

(6) D'(r,s) =0,

(7) D'(r,v) = D'(s,u) =1,

(8) D'(u,v) =2,

9) D'(s,v) =D'(s,w) =j + 1,

(1) Dlww)=j+2,

(11) D'(r,u) = D'(r,w) = min(i + 1,5 + 2),

and

(12) D' (u,w) = min(i + 2, j + 3).

Proof is easy.
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Lemma 4. Let 1 < j <i. Then he(G(4,5)) > i+ 7+ 5.

Proof. Suppose, to the contrary, that there exists a hamiltonian coloring ¢ of
G(i,J) such that he(e) < i+ j + 4. Thus he(e) < 2i + 4. We may assume that there
exists t € V(G(i, 7)) such that c(t) = 1.

Put X+ = X U{u,w}. By virtue of (2), (4) and (12),

(13) le(x) —e(xd)] = 2 for all distinct 27,25 € X .

By virtue of (2), (7) and (12),

(14) c(r) # c(x™) #c(v) forallz™ € XT,
(15) c(r) # cv), cs) # c(u)
and

|e(u) = c(v)] = 2.

Obviously, | X | =i + 2. As follows from (13),

(16) maxc(XT) > 2i + 2+ mine(X™T).
Thus he(c) > 2i+ 3. Since he(c) < i+ 5 + 4, we get

(17) i—1<j<i

1,2}, then (14) implies that max c¢(X ) > 2i + 5; a contradiction.
he(c), he(c) — 1}, then max (X ) < 27 + 2; a contradiction. Thus

It {e(r), cfv)} =
It {e(r), c(v)} =

(18) {1,2} # {c(r), c(v)} # {he(c), he(e) — 1}

{
{

Moreover, if
c(u) =mine(X1) and c(v) = c(u) +2

c(u) =maxe(XT) and c(v) = c(u) — 2,

then maxc(X ™) > 20 + 3+ minc(X ™).
Combining (11) and (12) with (17), we have

(19) le(r) —c(u)] Zi+1,]e(r) —c(w)] Zi+1 and |e(u) —c(w)| =i + 2.
We denote by ¢’ a mapping of V(G(i,7)) into N defined as follows:
d(t) =hc(c) + 1 —c(t) for each t € V(G(4,5)).
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We see that ¢’ is a hamiltonian coloring of G(3, j) and that he(¢’) = he(c). Obviously,
c(u) < ¢(v) or ¢'(u) < ¢/ (v). Without loss of generality we assume that c(u) < ¢(v).
Thus

c(v) = c(u) +2

and if ¢(u) = 1 and he(c) = 2i + 3, then c(v) > 4.
We distinguish two cases.

Case 1. Assume that j =4 — 1. Then he(c) = 2i 4+ 3. By virtue of (9) and (10),
le(s) — e(v)| =i, |e(s) —c(w)| 2 ¢ and |e(v) — e(w)] =i+ 1.

If e(r) < e(u) < e(w) or ¢(r) < c(w) < c(u) or c(u) < c(w) < e(r) or c(w) < c(u) <
¢(r), then (19) implies that he(c) > 2i + 4, which is a contradiction.

Let c(w) < ¢(r) < c(u). As follows from (19), c(u) = 2i + 3 and therefore
c(v) > 2i + 5; a contradiction.

Finally, let c(u) < ¢(r) < c(w). Thus ¢(w) = 2i + 3 and therefore ¢(u) = 1 and
¢(r) =i+ 2. Since ¢(u) =1 and he(c) = 2i + 3, we get ¢(v) > 4. If c(v) < ¢(s), then
¢(s) = i+4 and therefore |c(s) —c¢(w)| < i—1; a contradiction. Let ¢(s) < ¢(v). Since
¢(s) # c(u), we have ¢(s) > 2. This implies that c¢(v) > i + 2. Since c(w) = 2i + 3,
we get ¢(v) =i+ 2. Thus ¢(v) = ¢(r), which contradicts (15).

Case 2. Assume that ¢ = j. Recall that he(c) < 2i + 4. By virtue of (9) and
(10),

le(s) —e()| Zi+1,|e(s) —c(w)| Zi+1 and |e(v) — c(w)] =i+ 2.

If e(r) < e(w) < e(u) or c(w) < ¢(r) < c(u), then (19) implies that c(u) > 2i+ 3 and
therefore ¢(v) > 2i + 5, which is a contradiction.

Let ¢(r) < ¢(u) < e¢(w). Then c(w) = 2i+4 and therefore ¢(r) = 1 and c¢(u) = i+2.
This implies that c(v) > i 4+ 4 and therefore |c(v) — c(w)| < ¢; a contradiction.

