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Motivations

AREAS OF PLANAR REGIONS

Let f : [a, b] → R be continuous and nonnegative,
g : [a, b] → R be continuous and nondecreasing.

Consider the content P of the region {(x , y) ∈ R2 : x = g(t), 0 ≤ y ≤ f (t), t ∈ [a, b]}.

S(α, ξ) =
mX

j=1

f (ξj ) [g(αj )− g(αj−1)]

a = α0 < α1 < · · · < αm = b, ξ = {ξ1, ξ2, . . . , ξ5}, ξj ∈ [αj−1, αj ].



Motivations

AREAS OF PLANAR REGIONS

Let f : [a, b] → R be continuous and nonnegative,
g : [a, b] → R be continuous and nondecreasing.

Consider the area P of the region {(x , y) ∈ R2 : x = g(t), 0 ≤ y ≤ f (t), t ∈ [a, b]}.

S(α, ξ) =
mX

j=1

f (ξj ) [g(αj )− g(αj−1)] → P :=

Z b

a
f d g,

a = α0 < α1 < · · · < αm = b, ξ = {ξ1, ξ2, . . . , ξ5}, ξj ∈ [αj−1, αj ].
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Motivations

Moments (static, moment of inertia, etc).

Line integrals of the 1st and 2nd kinds.

Functional analysis:

Riesz

Φ is a continuous linear functional on C([a, b]) if and only if:

there is a function p of bounded variation on [a, b] such that

Φ(x) =

Z b

a
x d p for any x ∈ C([a, b]).



Notations

−∞ < a < b <∞,

function f : [a, b]→ R is regulated on [a, b], if

f (s+):= lim
τ→s+

f (τ) ∈ R for s ∈ [a, b), f (t−):= lim
τ→t−

f (τ) ∈ R for t ∈ (a, b].

∆+f (s)= f (s+)− f (s), ∆−f (t) = f (t)− f (t−), ∆f (t) = f (t+)− f (t−).

G([a, b]) (or G) is the space of regulated functions on [a, b].
(G is Banach space with respect to the norm ‖f‖∞= supt∈[a,b] ‖f (t)‖).

BV = BV ([a, b])=
{

f : [a, b]→ R : var b
a f <∞

}
is the space of functions

with bounded variation.

function f : [a, b]→ R is finite step function, if there is a division
a =α0 <α1 <α2 < . . . <αm = b of [a, b] such that f is constant on
every (αj−1, αj),
S([a, b]) (or S) is the set of finite step functions on [a, b].

Regulated functions are uniform limits of finite step functions,
they have at most countably many points of discontinuity.
Every function f of bounded variation is a difference f = g − h
of nondecreasing functions g and h.

S([a, b]) & BV ([a, b]) & G([a, b]).



Riemann-Stieltjes integral

tagged partition of [a, b]: P = (α, ξ),

α = {a = α0 < α1 < · · · < αm = b}, ξ = {ξ1, ξ2, . . . , ξm}, αj−1 ≤ ξj ≤ αj ;

integral sum : for f , g : [a, b] → R and a tagged partition P = (α, ξ) we put

S(P) =
mX

j=1

f (ξj ) [g(αj )−g(αj−1)].

ν(P) = ν(α) (= m) is usually the number of the subintervals determined by P (or α)

and |α| = maxj (αj −αj−1).

Definition (Riemann-Stieltjes (RS) integral)

I = (RS)
Z b

a
f d g ⇐⇒

8>>><>>>:
for every ε > 0 there is a δ > 0 such that���S(P)− I

��� < ε

for every P =(α, ξ) such that |α| < δ.Z c

c
f d g = 0,

Z a

b
f d g = −

Z b

a
f d g.



Riemann-Stieltjes integral

• If g ∈ BV ([a, b]) and {fn} ⊂ C[a, b] is such that fn ⇒ f on [a, b], then

lim
n→∞

Z b

a
fn d g =

Z b

a
f d g ∈ R.

• If f ∈ C[a, b] and {gn} ⊂ BV ([a, b]) is such that gn → g in BV ([a, b]), then

lim
n→∞

Z b

a
f d gn =

Z b

a
f d g ∈ R.

• (RS)
Z b

a
f d g ∈ R for each g ∈ BV ([a, b]) if and only if f ∈ C[a, b].

• (RS)
Z b

a
f d g ∈ R for each f ∈ C[a, b] if and only if g ∈ BV ([a, b]).
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KS integral

Notation

gauge : δ : [a, b] → (0,∞);

tagged partition of interval : P = (α, ξ),

α = {a = α0 < α1 < · · · < αν(P) = b}, ξ = {ξ1, ξ2, . . . , ξν(P)}, αj−1 ≤ ξj ≤ αj ;

integral sum : for f : [a, b] → R, g : [a, b] → R and P = (α, ξ) we set

S(P) =

ν(P)X
j=1

f (ξj ) [g(αj )− g(αj−1)].

δ-fine partition : P = (α, ξ) is δ-fine if [αj−1, αj ] ⊂ (ξj − δ(ξj ), ξj + δ(ξj )) for all j .

Definition

I =

Z b

a
f d g ⇐⇒

8>>><>>>:
for every ε > 0 there is a δ : [a, b] → (0,∞) such that���S(P)− I

��� < ε

for every δ − fine tagged partition P.Z c

c
f d g = 0,

Z a

b
f d g = −

Z b

a
f d g.



RS integral

Notation

gauge : δ ∈ (0,∞);

tagged partition of interval : P = (α, ξ),

α = {a = α0 < α1 < · · · < αν(P) = b}, ξ = {ξ1, ξ2, . . . , ξν(P)}, αj−1 ≤ ξj ≤ αj ;

integral sum : for f : [a, b] → R, g : [a, b] → R and P = (α, ξ) we set

S(P) =

ν(P)X
j=1

f (ξj ) [g(αj )− g(αj−1)].

δ-fine partition : P = (α, ξ) is δ-fine if |α| < 2 δ for all j .

Definition

I = (RS)
Z b

a
f d g ⇐⇒

8>>><>>>:
for every ε > 0 there is a δ ∈ (0,∞) such that���S(P)− I

��� < ε

for every δ − fine tagged partition P.

(RS)
Z c

c
f d g = 0, (RS)

Z a

b
f d g = −(RS)

Z b

a
f d g.



KS integral

Notation

gauge : δ : [a, b] → (0,∞);

tagged partition of interval : P = (α, ξ),

α = {a = α0 < α1 < · · · < αν(P) = b}, ξ = {ξ1, ξ2, . . . , ξν(P)}, αj−1 ≤ ξj ≤ αj ;

integral sum : for f : [a, b] → R, g : [a, b] → R and P = (α, ξ) we set

S(P) =

ν(P)X
j=1

f (ξj ) [g(αj )− g(αj−1)] .

δ-fine partition : P = (α, ξ) is δ-fine if [αj−1, αj ] ⊂ (ξj − δ(ξj ), ξj + δ(ξj )) for all j .

Definition

I =

Z b

a
f d g ⇐⇒

8>>><>>>:
for every ε > 0 there is a δ : [a, b] → (0,∞) such that���S(P)− I

��� < ε

for every δ − fine tagged partition P.Z c

c
f d g = 0,

Z a

b
f d g = −

Z b

a
f d g.



KS integral

ASSUME: f , g : [a, b] → R and fn : [a, b] → R, n ∈ N, are such that

the integrals
Z b

a
fn d g exist for all n ∈ N,

at least one of the following conditions is satisfied:
• g ∈ BV ([a, b]) and fn ⇒ f ,
• g is bounded and lim

n→∞
‖fn − f‖BV = 0.

THEN: the integral
Z b

a
f d g exists as well, and

lim
n→∞

Z b

a
fn d g =

Z b

a
f d g.

ASSUME: f , g : [a, b] → R and gn : [a, b] → R, n ∈ N, are such that

the integrals
Z b

a
f d gn exist for all n ∈ N,

at least one of the following conditions is satisfied:
• f ∈ BV ([a, b]) and gn ⇒ g,
• f is bounded and lim

n→∞
varb

a(gn − g) = 0.

THEN: the integral
Z b

a
f d g exists as well, and

lim
n→∞

Z b

a
f d gn =

Z b

a
f d g.



Integration of finite step functions

f (x) ≡ c, g : [a, b] → R =⇒
Z b

a
f d g = c [g(b)− g(a)].

f : [a, b] → R, g(x) ≡ c =⇒
Z b

a
f d g = 0.

g : [a, b] → R regulated, τ ∈ [a, b] and f = χ[τ,b] =⇒
Z b

τ
f d g = g(b)− g(τ).

Let δ(x) =

(
1
4 (τ − x) for x < τ ,

η for x = τ

and let P =
�
α, ξ

�
be δ-fine. Then

τ

η
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Integration of finite step functions

f (x) ≡ c, g : [a, b] → R =⇒
Z b

a
f d g = c [g(b)− g(a)].

f : [a, b] → R, g(x) ≡ c =⇒
Z b

a
f d g = 0.

g : [a, b] → R regulated, τ ∈ [a, b] and f = χ[τ,b] =⇒
Z b

τ
f d g = g(b)− g(τ).