Let c¢(u) < ¢(w) < ¢(r). Then c(u) = 1, ¢(w) = i+ 3 and ¢(r) = 2i + 4. Since
3 < c(v) # c(r), we get |c(v) — c(w)| < i; a contradiction.

Let c¢(w) < ¢(u) < ¢(r). Then c(w) =1, ¢(u) =i+ 3 and ¢(r) = 2i + 4. Assume
that ¢(s) < ¢(v); since c(w) = 1, we get ¢(s) > i+ 2 and therefore ¢(v) > 2i+ 3; since
c(r) =2i+4 and c(v) # ¢(r), we get ¢(v) = 2i + 3, which contradicts (18). Assume
that c(v) < ¢(s); since c(u) =i + 3, we get c(v) > i + 5 and therefore c(s) > 2i + 6;
a contradiction.

Finally, let ¢(u) < ¢(r) < ¢(w). Then c(w) = 2i + 3. If ¢(v) < ¢(s), then ¢(v) > 3
and ¢(s) > i+4 and therefore c(w) > 2i+5; a contradiction. Assume that c(s) < ¢(v).

272



If ¢(s) > 2, then ¢(v) > i + 3 and therefore c(w) > 2i + 5, which is a contradiction.
Let ¢(s) = 1. Then c(u) = 2, ¢(r) = i + 3 and c¢(w) = 2i + 4. This implies that
c(v) = i + 2. Obviously, minc(X™) = 2. Since ¢(v) = i+ 2 and ¢(r) = i + 3,
we see that c(at) & {i + 2,i + 3} for each T € X*. Therefore maxc(X™*) >
2i + 3+ minc¢(X ™) = 2i + 5, which is a contradiction.

Thus the proof of the lemma is complete. O

Theorem 3. For every n > 8, there exists a connected graph G of order n with
cir(G) = n — 2 and he(G) = n.

Proof. For every f and h such that f < h we define
EVEN|[f,h] ={g; f <g<h,giseven}

and
ODDI[f,h] = {g; f <g<h,gisodd}.

We will use graphs G(i, ) in the proof.

Consider an arbitrary n > 8. We distinguish four cases.

Case 1. Let n =4f + 8, where f > 0. Put
Gi=G2f+2,2f+1).
Then the order of G; is n. Let ¢; be an injective mapping of V(G1) into N such that

ca(r)=c(s)=2f+5, c1(u) =1, c1(v) =3, c1(w) =4f + 8,
c1(X) = EVEN[4,4f + 6] and ¢,(Y) = EVENI[6, 4f + 6].

(For f =0, Gy and ¢; are presented in Fig. 4.) Combining (1)—(12) with the definition
of a hamiltonian coloring, we see that ¢; is a hamiltonian coloring of G;. Clearly,
he(er) =4f + 8 = n. Lemma 4 implies that he(cp) = he(Gy). Thus he(Gy) = n.
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Case 2. Let n=4f+9, where f > 0. Put
G =G2f+2,2f +2).
Then the order of G2 is n. Let ca be an injective mapping of V' (G2) into N such that

2(8) =2f 4+ 6, ca(u) =1,

ca(r)=c
3, co(w) =4f+9 and ca(X) =c2(Y) = ODDI[5,4f + 7).

ca(v)

(For f = 0, G2 and ¢y are presented in Fig.5.) By virtue of (1)—(12), ¢z is a
hamiltonian coloring of G2. Obviously, hc(ca) = n. As follows from Lemma 4,
hC(GQ) =n.

Case 3. Let n =4f + 10, where f > 0. Put
Gs =G(2f+3,2f +2).
The order of G5 is n. Let ¢3 be an injective mapping of V(G3) into N such that

es(r) =245, es(s) =2f+6, c3(u) =1, cs(v) =3, cz(w) =4f + 10,
¢3(X) = EVEN[4,4f + 8] and ¢5(Y) = ODD[5,4f + 7).

(See Fig.6 for f =0.) By (1)—(12), c3 is a hamiltonian coloring of G3. By Lemma 4,
hC(Gg) = hC(Cg) =nNn.
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Case 4. Let n =4f + 11, where n > 0. Put
Gys=G2f+4,2f +2).

The order of G4 is n again. Let ¢4 be an injective mapping of V(Gy4) into N such
that

C4(T) = 2f+67 04(5) = 2f+ 77 C4(’LL) = 17 C4(’U) = 47 C4(’LU) = 4f+ 117
ca(X) = ODD[3,4f + 9] and cy(Y) = EVEN[6,4f + 8].

(See Fig.7 for f = 0.) Combining (1)-(12) with Lemma 4, we see that hc(G4) =
he(eq) = n.

Thus the proof is complete. ]

The author conjectures that there exists no connected graph G of order 7 such
that he(G) = 7.
The author sincerely thanks the referee for helpful comments and suggestions.
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