Let δ(x) =

(
1
4 (τ − x) for x < τ ,

η for x = τ

and let P =
�
α, ξ

�
be δ-fine. Then αν(P)−1 < ξν(P) = αν(P) = τ

=⇒ S(P) = [g(τ)− g(αν(P)−1)]→ [g(τ)− g(τ−)] =⇒
Z τ

a
f d g = g(τ)− g(τ−)

=⇒
Z b

a
f d g = g(b)− g(τ)+ g(τ)− g(τ−)= g(b)− g(τ−).



Integration of finite step functions

f (x) ≡ c, g : [a, b] → R =⇒
Z b

a
f d g = c [g(b)− g(a)].

f : [a, b] → R, g(x) ≡ c =⇒
Z b

a
f d g = 0.

g : [a, b] → R regulated, τ ∈ [a, b] and f = χ[τ,b] =⇒
Z b

a
f d g = g(b)− g(τ−).



Integration of finite step functions

f (x) ≡ c, g : [a, b] → R =⇒
Z b

a
f d g = c [g(b)− g(a)],

f : [a, b] → R, g(x) ≡ c =⇒
Z b

a
f d g = 0,

g : [a, b] → R regulated, τ ∈ [a, b] =⇒Z b

a
χ[τ,b] d g = g(b)− g(τ−),

Z b

a
χ(τ,b] d g = g(b)− g(τ+).



Integration of finite step functions

f (x) ≡ c, g : [a, b] → R =⇒
Z b

a
f d g = c [g(b)− g(a)].

f : [a, b] → R, g(x) ≡ c =⇒
Z b

a
f d g = 0.

g : [a, b] → R regulated, τ ∈ [a, b] =⇒Z b

a
χ[τ,b] d g = g(b)− g(τ−),

Z b

a
χ(τ,b] d g = g(b)− g(τ+),

Z b

a
χ[a,τ ] d g = g(τ+)− g(a),

Z b

a
χ[a,τ) d g = g(τ−)− g(a).



Integration of finite step functions

f (x) ≡ c, g : [a, b] → R =⇒
Z b

a
f d g = c [g(b)− g(a)],

f : [a, b] → R, g(x) ≡ c =⇒
Z b

a
f d g = 0,

g : [a, b] → R regulated, τ ∈ [a, b] =⇒Z b

a
χ[τ,b] d g = g(b)− g(τ−),

Z b

a
χ(τ,b] d g = g(b)− g(τ+),

Z b

a
χ[a,τ ] d g = g(τ+)− g(a),

Z b

a
χ[a,τ) d g = g(τ−)− g(a),

Z b

a
χ[τ ] d g =

8><>:
g(b)− g(b−) for τ = b ,

g(τ+)− g(τ−) for τ ∈ (a, b) ,

g(b)− g(b−) for τ = b ,

f : [a, b] → R τ ∈ [a, b] =⇒Z b

a
f d χ[a,τ ] =

Z b

a
f d χ[a,τ) = −f (τ),

Z b

a
f d χ[τ,b] =

Z b

a
f d χ(τ,b] = f (τ),

Z b

a
f d χ[τ ] =

8><>:
−f (a) for τ = a ,

0 for τ ∈ (a, b) ,

f (b) for τ = b .



Existence of the KS integral

f ∈ G([a, b]), g ∈ G([a, b]) =⇒
Z b

a
f d g ∈ R and

Z b

a
g d f ∈ R

if at least one of f , g is a finite step function.

If • g ∈ BV ([a, b]),

•
Z b

a
fk d g exists for each k ,

• fk ⇒ f ,

then
Z b

a
fk d g →

Z b

a
f d g ∈ R.

f ∈ G([a, b]), g ∈ BV ([a, b]) =⇒
Z b

a
f d g ∈ R.

If • f ∈ BV ([a, b]),

•
Z b

a
f d gk exists for each k ,

• gk ⇒ g,

then
Z b

a
f d gk →

Z b

a
f d g ∈ R.

f ∈ BV ([a, b]), g ∈ G([a, b]) =⇒
Z b

a
f d g ∈ R.



Existence of the KS integral

Theorem

ASSUME: f and g are regulated on [a, b] and at least one of them has a bounded variation.

THEN: both integrals
Z b

a
f d g and

Z b

a
g d f exist.

RS ⊂ KS = PS.

(LS)

Z
[c,d ]

f d g ∈ R =⇒

Z d

c
f d g ∈ R and (LS)

Z
[c,d ]

f d g = f (c)∆−g(c)+

Z d

c
f d g + f (d)∆+g(d).

Z b

a
f d g ∈ R, a≤ c≤ d ≤b =⇒Z b

a
f χ[c,d ] d g = f (c)∆−g(c)+

Z d

c
f d g + f (d)∆+g(d).



Further convergence theorems

Theorem

ASSUME:

f , fk ∈ G([a, b]), g, gk ∈ BV ([a, b]) for k ∈ N,

fk ⇒ f , gk ⇒ g,

α∗ := sup{var b
a gk ; k ∈ N}<∞.

THEN:
Z t

a
fk d gk ⇒

Z t

a
f d g on [a, b].

Bounded convergence

ASSUME: f ∈ G([a, b]), {fn}⊂G([a, b]) and

‖fn‖∞≤M <∞ for n ∈ N,

lim
n→∞

fn(x) = f (x) for x ∈ [a, b].

THEN:

lim
k→∞

Z b

a
fn d g =

Z b

a
f d g for every g ∈ BV ([a, b]).



Integration by parts and substitution

Integration by parts

Let f ∈G[a, b], g ∈BV [a, b]. Then both integralsZ b

a
f d g and

Z b

a
g d f

exist and it holds

Z b

a
f d g +

Z b

a
g d f = f (b) g(b)− f (a) g(a)−

X
a≤t < b

∆+f (t)∆+g(t) +
X

a < t≤b

∆−f (t)∆−g(t) .

Substitution

Let h∈BV [a, b], f : [a, b]→R and g: [a, b]→R are such that
Z b

a
f d g exists.

Then, if one from the integralsZ b

a
h(t) d

h Z t

a
f d g

i
,

Z b

a
h f d g ,

exists, the same is true also for the remaining one andZ b

a
h(t) d

h Z t

a
f d g

i
=

Z b

a
h f d g .



Hake Theorem

Theorem (Hake)Z t

a
f d g exists for every t ∈ [a, b) and lim

t→b−

�Z t

a
f d g + f (b) [g(b)− g(t)]

�
= I ∈ R

=⇒
Z b

a
f d g = I.Z b

t
f d g exists for every t ∈ (a, b ] and lim

t→a+

�Z b

t
f d g + f (a) [g(t)− g(a)]

�
= I ∈ R

=⇒
Z b

a
f d g = I.

Corollaries

If f ∈ G([a, b]), g ∈ G([a, b]) and at least one of them has a bounded variation, then

h(t) =

Z t

a
f d g is regulated on [a, b] .

In particular, if g ∈ BV ([a, b]), then also h ∈ BV ([a, b]).

∆+h(t) = f (t)∆+g(t) for t ∈ [a, b), ∆−h(s) = f (s)∆−g(s) for s ∈ (a, b].

!!! For better understanding I refer to the SAKS-HENSTOCK LEMMA !!!
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If f ∈ G([a, b]), g ∈ G([a, b]) and at least one of them has a bounded variation, then

h(t) =

Z t

a
f d g is regulated on [a, b] .
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Continuous linear functionals

Riesz theorem

Φ is continuous linear functional on C[a, b] (Φ ∈ (C[a, b])∗) ⇔
there is p ∈ BV ([a, b]) such that p (a)= 0, p is right continuous on (a, b) (p ∈ NBV ([a, b]))
and

Φ(x) = Φp(x) :=

∫ b

a
x d p for every x ∈ C[a, b].

Mapping p ∈ NBV ([a, b]) → Φp ∈ (C[a, b])∗ is isometric isomorphism.

GL([a, b]) = {x ∈ G([a, b]) : x(t−) = x(t) for t ∈ (a, b]}

Theorem

Φ is continuous linear functional on GL([a, b]) (Φ ∈ (GL([a, b]))∗) ⇔
there is p ∈ BV ([a, b]) such that

Φ(x) = Φp(x) := p(b) x(b) −
∫ b

a
p d x for x ∈ GL[a, b].

Mapping p ∈ BV ([a, b]) → Φp ∈ (GL([a, b]))∗ is isomorphism.



Generalized linear differential equations

(L) x(t) = ex +

Z t

t0

d A x + f (t)− f (t0) , t ∈ [a, b] .

Theorem

ASSUME:

A ∈ BV ([a, b], Rn×n) and t0 ∈ [a, b].

det [I−∆−A(t)] 6= 0 for t ∈ (t0, b ],

det [I +∆+A(s)] 6= 0 for s ∈ [a, t0).

THEN: for each f ∈ G([a, b], Rn) and ex ∈ Rn, (L) has 1! solution x ∈ G([a, b], Rn).



Generalized linear differential equations

xk (t) = exk +

Z t

a
d [Ak ] x + fk (t)− fk (a), t ∈ [a, b].

x(t) = ex +

Z t

a
d [A] x + f (t)− f (a), t ∈ [a, b].

Ak , A ∈ BV ([a, b], Rn×n), fk , f ∈ G([a, b], Rn), exk , ex ∈ Rn for k ∈ N .

Theorem

ASSUME:

det [I−∆−A(t)] 6= 0 for t ∈ (a, b],

Ak ⇒ A on [a, b], α∗ := sup{var b
a Ak : k ∈ N} < ∞,exk → ex , fk ⇒ f on [a, b].

THEN: xk ⇒ x on [a, b].
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